
Contraintes pour Agents Autonomes
Ordonnancement et Planification sous

Séminaire AXLOG

Université catholique de Louvain
Faculté des Sciences Appliquées

Department of Computing Science and Engineering

Belgium
B-1348 Louvain-la-Neuve

Place Sainte-Barbe, 2

Peter Van Roy

February 29, 2000

pvr@info.ucl.ac.be

The Mozart Programming System
and Its Use for Agent Applications

1

Overview

● Language, platform, application areas

Inferencing support

Distribution support

- Example 1: generic client-server

●

●

- Fault tolerance support

- Example 2: fault-tolerant global store

Conclusions and perspectives●

Agents and software components●

- Comparison with agent platforms

- Some agent projects and applications

- Ultralightweight concurrency

- ‘‘All is run-time’’ environment

2

Mozart/Oz at a glance

object-oriented language with dataflow synchronization
Oz: A concurrent, state-aware, compositional,

Strengths

Language

First-class software components and resources

Inferencing:constraint and logic programming

Distribution: network transparent, open, fault tolerant

dynamic, no limits, first-class compilerFlexibility:

Concurrency:ultralightweight threads, dataflow

Research & development

● Vehicle: Mozart Programming System (Unix/Windows)

●

●

●

●

●

●

Applications

by Mozart Consortium (Belgium, Germany, Sweden)

Research in constraints, distribution, fault tolerance,
resource management, security, implementation

●

Major application areas: discrete optimization, ‘‘symbol●

●

crunching,’’ collaborative work, multi-agent systems

For non-Consortium users: liberal license with sources
(X11 style), maintenance, user group, technical support

3

...

EmulEmul

Emul Emul Distribution (any number of
emulators communicate
transparently)

Emacs TkEmul

Text editor System Graphics

Application development

Development environment is part of run-time system:

Interactive user interface with concurrent tools
(Browser, Explorer, debugger, panel, ...)

Incremental compiler is part of run-time system

Allows ‘‘gradual development’’: prototype with limited

Distributed application can be completely developed in a
centralized setting

System is fully extensible at run-time, e.g., adding new types

●

●

-

-

-

functionality is extended into full-fledged application
-

Standalone configuration
(in centralized setting)TkEmul

(each circle is a process)
Development configuration

4

Preemptive scheduling with guaranteed CPU share

More than 100000 active threads on standard PC

Synchronizing on data availability is invisible

Create thread whenever design requires it

Program stays simple and efficient

●

●

●

-

-

-

-

-

cheap and easy
Concurrency is

Lightweight threads

Dataflow synchronization makes concurrency easy

Better programming techniques are possible

5

P C

Performance

Competitive with best Prolog and constraint systems

●

-

●

Manipulating symbolic data 10x faster than Java 2-

Producer/consumer example (stream of 1000000 integers):

Mozart: 32 lines (identical code in both cases)

Java 2: 108 lines (centralized), 220 lines (distributed)

Comparable with emulated Java 2

-

-

-

-

●

4 sec
18 sec

8 sec
3600 sec

Centralized Distributed
Mozart 1.0.1
Java 2

System

Distributed computing

Symbolic computing and inferencing

General-purpose computing

6

Support for constraint-based inferencing

-

-

-

- Single, all, best solution search (bab, restart)

- Lazy or eager (lazy is similar to Prolog top level)

- Parallel search for speedup

- Lots of propagators, reflection, reification, distinct, etc.

- Specification of search and inference strategies

- Serializers, distributors, cumulative constraints, etc.

Support for logic programming

- Rational tree support (like modern Prologs)

- Don’t know (Andorra style) and don’t care disjunctions

- Deep guards (nested spaces)

Support for scheduling (module Schedule)

Finite domain and finite set support (modules FD and FS)

Basic search and inferencing strategies (module Search)

Fully user-extensible and customizable (in Oz and C++)

- Strategies in Oz (computation spaces, disjunctions)

- Global constraints in C++ (propagators)

Inferencing support

●

●

●

7

Implementation carefully designed to provide a simple model
of network communications that is efficient and predictable.

●

offer

take

’...ticket...’

