Beernet: RMI-free peer-to-peer networks

Boris Mejias, Alfredo Cédiz, Peter Van Roy
Département d’'ingénierie informatique
Université catholique de Louvain, Belgium
{firstname.lasthame}@uclouvain.be

ABSTRACT

The key issue in distributed programming is partial failure:
how to handle failures of part of the system. This unavoid-
able property causes uncertainty because we cannot know
whether a remote object is ever going to reply to a message.
It is also the reason why RMI/RPC is difficult to use. In
this paper we describe the most convenient object-oriented
mechanism we have found to develop peer-to-peer applica-
tions effectively, namely by using active objects that commu-
nicate via asynchronous message passing and fault streams
for failure handling. We show that this works better than
the usual approach of using RMI to communicate and dis-
tributed exceptions for failure handling. We define our peers
as lightweight actors and we use them to build a highly
dynamic peer-to-peer network that deals well with partial
failure and non-transitive connectivity. We give many code
examples to show the simplicity and naturalness of our ap-
proach.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-

ming— Distributed Programming; D.3.3 [Programming Lan-

guages|: Language Constructs and Features— Concurrent
programming structures

General Terms

Languages, Design

Keywords

actors, message-passing, distributed-programming

1. INTRODUCTION

The goal of distributed computing is to achieve the col-
laboration of a set of different processes. A process is an ab-
straction of an entity that can perform computations. This
entity can be a computer, a processor in a computer, or a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DO21°09 Genova, Italy

Copyright 2009 ACM 978-1-60558-545-1/09/07 ...$10.00.

thread of execution in a processor. In order to achieve the
collaboration of processes, there are several programming
paradigms aiming to help developers to build distributed
systems. One definition of a distributed system is given by
Tanenbaum and van Steen [13]:

“A distributed system is a collection of inde-
pendent computers that appears to its users as a
single coherent system”

This definition suggests using distribution transparency,
where all the effort of distributed programming is moved to
the construction of a middleware that supports the distri-
bution of the programming language entities. But network
and computer failures cause unexpected errors to appear
at higher abstraction levels, which breaks transparency and
complicates programming.

There are four main concerns that make distributed pro-
gramming harder than a sequential program running in a
single process. They are clearly described by Waldo et al. [16]
and they involve latency, memory access, concurrency and
partial failure. Latency is not a critical problem because it
does not change the semantics of performing an operation
on a local or a distributed entity. It just makes things go a
bit slower. Memory access is solved by using a virtual ma-
chine that abstracts the access, and then it does not change
the operational semantics either. A more difficult problem
is concurrency. The middleware has to guarantee exclusive
access to the state in order to avoid race conditions. There
are different techniques such as data-flow, monitors or locks,
that makes possible the synchronization between processes
achieving a coherent state. Given that, and even though it
is not trivial to write concurrent programs correctly, it is not
a critical problem either. What really breaks transparency
is partial failure. Basically, distribution transparency works
as long as there is no failure.

A partial failure occurs when one component of the dis-
tributed system fails and the others continue working. The
failure can involve a process or a link connecting processes,
and the detection of such a failure is a very difficult task. In
distributed environments such as the Internet, it is impossi-
ble to build a perfect failure detector because when a process
p stops responding, another process p’ cannot distinguish if
the problem is caused by a failure on the link connecting
process p or the crash of the process p itself. This expla-
nation might be trivial, but it is usually forgotten. Failures
are a reality on distributed systems. Another definition of a
distributed system is given by Leslie Lamport:

“A distributed system is one in which the fail-

ure of a computer you did not even know it ex-
isted can render your own computer unsuable”

Even though this definition does not describe the possi-
bilities of a distributed system, it makes explicit why dis-
tributed computing is special.

The classical view of distributed computing sees partial
failure as an error. For instance, a remote method invocation
(RMI) on a failed object raises an exception. This approach
actually goes against distribution transparency, because the
programmer is not supposed to make the distinction between
a local and a distributed entity. Therefore, an exception due
to a distribution failure is completely unexpected, breaking
transparency. Another less fundamental issue but still rel-
evant, is that RMI and RPC are conceived as synchronous
communication between distributed processes. Due to net-
work latency, synchronous communication is not able to pro-
vide good performance because the execution of the program
is suspended until the answer (or an exception) arrives.

New trends in distributed computing, such as ambient
intelligence and peer-to-peer networks, see partial failure as
an inherent characteristic of the system. A disconnection of
a process from the system is considered normal behaviour,
where the disconnection could be a gentle leave, a crash of
the process, or a failure on the link. We believe that this
approach leads to more realistic language abstractions to
build distributed systems.

