
Available at: http://hdl.handle.net/2078.1/thesis:40739 [Downloaded 2023/06/05 at 14:37:16]

"FuxCP: A Constraint Programming Based Tool
Formalizing Fux’s Musical Theory of Counterpoint"

Wafflard, Thibault

ABSTRACT

This master's thesis presents FuxCP, a tool for computer-aided contrapuntal composition. The objective
is to assist composers without programming skills by automating repetitive and time-consuming tasks.
The tool is based on constraint programming with Gecode and formalizes musical rules as constraints.
Thanks to this approach, the tool provides transparency and control over the generated solutions, allowing
composers to shape their desired music. This thesis focuses on formalizing the rules of two-voice
counterpoint from Fux's Gradus ad Parnassum. The research highlights the advantages of constraint
programming over other approaches, as it allows the tool to "understand" the generated music. The thesis
covers the formalization of counterpoint species-specific rules as mathematical constraints, the evaluation
of the tool compared to Fux, and suggestions for future development. The conclusion emphasizes the
importance of a comprehensive set of rules for formalization, the need for additional constraints on melodic
development, and the potential for more expert solvers in other musical genres. The findings indicate
the potential of constraint programming in enhancing computer-aided composition across various musical
styles.

CITE THIS VERSION

Wafflard, Thibault. FuxCP: A Constraint Programming Based Tool Formalizing Fux’s Musical Theory of
Counterpoint. Ecole polytechnique de Louvain, Université catholique de Louvain, 2023. Prom. : Van Roy,
Peter. http://hdl.handle.net/2078.1/thesis:40739

Le répertoire DIAL.mem est destiné à l'archivage
et à la diffusion des mémoires rédigés par les
étudiants de l'UCLouvain. Toute utilisation de ce
document à des fins lucratives ou commerciales
est strictement interdite. L'utilisateur s'engage à
respecter les droits d'auteur liés à ce document,
notamment le droit à l'intégrité de l'oeuvre et le
droit à la paternité. La politique complète de droit
d'auteur est disponible sur la page Copyright
policy

DIAL.mem is the institutional repository for the
Master theses of the UCLouvain. Usage of this
document for profit or commercial purposes
is stricly prohibited. User agrees to respect
copyright, in particular text integrity and credit
to the author. Full content of copyright policy is
available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

École polytechnique de Louvain

FuxCP: A Constraint Programming
Based Tool Formalizing Fux’s
Musical Theory of Counterpoint

Author : Thibault WAFFLARD
Supervisor : Peter VAN ROY
Readers : Yves DEVILLE, Karim HADDAD, Damien SPROCKEELS
Academic year 2022–2023
Master [120] in Computer Science

Abstract

This master’s thesis presents FuxCP, a tool for computer-aided con-
trapuntal composition. The objective is to assist composers without
programming skills by automating repetitive and time-consuming
tasks. The tool is based on constraint programmingwith Gecode and
formalizes musical rules as constraints. Thanks to this approach, the
tool provides transparency and control over the generated solutions,
allowing composers to shape their desiredmusic. This thesis focuses
on formalizing the rules of two-voice counterpoint from Fux’sGradus
ad Parnassum. The research highlights the advantages of constraint
programming over other approaches, as it allows the tool to "under-
stand" the generated music. The thesis covers the formalization of
counterpoint species-specific rules as mathematical constraints, the
evaluation of the tool compared to Fux, and suggestions for future
development. The conclusion emphasizes the importance of a com-
prehensive set of rules for formalization, the need for additional con-
straints on melodic development, and the potential for more expert
solvers in othermusical genres. The findings indicate the potential of
constraint programming in enhancing computer-aided composition
across various musical styles.

Acknowledgements
Thanks to Peter Van Roy , my supervisor, for giving me the opportunity
to write this thesis combining two of my passions: computer science and
music.

Thanks to Damien Sprockeels for his pragmatic feedback, his devotion
to the project, and his great contribution to computer music.

Thanks to Karim Haddad from IRCAM for proposing the Gradus ad Par-
nassum as a reference book.

Thanks to Yves Deville for reading this thesis.

Thanks to UCLouvain for allowing me to finish my studies on such an
instructive project.

Thanks to JustineNagant for supportingme throughout this long ordeal.

It is thanks to the energy and time of all these people that this thesis ex-
ceeded my expectations.

i

Contents

Introduction 1

Related Work 3

1 Theoretical Background 5
1.1 Music Theory . 5

1.1.1 Concept of Counterpoint . 5
1.1.2 Equivalent American vs British English Terms 6
1.1.3 Music Concepts . 7

1.2 Constraint Programming Prerequisites 9
1.2.1 Constraint Programming Concept 10
1.2.2 Branching . 10
1.2.3 Advantages . 10

2 Introduction to the Formalization of Fux’s Theory 11
2.1 Array Logic and Notation . 11

2.1.1 Logic of the arrays . 11
2.1.2 Notations of the arrays . 13

2.2 Definitions of the Constants, Costs, Variables and Functions 14
2.2.1 Constants . 14
2.2.2 Costs . 16
2.2.3 Variables . 17
2.2.4 Fonctions . 21

2.3 Implicit General Rules of Counterpoint 22
2.3.1 Formalization in English . 22
2.3.2 Formalization into Constraints 23

2.4 Types of rules . 26

3 First Species of Counterpoint 27
3.1 Formalization in English . 27

3.1.1 Harmonic Rules of the First Species 27
3.1.2 Melodic Rules of the First Species 29
3.1.3 Motion Rules of the First Species 30

3.2 Formalization into Constraints . 31
3.2.1 Harmonic Constraints of the First Species 31
3.2.2 Melodic Constraints of the First Species 32
3.2.3 Motion Constraints of the First Species 33

4 Second Species of Counterpoint 34
4.1 Formalization in English . 34

4.1.1 Harmonic Rules of the Second Species 34
4.1.2 Melodic Rules of the Second Species 36
4.1.3 Motion Rules of the Second Species 37

4.2 Formalization into Constraints . 37
4.2.1 Harmonic Constraints of the Second Species 37
4.2.2 Melodic Constraints of the Second Species 38

ii

4.2.3 Motion Constraints of the Second Species 39

5 Third Species of Counterpoint 40
5.1 Formalization in English . 40

5.1.1 Harmonic rules of the third species 40
5.1.2 Melodic rules of the third species 43
5.1.3 Motion rules of the third species 43

5.2 Formalization into Constraints . 44
5.2.1 Harmonic Constraints of the Third Species 44
5.2.2 Melodic Constraints of the Third Species 45
5.2.3 Motion Constraints of the Third Species 45

6 Fourth Species of Counterpoint 46
6.1 Formalization in English . 46

6.1.1 Motion Rules of the Fourth Species 46
6.1.2 Harmonic Rules of the Fourth Species 48
6.1.3 Melodic Rules of the Fourth Species 49

6.2 Formalization into Constraints . 49
6.2.1 Motion Constraints of the Fourth Species 49
6.2.2 Harmonic Constraints of the Fourth Species 50
6.2.3 Melodic Constraints of the Fourth Species 50

7 Fifth Species of Counterpoint 51
7.1 Problem Differences from Previous Species 51
7.2 Representation of Species as Constraints 52

7.2.1 Naive Solution . 52
7.2.2 Species Array System . 52

7.3 Formalization of the Species Rhythm into Constraints 53
7.4 Logic Implication of the Species Constraints 55

7.4.1 Generalization of the Species Implications 55
7.4.2 Avoiding Multiple Same Final Solutions 56

7.5 Formalization of Inter-species Rules into Constraints 57
7.6 Parsing of the Species Array in Rhythm 58

8 Evaluation and Comparison 61
8.1 Evaluation of the First Species . 61
8.2 Evaluation of the Second Species . 62
8.3 Evaluation of the Third Species . 63
8.4 Evaluation of the Fourth Species . 63
8.5 Evaluation of the Fifth Species . 64

8.5.1 Comparison . 64
8.5.2 Refinement . 65

8.6 Experimentation with the Fifth Species 66

9 Future Improvements 67
9.1 Software Architecture . 67
9.2 Solver Performances . 68
9.3 Solution Quality . 68

Conclusion 69

Bibliography 70

iii

A Transcriptions 74

B Additional Material 75

C User Guide 77
C.1 Installing FuxCP . 77

C.1.1 Prerequisites . 77
C.1.2 Loading FuxCP in OpenMusic 77

C.2 Using FuxCP in OpenMusic . 78
C.3 Interface Parameters Description . 80

D Software Architecture 81

E Source Code 83
E.1 FuxCP.lisp . 83
E.2 package.lisp . 83
E.3 interface.lisp . 84
E.4 fuxcp-main.lisp . 99
E.5 1sp-ctp.lisp . 107
E.6 2sp-ctp.lisp . 110
E.7 3sp-ctp.lisp . 113
E.8 4sp-ctp.lisp . 117
E.9 5sp-ctp.lisp . 120
E.10 constraints.lisp . 127

iv

Introduction
This thesis is part of a long-standing project between UCLouvain and IRCAM (Insti-
tut de Recherche et Coordination Acoustique/Musique)[1]. It is one more step towards a
complete tool capable of creating music from amusical style to assist composers with-
out programming skills by automating repetitive, arduous, or time-consuming tasks.
On the technical level, it is a question of formalizing musical rules in discrete mathe-
matics in order to represent them in the form of constraints. The tool uses constraint
programming (CP) to find solutions satisfying previously chosen musical rules. It is
a composition assistant and not an independent composer. Ideally, the tool serves as
a first draft for the composer so that he can adapt the solution or seek a new solution
that better meets his needs.

Currently, this tool is achieved through the use of Gecode[2] for the CP part and
OpenMusic[3] (OM) for the user interface. Gecode is an open-source C++ toolkit for
developing constraint-based systems and applications. While OM is an open-source
Lisp graphical programming environment for music composition. The link between
Gecode and OM is done via the wrapper GiL[4].

Butwhy constraint programming? It is an innovative approach in the field ofmusic
computing. Today, there are several machine learning (ML) models capable of repro-
ducing certain styles of music more or less faithfully (e.g. MuseNet by OpenAI[5]
or Music Transformer byMagenta[6]). Unlike machine learning, constraint program-
ming allows full transparency on how solutions are generated and full control over the
musical rules that apply1. In a way, this paradigm allows the model to "understand"
themusic it generates. This is practical to leave to the composer the possibility of mak-
ing the music he truly wants. CP is a very powerful paradigm still under-exploited in
the field of computer music allowing to generate musically correct solutions in a few
seconds, or even less.

