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Abstract. This paper shows that asynchronous fault detection is a prac-
tical way to reflect partial failure in a network-transparent distributed
programming language. In the network-transparency approach, a pro-
gram can be distributed over many sites without changing its source
code. The semantics of the program’s execution does not depend on how
the program is distributed. We have experimented with various mecha-
nisms for detecting and handling faults from within the language Oz. We
present a new programming model that is based on asynchronous fault
detection, is more consistent with the network-transparent nature of Oz,
and improves the modularity of failure handling at the same time.

1 Introduction

A network-transparent programming language tries as much as possible to make
distributed execution look like centralized execution. This illusion cannot be
complete, because distributed execution introduces new elements that do not
exist in centralized execution, namely latency and limited bandwidth between
sites, partial failure, resources localized on sites, and security issues due to mul-
tiple users and security domains. In our view, these new elements should not be
considered as making network transparency an undesirable or unrealistic goal.
On the contrary, we consider that network transparency can be a realistic ap-
proximation that greatly simplifies distributed programming, and that it should
be part of the design of a distributed programming language. We find that a
network-transparent implementation can be practical if it starts from an appro-
priate base language. The execution model of the base language is crucial, e.g.,
Oz is an appropriate choice [1] but Java is not [2].

This paper focuses on one part of network transparency, namely failure han-
dling. We propose a solution to the issue of reflecting partial failures in the lan-
guage that provides a way to build fault-tolerance abstractions in the language,
while maintaining transparency and separation of concerns.

1.1 Context of the Paper

This work is done in the context of the Distributed Oz project, which is a long-
term research project whose aim is to simplify distributed programming. This

C. Dony et al. (Eds.):Exception Handling, LNCS 4119, pp. 121–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



122 R. Collet and P. Van Roy

project started in 1995 with the goal of making a distributed implementation of
the Oz language that is both network transparent and network aware [1,3]. That
is, our main goal is to separate the distribution aspect from the functionality of
the program. This was implemented in the Mozart Programming System, which
was first released in 1999 [4].

In this system, an application is composed of several sites (i.e., system pro-
cesses) that virtually share language entities. All language entities are imple-
mented with distributed protocols that respect the language semantics in the
case of no site failures. The difference between the protocols is in their network
behavior. For example, objects were implemented with both a stationary pro-
tocol and a mobile (cached state) protocol. Single-assignment entities (dataflow
variables) were implemented with a distributed binding protocol (that in its full
generality is an implementation of distributed unification). These protocols were
designed with a well-defined fault behavior, in the case of site failures, and the
fault behavior was reflected in the language through a fault module.

The site and network faults are reflected as data failures, depending on how
the faults affect the proper functioning of the data. For instance, a stationary
object fails when the site holding its state crashes. The original fault module
provided two ways to reflect failures in the language: a synchronous detection
and an asynchronous detection. The present paper proposes a new model for
reflecting partial failure based on our experience with this design.

1.2 Synchronous and Asynchronous Failure Handling

We make a clear distinction between two basic ways of handling entity failures,
namely synchronous and asynchronous handlers. As we shall see, asynchronous
failure handling is preferable to synchronous failure handling. A synchronous
failure handler is executed in place of a statement that attempts to perform an
operation on a failed entity. In other words, the failure handling of an entity is
synchronized with the use of that entity in the program. Raising an exception
is one possibility: the failure handler simply raises an exception. In contrast, an
asynchronous failure handler is triggered by a change in the fault state of the
entity. The handler is executed in its own thread. One could call it a “failure
listener”. It is up to the programmer to synchronize with the rest of the program,
if that is required.

The following rules give small step semantics for both kinds of handlers. The
symbol σ represents the store, i.e., the memory of the program. The system
reflects the instantaneous fault state of an entity in the store through a system-
defined function fstate(x), which gives the fault state of x. Each execution rule
shows on its left side a statement and the store before execution, and on the
right side the result of one execution step. Rule (sync) states that a statement
S can be replaced by a handler H if the fault state of entity x is not ok , i.e., if x
has failed. Rule (async) spawns a new thread running handler H whenever the
fault state of x changes. Note that there may be more than one handler on x;
we assume all handlers are run when the fault state changes.
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S H
σ σ

if
statement S uses entity x
and σ |= fstate(x) �= ok (sync)

H
σ ∧ fstate(x)=fs σ ∧ fstate(x)=fs ′ if fs → fs ′ is valid (async)

Synchronous failure handlers are natural in single-threaded programs because
they follow the structure of the program. Exceptions are handy in this case
because the failures can be handled at the right level of abstraction. But the
failure modes can become very complex in a highly concurrent application. Such
applications are common in Oz and they are becoming more common in other
languages as well. Because of the various kinds of entities and distribution pro-
tocols, there are many more interaction schemes than the usual client-server
scheme. Handlers for the same entity may exist in many threads at the same
time, and those threads must be coordinated to recover from the failure.