In this paper we discuss the design decisions we have made
to build our peer-to-peer network Beernet [11]. Our ap-
proach is based on asynchronous message passing to commu-
nicate between processes, and on actors [1] as components
to organize every process, providing encapsulated state and
avoiding shared-state concurrency. We discard the use of
RPC or RMI between class-based objects, and we avoid rais-
ing exceptions due to broken distributed entities. We have
made these decisions based on the needs of building Beernet.
We believe that a peer-to-peer network is an interesting case
study for distributed systems, because it is highly dynamic
with respect to connectivity between peers and because it
does not have a central point of control. Both these proper-
ties make the management of the system more complex.

Our model is influenced by the programming languages
Oz [10] and Erlang [3], and by the algorithms of the book “In-
troduction to Reliable Distributed Programming” [7], which
presents an event-driven model that we describe in the fol-
lowing section. Section 3 presents incrementally the lan-
guage abstractions we have used in our approach. Section
4 summarizes the related work discussed along the paper.
Section 5 finishes by recapitulating our main conclusions.

2. EVENT-DRIVEN COMPONENTS

The algorithms for reliable distributed programming pre-
sented in [7] are designed in terms of components that com-
municate through events. Every component has its own
state, which is encapsulated, and every event is handled in
a mutually exclusive way. The model avoids shared-state
concurrency because the state of a component is modified
by only one event at the time.

Every component provides a specific functionality such as
point-to-point communication, failure detection, best effort
broadcast, and so forth. Components are organized in layers
where the level of the abstraction is organized bottom-up. A
higher-level abstraction requests a functionality from a more

basic component by triggering an event (sending a request).
Once the request is resolved, an indication event is sent back
to the abstraction (sending back a reply). Algorithm 1 is
taken from the book, where only the syntax has been slightly
modified. It implements a best-effort broadcast using a more
basic component, (pp2p), which provides a perfect point-to-
point link to communicate with other processes.

Algorithm 1 Best Effort Broadcast

1: upon event (bebBroadcast | m) do
2 for all p in other_peers do

3: trigger (pp2pSend | p, m)

4 end

5: end

6: upon event (pp2pDeliver | p, m) do
7 trigger (bebDeliver | p, m)

8: end

The best-effort broadcast (beb) component handles two
events: bebBroadcast as requested from the upper layer, and
pp2pDeliver as an indication coming from the lower layer.
Every time a component requests beb to broadcast a mes-
sage m, beb traverses its list of other peers, triggering the
pp2pSend event to send the message m to every peer p. Ev-
ery p is a remote reference, but it is the pp2p component
which takes care of the distributed communication. At ev-
ery receiving peer, the pp2p component triggers pp2pDeliver
upon the reception of a message. When beb handles this
event, it triggers bebDeliver to the upper layer, as seen in
Algorithm 1. It is important to mention that beb does not
have to wait for pp2p every time it triggers pp2pSend, and
that pp2p does not wait for beb or any other component
when it triggers pp2pDeliver. This asynchronous communi-
cation between components means that each component can
potentially run in its own independent thread.

Using layers of components allows programmers to deal
with issues concerning distribution only at the lowest lay-
ers. For instance, the component beb is conceived only with
the goal of providing a broadcast primitive. The problem
of communicating with a remote processes through a point
to point communication channel is solved in pp2p. If a pro-
cess p crashes while the message is being sent, it does not
affect the code of beb, thus improving the transparency of
the component. There is no need to use something like

try (send m to p) catch (failure)

It is the responsibility of pp2p to deal with the failure of p. It
is also possible that pp2p triggers the detection of the crash
of p to the higher level, and then it is up to beb to do some-
thing with it, for instance, removing p from the list of other
peers to contact. In such a case, the failure of p is considered
as part of the normal behaviour of the system, and not as
an exception. Even though the code for the maintenance of
other_peers set is not given [7], we can deduce it from the
implementation of the other components. In Algorithm 2
the register event is a request made from the upper layer,
and crash is an indication coming from the pp2p layer.