Before embarking on an overly complex formalization of music, it is necessary to
prove that this kind of tool is feasible with a musical style that is not too complex and
fairly strict. It is for this reason that this thesis focuses on the formalization of the rules
of Johann Joseph Fux’s Gradus ad Parnassum[8] on two-voice counterpoint. Counter-
point is a musical style, mostly developed during the Baroque era, which consists of
having several melodies played at the same time[9]. These melodies are harmonically
interdependent but melodically independent[10]. They are all built from a cantus fir-
mus, i.e. the "given song" which determines the context of the musical piece. It is a
horizontal construction of music which is partly opposed to the common harmonic
vertical approach.

The Gradus ad Parnassum is a good book to start this project for several reasons.
First, this work is recognized as a pillar of the theory of contrapuntal composition.
These rules are therefore still applied by contemporary composers. Second, Fux’s
work is separated into several chapters according to the species of counterpoint. With-

1Opacity in ML is a recurring problem that is still one of the main challenges today. For example,
Ferreira and Whitehead [7] explain that "it is very hard to control such models in order to guide the
compositions towards a desired goal".

1

out going into details, this allows to formalize each type of counterpoint iteratively
without getting confused.

To summarize, the purpose of this thesis is, on the one hand, to create a tool capable
of generating a counterpoint based on a cantus firmus, on the other hand, to determine
the advantages and disadvantages of CP for composition computer-aided.

This work will be divided into several parts: it will first briefly present the work
taking place in the vast field of computer-assisted composition. Then, the musical and
technical knowledge for a good understanding of the work will be established. Of
course, most of this paper consists in formalizing in the form of mathematical con-
straints the different rules that can be extracted from Fux’s work. For this, a chapter
will be devoted to the system of variables on which all the constraints are created.
There will follow a chapter by species detailing each rule in natural language and
then in mathematical constraints. Before concluding, the evaluation of all species will
be done to determine if the CP approach was realistic or not. Finally, criticisms and
suggestions will be given in order to continue this big project as well as possible.

2

Related Work
Before getting to the heart of the matter, it is important to underline the existence of
work related to the field of computer music. Indeed, there are already some works
using approaches relatively similar to that of this paper. It will then quickly describe
some examples of work in the field ofML to explain problems related to this approach
that can be partially solvedwith constraint programming. Finally, the main references
of this thesis will be given to get an idea of its writing environment.

About Counterpoint and Constraint Programming
First, in 1984, Schottstaedt wrote Automatic Species Counterpoint[11]. His work de-
scribes an expert system, i.e. a sequence of if-then statements representing the rules of
Gradus ad Parnassum. There are several similarities with the present work. Where an
expert system represents knowledge through if-then statements[12], the CP makes
it possible to represent this knowledge in a more complete and mathematical way.
Moreover, the inference engines of the 80s were not as smart as the algorithm used
in the present work. Indeed, his searches are more linear in their choice by running
more standard algorithms such as "best-first search".

While his work is a precursor of this thesis, it did not really influence this thesis
but rather demonstrates certain issues still present today. For example, Schottstaedt
uses a penalty list system to represent preferences between several choices. As will be
explained later, there is a relatively similar system for representing the cost of certain
situations in this formalization. The results of his report were poor given the number
of mediocre solutions that the expert system offered and the amount of rules put in
place.

Secondly, in An Interactive Constraint-Based Expert Assistant for Music Composition,
Ovans andDavison [13] attempted the same approach byusing theCP to represent the
first species of counterpoint (comprising only whole notes). Their goal was that the
user could interactwith the graph representing the search space. Itwas therefore a tool
where the direction of the search was partly directed by a human. It is an interesting
approach but different from that of this paper which consists rather in making the
user interact via the preference of certain musical notions. Moreover, the first species
of counterpoint is not sufficient to form an opinion of the use of CP inmusical creation.
However, it is quite interesting to see that their conclusions have great similarities with
those described at the end of this thesis.

The subject is not recent and several readings can be recommended for those wish-
ing to learn more. For example, Pachet and Roy [14] describe musical harmony as
constraints. Or, more recently, Sandred [15] establishes the different researches and
constraints satisfaction problem solvers over time.

About Machine Learning
In terms of machine learning, most of the research is more recent. As explained in the
introduction, several music generation products/models already exist such as Ope-
nAI’s MuseNet and Magenta’s Music Transformer. These are therefore technologies
that are extremely different from the one presented in this paper. These models also
aim to generate music but do not necessarily aim to be highly configurable tools by

3

their users. These technologies can be useful in other contexts, which is beyond the
scope of this thesis. However, the analysis of Briot and Pachet must be highlighted
because it explains well the issues encountered with this technology:

"[A] direct application of deep learning to generate content rapidly reaches
limits as the generated content tends to mimic the training set without
exhibiting true creativity. Moreover, deep learning architectures do not
offer direct ways for controlling generation (e.g., imposing some tonality
or other arbitrary constraints). Furthermore, deep learning architectures
alone are autistic automata which generate music autonomously without
humanuser interaction, far from the objective of interactively assistingmu-
sicians to compose and refine music." Briot and Pachet [16].

Also, one of the researchers who worked on the Music Transformer[17] tried to
generate counterpoints by convolution [18]. The results are not very convincing but
acceptable. The problem, in this case, is that the model is trained from a fairly limited
database which prevents the model from getting out of its comfort zone. All the ap-
proaches remain interesting knowing that these technologies are not enemies because
they can collaborate to fill the weaknesses of one another.

About this Thesis
Finally, this thesis is based on the work of previous years:

• Lapière [19] presented an interface for using Gecode functions in Lisp called
GiL. He tested it with some rhythm-oriented constraints.

• Sprockeels [20] explored the use of constraint programming in OpenMusic us-
ing GiL. He made a tool capable of producing songs with basic harmonic and
melodic constraints.

• Chardon, Diels, andGobbi [21] created a tool capable of combining the strengths
of the first two implementations while continuing to develop support for GiL.

This thesis is the first to be a "complete" representation of a particularmusical style.
As explained above, Fux’s Gradus ad Parnassum was chosen as the basis for the work.
The original text dates from 1725 and is written in Latin. Nobody on the research
team speaks this dead language so it’s obvious that translations were used instead.
Two of them have been particularly used: the first is that of Chevalier [22], a French
translation dating from 2019. It is from this work that the rules have been taken. The
second is Mann [23]’s English translation dating from 1971. This one is interesting
because it includes footnotes to better understand certain ambiguous rules. It is also
from this work that most of the quotations are taken.

4

Chapter 1

Theoretical Background
A complicated point with this kind of subject is the vast field of knowledge that com-
poses it. Indeed, to be able to fully understand the rest of the thesis, it is necessary
to have a good knowledge of musical theory rather than an in-depth knowledge of
constraint programming. Music theory is very rich and applies differently from one
culture to another, while CP is a younger field and easier to popularize broadly. For
these reasons, it will be tempted to explain in more depth the sometimes ambiguous
musical notions.

The operation of Gecode and OpenMusic is not necessary for understanding the
paper, so they do not have their own sections in this chapter. To learnmore about these
subjects, there is the documentation of Gecode[24], OpenMusic[25], and Sprockeels
[20]’s thesis which covers the essence of these two tools.

Before moving on to formalization, it is important to recall the fundamentals of
music and its notation. The technical theory of constraint programming will be ex-
plained right after.

1.1 Music Theory

1.1.1 Concept of Counterpoint
As explained in the introduction, counterpoint (ctp.) is a style predominantly culti-
vated during the Baroque period. Basically, it involves the simultaneous performance
of multiple melodies[9]. These melodies exhibit melodic independence while main-
taining harmonic interdependence[10].

Figure 1.1: Example of a 1st species ctp. Score available here [26] and listen here [27].

More precisely, each melodic line functions autonomously, possessing its own dis-
tinct melodic character, rhythm, and contour. These individual voices are carefully
crafted to interact with one another harmonically. While the melodic lines intertwine
and intersect, they maintain their melodic independence, allowing each voice to be
perceived as a distinct entity within the overall musical composition.

A key element in the construction of counterpoint is the use of a cantus firmus,
which serves as a foundationalmelodic line or a "given song." It establishes themelodic
and harmonic framework within which the additional voices are developed. Com-
posers use the cantus firmus as a point of departure, building intricate melodic struc-

5

https://www.noteflight.com/scores/view/a60f5776648f8042aa5e49c7320a6b6b839471be
https://youtu.be/9yB4OGr4Cgk?t=14

tures around it while adhering to specific rules and guidelines governingmelodic and
harmonic interactions.

In 1725, Fux [8], a renowned music theorist of the Baroque era, outlined a sys-
tematic approach to counterpoint in his influential work, Gradus ad Parnassum. He
categorized counterpoint into five distinct species, each with its own set of rules and
characteristics. These species aremainly recognizable by their rhythms. They are built
iteratively on top of each other, so that the rules of the first species apply in part in the
second species, up to the fifth one.

• First Species: Each note of the added voice corresponds to a single note of the
cantus firmus. The goal is to maintain a strict one-to-one relationship between the
voices, ensuring that no dissonances occur.

• Second Species: It involves adding two notes in the counterpoint voice for each
note of the cantus firmus. Themain added rule is that of allowing dissonant harmonies.

• Third Species: Four notes are played in the counterpoint voice against each note
of the cantus firmus. This species introduces more movement and possibilities in the
way the melody is handled.

• Fourth Species: Mainly composed of syncopations, it focuses on rhythmic dis-
placement and anticipation. The counterpoint voice introduces syncopated rhythms
by placing notes on weak beats.

• Fifth Species: Also known as the florid counterpoint, it combines elements of the
previous four species. It allows for greater freedom in the use of note durations, rhyth-
mic patterns, and melodic embellishments. This species showcases the composer’s
skill in crafting intricate and ornate melodic lines while maintaining the fundamental
principles of counterpoint.

Figure 1.2: Example of a 5th species ctp. Score available here [28] and listen here [27].