- Ticket = Ascii representation of Oz store reference

- Two operations: offer & take a ticket

- Taking a ticket conceptually merges two stores.

- Implemented with distributed algorithm per type

- One operation: a process creates another process with

Any data can then be exchanged transparently.
This implies distributed lexical scoping.

a shared reference

- Useful for resource management and protection, e.g.,
server executes client command in another process

Distribution support (1/2)

● ‘‘Open’’ distribution (module Connection)

● ‘‘Closed’’ distribution (module Remote)

Distribution is always network transparent, i.e., same language●

semantics are obeyed independent of distribution structure.

8

BOOM!

Distribution support (2/2)

- Detects site failures or network inactivity

- Lazy or eager detection per language entity

- Action: exception or replace by user-defined procedure

Fault tolerance (module Fault)●

- Two operations: save and load any stateless data

- Stateless data includes procedures, classes, functors

- Can be loaded from URL

Persistence (module Pickle)●

- High-level abstractions are built on top:

disconnected operation, generic client-server,

robust transactional store

Other operations:

- Web support (HTML, CGI applets, servlets)

●

9

Fault tolerance

-

-

-

-

-

Any language entity can be used to detect these failures

No timeouts are done by the network layer

tempFail is not a time out, but a detection of network
inactivity that lets the application react quickly

tempFail can come and go repeatedly

Messages are never lost due to a tempFail-

-

-

This makes life easy:

●

●

●

●

Failure model:

Detectable permanent site failures (permFail)

Network inactivity, i.e., lack of information (tempFail)

Allows disconnected operation

Allows to bypass ‘‘boot time outs’’

Allows building powerful abstractions

(targeted for Internet applications)

10

The application must consist of●

that queries a back end (Engine)
two parts: a front end (UserInt)

●

●

Convert into an open, robust, distributed, concurrent application:

Take any centralized, sequential client-server application:

UserInt Engine

UserInt DC

UserInt DC

Engine

URL

DS

●

●

Uses two Oz programs, DC and DS●

Plugging Engine into DS makes a server

Plugging UserInt into DC makes a client

No extra code has to be written●

Server is accessible by URL

Any number of clients can be
added or removed dynamically

●

●

generic client-server
Example abstraction 1:

11

fault tolerant global store
Example abstraction 2:

Global store is shared, transparent, and coherent

Every site can update the store; store stays coherent

- Waiting for network (pessimistic, no wasted work)
- Without waiting for network (optimistic, speculative)

Sites can come and go at any time

As long as at least one site survives, the whole store survives

●

●

●

●

(transactional)

(fault tolerant)

(as if centralized)

(open)

Any centralized
application can be
made collaborative
(i.e., distributed)
and robust with
almost no effort

Site 2

Site 3

Site 99
Site 100

Site 1
(e.g., Unix process)

Oz objects

Oz objectsGlobal store

Oz objects

Oz objects

. ..
.
.

12

Agents in Mozart

The word ‘‘agent’’ covers many concepts

Let’s assume that a software agent has the following properties:

Autonomous

Situated in an environment, with which it interacts

Can cooperate with other agents

Potentially very long-lived

We can implement this as a resource-aware distributed
computation:

An agent accesses resources on sites (‘‘environment’’)

All agents live in the common Mozart computation space,
and can therefore communicate (‘‘cooperate’’)

Agents can make parts of themselves persistent (‘‘long-lived’’)

An agent accesses a new site’s resources by creating a functor

An agent moves by creating new functors and installing them

between ‘‘weak’’ and ‘‘strong’’ migration

-

-

-

-

-

-

-

-

●

●

●

●

●

Mobility is a consequence of network transparency; somewhere

Agent migration is a special case of the global store: with no extra
effort, it is fault tolerant and permits home communication

-

and installing it on the site (functor = module w/ resource spec)

13

BEFOREGlobal store

Global store AFTER

Properties:
- Migration without any dependencies
- Communication with home site, independent of migration
- Full fault tolerance: local computations can assume they’re reliable

●

Mobile agents are a simple special case of the global store●

the global store
Mobile agents with

Site 1 Site 2 Site 3 Site 4 Site 5

Local computations

Site 1 Site 2 Site 3 Site 4 Site 5
(new computation)

Departure Arrival

(computation ends)
(GC recovers memory)

14

Software components:
modules, resources, migration

Module: a record grouping related operations together●

Resource:a module that is tied to a site, i.e., it has site-dependent
state that is outside of the Oz store (e.g., in emulator or OS)

●

- Typical resources: Connection, Fault, Tk, OS, Browse, ...