Even though we advocate defining algorithms using event-
driven components using the approach of 7], there are some
important drawbacks to consider. To compose layers, it is
necessary to create a channel, connect the components us-
ing the channel, and subscribe them to the events they will
handle. We find this approach a bit over sophisticated. It

Algorithm 2 Best Effort Broadcast extended

1: upon event (bebRegister | p) do
2: other_peers := other_peers U {p}

3: end

4: upon event (crash | p) do

5: other_peers := other_peers \ {p}
6: end

could be simplified by talking directly to a component and
using a default listener only when necessary. A related prob-
lem concerns the naming convention of events. The name
reflects the component implementing the behaviour, mak-
ing the code less composable. For instance, if we want to
use a fair-loss point-to-point link (flp2p) instead of pp2p, we
would have to change the beb code by replacing pp2pSend
by fip2pSend, and instead of handling pp2p Deliver we would
have to handle fip2pDeliver.

Since the architecture considers components and channels,
an alternative and equivalent approach would be to use ob-
jects with explicit triggering of events as method invocation,
instead of using anonymous channels. Using objects as col-
laborators, they could be replaced without problems as long
as they implement the same interface. In such an approach,
both fip2p and pp2p would handle the event send and trigger
deliver.

The other problem of [7] is that there is no explanation
of how to transfer a message from one process to the other.
The more basic component flp2p is only specified in terms
of the properties it holds, but it is not implemented. There
is no language abstraction to send a message to a remote
entity.

3. BEERNET

Beernet [11] is a library implemented in Mozart/Oz [10]
that provides an API to build peer-to-peer applications.
Mozart is an implementation of the Oz language, which is
a multi-paradigm programming language supporting func-
tional, concurrent, object-oriented, logic and constraint pro-
gramming paradigms [15], and offering support for distributed
programming with a high degree of transparency. Thanks
to the multi-paradigm support of Oz, we were able use more
convenient language abstractions for distribution and local
computing while building Beernet. In this section we discuss
the basic language abstractions that we considered appropri-
ate and necessary to implement event-driven components,
and which abstractions allowed us to improve the approach
towards an event-driven actor model.

The peer-to-peer network built by Beernet uses the relaxed-
ring network topology [8]. It provides a distributed hash ta-
ble (DHT) with replicated storage using distributed transac-
tions to guarantee data consistency. A peer-to-peer network
is a very interesting case study of a distributed system be-
cause it is very dynamic. Peers are constantly joining and
leaving the network, either as graceful leaves or due to fail-
ures. It does not use a central point of control and it can
be run without relying on an existing routing infrastructure
because it provides its own structured overlay network for
message routing. Because of the context, during the rest of
the paper we use the term peer as equivalent to the previ-
ously used process.

3.1 Threads and data-flow variables

One of the strengths of the Oz language is its concurrency
model which is easily extended to distribution. The ker-
nel language is based on procedural statements and single-
assignment variables. When a variable is declared, it has no
value yet, and when it is bound to a value, it cannot change
the value. Attempting to perform an operation that needs
the value of such a variable will wait if the variable has no
value yet. In a single-threaded program, that situation will
block forever. In a multi-threaded program, such a variable
is very useful to synchronize threads. We call it a data-flow
variable. Oz provides lightweight threads running inside one
operating system process with a fair thread scheduler.

The code in algorithm 3 shows a very simple example of
data-flow synchronization. First, we declare variables Foo
and Barin the main thread of execution. Then, a new thread
is created to bind variable Bar depending on the value of
Foo. Since the value of Foo is unknown, the ‘4’ operation
waits. A second thread is created which binds variable Foo
to an integer. At this point, the first thread can continue its
execution because the value of Foo is known.

Algorithm 3 Threads and data-flow synchronization

1: declare Foo Bar
2: thread Bar = Foo + 1 end
3: thread Foo = 42 end

This synchronization mechanism does not need any lock,
monitor, or semaphore, because there is no explicit state,
and therefore, no risk for race conditions. The values of Foo
and Bar will be the same for all possible execution orders
of the threads. Single-assignment variables are also used in
languages such as E [9] and AmbientTalk [6, 14], where they
are called promises or futures. They are combined with the
when operator as one of the mechanisms for synchronization.

The execution of a concurrent program working only with
single-assignment variables is completely deterministic. While
this is an advantage for correctness (race conditions are im-
possible), it is too restrictive for general-purpose distributed
programming. For instance, it is impossible to implement
a server talking to two different clients. To overcome this
limitation, Oz introduces Ports, which are described in the
following section.