Don’t worry, more examples will be shown in due course.

1.1.2 Equivalent American vs British English Terms
Depending on the reader, terms used in music may vary between America, England,
and translations. Here is a summary of the equivalent terms depending on the lan-
guage:

• Measure ≡ Bar

• Whole step ≡ Tone

• Half step ≡ Semitone

• Whole note ≡ Semibreve

• Half note ≡Minim

• Quarter note ≡ Crotchet

• Eighth note ≡ Quaver

• Sixteenth note ≡ Semi-quaver

6

https://www.noteflight.com/scores/view/f75c61263ee5a50fa0d6941b8803a2b79aaed759
https://youtu.be/9yB4OGr4Cgk?t=231

1.1.3 Music Concepts
The following definitions are mainly there to help if the reader does not fully under-
stand the nuances between certain terms in the next chapters. The definitions are
sorted so that the first are global and the last are on more specific points.

Staff A staff refers to the set of horizontal lines and spaces uponwhichmusical notes
and symbols are written on scores. The staff typically consists of five lines and four
spaces, with each line and space representing a specific pitch (see figure 1.3).

Figure 1.3: Staff with a treble clef (clef de Sol), an empty key signature and a 4/4 time
signature.

Note On sheet music, a note is a symbol used to represent a specific pitch and du-
ration of a sound. Notes are written on staff and can be represented by a variety of
symbols. Generally speaking, a note refers to a certain frequency played at a certain
time.

Beat A beat is the underlying pulse that organizes the passage of time within a mu-
sical composition. It serves as a fundamental unit of measurement, establishing the
division of time into equal segments. The beat provides a sense of stability and acts
as the rhythmic foundation upon which melodies, harmonies, and other musical ele-
ments are built.

Measure A measure is a section of music that is delimited by vertical bar lines in
sheet music. With a common 4/4 time signature, a measure is made up of four beats.

Pitch Pitch refers to the highness or lowness of a sound. Pitch is determined by the
frequency of the sound wave and is measured in hertz (Hz). Higher pitched sounds
have a higher frequency than lower pitched sounds.

MIDI Musical Instrument Digital Interface is a standard protocol for communication
betweenmusical instruments and computers. What is commonly called "MIDI values"
refers to the different possible MIDI notes ranging from 0 (C−1 ≡ 8.175799Hz) to 127
(G9 ≡ 12543.85 Hz)[29]. The notes of an 88-key piano are limited to A0 to C8. The
list of MIDI values can be found in table B.1.

Semitone A semitone, also known as a half step, is the smallest interval (the distance
between two notes) inWesternmusic. It represents the distance between two adjacent
notes on a keyboard or guitar.

Step A step is a melodic interval of one semitone (minor second) or one tone (ma-
jor second)[30] between two consecutive notes of a musical scale[31]. Melodies that
move by steps are stepwise.

Types of notes Within a common 4/4 time signature (see figure 1.4):

7

• A whole note repre-
sents a long duration
of sound and lasts
four beats.

• A half note repre-
sents a medium du-
ration of sound and
lasts two beats.

• A quarter note rep-
resents a short du-
ration of sound and
lasts one beat.

Figure 1.4: The 3 main types of notes used in the counterpoint.

Syncopation The displacement of the main beat of a measure. It creates an off-
balance rhythm through the accenting of normally unaccented beats.

Mordent Amordent is a type of ornament referring to a quick alternation between a
note and its upper (uppermordent) or lower neighbor (lower/invertedmordent)[32].

Intervals In Western tonal music, the intervals making up an octave are separated
into 12 semitones. Table 1.1 shows the MIDI values corresponding to these intervals.

Interval Unison/Octave Second Third Fourth Tritone Fifth Sixth Seventh
Type Perfect Minor Major Minor Major Perfect ♯4th / ♭5th Perfect Minor Major Minor Major
Value 0 1 2 3 4 5 6 7 8 9 10 11

Table 1.1: MIDI values of the intervals over an octave range.

Tonic The tonic is the first note of a scale and serves as the foundation or the "home"
for the other notes in the scale. It is this note that gives the name of the scale.

Scale A scale is a series of intervals arranged in ascending or descending order. The
most common scales in Western music are the major and minor scales. Each scale has
a unique pattern of whole and half steps between the notes.

Key A key refers to a specific scale and tonic. For example, a piece of music in the
key of C major would use the major scale and have C as the tonic. The key of a piece
of music determines the overall tonality and harmony of the piece.

Mode Amode is a type of scale that can be seen as a derivation from a parent scale.
Basically, they are alternatives to common scales so that the tonic and the other note
functions have been shifted. The modes in Western music are the Dorian, Phrygian,
Lydian, Mixolydian, Aeolian, and Locrian modes. Like any scale, each mode has a
unique pattern of whole and half steps between the notes.

Diatonic A diatonic scale is a scale made up of seven different pitches, where each
pitch corresponds to a letter in the musical alphabet (A,B,C,D,E, F,G). A note is
considered diatonic if it belongs to the key range of the piece.

8

Chromatic A chromatic scale is a scale that includes all the notes separated by a
semitone. A chromatic scale contains 12 notes in total, including all the notes in a
diatonic scale and additional notes between each of the diatonic scale notes. Chromatic
notes are often used to add dissonance or tension to a piece of music.

Borrowed note A borrowed note is a non-diatonic note borrowed from another key
or mode and used temporarily in a piece of music. Borrowed notes can be used to add
variety and interest to a melody or harmony. They can also be used to create a sense
of tension or dissonance, which can then be resolved back to the original key or mode.

Degree A degree is the relative position of a note in a scale to the tonic. By default,
one degree aside from a note is the closest next note available in the diatonic scale. A
degree can be expressed for both melody and harmony (even as chords). The degrees
make it possible to understand and convert any tonality through a relative system[33].
By convention, they are written with Roman numerals from I (the tonic) to VII (the
sensible). For example, in C major, C (i.e. the tonic) is the I degree while G (i.e.
the dominant, the fifth) is the V degree. Transposed to F major, this would give F
the I degree and C the V degree. Also, melodies that progress by joint degrees are
equivalent to stepwise melodies.

Thesis Aka downbeat. With a common 4/4 time signature, the thesis is the first beat
of any measure.

Arsis Aka upbeat. With a common 4/4 time signature, the arsis is the third beat of
any measure.

Skip The melodic interval which, unlike the step, is greater than one tone. The term
is rather used to refer to the third melodic interval because it is equivalent to skip a key
on a piano but no convention exists. "Leap" can therefore also be used for the same
purpose.

Leap The melodic interval which, unlike the step, is greater than one tone. The term
is rather used to refer to melodic intervals larger than a third in contrast with the term
"skip". Although, no convention exists so "skip" can also be used for the same purpose.

Diminution An intermediate note that exists between two notes separated by a skip
of a third. In other words, a note that fills the space in third skip. This intermediate
note is not necessarily below the previous one. Actually, the term refers to the division
of a note into several shorter ones (i.e. "passage notes")[34].

1.2 Constraint Programming Prerequisites
This thesis ismore focused onmathematical formalization than on the extensive use of
constraint programming. Indeed, aswill be explained later, optimization is not a point
that was particularly highlighted during this work. The limits of Gecode were not
reached within the framework of this work. There was thus no need to investigate in
that specific direction. Despite this, it is still important to understand what constraint
programming is.

9

1.2.1 Constraint Programming Concept
Constraint programming is an approach to solve complex combinatorial problems by
specifying them as logical relations, called constraints[35]. This kind of problem is
called constraint satisfaction problem or CSP. It is solved by using a combination of in-
ference and search. CP is a powerful paradigm in the field of computer science that
addresses complex decision-making and optimization problems.

Problems are represented as a set of variables, each with a domain of possible val-
ues, and constraints that define the allowable combinations of values for these vari-
ables. Constraints capture logical relationships between variables, reflecting the prob-
lem’s requirements.

The solver part has to find a solution that satisfies all the given constraints by
determining the values for the variables that do not violate previously posted con-
straints. In practice, CP engines employ constraint propagation techniques to enforce
the constraints and reduce the search space by propagating the effects of variable as-
signments.

1.2.2 Branching
Branching refers to the selection of variables and their values during the exploration of
the solution space. It involves selecting a variable and dividing its domain into smaller
subsets or branches, each representing a possible assignment.

When solving a CSP with Gecode, there are two fundamental search strategies
employed: depth-first search and branch-and-bound. These strategies are guided by
variable selection heuristics and value selection heuristics. Without going into details,
depth-first search assigns values to variables regarding the heuristics and then back-
tracks when constraints cannot be satisfied. The branch-and-bound strategy extends
depth-first search by incorporating an additional mechanism to post a new constraint
specified in advance1.

The choice of variable for branching is guided by variable selection heuristics,
which determine the order in which variables are considered during the search pro-
cess. These heuristics aim to select the most promising variable at each step, lead-
ing to faster convergence. Common variable selection heuristics include selecting the
variable with the fewest remaining values in its domain (minimum domain size) or
selecting the variable involved in the most constraints (maximum degree). Value se-
lection heuristics determine the order in which values are assigned to variables. These
heuristics aim to prioritize values that are more likely to lead to a successful solution.

1.2.3 Advantages
To summarize the benefits that lead to the use of CP, it can be said that it mainly stands
out for its expressiveness, transparency, flexibility, and efficiency. CP allows problem
solvers to express problems in a natural manner, enabling direct communication of
knowledge and requirements. It provides transparency in the problem-solving pro-
cess, making search algorithms and strategies explicit and understandable. CP sup-
ports flexible problemmodeling, allowing the incorporation of additional constraints,
objectives, and problem-specific knowledge. It can efficiently explores the solution
space using constraint propagation and search techniques, reducing the search space
and quickly discarding infeasible solutions. These advantages make CP valuable for
addressing a wide range of real-world decision-making and optimization problems.

1With the current version of GiL, it has never been possible to make branch-and-bound work from
Lisp. Several attempts were tested but all failed.

10

Chapter 2

Introduction to the Formalization of
Fux’s Theory
The formalization of Fux is done in several steps:

1. Spot the right rules in theGradusAdParnassum. Fux tended to explain certain
rules of music so that they were easy to understand and use for the musicians of the
time. This implies that sometimes several rules can be reduced to one. On the other
hand, some of the rules of music are not written as such in the book because they are
implicit. For example, it goes without saying that counterpoint belongs to a certain
key and scale, but this is never explicitly written in the book. In order not to create
misunderstanding, it was decided to write them explicitly and separately in the next
sections.