All this conspires to make fault tolerance complicated to program if based
on synchronous failure handling. This mechanism was in fact never used by Oz
programmers developing robust distributed applications [5]. Instead, program-
mers relied on the asynchronous handler mechanism to implement fault-tolerant
abstractions. One such abstraction is the “GlobalStore”, a fault-tolerant trans-
actional replicated object store designed and implemented by Iliès Alouini and
Mostafa Al-Metwally [6].

1.3 Structure of the Paper

The present paper introduces a model based on asynchronous failure handling
and shows how programming fault tolerance is simplified with this model. Sec-
tion 2 explains the distributed programming model of Oz. Section 3 presents the
design of a new fault module that takes our experience building fault-tolerance
abstractions into account. Section 4 gives a detailed example of a group commu-
nication abstraction that shows minimal interaction between the failure handling
and the abstraction’s main functionality. Section 5 describes the implementation
of the fault module. Finally, Sect. 6 explains the lessons we learned and Sect. 7
compares with related work.

2 The Programming Model of Oz

This section gives an overview of Oz as a programming language and its extension
to distributed programming. We discuss an important property of the latter
extension, namely the network transparency, which is convenient for separating
distribution concerns from functional concerns of a program [3].

Oz is a high-level general-purpose programming language that supports decla-
rative programming, object-oriented programming, and fine-grained concurrency
as part of a coherent whole. It is dynamically typed and supports multiparadigm
programming in a natural way. The Mozart Programming System implements
the language and provides the support for its distributed implementation [4].
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local X Y in
thread X={Pow 2 100} end % computes 2ˆ100
thread Y={Pow 5 10} end % computes 5ˆ10
{Show X+Y} % blocks until X and Y are known

end

Fig. 1. An example of dataflow synchronization

To understand Oz and its distribution model, it is important to keep in mind
that entities in Oz are classified into three kinds: stateless (including numbers,
records, and procedures), stateful (cells and ports, see below), and single assign-
ment (dataflow logic variables, see below).

2.1 Dataflow Concurrency

We briefly give the ideas underlying the Oz execution model. Oz can be de-
fined by a process calculus based on concurrent constraints [7,8]. It provides
lightweight threads and dataflow logic variables [9]. A logic variable is a place-
holder for a value. Upon creation, the variable’s value is unknown. The variable
can be assigned at most once to a value, thanks to a unification mechanism.
Note that unification is monotonic and there is no backtracking. A unification
that fails simply raises an exception (see below).

A thread is created by an explicit statement thread S end, where S is the
statement to be executed by the new thread. Threads communicate with each
other by sharing logic variables, stateless entities (values), and stateful values
(such as objects). A thread that attempts to use a variable’s value automatically
blocks if that variable is not bound yet. Once the variable is bound to a value, all
threads blocking on that variable become runnable again. This synchronization
mechanism is called dataflow. An example is shown in Fig. 1. We note that
dataflow in Oz is monotonic (at most one token can appear on an input), whereas
classic dataflow is nonmonotonic (new tokens can appear on an input).

2.2 Stateful Entities

Oz comes with a set of stateful entities that have a well-defined behavior in the
presence of concurrency. The most primitive of them is the cell, which is a simple
mutable pointer with an atomic value exchange operation. The first part of Fig. 2
shows the main operations on a cell. The exchange operation is provided as the
multifix operator x=y:=z. In the example, the variable J is put in C, and the
statement resumes by unifying I with the former contents of C. The new value of
C is then determined. The last two lines of the example implement a thread-safe
atomic increment of a counter.

Another important stateful entity is the port. The port defines a simple and
efficient message-passing interface. The second part of Fig. 2 gives the typical use
of a port. The stream S is a potentially infinite list that is built incrementally,
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local C I J in
C={NewCell 42} % create a new cell C with contents 42
{Show @C} % print the contents of C (42)
C:=7 % assign 7 to C
I=C:=J % assign J to C, and unify I with 7
J=I+1 % bind J to I+1=8

end

local S P in
P={NewPort S} % create a port with stream S
thread % print every element appearing on S

for X in S do {Show X} end
end
{Send P foo} % send foo on P, S becomes foo|_
{Send P bar} % send bar on P, S becomes foo|bar|_

end

Fig. 2. Examples showing the cell and port entities

and whose elements are the messages sent to the port. In order to receive the
messages, one simply has to read the list S. A list is either the empty list nil, or
a pair x|t, where x is the head element, and the tail t is also a list. The dataflow
synchronization automatically wakes up the threads reading the stream when
new messages arrive.