3.2 Ports and asynchronous send

A port is a language entity that receives messages and se-
rializes them into an output stream. After creating a port,
one variable is bound to the identity of the port. That vari-
able is used to send asynchronous messages to the port. A
second variable is bound to the stream of the port, and it is
used to read the messages sent to the port. The stream is
just like a list in Lisp or Scheme, a concatenation of a head
with a tail, where the tail is another list. The list terminates
in an unbound single-assignment variable. Whenever a mes-
sage is sent to the port, this variable is bound to a dotted
pair containing the message and a fresh variable.

Algorithm 4 combines ports with threads. First we de-
clare variables P and S. Then, variable P is bound to a
port having S as its receiving stream. A thread is created
with a for-loop that traverses the whole stream S. If there
is no value on the stream, the for-loop simply waits. As
soon as a message arrives on the stream, it is shown on the
output console. A second thread is created to traverse a list

of beers (BeerList, declared somewhere else), and to send
every beer as a message to port P. This is a like a barman
communicating with a client. Everybody who knows P can
send a message to it, as in the third thread, where the list
of sandwiches is being traversed and sent to the same port.
Beers will appear on the stream in the same order they are
sent. Beers and sandwiches will be merged in the stream of
the port depending on the order of arrival, so the order is
not deterministic between them.

Algorithm 4 Port and asynchronous message passing

: declare P S
: P = {NewPort S}
thread
for Msg in S do {Show Msg} end
end
thread
for Beer in BeerList do {Send P Beer} end
end
thread
for Sdwch in SandwichList do {Send P Sdwch} end
: end

RO XTI wy

—_ =

The send operation is completely asynchronous. It does
not have to wait until the message appears on the stream
in order to continue with the next instruction. The actual
message send could therefore take an arbitrary finite time,
making it suitable for distributed communication where la-
tency is an issue. With the introduction of ports, it is al-
ready possible to build a multi-agent system running in a
single process where every agent runs on its own lightweight
thread. The non-determinism introduced with ports allows
us to work with explicit state, and there is no restriction on
the communication between agents.

3.3 Going distributed

Event though full distribution transparency is impossi-
ble to achieve because of partial failures, there is some de-
gree of transparency that is feasible and useful. Ports and
asynchronous message passing as they are described in the
previous section can be used transparently in a distributed
system. The semantics of {Send P Msg} is exactly the same
if P is a port in the same process or in a remote peer. In
both cases the operation returns immediately without wait-
ing until the message is handled by the port. If there is a
need for synchronization, the message can contain an un-
bound variable as a future. Then, the sending peer waits for
the variable to get a value, which happens when the receiv-
ing peer binds the variable. This implies that the variable,
and whatever is contained in the message, is transparently
sent to the other peer. Variable binding must therefore be
transparent.

Algorithm 5 does a ping-pong between two different peers.
Code lines from 1 to 5 represent peer A who sends a ping
message to peer B. The message contains an unbound vari-
able Ack, which is bound by peer B to the value pong. Bind-
ing variable Ack resumes the Wait operator at peer A. Peer
B, from lines 6 to 10, makes a pattern matching of every
received message with pattern ping(A). If that is the case,
it binds A to pong and continues with the next message.
The pattern matching is useful to implement a method dis-
patcher as we will see in the next section.

This sort of transparency is not difficult to achieve, except

Algorithm 5 Ping-Pong

% at Peer A

declare Ack

{Send PeerB ping(Ack)}
{Wait Ack}

{Show “message received”}

% at Peer B
for Msg in Stream do
case Msg of ping(A) then
A = pong
end
end

oYX

when a partial failure occurs. An older release of Mozart,
version 1.3.0, takes the classical approach to deal with par-
tial failures: it raises an exception whenever an operation is
attempted on a broken distributed reference. Most program-
ming languages take the same approach. This approach has
two important disadvantages. First, it is cumbersome be-
cause it is necessary to add try ... catch instructions when-
ever an operation is attempted on a remote entity. More
fundamentally, exceptions break transparency when reusing
code meant for local ports. If a distribution exception is
raised, it will not be caught because the code was not ex-
pecting that sort of exception.

AmbientTalk [6, 14] adopts a better approach. In ambient-
oriented programming, failures due to temporary disconnec-
tions are a very common thing, therefore, no exception is
raised if a message is sent to a disconnected remote refer-
ence. The message is kept until the connection is restored
and the message is resent. Otherwise if the connection can-
not be fixed after a certain time, it will be garbage collected.
Failures are also a common thing in peer-to-peer networks.
The normal behaviour of a peer is to leave the network af-
ter some time. Therefore, a partial failure should not be
considered as an exceptional situation.