2. Formalize the rules in natural language in a way that is easy to express as
constraints. Indeed, the Gradus Ad Parnassum is a work dedicated to a 17th century
audience. It is necessary to read itwith a critical eye and to translate it intomodern lan-
guage. That is, to reduce several rules into one, or at times, some rules are expressed
in inclusive terms, whereas it is easier for a mathematician or computer scientist to
write them in an equivalent way with exclusive terms or vice versa. Examples will be
given in section 3.1.

3. On the one hand, write the rules in discretemathematics. This is a crucial step
in order to be able to use these rules precisely in other contexts and with other pro-
gramming languages. This will also allow us to check whether solutions exist math-
ematically. Indeed, some rules may be contradictory and, consequently, no solution
would be possible. It is important to keep inmind that some rules are written in a way
that can be easily written with the Gecode tool.

4. On the other hand, write the rules in constraint programming language. The
final goal of this thesis is to have constraints fixed according to Fux’s rules and to find
the best possible solutions with Gecode.

2.1 Array Logic and Notation
It is particularly important to understand how arrays are constructed. The rest of the
paper relies entirely on the nuances and particularities of this logic and notation. This
section is intended for mathematicians and computer scientists.

2.1.1 Logic of the arrays
Themajority of the variables are arrays representing "in order" the different constrained
values linked to the solution. The solution to the problem is an array of MIDI notes

11

lists representing counterpoint. Before starting, two constants1 must be defined2:

• m as the number of measures of the cantus firmus and the counterpoint;

• sm as the maximum number of notes possible in the counterpoint, i.e. the size
of the main arrays used to store Gecode variables. sm = m+3× (m− 1) and by
extension, sm−1 = (m− 1) + 3× (m− 2).

Intuitively onewould separate an array intom lists of eachmeasurewith the differ-
ent notes of a measure inside. Here the reverse applies. With a C-like representation,
the access to a variable will be done as [beat][measure] instead of [measure][beat]. This
ismore convenient for applying constraints in LispwithGiL. Indeed, since the number
of beats used by species varies, it is then easier to separate the arrays by lists of beats in
order to be able to initialize only those which are treated in the problem. Since these
arrays are initialized not with simple integers but with IntVar objects from Gecode,
these constraint variables would definitely be initialized in the constraint space, which
would not be ideal.

All the arrays related directly to the counterpoint are stored in arrays of size sm
(or sm−1 for the melody arrays as will be explained later). These arrays are composed
of four lists, each representing the corresponding beat all along the measures of the
song. The first is of size m while the other three are of size m − 1 since they do not
have a note in the last measure of the counterpoint which is only composed of a single
whole note. E.g. notes[0][9]3 would represent the note in the first beat of the tenth
measure.

If the chosen species of counterpoint uses onlywhole notes, i.e. the first one, each
note in first beat of each measure lasts four beats. Consequently, the lists of notes in
the second, third and fourth beats are not used because these notes would already be
represented by the one in first beat. The same logic applies to the other species: the
second and fourth species only use the first and third "beat lists" because a note lasts
two beats. While the third and fifth species are the only ones to use the four available
beat lists because a note (can) last(s) one beat. See figure 2.1 (the correspondingmidi
value is annotated below each note) and table 2.1 for clarity.

Figure 2.1: The 3 types of notes (N.B.: b ≡ d) over 8 beats for the 4th first species.

Syncopations have been added to illustrate that they work in the same way as half
notes. The fifth species repeats the first four ones so it is not shown here. It will be
explained in detail in chapter 7.

1Careful, these are constants from the point of view of the Gecode solver. They are variables defined
once with the input but which are never set as constraint variables in the CSP.

2These constants are defined more precisely in subsection 2.2.1.
3This array exists only as an example. Here the notation corresponds neither to Lisp notation nor to

mathematical notation.

12

beat, measure 1st, 1st 2nd, 1st 3rd, 1st 4th, 1st 1st, 2nd 2nd, 2nd 3rd, 2nd 4th, 2nd

Whole notes 72 ∅ ∅ ∅ 71 ∅ ∅ ∅
Half notes 72 ∅ 74 ∅ 72 ∅ 69 ∅

Quarter notes 72 71 69 67 65 77 74 72
Syncopations ∅ ∅ 72 ∅ 72 ∅ 69 ∅

Table 2.1: Relative MIDI values of figure 2.1.

2.1.2 Notations of the arrays
Several notations exist to describe the elements of an array. The one chosen here is
close to the computer notation with the indexing starting at zero.

• A[i, j] for element j of
list i of array A;

• L[i] for element i of
list L;

• A[i] for list i of array
A.

Note that another way is also used to represent all the positions of a table. In-
deed, as it is shown in the previous subsection, an array representing all measures per
beat can be merged as a long list representing all beats one after the other. There-
fore, to clarify the notation, ∀ρ ∈ positions(m) will be used to represent all non-
empty positions of an array. For example, for the half notes in the previous table 2.1:
ρ ∈ {[0, 0], [2, 0], [0, 1], [2, 1], . . . }. Moreover for notational purposes, ρ+ 1 will denote
the position of the next note such that if A[ρ] = A[0, 0] then A[ρ + 1] = A[2, 0]. To
explain it properly, the set B and the constants b and d must be introduced.

B Set of beats in a measure used by the solver depending on the chosen species. B
can be seen as the location or index of the notes written over a measure on a score.

B =

{0} if species = 1
{0, 2} if species = {2, 4}
{0, 1, 2, 3} if species = {3, 5}

(2.1)

This refers back to the previous table 2.1.

b Number of beat(s) in a measure used by the solver depending on the chosen
species. b can be seen as the number of notes written over a measure on a score. b
is related to B since b = |B|.

b =

1 if species = 1
2 if species = {2, 4}
4 if species = {3, 5}

(2.2)

d Duration of a note in beat(s) depending on the chosen species. d can be seen as
the space between the notes of a measure on a score. d is inversely proportional to b.

d = 4/b

∴ d =

4 if species = 1
2 if species = {2, 4}
1 if species = {3, 5}

(2.3)

13

positions(upto) Function that returns the set of non-empty positions or indexes or-
dered depending on the species in such a way that all the positions would follow one
another to represent all the beats of that species on a score in a single list.

positions(upto) =
⋃

∀i∈B,∀j∈[0,upto)

[i, j]

s.t. ∀x ∈ [1, 3], ∀y ∈ [1, upto)

[i, j] <s [i+ x, j] <s [i, j + y]

where <s means the sorting order

(2.4)

By extension, ρ+ z >s ρ such that:

∀z ∈ N+, ∀ρ = [i, j] ∈ positions(upto)

ρ+ z = [i+ zd, j + nextm(i+ zd)]

where nextm() is a function that returns the correct number of measure(s) to add.
(2.5)

2.2 Definitions of the Constants, Costs, Variables and Func-
tions

This section is more intended for mathematicians and computer scientists too. Those
who don’t wish to read the mathematical parts should still broadly understand the
variables of harmonic intervals, melodic intervals andmotions (H,M and P in section
2.2.3). Subsections 2.2.1 and 2.2.3 describes the various names used in the mathe-
matical parts and in the Lisp code of the solver (immediately to their right, e.g. n
*total-cp-len). These subsections explain also how those constants and variables
work. Unless otherwise stated, all domains of constants and variables belong to the
domain of integers N.

2.2.1 Constants
Constants are only constant with respect to the Gecode solver, so they are deduced
before a solution is sought by the latter.

Cons (all, p, imp) ALL_CONS, P_CONS, IMP_CONS
Set representing all consonances, perfect consonances and imperfect consonances

respectively. By default, the notation Cons ≡ Consall.

Consp := {0, 7}
Consimp := {3, 4, 8, 9}

Consall := Consp ∪ Consimp ≡ {0, 3, 4, 7, 8, 9}
(2.6)

species species
Chosen species of counterpoint. species ∈ {1, 2, 3, 4, 5}.

m *cf-len
Number of measures which is equivalent to the number of notes in the cantus fir-

mus. m ∈ [3, 17]. 3 because the solver needs al least 3 measures to work properly. 17
is arbitrary and comes from 4× 4 + 1, i.e. a commun number of measure × a number
not too large for the computation + one final measure.

14

n *total-cp-len
Number of notes in the counterpoint depending on the chosen species. n ∈ [1, b(m−

1) + 1] because the last measure has necessarily a whole note.

sm Maximum number of notes contained in the counterpoint, all species combined,
i.e. if the counterpoint contained only quarter notes, with the exception of the last note
being a whole note.

sm = m+ 3× (m− 1) and sm−1 = (m− 1) + 3× (m− 2) (2.7)

Used as the size for an array containing one list of size m (or m − 1) the notes in
thesis and three lists of sizem− 1 (orm− 2) the other beats. The difference with n is
that s does not depend on b.

Cf *cf
List of sizem representing the MIDI notes of the cantus firmus.

∀j ∈ [0,m)

Cf [j] ∈ [0, 127]
(2.8)

Mcf *cf-brut-m-intervals
List of sizem−1 representing the melodic intervals between the consecutive notes

of the cantus firmus.

∀j ∈ [0,m− 1)

Mcf [j] = Cf [j + 1]− Cf [j]

where Mcf ∈ [−127, 127]

(2.9)

lb RANGE_LB
Lower bound of the range of the notes of the counterpoint. lb ∈ [0, ub).

ub RANGE_UB
Upper bound of the range of the notes of the counterpoint. ub ∈ (lb, 127].

R *cp-range
Range of the notes of the counterpoint. R := [lb, ub].

borrow DFLT: <major>4

Determines the "borrowing scale", i.e. the additional notes that the counterpoint
can have in relation to the tonic of the piece. More details will be given on what are
the borrowed notes in section 2.3.1.

borrow ∈ {none,major,minor} (2.10)
4 DFLT: <value> means the default value in the tool.