2.3 Exceptions and Failed Values

The language provides a classical, thread-based exception mechanism. The block
construct try. . . catch. . . end works as in most languages. When an exception is
raised, all following statements are skipped until the closest catch delimiter. The
exception is then handled by the code that follows the matching catch. Threads
have no default handler, so uncaught exceptions are programming errors, which
make the whole program fail.

An example is shown in Fig. 3. The keyword fun defines a new function.
Notice that the exception value is the record divisionByZero(Y), and that the
catch construct supports pattern matching.

Threads are independent of each other, and an exception can only be caught
within the thread where it was raised. In order to propagate exceptions from
thread to thread, we extend the basic model with failed values. A failed value is
a special value that encapsulates an exception. A thread that attempts to use
that value automatically raises the exception.

This model fits well with functional style programming. Suppose that a thread
T computes some value, and binds a variable X to that result. That variable may
be shared by other threads that are interested in the result. If the computation
in T raises an exception E, the latter is caught, and X is bound to a failed value
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fun {Divide X Y}
if Y==0
then raise divisionByZero(Y) end % throw exception
else X div Y % return result
end

end

try
{Show {Divide 42 0}}

catch divisionByZero(Y) then % match exception
{ShowError "error: division by zero"}

end

Fig. 3. An example of exception handling

fun {ConcurrentDivide X Y}
thread % return either the result, or a failed value

try {Divide X Y} catch E then {FailedValue E} end
end

end

try
I={ConcurrentDivide 42 J} % (1)
J={ConcurrentDivide 7 13} % (2)

in
{Show I+1} % blocks on I, which will raise an exception

catch E then
{ShowError E}

end

Fig. 4. An example of exception passing between threads

containing E. Other threads trying to use X automatically raise the exception.
An example is shown in Fig. 4. The statement (1) spawns a thread that blocks
until J is known. Statement (2) spawns a thread that computes J, which is
determined to be zero. Once this is known, I is bound to a failed value. The
expression I+1 then raises the exception contained in I, which is caught in the
main thread.

Failed values are strongly motivated by lazy computations in Oz. We model a
lazy computation as a thread that waits until a result variable becomes needed.
Another thread that blocks on the variable automatically makes it needed, which
wakes up the lazy thread. A failed value allows to propagate the exception with-
out forcing the user to add extra tests on the result.
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2.4 Distribution Model

The distribution model of Oz allows several sites to share language entities.
A site is simply a system process, and sites can be spread among a network
of computers. The model gives all sites the illusion of a shared memory, with
reference integrity. Well-chosen protocols implement the semantics of entity op-
erations [10,11,1]. The power of the model is that it clearly distinguishes be-
tween the protocols for stateless, stateful, and single-assignment entities. The
distribution strategies and implementation are chosen to be appropriate for each
category.

Stateless entities, e.g., atomic values (numbers, literals), records, and pro-
cedures, are copied between sites that share them. Entities whose equality is
referential (e.g., code) are given a globally unique identity, which ensures their
referential integrity. Entities with structural equality (like integers and records)
can be copied at will.

Stateful entities are given a global identity and use specific protocols to en-
sure the consistency of their state. For instance, ports use a stationary state.
A stationary state requires each read/write operation to send a message to the
state’s home site. On the other hand, objects can use a mobile state [11]. The
migratory protocol ensures that the state migrates where the operations are at-
tempted. Once the state arrives on a site, a batch of operations can be performed
locally without extra overhead. The state behaves like a cache. Protocols for a
replicated state are also provided.

Single-assignment entities, i.e., logic variables, are implemented by a dis-
tributed unification algorithm [10]. Among the sites sharing a given variable,
one of them is responsible for determining the final binding of the variable.
Other sites that want to bind it send a message to that site, which propa-
gates the binding to the other sites. The algorithm ensures the unicity of the
binding, and the absence of cycles (when several variables are bound to each
other).

In general, distributed entity references are acquired by transitivity. A boot-
strapping mechanism allows a site to create a ticket, which is a public reference
to an entity. The ticket is a character string that has the syntax of a URL, and
can be transmitted by any other means (web page, email). The receiver program
uses that ticket to retrieve the entity, and share it with its provider.