A more recent Mozart release, version 1.4.0, does not raise
exceptions when distributed references are broken. It simply
suspends the operation until the connection is reestablished
or the entity is killed. If the operation needs the value of the
entity, for instance in a binding, the thread blocks its exe-
cution. If a send operation is performed on a broken port,
because of its asynchrony, it still returns immediately, but
the actual sending of the message is suspended until the con-
nection is reestablished. This failure handling model [5] is
based on a fault stream that is attached to every distributed
entity. An entity can be in three states, ok, tempFail, or
permFail. Once it reaches the permanent failure state, it
cannot come back to ok, so the entity can be killed. If the
entity is in temporary failure for too long, it can be explicitly
killed by the application and forced to permFail. To moni-
tor an entity’s fault stream, the idea is to do it in a different
thread that does not block and that can take actions over
the thread blocking on a failed entity.

3.4 Event-driven Actors

The actor model [1] provides a nice way of organizing
concurrent programming, benefiting from encapsulation and
polymorphism in analogous fashion to object-oriented pro-
gramming. We extend the previous language abstractions
with Oz cells which are containers for mutable state. State

is modified with operator ‘:=’, and it can be read with oper-
ator ‘Q’. We do not need to add new language abstractions
in order to build our event-driven actors. Without language
support, actors are a programming pattern in Oz as is shown
in Algorithm 6. Having ports, the cell is not strictly nec-
essary but we use it to facilitate state manipulation. Every
actor runs in its own lightweight thread and communicates
asynchronously with other actors through ports. Encapsu-
lation of state is achieved with lexical scoping, and exclusive
access to state to avoid race conditions is guaranteed by
handling only one event/message at a time.

Algorithm 6 is a working implementation of Algorithms
1 and 2 using the language abstractions we have described
in this section. It is written in Oz without syntactic sup-
port for actors but the semantics are equivalent. The func-
tion NewBestEffortBroadcast creates a closure containing
the state of the actor and its behaviour. The state includes
a list of OtherPeers and another actor implementing perfect
point-to-point communication, which is named ComLayer
to make explicit that it could be replaced by any actor that
understands event send, and not only pp2p.

The behaviour is implemented as a set of procedures where
the signature of the event is specified in each procedure’s ar-
gument. For instance, the declaration on code line 9 reads
that procedure Receive implements the behaviour to han-
dle upon event deliver(Src Msg). The variable Listener
represents the actor in the upper layer.

Algorithm 6 Beernet Best Effort Broadcast

1: fun {NewBestEffortBroadcast Listener}

2: OtherPeers ComLayer

3 SelfPort SelfStream

4: proc {Broadcast broadcast(Msg)}

5: for Peer in OtherPeers do

6: {Send ComLayer send(Peer Msg)}
7 end

8: end

9: proc {Receive deliver(Src Msg)}
10: {Send Listener Msg}
11: end
12: proc {Add register(Peer)}
13: OtherPeers := Peer | @OtherPeers
14: end
15: proc {Crash crash(Peer)}
16: OtherPeers := {Remove Peer @OtherPeers}
17: end

18: in

19: OtherPeers = {NewCell nil}

20: ComLayer = {NewPP2Point SelfPort}
21: SelfPort = {NewPort SelfStream}

22: thread

23: for M in SelfStream do

24: case M.label

25: of broadcast then {Broadcast M}
26: [] deliver then {Receive M}
27 [] register then {Add M}
28: [] crash then {Crash M}
29: end

30: end

31: end

32: SelfPort

33: end

Variable SelfPort is bound to the port that will receive all
messages coming from other actors. A thread is launched to
traverse the SelfStream. For every message that arrives on
the stream, pattern matching checks the label of the mes-
sage in order to invoke the corresponding procedure. This
part of the code represents the method dispatching of the
actor. In the Beernet implementation, the creation of the
port and the method dispatching are modularized to avoid
code duplication, thus reducing the code size of every actor.

The book [7] contains complementary material including
a Java implementation of the beb component. Discarding
comments and import lines, the implementation takes 67
lines of code, with the component infrastructure already ab-
stracted. It is worth mentioning that a large number of lines
are dedicated to catch exceptions. Equivalent functionality
within the Beernet actor model takes only 33 lines.

3.5 Peer-to-peer

The architecture of Beernet is based on layers that ab-
stract the different concepts involved in the construction of
the peer-to-peer network. A closely related work is the Kom-
pics component framework [2], which follows the component-
channel approach of [7] using a similar architecture. The
main difference with Beernet is that instead of having com-
ponents that communicate through channels, we decided to
use event-driven actors.