15

N (R)
(all, key, brw) *extended-cp-domain, *scale, *borrowed-scale.
Set of values available for the notes of the counterpoint. Nkey represents the notes

of the key provided by the user’s score. Nbrw represents the additional borrowed notes
that the counterpoint can have in relation to the tonic of the piece. Nall represents the
union of the two previous sets. If borrow = none then Nbrw = ∅ and Nall = Nkey.
NR

(all, key, brw) represents the set of notes bounded to the range, i.e. the intersection of
N(all, key, brw) andR. By default, N refers to Nall not bounded to the range.

Nkey := buildScale(key, scale)

Nbrw :=

∅ if borrow = none

buildScale(Cf [0] mod 12, ”borrowed”) if borrow = major

buildScale([Cf [0] + 3] mod 12, ”borrowed”) if borrow = minor

Nall := Nkey ∪Nbrw

NR
(all, key, brw) := N(all, key, brw) ∩R

(2.11)

Where buildScale(key, scale) (see function 2.24) is a function that returns the set
of notes in the key based on the scale used. Also more details on the borrowed notes
will be given in section 2.3.1.

2.2.2 Costs
The costs are constants chosen by the user that have default values supposed to rep-
resent Fux’s preferences.

pref and cost *params*
A preference can have 7 levels of intensity ranging from "no cost" to "forbidden".

For any cost cost and any preference pref , it can be defined that:

cost =

0 if pref = no cost
1 if pref = low cost
2 if pref = medium cost
4 if pref = high cost
8 if pref = last resort
2m if pref = cost prop. to length
64m if pref = forbidden

(2.12)

64m is a ridiculously huge value that will never be reached by all the other costs
combined even if they were all high.

Condcosts and costCond All costs work the same way: a list of boolean variables,
calledCond for the explanation, determineswhether it is true that a certain cost should
be established for this specific condition in certain locations. The list of assigned costs
for this condition is noted Condcosts. The elements of Condcosts are thus equivalent to
any cost cost depending on the preference pref chosen for the condition Cond. The
different costs for the different types of conditions each have their own identifier noted
costCond. It is this value that changes depending on the user’s preference. To sum up:

16

∀ρ ∈ Positions(Cond)

Condcosts[ρ] =

{
costCond if Cond[ρ] is true
0 otherwise

where Positions(Cond) is the set of positions where the condition Cond applies
and where costCond ∈ dom(cost)

(2.13)

C and τ *cost-factors, *total-cost.
The heuristic of the solver leads to find a solution while minimizing the total cost.

The latter is represented by τ while C is a set of integers representing all the sums of
the different lists of costs. τ is thus the sum of all the elements of C. If Costs is the set
of all the different Condcosts lists then:

C =
⋃

∀χ∈Costs

∑
∀c∈χ

c

τ :=
∑
∀σ∈C

σ

min τ

(2.14)

By definition, for any forbidden pref to be indeed forbidden, the following con-
straint must be added: ∑

∀σ∈C
σ < 64m (2.15)

2.2.3 Variables
Variables are fully deduced by the Gecode solver and their values can be evaluated
only after a solution has been found.

Many variables have a general definition so that they can be used in all equations,
this does not mean that all possible combinations have been defined in the Lisp code
but only those that are actually used. For example, there is no need to have access to
all possible melodic intervals in the solver, however the mathematical notation would
allow it.

If some letters are not defined, it means that they have already been defined in the
constants or in the previous variables.

Cp *cp
Array of size sm representing the MIDI notes of the counterpoint. This array is

thus composed of four lists, each representing a beat on all the measures of the song.
As explained above, this is how all the other arrays related to the countrepoint (i.e.
the Cp array) are constructed.

For example, for a whole notes counterpoint: the relevant Cp would be only the
list Cp[0]. For a half notes counterpoint: it would be the merge of Cp[0] and Cp[2]. For
a quarter notes counterpoint: it would be the merge of Cp[0], Cp[1], Cp[2] and Cp[3].

∀i ∈ B, ∀j ∈ [0,m) : Cp[i, j] ∈ NR (2.16)

Figure 2.2 shows a popularization of the tool’s logic vis-à-vis these arrays of vari-
ables.

17

Figure 2.2: Popularization of the tool’s logic vis-à-vis the arrays of variables.

H(abs) *h-intervals, *h-intervals-abs.
Array of size sm representing each harmonic interval between the counterpoint

and the cantus firmus. There are four lists of harmonic intervals, each representing a
beat along the whole counterpoint. The harmonic intervals are calculated so that they
represent the absolute difference between the pitch of the counterpoint and the pitch
of the cantus firmus. Since the values are absolute, it does not matter if the cantus firmus
is lower or upper, the intervals will always be calculated according to the lowest note.
Any harmonic interval is calculated according to the notes played at the same time in
the cantus firmus and the counterpoint. Therefore, up to four notes in the counterpoint
can be calculated with respect to the same note in the cantus firmus.

Two versions of that array-variable exist: the main oneH which is modulo 12 and
Habs which is not. It is always true that H = Habs mod 12. Unless mentioned, when
talking about "harmonic intervals" or "harmonies", it refers to the variables of the array
H .

∀i ∈ B,∀j ∈ [0,m)

Habs[i, j] = |Cp[i, j]− Cf [j]|
H[i, j] = Habs[i, j] mod 12

where Habs[i, j] ∈ [0, 127], H[i, j] ∈ [0, 11]

(2.17)

12 representing the number of semitones in an octave. This allows the interval
between a note and any note higher at different octaves to always be the same. This
implies that H ∈ table 1.1 values. For example, for the gap between C4 (60) and G4

(67) and the gap between C4 (60) and G5 (79), theHabs values will be 7 and 19 while
the H values will be 7 and 7.

Figure 2.3: Traditionally written harmonies between the ctp. and the cantus firmus.

Beware that the numbers noted on figure 2.3 are those used on scores. They refer
to the names of the intervals and not to the relative MIDI values. By contrast, table 2.2
below shows the MIDI values of the intervals for this figure.

18

measure j Habs[0, j] Habs[1, j] Habs[2, j] Habs[3, j]

0 12 11 9 7
1 4 7 12 10

Table 2.2: Relative MIDI values of figure 2.3.

M(x)
(brut) *m-intervals, *m-intervals-brut, *m2-intervals, ...

Arrays of size sm−x representing eachmelodic interval between a note of the coun-
terpoint at a specific beat and another further note of the counterpoint at another spe-
cific beat. The melodic intervals are calculated so that they represent the difference
between the two notes involved.

The array is notedMx where x is the number of d5 beat(s) that separates the initial
note to the further one. x represents the desired number of notes between the current
note and the one of interest to calculate the melodic interval. In other words, Mx[i, j]
represents the melodic interval between the note at beat i in measure j and the note at
beat [(i+xd)mod 4] inmeasure [j+nextm(i+xd)]. If x is not present then its default is
1. For example, with whole notes (i.e. d = 4): M [0, 5] represents the melodic interval
between the note in the sixth measure (j = 5) and the note in the seventh measure
(j = 6).

There are two versions of that array-variable: the main one Mx which is absolute
and Mx

brut which is not. It is always true that Mx = |Mx
brut|. Unless mentioned, when

talking about "melodic intervals" or "melodies", it refers to the variables of the array
M1. See figure 2.4 (the corresponding midi value is annotated below each note) and
table 2.3 for clarity.

∀x ∈ {1, 2},∀i ∈ B,∀j ∈ [0,m− x)

Mx
brut[i, j] = Cp[(i+ xd) mod 4, j + nextm(i+ xd)]− Cp[i, j]

Mx[i, j] = |Mx
brut[i, j]|

whereMx
brut[i, j] ∈ [−12, 12],Mx[i, j] ∈ [0, 12]

(2.18)

The intervals are limited to 12 because the octave leap is the maximum that can be
reached.

Figure 2.4: The 3 types of notes that can be used in the counterpoint.

In the solver, melodic intervals used are stored in several lists by beat pair, e.g. one
list for all the intervals between the first and second beats of all measures. The con-
straints to represent these calculations are done separately from one table to another
with the same function. From example, all the melodic intervals between the fourth
beat note and the next first beat note in the thrid species are computed like in equation
2.19:

5Duration of a note in beat(s) depending on the chosen species (see d in above section 2.2.1).

19

Mx
(brut) Whole notes (a) Half notes (b) Quarter notes (c)

M [0, 0] 1 (-1) 2 (2) 1 (-1)
M [1, 0] ∅ ∅ 2 (-2)
M [2, 0] ∅ 2 (-2) 2 (-2)
M [3, 0] ∅ ∅ 2 (-2)
M [0, 1] 1 (1) 3 (-3) 12 (12)
M2[0, 0] (0) 0 (0) 3 (-3)
M2[2, 0] ∅ 5 (-5) 4 (-4)

Table 2.3: Some relative MIDI values of figure 2.4 with x = {1, 2}.

∀j ∈ [0,m− 1)

Mbrut[3, j] = Cp[0, j + 1]− Cp[3, j]

M [3, j] = |Mbrut[3, j]|
(2.19)

P *motions
Array of size 4× (m− 1) representing each motion between two consecutive mea-

sures. The letter P is for passage sinceM is already taken. Contrary, oblique and direct
motions are represented by 0, 1 and 2 respectively.

∀x ∈ {1, 2},∀i ∈ B, ∀j ∈ [0,m− 1), x := b− i

P [i, j] =

0 if (Mx

brut[i, j] > 0 > Mcf [j]) ∨ (Mx
brut[i, j] < 0 < Mcf [j])

1 if Mx
brut[i, j] = 0 ∨Mcf [j] = 0

2 if (Mx
brut[i, j] > 0 ∧Mcf [j] > 0) ∨ (Mx

brut[i, j] < 0 ∧Mcf [j] < 0)

(2.20)

x := b − i represents the fact that the motion is obtained between the current
note and the first note of the next measure. For example, with quarter notes, the gap
between the third note and the first note of the next measure is defined as: b = 4, i = 2
and x = 4− 2 = 2. The first note of the next measure is therefore 2 notes away.

Themotions require relativelymany constraints to be computed. Indeed, a boolean
variable is needed for each type of direction of the counterpoint melody (3) as well as
that of the cantus firmus (3). This gives 3*3 different possibilities to be divided into 3
categories ofmotions for eachmeasure. This is not a problem in itself butwithGiL, any
boolean operation must be computed via a constrained boolean variable. Ideally one
should use argument variables provided by Gecode that are intended to be temporary
variables. Implementing this in GiL would probably improve performance.