Functor:a module specification

- Defines module operations, initialization, and the
resources that the module needs

- Unlike a module, a functor is stateless (storable in file)

- Functors are first-class: they can be created at run-time and
they can have external references (‘‘computed functors’’)

Functors are the migration units●

●

- Just install a functor on a new site

- This automatically plugs in the resources the functor needs

15

declare
functor QTk
 import Tk Open Pickle ...
 export DialogBuilder DialogBox ...
define
 ...here comes the body code...
end

Resource example

The Tk module is a resource since it refers to the tk process

The following code defines a module QTk that needs Tk
(QTk defines a high-level abstraction for building user interfaces)

of the Mozart environment
QTk can be compiled and linked either inside or outside●

●

●

16

agent platforms
Comparison with

Examples: ObjectSpace Voyager, IBM Aglets, Mitsubishi Concordia

All are ‘‘100% pure Java’’

Mozart summary:

Above platforms summary:

+ Agent-specific abstractions: mobility, communication, host access

+ Security support

+ Easy interoperability with ‘‘mainstream’’ Java

+ Open source license

- Non-mainstream language and system

- Less agent-specific support

class-name conflicts, expensive & nonpreemptive threads, site-based security)
- Built on top of Java: inherit Java problems (non-transparent distribution,

●

●

●

+ More powerful concurrency, distribution, fault tolerance

+ Interactive incremental development (all is ‘‘run-time’’)

+ More powerful abstraction ability (fewer ‘‘basic concepts’’)

++ Much more powerful inferencing and symbolic computation support

+ Much simpler formal semantics (many fewer ‘‘quirks’’)

17

Some agent projects

(SICS + Ericsson Hewlett-Packard)DMS project●

-

-

(European Union Fifth Framework)InfoCities project●

-

Large-scale simulations (millions of agents)

the laws governing their evolution
Study evolution of Internet ‘‘information cities’’ and

agent applications
Study interaction protocols and build a library for real-world

FIPA-style platform on top of Mozart

-

- Take advantage of distribution, symbolic manipulation

Complex plans and resource allocation in ‘‘bandwidth market’’

(SICS)COORD project●

-

Develop market-based interaction models for agents-

18

Some recent applications

TransDraw● (UCL, PIRATES project)

Open, collaborative graphic editor (functionality similar to xfig)-

Uses transactional protocol to overcome network delay-

Cow Disorder Expert System● (CLAES, Egypt)

In use with farmers and veterinary doctors: CBR, 3000 cases,-
428 disorders, being extended

Originally implemented in Prolog, recent translation to
Mozart improved speed, distribution, robustness

-

Friar Tuck● (National University of Singapore, ReAlloc project)

Constraint-based round robin tournament planner

Used to schedule several sports tournaments (football, basketball, ...)-

Mozart Instant Messenger(SICS)

-

Dynamically extensible with new Mozart applications

Similar functionality to ICQ-

-

●

19

At UCL, the PIRATES project does Mozart research. We are
currently working on a global fault-tolerant transactional store,
on high-level abstractions for user-interface design, and on
formalisms for defining and reasoning about protocols.

●

Current research includes construction of agent platforms that
take advantage of Mozart’s strengths, advanced constraint
debugging, high-level abstractions for fault tolerance, adding
security to the network layer, and implementations for devices
with limited resources.

●

Conclusions and
perspectives

This talk has given a high-level overview of the Mozart
Programming System.

In Mozart, any distributed application behaves exactly as if
it were centralized.

This vastly simplifies the development of distributed
applications including agent-based ones.

Mozart is the result of a long-term research effort of the
Mozart Consortium (DFKI, SICS, UCL, UdS). The project
started in 1991. Work on distribution started in 1995. The

●

●

●

●

first public release was in Jan. 1999(http://www.mozart-oz.org).

20