Beernet is built on top of the relaxed-ring [8], a structured
overlay network providing a distributed hash table (DHT)
as in Chord [12]. In such a network peers are organized into
a ring. Hash keys goes from 0 to N — 1 forming a circular
address space. Every peer joins the network with an iden-
tifier. The identifier is used to find the correct predecessor
and successor in the ring. When peer g joins in between
peers p and s, it means that p < ¢ < s following the ring
clockwise. Peer s accepts g as predecessor because it has
a better key than p. Another reason to be a better prede-
cessor, is that the current predecessor is detected to have
crashed. Hence, the maintenance of the ring involves join
and crash events, and it must be handled locally by every
peer in a decentralized way.

In order to keep the ring up to date, Chord performs a pe-
riodic stabilization that consists in verifying each successor’s
predecessor. From the viewpoint of the peer performing the
stabilization, if the predecessor of my successor has an iden-
tifier between my successor and myself, it means that it is
a better successor for me and my successor pointer must
be updated. Then, I notify my successor. Algorithm 7 is
taken from Chord [12]. Ounly the syntax is adapted. The
big problem with this algorithm is seen in line 2. Asking
for successor’s predecessor is done using RMI. This means
that the whole execution of the component waits until the
RMI is resolved. There is no conflict resolution if successor
is dead or dies while the RMI is taking place. If there is a
partial failure, the algorithm is broken.

An improved version of the stabilization protocol is given
in Algorithm 8 using event-driven actors. The representa-
tion of a peer is a data structure having Peer.id as the integer
identifying the peer, and Peer.port as the remote reference,
being actually an Oz port. The ‘. is not an operator over an
actor or an object. It is just an access to a local data struc-
ture. The ‘...’ in the algorithm hide the state declaration
and the method dispatcher loop. The ‘<’ operator defines
the order in the circular address space. We use it here for

Algorithm 7 Chord’s periodic stabilization

1: upon event (stabilize |) do
2 X := successor.predecessor

3 if x € (self, successor) then
4: successor := X

5: end

6 successor.notify(self)

7: end

8: upon event (notify | src) do
9: if predecessor is nil or src € (predecessor, self) then
10: predecessor := src

11: end

12: end

simplicity without changing the semantics of the algorithm.

Stabilization starts by sending a message to the succes-
sor with an unbound variable X to examine its predecessor.
The peer then launches a thread to wait for the variable to
have a value, and once the binding is resolved, it sends a
message to itself to verify the value of the predecessor. This
pattern is equivalent to the when abstraction in E [9] and
AmbientTalk [14]. By launching the thread, the peer can
continue handling other events without having to wait for
the answer of the remote peer. If the remote peer crashes,
the Wait will simply block forever without affecting the rest
of the computation. When the Wait continues, the peer
sends a message to itself in order to serialize the access to
the state with the handling of other messages. Otherwise
there would be a race condition.

Algorithm 8 Chord’s improved periodic stabilization
1: fun {NewChordPeer Listener}

2: e
3: proc {Stab stabilize}
4 X in
5: {Send Succ.port getPredecessor(X))}
6: thread
7 {Wait X}
8 {Send Self.port verifySucc(X)}
9 end
10: end
11: proc {Verify verifySucc(X)}
12: if Self.id < X.id < Succ.id then
13: Succ := X
14: end
15: {Send Succ.port notify(Self))}
16: end
17: proc {GetPred getPredecessor(X)}
18: X = Pred
19: end
20: proc {Notify notify(Src)}
21: if Pred == nil
22: orelse Pred.id < Src.id < Self.id then
23: Pred := Src
24: end
25: end
26: o
27: end

Beernet uses a different strategy for ring maintenance. In-
stead of running a periodic stabilization, it uses a strategy
called correction-on-change. Peers react immediately when

they suspect another peer to have failed. The failed peer
is removed from the routing table, and if it happens to be
the successor, the peer must contact the next peer in order
to fix the ring. To contact the next successor, every peer
manages a successor list, which is constantly updated every
time a new peer join or if there is a failure.

Algorithm 9 presents part of a PBeer actor, which is a
Beernet peer. Failure recovery works as follows: when peer
P fails, a low-level actor running a failure detector triggers
the crash(P) event to the upper layer, where PBeer handles
it. PBeer adds the crashed peer to the crashed set and
removes it from its successor list. If the crashed peer is the
current successor, then the first node from the successor list
is chosen as the new successor. A notify message is sent
to the new successor. When a node is notified by its new
predecessor, it behaves as a Chord node, but in addition, it
replies with the updSL message containing its successor list.
In this way, the successor list is constantly being maintained.