IsCfB *is-cf-bass-arr
Boolean array of size sm representing if the cantus firmus is below. Each list of this

array represents a beat along the whole counterpoint and is calculated by comparing
the pitch of the counterpoint with the pitch of the cantus firmus at the same time.

∀i ∈ B,∀j ∈ [0,m)

IsCfB[i, j] =

{
⊤ if Cp[i, j] ≥ Cf [j]

⊥ otherwise
(2.21)

By default, if both notes are the same then the cantus firmus is considered as the
bass.

20

IsCons(all, p, imp) *is-cons-arr
Boolean array of size sm representing if harmonic intervals are consonances, per-

fect consonantes or imperfect consonances. Each list of this array represents a beat
along the whole counterpoint and is calculated by checking that harmonies belong to
the corresponding set of consonances. By default, IsCons ≡ IsConsall.

∀i ∈ B,∀j ∈ [0,m)

IsCons[i, j](all, p, imp) =

{
⊤ if H[i, j] ∈ Cons(all, p, imp)

⊥ otherwise
(2.22)

2.2.4 Fonctions
Functions are a way to improve the readability of some more complex mathematical
notations. The majority remain relatively simple.

nextm(x) Returns the number ofmeasure(s) to add in 4/4 time signature depending
on the number of beat x.

nextm(x) =

{
1 + nextm(x− 4) if x ≥ 4

0 otherwise
(2.23)

buildScale(key, scale) Returns the set of notes in the key based on the scale used.
key is a value between 0 and 11 such that 0 ≡ C and 11 ≡ B.

∀x ∈ [−11, 127], ∀δ := key + x ∈ [0, 127]

buildScale(key, scale) =

⋃

δ mod 12∈key+{0,2,4,5,7,9,11} δ if scale = major⋃
δ mod 12∈key+{0,2,3,5,7,8,10} δ if scale = minor⋃
δ mod 12∈key+{0,5,9,11} δ if scale = borrowed

where key ∈ [0, 11], scale ∈ {”major”, ”minor”, ”borrowed”}
(2.24)

N.B.: buildScale(key, ”minor”) ≡ buildScale([key + 3] mod 12, ”major”).

Membership function e ∈ E State that e belongs to E. Technically, that’s a fact but,
in the context of this paper, this function can be used as a boolean function to evaluate
an implication. It is then considered that this function returns a boolean value that is
true if e is in the set E.

E := {e0, . . . , en}

e ∈ E =

{
⊤ if (e = e0) ∨ · · · ∨ (e = en)

⊥ otherwise
(2.25)

As a result, when an expression uses only ∈, it implies that this expression is true,
i.e the element must belong to the set: e ∈ E ≡ (e ∈ E ⇐⇒ ⊤). This refers directly
to the way Gecode allows this constraint. It may not follow convention, but it will be
simpler and still used with common sense.

In the code, the constraints are often expressed separately for each element. For
example, for a constraint cstwhich is applied if e ∈ {x, y, z}, it would state:

(e = x) =⇒ cst; (e = y) =⇒ cst; (e = z) =⇒ cst

21

2.3 Implicit General Rules of Counterpoint
In this section, all the following rules are implicit, sometimes taken from Fux’s ex-

amples, and sometimes from music theory in general.

2.3.1 Formalization in English
G1 Harmonic intervals are always calculated from the lower note.
Indeed, any harmonic interval is a calculation of the absolute difference between

two notes. This implies that they adapt to where the counterpoint is in relation to the
cantus firmus. .

G2 The number of measures of the counterpoint must be the same as the number of mea-
sures of the cantus firmus.

The goal is to compose complete counterpoints which last the same time as the
cantus firmus.

G3 The counterpoint must have the same time signature and the same tempo as the cantus
firmus.

The notes must be played in sync.

G4 The counterpoint must be in the same key as the cantus firmus.
This is a fundamental rule of music in general. Since the music of the Baroque

period does not follow the same standards as today’s music, this rule is a bit more
complicated than it seems. Indeed, it often happens that Fux gives examples with
accidentals, i.e. notes that do not belong to the diatonic scale. There are therefore notes
"borrowed" from other scales which do not appear as a basis for the key signature.

Figure 2.5: Example of a C major key signature starting on F with B♭’s [23, p.54].

Thismakes it somewhat difficult to determine the precise domain of notes available
for counterpoint. It is possible to determine the logic behind these borrowed notes.
One way of looking at it is as follows: Fux composes with several different modes
throughout his work: the F (Lydian) mode, theD (Dorian) mode, and others. In the
rules of the first species (see section 3.1 at 1.H4), it will be seen that Fux determines
the use of a mode according to the first note of the cantus firmus in relation to the key
of the musical work. Since the nature of a mode can be either major or minor, some
notes can be borrowed from the major or minor diatonic scale of the first note of the
cantus firmus respectively.

In figure 2.5, the key isC major, i.e. [C,D,E, F,G,A,B]. These notes can therefore
be used in counterpoint, but that is not all. Since the first note is an F , this implies that
the tonic of this work is F , although it uses the major scale of C, so it is an example of
the use of the F mode, the Lydian mode. The Lydian mode being a major mode, some
notes of the diatonic major scale of F can be used sparingly by counterpoint. Looking

22

at several examples given by Fux, the notes borrowed are I ([F]6 necessarily included
since it determines the tonic of the work), IV ([B♭] the fourth), VI ([D] note of the
relative minor) and VII ([E] the sensible which is most often used in the penultimate
measure). These notes are probably not arbitrary, but for the purposes of this work, it
is simply the examples provided by Fux that allow to say that these notes can be used
sparingly if necessary.

If the key notes and the borrowed notes are merged, then the following set of notes
is got: [C,D,E, F,G,A,B♭,B]. Since the modes are variations of the diatonic scale,
only a few notes are added in the end (one in this case). It is more complicated to un-
derstand when exactly these borrowed notes are used. Fux explains that these notes
can be used to avoid certain intervals at certain times, which otherwise the melody
would harshly imply the relationship of mi against fa [23, p.35]. Again, his approach
to music is probably stricter than the current one, especially when his music was in-
tended to be religious songs. That is why this setting is user-definable.

G5 The range of the counterpoint must be consistent with the instrument used.
This rule is relatively arbitrary and should be managed by the software user. Fux’s

treatise is mainly concerned with sung counterpoint, although it is applicable to any
instrument. Most of the time, counterpoint is composed either in a higher register or
in a lower register andmore rarely both simultaneously. For performance reasons, the
range in the software is limited to a size of one and a half octaves, i.e. 18 semitones.
Which is in itself completely consistent with the style of counterpoint. The user still
has the choice of the general pitch of the generated melody.

G6 Chromatic melodies are forbidden.
In this work, a melody is considered chromatic when three notes in a row are sepa-

rated by semitones in the same direction. For example, C → C♯ → D or C → B → B♭
are chromaticmelodies. As a rule, this should never happen because the diatonic scale
does not have those intervals. However, it might be possible to compose chromatic
melodies by using borrowed notes in the use of certain modes.

G7 Melodic intervals should be small.
The purpose of a melody is to be melodious, but how to define that? This question

is several centuries old and still does not have an answer that suits everyone. In his
treatise, Fux argues that one should never neglect the beauty of singing. As a result
according to his examples, mostmelodies consist of stepwise7 motionswith occasional
leaps. One solution to represent this is to a give higher cost to larger melodic intervals.
The appropriate cost function will be discussed in each chapter of species.

2.3.2 Formalization into Constraints
G1 Harmonic intervals are always calculated from the lower note.

Already handled by making the difference value absolute as seen in section 2.2.3
for the H variable.

G2, G3 Same number of measures and same time signature.
Only 4/4 time signatures are currently considered. The array Cp is therefore com-

posed of four lists as explained in section 2.2.3 at Cp.
6Notes corresponding to the example are put in square brackets.
7Which moves by scale steps (i.e. one tone or one semitone)[30].

23

Listing 2.1: Definition of Cp in the first species.
1 (defvar *cp (list nil nil nil nil))
2 ; ...
3 ;; FIRST SPECIES ;;
4 ; setting the first list of *cp with
5 ; integer *cf-len as size
6 ; set *extended-cp-domain as available notes
7 (setf (first *cp)
8 (gil::add-int-var-array-dom *sp* *cf-len *extended-cp-domain))

G4 The counterpoint must be in the same key as the cantus firmus.
This rule is already handled by the creation of the setN as shown in section 2.2.3.

The example of the actual rule given above will clarify the explanations. Let k be the
value of the key determined by the key signature, i.e. 60 for C; and t the tonic of the
piece, i.e. Cf [0] = 65. Then:

Nkey = buildScale(k mod 12, ”major”) = {0, 2, 4, 5, 7, 9, 11, 12, . . . , 127}
Nbrw = buildScale(t mod 12, ”borrowed”) = {2, 4, 5, 10, 14, . . . , 125}

∴ Nall = {0, 2, 4, 5, 7, 9, 10, 11, 12, . . . , 127}

To ensure that borrowed notes are used sparingly, they must be given a cost to
use. Let OffKey be the set of notes outside the key and OffKeycosts the list of costs
associated with each note. The cost for a note will be <no cost> or costOffKey (DFLT:
<high cost>).

OffKey = [0, 1, 2, . . . , 127] \ Nkey

∀ρ ∈ positions(m)

OffKeycosts[ρ] =

{
costOffKey if Cp[ρ] ∈ OffKey

0 otherwise

moreover C = C ∪
∑

c∈OffKeycosts

c

(2.26)

This equation is trivial but requires several adjustments in the program. Indeed,
there is no boolean constraint in Gecode that assign the value true to a variable if an
element belongs to a set8. This can be solved by creating the following constraints (see
code sample 2.2). The idea is to add a 1 each time the candidate element ≡ a member
of the set. If the sum of this list≥ 1 then the candidate appears at least once in the set.

Listing 2.2: Function that constrains b-member to be true if candidate is in member-
list.