2.5 Network Transparency and Network Awareness

The distribution model has two important aspects: it is both transparent and
aware with respect to the network. While these may look contradictory, they
are in fact complementary. Let us give a definition for each one.

– Network Transparency. This property states that the semantics of a dis-
tributed entity is the same as if it were purely local. Primitive operations on
that entity return the same results as if the whole computation was in the
same address space. In other words, a programmer may reason about the
functionality of a program without taking distribution into account.
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– Network Awareness. This aspect gives the programmer some control over
the non-functional behavior of the entity. For instance, different strategies for
distributing a stateful entity will have different performances and robustness,
depending on how they are used by the application.

A programmer cannot write a program without ever taking distribution into
account. He or she should decide at some point where the various pieces of
the code will be run, and which entities will be distributed among sites. But
the network transparency will favor a separation of concerns, where the ap-
plication’s functionality is as independent as possible from its non-functional
properties.

3 The Fault Model

This section proposes a language-level fault model that is compatible with net-
work transparency. The model defines how site and network failures are reflected
in the language. Because a failure may affect the proper functioning of a dis-
tributed entity, failures are reflected at the level of entities. Here are the prin-
ciples defining our model, each being described in the corresponding subsection
below.

1. Each site assigns a local fault state to each entity, which reflects the site’s
knowledge about the entity.

2. There is no synchronous failure handler. A thread attempting to use a failed
entity blocks until the failure possibly goes away. In particular, no exception
is raised because of the failure.

3. Each site provides a fault stream for each entity, which reifies the history of
fault states of that entity. Asynchronous failure handlers are programmed
with this stream.

4. Some fault states can be enforced by the user. In particular, a program may
provoke a global failure for an entity.

This fault model is an evolution of the first fault model of Oz, and integrates
parts of another proposal [5]. A comparison between the latter and this proposal
is given in Sect. 6.

3.1 Fault States

First, each site defines a current fault state for each entity, which reflects the
local knowledge of the system about the entity’s global state. This implies
that a given entity may have different fault states on different sites. We de-
fine four different fault states: ok, tempFail, localFail, and permFail. Their
semantics are given below, and the arrows on the left show the valid state
transitions.
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ok The entity behaves normally.
↓↑

tempFail

The entity is currently unavailable locally. This is typically trig-
gered by a communication timeout. It can be temporary (hence
the name), or might hide a permanent failure. Basically the ac-
tual status of the entity is unknown.

↓

localFail

The entity is permanently unavailable locally. This state reflects
the fact that the site considers the entity to be failed, whatever
its actual global status is. This state can always be enforced by
the program.

↓

permFail

The entity is permanently failed on a global scale. This final state
comes with a strict guarantee: the entity will never recover. Usu-
ally this kind of diagnosis can only be performed on a LAN. We
have extended the use of permFail by allowing an application
to explicitly cause an entity to fail permanently. This allows an
application to use permFail as a way to communicate between
different parts of itself.

The absence of some state transitions is intensional. An entity going from
ok to permFail will have to step through states tempFail and localFail

before entering permFail. This simplifies the monitoring of the fault state of an
entity, since observing the state localFail means that the state has reached
localFail at least. This will become clear with the fault stream below.

Our experience shows that this simple model is in fact sufficient in practice.
One can program abstractions in the language to improve the failure detectors
by using local observations in a global consensus algorithm, for instance.

As the reader may guess, fault states are related to how the distribution of an
entity is implemented. The more sophisticated the distribution’s implementation,
the more complicated the fault model. In this paper, we favor a simple fault
model, therefore keeping the implementation simple. The programmer should
be able to reason easily about the properties of the distribution. Complex fault-
tolerant abstractions should be built at the higher user level, not at the low
level.

The original fault model of Mozart was much more complex. It tried to extract
the maximum information that could be deduced efficiently about failed entities
[12]. Our experience with the original model showed that this extra information
was in fact never used. We conclude that a simple model (such as defined by the
present paper) is sufficient in practice.

3.2 No Synchronous Failure Handler

When the fault state of a given entity is not ok, operations on that entity have
few chances to succeed. Raising an exception in that case might look reasonable,
but our experience suggested that it is not. The main reason is that it breaks
the transparency: such an exception would never occur if the application was
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not distributed. This is even worse for asynchronous operations, like sending a
message on a port. Such operations should succeed immediately. With excep-
tions, the programmer cannot write a program without taking distribution into
account from the start.