Algorithm 9 Beernet’s failure recovery
1: fun {NewPBeer Listener}

2 e

3 proc {Crash crash(Peer)}

4 Crashed := Peer | @Crashed

5: SuccList := {Remove Peer @SuccList}
6: if P == @Succ then

7 Succ := {GetFirst SuccList}

8 {Send Succ.port notify(Self)}

9

: end
10: end
11: proc {Notify notify(Src)}
12: if {Member Pred @Crashed}
13: orelse Pred.id < Src.id < Self.id then
14: Pred := Src
15: end
16: {Send Src.port updSL(Self @SuccList)}
17: end
18: o
19: end

3.6 Fault streams for failure handling

As described at the end of subsection 3.3, we use a fault
stream associated to every distributed entity in order to han-
dle failures. An operation performed on a broken entity
does not raise any exception, but it blocks until the failure
is fixed or the thread is garbage collected. This blocking
behaviour is compatible with asynchronous communication
with remote entities. In the fault stream model, presented
by Collet et al [5, 4], the idea is that the status of a remote
entity is monitored in a different thread. The monitoring
thread can take decisions about the broken entity, in order
to terminate the blocking thread. For instance, there are
language abstractions to kill a broken entity so it can be
garbage collected.

Algorithm 10 describes how we use the fault stream in the
implementation of Beernet. There is an actor in charge of
monitoring distributed entities called FailureDetector. Upon
event monitor(Peer), the actor uses the system operation
GetFaultStream in order to get access to the status of the
remote peer. The fault stream is updated automatically by
the Mozart system, which sends heartbeat messages to the
remote entity in order to determine its state. When the state

changes, the new state appears on the fault stream. If the
connection is working, the state is set to ok. If the remote
entity does not acknowledge a heartbeat, it is suspected of
having failed, and therefore, the state is set to tempFail.
Since Internet failure detectors cannot be strongly accurate,
the state can switch between tempFuail and ok indefinitely.
As soon as the state is set to permFail, however, the entity
cannot recover from that state.

If the state is tempFail or permFuail, the actor triggers
the event crash(Peer) to the Listener, which represents the
upper layer. If the state switches back to ok, the event
alive(Peer) is triggered. It is up to the upper layer to decide
what to do with the peer. In the case of Beernet, this is
described in algorithm 9.

Algorithm 10 Fault stream for failure detection

1: fun {FailureDetector Listener}

2: e

3: proc {Monitor monitor(Peer)}

4 FaultStream = {GetFaultStream Peer}

5: in

6 for State in FaultStream do

7 case State

8: of tempFail then {Send Listener crash(Peer)}
9: [] permFail then {Send Listener crash(Peer)}
10: [] ok then {Send Listener alive(Peer)}
11: end
12: end
13: end
14: e
15: end

4. DISCUSSION AND RELATED WORK

One of the principles we respect in this paper is to avoid
shared-state concurrency. We achieve this by encapsulat-
ing state, by doing asynchronous communication between
threads and processes, by using single-assignment variables
for data-flow synchronization, and by serializing event han-
dling with a stream (queue) providing exclusive access to
the state. The language primitives of lightweight threads
and ports are also present in Erlang [3], and they are not
specific to object-oriented programming. Single-assignment
variables also appear in E [9] and AmbientTalk [14] in the
form of promises, and they are meant for synchronization of
remote processes instead of lightweight threads.

The actor model presented here through programming
patterns is further developed and supported by E and Ambi-
entTalk. There is one important difference related to the use
of lightweight threads. Since they are not supported by these
two languages, there is basically only one actor running per
process. The actor collaborates with a set of passive objects
within the same process. Communication with local objects
is done with synchronous method invocation. Communica-
tion with other actors, and therefore with remote references,
is done with asynchronous message passing. This distinction
reduces transparency for the programmer because it estab-
lishes two types of objects: local and distributed.

In Beernet, we organize the system in terms of actors only,
making no distinction in the send operation between a local
and a remote port. Transparency is respected by not raising
an exception when a remote reference is broken. There is

only one kind of entity, an actor, and only one send opera-
tion.