1 (defun add-is-member-cst (candidate member-list b-member)
2 (let (
3 (results (gil::add-int-var-array *sp* (length member-list) 0 1)) ; where candidate ==

m
4 (sum (gil::add-int-var *sp* 0 (length member-list))) ; sum(results)
5)
6 (loop for m in member-list for r in results do
7 (let (
8 (b1 (gil::add-bool-var *sp* 0 1)) ; b1 = (candidate == m)
9)

8To our knowledge, Gecode provides only a constraint such that an element must be a member of a
certain set. Ideally, we would need a reified version of this constraint to allow a boolean associated with
the result.

24

10 (gil::g-rel-reify *sp* candidate gil::IRT_EQ m b1) ; b1 = (candidate == m)
11 (gil::g-ite *sp* b1 ONE ZERO r) ; r = (b1 ? 1 : 0)
12)
13)
14 (gil::g-sum *sp* sum results) ; sum = sum(results)
15 (gil::g-rel-reify *sp* sum gil::IRT_GR 0 b-member) ; b-member = (sum >= 1)
16))

G5 The range of the counterpoint must be consistent with the instrument used.
This rule is already handled by the creation of the set NR = N ∩ R as shown in

section 2.2.3. When Cp is created its domain is set to NR
all as seen in the code sample

2.1: *extended-cp-domain refers to the set NR
all.

G6 Chromatic melodies are forbidden.
A three-notemelody is chromatic if the interval between the first, second and third

notes is one semitone in the same direction each time. This can be translated into the
two following constraints.

∀ρ ∈ positions(m− 2)

(Mbrut[ρ] = 1 ∧Mbrut[ρ+ 1] = 1) ⇐⇒ ⊥
(Mbrut[ρ] = −1 ∧Mbrut[ρ+ 1] = −1) ⇐⇒ ⊥

(2.27)

Listing 2.3: Function that prevents chromatic melodies.
1 ; add melodic interval constraints such that there is no chromatic interval:
2 ; - no m1 == 1 and m2 == 1 OR
3 ; - no m1 == -1 and m2 == -1
4 ; @m-intervals-brut: list of all the melodic intervals
5 (defun add-no-chromatic-m-cst (m-intervals-brut)
6 (loop
7 for m1 in m-intervals-brut
8 for m2 in (rest m-intervals-brut) do
9 (let (

10 (b1 (gil::add-bool-var *sp* 0 1)) ; s.f. (m1 == 1)
11 (b2 (gil::add-bool-var *sp* 0 1)) ; s.f. (m2 == 1)
12 (b3 (gil::add-bool-var *sp* 0 1)) ; s.f. (m1 == -1)
13 (b4 (gil::add-bool-var *sp* 0 1)) ; s.f. (m2 == -1)
14)
15 (gil::g-rel-reify *sp* m1 gil::IRT_EQ 1 b1) ; b1 = (m1 == 1)
16 (gil::g-rel-reify *sp* m2 gil::IRT_EQ 1 b2) ; b2 = (m2 == 1)
17 (gil::g-op *sp* b1 gil::BOT_AND b2 0) ; not(b1 and b2)
18 (gil::g-rel-reify *sp* m1 gil::IRT_EQ -1 b3) ; b3 = (m1 == -1)
19 (gil::g-rel-reify *sp* m2 gil::IRT_EQ -1 b4) ; b4 = (m2 == -1)
20 (gil::g-op *sp* b3 gil::BOT_AND b4 0) ; not(b3 and b4)
21)))

The previous function takes care of setting this constraint using GiL. This is a clas-
sical example that shows how constraints on all notes of the counterpoint are set when
there is no distinction to be made between beats. In this case, m-intervals-brut al-
ways represent all the melodic intervals of the counterpoint and not the melodic inter-
vals of a single beat as will often be the case later on. Indeed, one must always adapt
to the rule to make it as simple as possible.

The functions often all look the same, a let block declaring the local variables,
which are often all the booleans required to determine a situation. Then comes the
execution block where the constraints determining the booleans (g-rel-reify) and
the restrictive constraints (g-op states that b1 and b2must not happen) are set. In the
end, putting several constraints one after the other is the same thing as having these
same constraints gathered in one separated by ∨.

25

G7 Melodic intervals should be small.
Just a global minimization of the melodic intervals could be asked to Gecode dur-

ing the search for solutions but this would not be fully consistent with the stepwise
principle. Having a stepwise melody considers that an interval of a semitone is worth
the same as having one of awhole tone. It was decided to give the user full control over
the costs of the melodic intervals. Indeed, the latter largely determine the melodies
produced by the tool. From Fux’s examples, the default costs for melodic intervals
would be:

• the second intervals with no cost;

• the third, fourth and octave9 intervals with DFLT: <low cost>;

• the other intervals with DFLT: <medium cost>.

∀ρ ∈ positions(m− 1)

Mdegcosts[ρ] =

costsecondMdeg if M [ρ] ∈ {0, 1, 2}
costthirdMdeg if M [ρ] ∈ {3, 4}
costfourthMdeg if M [ρ] = 5

costtritoneMdeg if M [ρ] = 6

costfifthMdeg if M [ρ] = 7

costsixthMdeg if M [ρ] ∈ {8, 9}
costseventhMdeg if M [ρ] ∈ {10, 11}
costoctaveMdeg if M [ρ] = 12

moreover C = C ∪
∑

c∈Mdegcosts

c

(2.28)

The case of the melodic tritone will be explained later in rule 1.M1.

2.4 Types of rules
Three types of rules are distinguished in the next chapters:

• Harmonic rules: harmonic rules concern the harmonic intervals between the
different voices, i.e. the harmony created by the cantus firmus and the counter-
point of the same measure. They are often the most important and the most
numerous. These rules are noted by the letter H.

• Melodic rules: melodic rules refer to the melodic intervals of counterpoint or
cantus firmus, which usually correspond to the gap between two consecutive
notes of the same voice. These rules are noted by the letter M.

• Motion or Harmonic andMelodic rules: these rules use both of the above types
of intervals. They are more complex and often relate to specific motions. These
rules are noted by the letter P for passage since M is already taken10.

The notation of the rules is: S.TXwhere S is the species, T is the type of rule (H, M or
P), and X is the number of the rule. For example, the sixth harmonic rule of the first
species is written 1.H6.

9The melodic octave interval is important to be able to quickly return to a comfortable pitch.
10This way of classifying is only intended to clarify the idea behind a rule. It remains quite abstract

and subjective because some rules are classified as melodic while they also use harmonic constraints. In
no case does Fux make a delimitation between his explanations in this way.

26

Chapter 3

First Species of Counterpoint
"WithGod’s help, then let us begin composition for two voices. We take

as a basis for this givenmelody or cantus firmus,which we invent ourselves
or select from a book of chorales. To each of these notes, now, should be
set a suitable consonance in a voice above [. . .]." Mann [23, p.27]

The first species of counterpoint consists of one note bymeasure, note against note.
In other words, only whole notes.

Figure 3.1: Example of a 1st species ctp. Score available here [26] and listen here [27].

As a reminder, unless mentioned, harmonic and melodic intervals are considered in
absolute values. Moreover, harmonic intervals are modulo 12, so an octave interval is
equivalent to a unison interval (see section 2.2.3).

3.1 Formalization in English

3.1.1 Harmonic Rules of the First Species
1.H1 All harmonic intervals must be consonances1. Chevalier [22, p.53]

"[The master addressing his pupil] I shall explain to you. It is the sim-
plest composition of two voices [. . .] which, having notes of equal length,
consists only of consonances." Mann [23, p.27]

1.H2 The first harmonic interval must be a perfect consonance2. [22, p.54]
Perfect consonances are not those that bring the most harmony but those that give

the most sense of stability and rest. They clarify the key and provide a strong founda-
tion for the entire musical work. This rule applies to all species.

1.H3 The last harmonic interval must be a perfect consonance. [22, p.54]
Same logic as the previous rule. This one also applies to all species.

1This excludes dissonances which are seconds, fourths, and sevenths.
2Perfect consonances are fifths and octaves (or unisons).

27

https://www.noteflight.com/scores/view/a60f5776648f8042aa5e49c7320a6b6b839471be
https://youtu.be/9yB4OGr4Cgk?t=14

1.H4 The key tone is tuned according to the first note of the cantus firmus. [22, p.56]
As seen in section 2.3.1, Fux sees the modes as variations of a single scale with

different tonics. While the key signature gives the usable diatonic notes, the first note
of the cantus firmus gives the tonic of the piece. This implies that some notes, the
borrowed ones, will be available accidentally (e.g. ♯ and ♭ in the key of C major) in
relation to the tonic of the piece as explained in rule G4.

This rule also implies that the bass at the first and last note must be the tonic. To
explain it another way, this means that if the counterpoint is in the lower part, only
octave or unison harmonic intervals are available for the first and last note because of
rules 1.H2 and 1.H3. A wrong example would be figure 3.2.

Figure 3.2: Ctp. not keeping the key tone set by the cantus firmus.

G is used as a bass note to make a fifth instead of the D note required to keep the
key of the cantus firmus 3. This rule applies to all species.

1.H5 The counterpoint and the cantus firmus cannot play the same note at the same time
except in the first and last measure. [22, p.62]

It does not mean that the harmonic interval cannot be equal to zero because an
octave can occur. But unison in the strict sense of the term cannot be used in this case.
This rule applies to all species for all thesis4 notes.

1.H6 Imperfect consonances5 are preferred to perfect consonances. [22, p.54]
Preferred means that all consonances are allowed but some cost, or "punishment",

will be associated with the use of perfect consonances. This rule applies to all species
for all thesis notes.

1.H7 If the cantus firmus is in the lower part, then the harmonic interval of the penultimate
note must be a major sixth. [22, p.54]

This rule seems a bit strange at first, but there is a rational explanation for this.
Indeed, traditional cantus firmus almost always end with a descending melody of one
degree, for example, E → D or F → E (figure 3.3).

From this example, the rule makes sense because the major sixths of E and F are
C♯6 and D respectively. These notes are only one degree away from the tonic and
lead perfectly by contrary motion to the tonicsE and F . However, this implies several
things. First, if big leaps are to be avoided in general, the last consonancewill necessar-
ily be an octave or unison because, as explained above, the closest note is necessarily
the tonic.

3As it is, the work would be in G Mixolydian instead ofD Dorian.
4Thesis means the note on the downbeat.
5Imperfect consonances are thirds and sixths.
6C♯ is a leading-tone to D. Leading-tone is a note that resolves to the next note, one semitone higher

(or lower). It begins to be used in the late Middle Ages [36].