Another reason that exceptions are inadequate is because the exception mech-
anism assumes that you can confine the error. A partial failure in a distributed
system can hardly be kept confined. Handling a distributed failure often requires
some global action in the program. Moreover, because of the highly concurrent
nature of Oz, the failure may affect many threads on a single site. Having many
failure handlers for a single entity on a given site introduces too much complexity
in the program.

In order to keep the network transparency, an operation on a failed entity
simply blocks until the entity’s fault state becomes ok again. The operation
naturally resumes if the failure proves to be temporary. It will suspend forever
if the failure is permanent (localFail or permFail).

3.3 Fault Stream

We propose a simple mechanism to monitor an entity’s fault state and take
action upon a state change. On each site, each entity is associated with a fault
stream1, which reflects the history of the fault states of the entity. The system
maintains the current fault stream, which is a list fs |s, where fs is the current
fault state, and s is an unbound variable. The semantic rule

σ ∧ fstream(x)=fs |s σ ∧ s=fs ′|s′ ∧ fstream(x)=fs ′|s′ if fs → fs ′ is valid (1)

reflects how the system updates the fault state to fs ′. The dataflow synchroniza-
tion mechanism wakes up every thread blocked on s, which is bound to fs ′|s′.
An asynchronous handler can thus observe the new fault state.

The fault stream of an entity reifies the history of fault states of that entity.
Moreover it transforms the nonmonotonic changes of a fault state into monotonic
changes in a stream. It provides an almost declarative interface to the fault state
maintained by the system.

To get access to the fault stream of an entity x, a thread simply calls the
function GetFaultStream with x, which returns the current fault stream. A
formal definition is given below. To read the current fault state, one simply
takes the first element of the returned list.

y={GetFaultStream x} y=fs |s
σ σ

if σ |= fstream(x)=fs |s (2)

Figure 5 shows an example of how an entity’s fault stream may evolve over
time. The stream is a partially known list, and the underscore “_” denotes an

1 The fault stream is just like a port’s stream.
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time
�

FS={GetFaultStream E}
FS=ok|_
FS=ok|tempFail|_
FS=ok|tempFail|ok|_
FS=ok|tempFail|ok|tempFail|localFail|permFail|_

Fig. 5. An example of a fault stream evolving over time

thread
for S in {GetFaultStream E} do

T = case S % pattern matching on S
of ok then "entity is fine"
[] tempFail then "some problem, don´t know"
[] localFail then "no longer usable locally"
[] permFail then "no longer usable globally"
end

in
{Show T}

end
end

Fig. 6. A thread that prints messages when entity E’s fault state changes

anonymous logic variable. Figure 6 shows a thread monitoring an entity E, and
printing a message for each fault state appearing on the stream. The printed
message is chosen by pattern matching. The thread is woken up each time the
stream is extended with a new state.

3.4 Enforced Failure

Sometimes the system is unable to diagnose a distribution problem. And often,
the actual impact of a distribution problem on a whole application is not reflected
in the fault states. It is sometimes simpler to force a part of the application to
fail, which causes it to launch a recovery mechanism.

We propose two operations to force an entity to fail, called KillLocal and
Kill. The statement {KillLocal E} has a pure local effect. It forces the fault
state of E to be at least localFail. The statement {Kill E} attempts to make
the entity permanently failed. Execution of {Kill E} is asynchronous, i.e., it
returns immediately. It initiates a protocol that attempts to make the entity
globally failed. To succeed, this may require some of the other sites sharing the
entity to be reachable at some point in the future. The local fault state of the
entity becomes permFail upon confirmation of the failure. The next section
gives an example that uses Kill.
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4 An Example: A Robust Forwarder Tree

This section gives an example showing how to use the fault model defined in
the preceding section. We present a simple and flexible group communication
abstraction. The abstraction was tested on Mozart using the DSS implementa-
tion described in Sect. 5. The abstraction maintains a distributed tree whose
nodes forward messages from the root to the leaves. Useful components are in-
serted as leaves in the tree. Depending on how the forwarding is defined at
each internal node, one can broadcast messages or balance messages between
components. In the latter case, each node forwards to one of its children only.
With a small modification, one can also forward messages from the leaves to the
root.

4.1 Architecture

Figure 7 depicts the architecture of the various components of the tree. The tree’s
nodes, shown as white circles in the figure, appear as Oz ports. They also use
other entities (cells, and other ports) that are not visible outside the abstraction.
The latter entities are not distributed, because they are never shared outside the
site where they were created. This is implied by the fact that threads do not
migrate by default.