As mentioned in the previous section, Kompics [2] is closely
related because it is also a component framework conceived
for the implementation of peer-to-peer networks. Instead
of using actors for composition, it uses event-driven com-
ponents which communicate through channels, analogous to
events in [7].

5. CONCLUSIONS

We have presented examples in this paper to highlight the
importance of partial failure in distributed programming.
The fact that failures cannot be avoided has a direct impact
on the goal of transparent distribution which cannot be fully
achieved. Therefore, it has also an impact on remote method
invocation, the most common language abstraction to work
with distributed objects. Because of partial failure, it is very
difficult to make RMI work correctly. In other words, RMI
is considered harmful. Our position is that communication
within remote processes must be done with asynchronous
message passing.

Even though full transparency cannot be achieved, it is
important to provide some degree of transparency. We have
shown how port references and the send operation can be
used transparently. This is because send works asynchronously
and because a broken distributed reference does not raise an
exception in Mozart 1.4.0. Instead, a fault stream associated
to every remote entity provides monitoring facilities.

We have also described the language abstractions we use
to implement Beernet, a peer-to-peer network with a highly
dynamic interaction between peers. In order to organize
the behaviour of every peer, we have chosen an actor model
based on lightweight threads, ports, asynchronous message
passing, single-assignment variables and lexical scoping. These
language abstractions are very suitable for implementing ac-
tors, and they can be used in other programming paradigms.

Acknowledgments

This work is supported by projects SELFMAN, VariBru,
and MoVES. The authors would like to thank S. Gonzélez
and P. Hass for fruitful discussion and comments on this
work.

6. REFERENCES

[1] G. A. Agha, I. A. Mason, S. F. Smith, and C. L.
Talcott. A foundation for actor computation. J. Funct.
Program., 7(1):1-72, 1997.

[2] C. Arad and S. Haridi. Practical Protocol
Composition, Encapsulation and Sharing in Kompics.
Self-Adaptive and Self-Organizing Systems Workshops,
IEEE International Conference on, 0:266-271, 2008.

[3] J. Armstrong. Erlang — a Survey of the Language and
its Industrial Applications. In INAP’96 — The 9th
Ezhibitions and Symposium on Industrial Applications
of Prolog, pages 16-18, Hino, Tokyo, Japan, 1996.

[4] R. Collet. The Limits of Network Transparency in a
Distributed Programming Language. PhD thesis,
Université catholique de Louvain, Dec. 2007.

[5] R. Collet and P. Van Roy. Failure Handling in a
Network-Transparent Distributed Programming
Language. In Advanced Topics in Ezxception Handling
Techniques, pages 121-140, 2006.

[6] J. Dedecker, T. Van Cutsem, S. Mostinckx,

T. D’hondt, and W. De Meuter. Ambient-Oriented
Programming in AmbientTalk. 2006.

[7] R. Guerraoui and L. Rodrigues. Introduction to
Reliable Distributed Programming. Springer-Verlag,
Berlin, Germany, 2006.

[8] B. Mejias and P. Van Roy. The Relaxed-Ring: A
fault-tolerant topology for structured overlay
networks. Parallel Processing Letters, 18(3):411-432,
September 2008.

[9] M. S. Miller, E. D. Tribble, J. Shapiro, and H. P.
Laboratories. Concurrency among strangers:
Programming in E as plan coordination. In In
Trustworthy Global Computing, International
Symposium, TGC 2005, pages 195-229. Springer,
2005.

[10] Mozart Community. The Mozart-Oz Programming
System - http://www.mozart-oz.org, 2008.

[11] Programming Languages and Distributed Computing
Research Group, UCL. Beernet: pbeer-to-pbeer
network - hitp://beernet.info.ucl.ac.be.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. In
Proceedings of the 2001 ACM SIGCOMM Conference,
pages 149-160, 2001.

[13] A. S. Tanenbaum and M. Van Steen. Distributed
Systems: Principles and Paradigms. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2001.

[14] T. Van Cutsem, S. Mostinckx, E. G. Boix,

J. Dedecker, and W. De Meuter. AmbientTalk:
Object-oriented Event-driven Programming in Mobile
Ad hoc Networks. Chilean Computer Science Society,
International Conference of the, 0:3-12, 2007.

[15] P. Van Roy and S. Haridi. Concepts, Techniques, and

Models of Computer Programming. MIT Press, 2004.

[16] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A

Note on Distributed Computing. In Mobile Object

Systems: Towards the Programmable Internet, pages

49-64. Springer-Verlag: Heidelberg, Germany, 1994.