We assume that the components are given as Oz ports, too. For each compo-
nent, we create a leaf node, which is inserted in the tree by the root. For the
sake of simplicity, the tree is built top-down. Every leaf first becomes a child of
the root. When the root has six children, it groups them into two subtrees with
three children each. The nodes of the tree can fail at any time, and the failure
may be detected by the system or provoked by the program.

On the right of Fig. 7 we have illustrated some rules to follow when nodes fail.
The main idea is that an internal node with less than two children makes itself
fail. The failure will be propagated down the tree, and eventually forces new
leaves to be created and inserted back in the tree. This avoids keeping “skinny”
branches (linear chains) in the tree. The root of the tree is the only weak point
in the architecture. Other algorithms could be used to make it robust.

One child node failure is
tolerated.  The parent node

automatically fails when less
than two children remain.

A node automatically
fails when its parent

node fails.

Root

Fig. 7. Architecture of the forwarding tree



Failure Handling 133

% create a leaf node
proc {MakeLeaf Root Component}

Ms Leaf={NewNodeWithParent Ms}
in

{Send Root insert(Leaf)}
thread % forwarding messages to Component

for M in Ms do {Send Component M} end
end

thread % handling failures
case {WaitTwo {WhenFailed Component} {WhenFailed Leaf}}
of 1 then {Kill Leaf}
[] 2 then {MakeLeaf Root Component}
end

end

end

% return a variable that is bound to true when E fails
fun {WhenFailed E}

thread {Member permFail {GetFaultStream E}} end
end

Fig. 8. Creation of a leaf node in the tree

4.2 Leaf Nodes

Figure 8 shows a procedure that creates a leaf in the tree (identified with its
root) for a given component. The code inside the box is the part that handles
failures. It can be removed for a non-robust version.

As a first approximation, consider that NewNodeWithParent is equivalent to
NewPort. The returned Leaf is effectively a port, and Ms is its stream of incoming
messages. We will see more in detail how it works below. The code outside the
box sends a message to the root node to insert the leaf in the tree, then a thread
forwards all incoming messages to the component.

The boxed code handles failures from the leaf node and the component itself. If
the component fails, the leaf is forced to fail, too. That leaf will be removed from
the tree. If the leaf fails before the component, we simply recreate another leaf. The
function WhenFailed returns a variable that is bound only when its argument has
reached the fault state permFail. The function Member tests whether a value is an
element of a list. The function WaitTwo is nondeterministic; it can return 1 if its
first argument is bound and 2 if its second argument is bound.

4.3 Nodes Monitoring Their Parent

As we stated before, when a node’s parent fails, the node itself must fail. The
leaves should follow that rule, too. Figure 9 shows how to implement such a
node, in a generic way. As the node must know its parent, we assume that every
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% create a port node that kills itself when its parent fails
proc {NewNodeWithParent Ms Node}

Strm

DependOn = {MakeDependency Node}

fun {CatchParent M|Ms}
case M of parent(P) then {DependOn P} {CatchParent Ms}
else M|{CatchParent Ms}
end

end
in

Ms = thread {CatchParent Strm} end
Node = {NewPort Strm}

end

% return a procedure that establishes a dependency for E
fun {MakeDependency E}

CurrentD={NewCell none}
proc {DependOn D}

CurrentD := D
thread

{Wait {WhenFailed D}}
if D==@CurrentD then {Kill E} end

end
end

in
DependOn

end

Fig. 9. Creation of an Oz port that is the basis of a node in the tree

node in the tree receives a message of the form parent(P) with its parent P.
That message is sent to the node when its parent changes, too. This is the case
when a child of the root is put under a new node.

In NewNodeWithParent, a port is created for the node. Its stream Strm is
filtered by the function CatchParent, which catches the parenthood message.
Note that CatchParent is tail recursive, and its output is incremental. When
a new parent is found on the stream, the loop calls the procedure DependOn,
which establishes a link between the parent’s failure, and the current node’s
failure. The procedure DependOn uses a hidden cell (CurrentD) to keep track
of the current dependency. If a dependency D fails, and the dependency has not
changed, the entity must fail. The procedure Wait blocks until its argument gets
bound to a value.

4.4 Subtrees

The function MakeTree in Fig. 10 takes a list of nodes Cs in its argument, and
returns a new node with Cs as children. That node must monitor its parent,
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% create an internal node, initially with three children
fun {MakeTree Cs}

Ms Node={NewNodeWithParent Ms}
Children={NewCell Cs}

in
thread % forwarding messages to children

for M in Ms do {Forward Children M} end
end
for C in Cs do

thread {Send C parent(Node)} end % send parent message

thread Cs Cs1 in % handle child failures
{Wait {WhenFailed C}}
Cs = Children := Cs1
Cs1 = {RemoveFromList C Cs}
if {Length Cs1}<2 then {Kill Node} end

end

end
Node

end

% forward message M to one or many of Children
proc {Forward Children M}

for C in @Children do
thread {Send C M} end

end
end

Fig. 10. Creation of non-root internal nodes of the tree

so it is created by NewNodeWithParent. The cell Children contains the list of
children of that node. The first thread created forwards messages to the children.
The definition of Forward can be changed to forward to one child only, for
instance. The procedure Forward is used by the root node as well.

For every child, a message parent is sent with the current node. The Send

operation is performed in a separate thread, to make sure it does not block the
main thread in case of a failure. The code that handles the failure is quite easy
to read. It waits until the given child fails, then removes it from the children
list. If the resulting list has less than two elements, the current node fails. This
failure will be handled by Node’s parent and remaining children.

4.5 The Root Node

Figure 11 shows the function that makes a root node. That node must be given
to the components in order to create the leaves. The root node is similar to
the subtree nodes. The first difference is that it has to insert leaves, which may
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% make the root node of a tree
fun {MakeRoot}

Ms Root={NewPort Ms}
Children={NewCell nil}
proc {Adopt C}

thread {Send C parent(Node)} end % send parent message

thread Cs Cs1 in % handle child failures
{Wait {WhenFailed C}}
Cs = Children := Cs1
Cs1 = {RemoveFromList C Cs}

end

end
in

thread % handle insertions, and forward messages
for M in Ms do

case M of insert(C) then Cs Cs1 in
Cs = Children := Cs1
case Cs of [C1 C2 C3 C4 C5] then

% make two subtrees of the 6 children
Cs1 = [{MakeTree [C1 C2 C3]}

{MakeTree [C4 C5 C]} ]
for T in Cs1 do {Adopt T} end

else % simply add another child
Cs1 = C|Cs
{Adopt C}

end
else {Forward Children M} end

end
end
Root

end

Fig. 11. Creation of the root of the tree

force it to create subtrees. The second difference is that it does not fail when its
children fail. Failed children are simply removed from its list.

4.6 Discussion of the Example

The first thing to notice is that the code that handles failures has been written so
that it interacts as little as possible with the functional part of the abstraction.
Keeping the failure handlers in separate threads improves their modularity, and
they are quite easy to reason about. A consequence is that it is pretty easy to
extend the functional part. If no extra entity is distributed, the failure handlers
will not need to be modified.

Another interesting point is that the fault model encourages the programmer
to think in terms of events and reactions. A failure is an event on its own, and
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entity entity fault stream

mediator

abstract entity

virtual machine

‘‘glue’’ layer

DSS

purely local distributed

Fig. 12. The implementation’s architecture

simple reactions are sometimes enough to make the program recover. The use of
message passing also helps to simplify the reasoning.

One issue that has not been mentioned is where the entities are. Where should
we place the nodes of the tree? The answer is: this is mostly an orthogonal
issue. In other words, put them where you want. This works because of network
transparency. Only the leaves of the tree should be placed on the site of their
component. This is because the thread that monitors the leaf should preferably
be on the same site as the component. The root node could keep track of a pool
of machines that may host the intermediate leaves, and creates them there. We
have not included this part in the code to keep it simple. The Mozart system
provides a simple abstraction to create a remote process and execute code on it.

5 Implementation

The Mozart system contains a virtual machine that executes Oz programs and
implements the distribution of Oz entities [4]. The distribution part of Mozart
is currently being reimplemented with the Distribution SubSystem (DSS) li-
brary. The DSS is completely separate from the virtual machine emulator, with
a well-defined interface between the two. The DSS provides generic distributed
entities [13,14]. There are three types of abstract entities, namely mutable, mono-
tonic, and immutable, and each type comes with a small set of abstract opera-
tions. The DSS makes a clear separation between communication protocols and
the entity’s semantics. The protocols are used internally by the DSS to imple-
ment generic operations, a distributed garbage collector, and failure detectors.

The way Mozart uses the DSS is sketched in Fig. 12. A purely local entity
is managed exclusively by the virtual machine, while a distributed entity is
mapped to an abstract entity in the DSS, which provides the basic support
for its distribution. An intermediate object, called the mediator, defines the
mapping between the virtual machine entity and the DSS entity. The mediator
maps entity operations on abstract entity operations, and makes the virtual
machine’s garbage collector collaborate with the distributed garbage collector. It
also reflects the abstract entity’s failure state in the virtual machine, by building
the fault stream of the entity and resuming threads that suspend because of a
failure. The fault stream only has a small overhead in practice, because it is
created on demand. Only monitored entities update their fault streams.
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6 Lessons from the Past

Our argument against the use of exceptions to handle distribution failures comes
from the original fault model used in Oz. The original model overlaps with the
new model proposed in Sect. 3. The original model provided much more fault
information (most of which was not used in practice) and provided both syn-
chronous and asynchronous handlers. The major difference was the ability to
define synchronous failure handlers, i.e., handlers that are called when attempt-
ing an operation on a failed entity. The programmer could either ask for an ex-
ception or provide a handler procedure that replaces the operation. The failure
handler was defined for a given entity and with certain conditions of activation.

Instead of the synchronous handlers, programmers favored an asynchronous
handler, called a watcher. A watcher is a user procedure that is called in a
new thread when a failure condition is fulfilled. The fault stream we propose in
this paper simply factors out how the system informs the user program. It also
avoids race conditions related to the watcher registry system, which could make
one miss a fault state transition. And finally, a watcher could not be triggered
by a transition to state ok.

The original model had one further deficiency. There was no way to force an
entity to be considered failed locally. As a result, there was a lack of control in
case of erratic entity behavior (e.g., many transitions between ok and tempFail).

The original model is criticized in [5], which proposes an alternative model.
That paper proposes something similar to our fault stream and an operation to
make an entity fail locally. In order to handle faults, it proposes to explicitly
break the transparent distribution of a failed entity. The local representative
of the failed entity is disconnected from its peers and is put in a fault state
equivalent to localFail. Another operation replaces that entity by a fresh new
entity. This model has the advantage to avoid blocking threads on failed en-
tities, because you can replace a failed entity by a healthy one. But this re-
placement introduces inconsistencies in the application’s shared memory. We
were not able to give a satisfactory semantics that takes into account these
inconsistencies.

7 Related Work

Most mainstream programming languages use exceptions to reflect failures due
to distribution faults. Those systems often propose less ambitious models for
distributed programs. They usually do not favor concurrency, the distribution
is often explicit, and failure handling is often mixed with the functionality of
the program. A typical representative of those systems is Java’s Remote Method
Invocation (RMI) system. The exceptions thrown because of network failures are
visible in the methods’ signatures. Moving from a centralized to a distributed
application requires to change API’s explicitly. Making robust distributed ab-
stractions is not impossible, but it comes at the price of a huge complexity
increase in the program.
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An interesting question is: how to implement the forwarder tree with the RMI
approach? The problem is that no message is sent “upwards” the tree, hence a
node never calls its parent. In order to detect the failure of its parent, a node
would need to make regular dummy calls to it. Another possibility is to make
the communication channel explicit, and catch problems at the receiving side.
But this breaks the abstraction provided by RMI. Moreover, extra messages
are required to simulate node failures, if those failures are not caused by site
failures.

The Erlang programming language and system was designed at the Ericsson
Computer Science Laboratory for building high availability telecommunication
systems [15,16]. An Erlang program consists of a (possibly large) number of pro-
cesses. An Erlang process is a lightweight thread with its own memory space.
Processes are programmed with a strict functional language, and they commu-
nicate by asynchronous message passing.

Erlang provides asynchronous fault detection of permanent failures between
processes. Two processes can be linked together. When one of them fails, the
other one receives a message from the runtime system, provided it is declared
as a supervisor. Erlang chooses to model all failures as permanent failures, in
accordance with its philosophy of “Let it fail”. That is, keeping the fault model
simple allows the recovery algorithm to be simple as well. This simplicity is very
important for correctness. We extend Erlang’s model with temporary failures and
with a fault stream. Furthermore, our model is designed for a richer language
than Erlang, which only has stationary objects (in our terminology).

8 Conclusion

This paper proposes a simple fault model for the distributed execution of the
Oz language. This distributed execution is network transparent, i.e., the seman-
tics of a language entity does not depend on whether it is distributed or not.
Synchronous failure handlers, like exceptions, break this transparency property.
Moreover, they are no longer practical if the language is highly concurrent. We
give evidence that asynchronous failure handlers are more adequate. They can
be defined so that they do not break the network transparency of the language.
In our design, each language entity produces a stream giving its fault state tran-
sitions. Monitoring an entity is done by reading the stream. One can also force a
failure either locally or globally, which allows to implement simple abstractions
for handling partial failure.
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