28

Figure 3.3: Cantus firmus ending with descending melodic intervals.

Secondly, if a composer wants to use the tool to compose from a cantus firmus that
does not have the particularity of ending on a melody descending by one degree, then
the solutions will not be very coherent on the penultimate measure. This point will be
explained in more detail later. This rule applies to all species.

1.H8 If the cantus firmus is in the upper part, then the harmonic interval of the penultimate
note must be a minor third. [22, p.54]

This rule goes hand in hand with the previous one. Indeed, a minor third is an
inverted major sixth7. With the previous example, the notes of the counterpoint used
would be exactly the same but this time would be below the cantus firmus (see figure
3.4). This rule applies to all species.

Figure 3.4: Equivalence between 6thM and 3rdm in penultimate measures, 1st species.

3.1.2 Melodic Rules of the First Species
1.M1 Tritone8 melodic intervals are forbidden. [22, p.59]
The tritone, sometimes called the devil’s interval by some [23, p.35], is a three-tone

interval just below the perfect fifth [38]. It brings a lot of dissonance that was often
avoided in the melody. This is a common rule of classical music in the broad sense
but it is more used in today’s music, so it can be deactivated. This rule applies to all
species.

1.M2 Melodic intervals cannot exceed a minor sixth interval. [22, p.61]

"[Themaster addressing his pupil] You shouldn’t be so impatient, though
I ammost glad about your care not to depart from the rules. But how should
you avoid those small errors for which you have yet had no rules? [. . .] you
used a skip of amajor sixth, which is prohibited in strict counterpoint where
everything should be as singable as possible." Mann [23, p.37]

7If the octave interval is defined by 12 semitones, then the minor third is 3 and the major sixth is 9.
The same note is found because (Cf − 3) mod 12 = (Cf + 9) mod 12. In other words, any note is the
minor third of its major sixth.

8If you want to hear what is a tritone, you can check the videoWhat is a Tritone? Tritone Explained in 2
Minutes (Music Theory) at https://youtu.be/JJIO-Jr0E8o [37].

29

https://youtu.be/JJIO-Jr0E8o

As Fux explains, this rule applies especially to singers. As explained in ruleG7, it
is not very melodious to make big leaps in the melody anyway. This rule applies to all
species with some exceptions.

3.1.3 Motion Rules of the First Species
1.P1 Perfect consonances cannot be reached by direct motion. [22, p.51, 57]
This rule is a good example of Fux overloading the explanations for perhaps a

better understanding of the yesteryear audience.

"First rule: From one perfect consonance to another perfect consonance one
must proceed in contrary or oblique motion.
Second rule: From a perfect consonance to an imperfect consonance one
may proceed in any of the three motions.
Third rule: From an imperfect consonance to a perfect consonance onemust
proceed in contrary or oblique motion.
Fourth rule: From one imperfect consonance to another imperfect conso-
nance one may proceed in any of the three motions." Mann [23, p.22]

As Martini [39, p.23] explains, these rules can be reduced to one such that the
direct motion into perfect consonances is the only forbidden progression. Figure 3.5
violates the rule. This rule applies to all species.

Figure 3.5: Perfect consonance reached by direct motion.

1.P2 Contrary motions are preferred to oblique motions which are preferred to direct mo-
tions. [22, p.53]

According to Fux, thiswould avoidmakingmistakes. Since the purpose of counter-
point is to have different melodies, it is understandable that contrary motion is prefer-
able as the melodies will naturally differ. He is nevertheless criticized for the use of
oblique motions which are, by some authors, forbidden.

Sachs and Dahlhaus [9] say that "The repetition of a note, causing oblique motion,
is sometimes permitted only in the cantus, but may be used in either part (or even
in both simultaneously, as a repeated note); it is not however the recommended ‘next
step’." Fabre [40]9 explains that the treatises of Marcel Bitsch[42], Marcel Dupré[43],
or those of the 19th century, proscribe the repetition of a note.

Since the preference of the motion is different according to the musical context,
this parameter is manageable by the user. This rule applies to all species.

1.P3 At the start of any measure, an octave cannot be reached by the lower voice going up
and the upper voice going down more than a third skip. [22, p.61-62]

9Jean-Louis Fabre has a long experience teaching and practicing music. He has taught piano, music
writing, and analysis at the conservatory and more [41].

30

This rule may seem arbitrary because it is. The original rule forbids this battuta
octave10 no matter how far the upper voice travels. Fux explains that "it is of little
importance"[23, p.39] because he has found no particular reason for this rule, which
is respected by authoritative composers. However, he thinks that the octave reached
by a leap in the same context should be avoided.

Figure 3.6: Example of battuta octaves.

On the right of figure 3.6, the octave is reached by a skip which is not good. While
the example on the left is admitted by Fux. This rule applies to all species with some
exceptions.

3.2 Formalization into Constraints

3.2.1 Harmonic Constraints of the First Species
1.H1 All harmonic intervals must be consonances.

∀j ∈ [0,m) H[0, j] ∈ Cons (3.1)

This can be expressedwith the constraint (gil::g-member *sp* ALL_CONS_VAR h-intervals)

(see original code for more details).

1.H2, 1.H3 The first and last harmonic intervals must be a perfect consonances.

H[0, 0] ∈ Consp

H[0,m− 1] ∈ Consp
(3.2)

1.H4 The key tone is tuned according to the first note of the cantus firmus.
RuleG4 already handles the set of available additional notes. The only rule to add

is that the first and last bass notes of the piece must have the same letter as the first
note of the cantus firmus (i.e. unison or octaves).

¬IsCfB[0, 0] =⇒ H[0, 0] = 0

¬IsCfB[0,m− 1] =⇒ H[0,m− 1] = 0
(3.3)

This is a good example of how implicationworks. RM_IMP on code sample 3.1means
that the boolean to its left implies the relation again to its left.

Listing 3.1: Function that constrains the first and last harmonies to be unisons or oc-
taves.

1 ; @h-interval: the harmonic interval array
2 ; @is-cf-bass-arr: boolean variables indicating if cf is at the bass
3 (defun add-tonic-tuned-cst (h-interval is-cf-bass-arr)
4 (let (

10Literally translated from Italian to "beaten". It refers to the downbeat.

31

5 (bf-not (gil::add-bool-var *sp* 0 1)) ; s.f. !(first is-cf-bass-arr)
6 (bl-not (gil::add-bool-var *sp* 0 1)) ; s.f. !(lastone is-cf-bass-arr)
7)
8 ; bf-not = !(first is-cf-bass-arr)
9 (gil::g-op *sp* (first is-cf-bass-arr) gil::BOT_EQV FALSE bf-not)

10 ; bl-not = !(lastone is-cf-bass-arr)
11 (gil::g-op *sp* (lastone is-cf-bass-arr) gil::BOT_EQV FALSE bl-not)
12 ; bf-not => h-interval[0, 0] = 0
13 (gil::g-rel-reify *sp* (first h-interval) gil::IRT_EQ 0 bf-not gil::RM_IMP)
14 ; bl-not => h-interval[-1, -1] = 0
15 (gil::g-rel-reify *sp* (lastone h-interval) gil::IRT_EQ 0 bl-not gil::RM_IMP)
16))

Since the negation of IsCfBass is required and Gecode does not offer a ¬ operation,
it must be written in the form: !p ≡ (p ⇐⇒ ⊥) where p is any predicate (see lines 9
and 11).

1.H5 The counterpoint and the cantus firmus cannot play the same note at the same time
except in the first and last measure.

∀j ∈ [1,m− 1) Cp[0, j] ̸= Cf [j] (3.4)

1.H6 Imperfect consonances are preferred to perfect consonances.
Only the cost for perfect consonance is definable (DFLT: <low cost>) which leaves

a null cost for the imperfect consonances.

∀j ∈ [0,m)

Pconscosts[j] =

{
costPcons if H[0, j] ∈ Consp

0 otherwise

moreover C = C ∪
∑

c∈Pconscosts

c

(3.5)

1.H7, 1.H8 The harmonic interval of the penultimate note must be a major sixth or a minor
third depending on the cantus firmus pitch.

These two rules can be expressedwith a single if-then-else constraint like this: (gil::g-ite
sp (penult *is-cf-bass-arr) NINE THREE (penult *h-intervals)).

ρ := max(positions(m))− 1

H[ρ] =

{
9 if IsCfB[ρ]

3 otherwise
where ρ represents the penultimate index of any counterpoint.

(3.6)

3.2.2 Melodic Constraints of the First Species
1.M1 Tritone melodic intervals are forbidden.

Instead of prohibiting this type of melodic interval, a cost is assigned (DFLT: <for-
bidden>) because it is a popular dissonant interval in today’s music11. In addition,
some less conventional cantus firmus than those of Fux might require a tritone on the
last motion because of the number of constraints on the penultimate measure. This
cost is managed by the user in the same way as the other melodic interval costs as
described in the general rule G7 at equation 2.28.

11Anymajor chord with a minor seventh has a tritone and this chord is the very basis of the blues [44].
It would be likely that users would arpeggiate on that with some melodic tritones.

32

∀ρ ∈ positions(m− 1)

M [ρ] = 6 =⇒ Mdegcosts[ρ] = costtritoneMdeg

(3.7)

1.M2 Melodic intervals cannot exceed a minor sixth interval.

∀j ∈ [0,m− 1) M [0, j] ≤ 8 (3.8)

For simple rules that apply to the whole list, it is possible to add a single line con-
straint like this: (gil::g-rel *sp* m-intervals gil::IRT_LQ 8).

3.2.3 Motion Constraints of the First Species
1.P1 Perfect consonances cannot be reached by direct motion.

∀j ∈ [0,m− 1) H[0, j + 1] ∈ Consp =⇒ P [0, j] ̸= 2 (3.9)

This can be read as if a harmony belongs to the perfect consonances then the motion to
reach it is not direct (2 ≡ direct, see P in section 2.2.3).

1.P2 Contrary motions are preferred to oblique motions which are preferred to direct motions.

• costcon
DFLT: <no cost>

• costobl
DFLT: <low cost>

• costdir
DFLT: <medium cost>

∀j ∈ [0,m− 1)

Pcosts[j] =

costcon if P [0, j] = 0

costobl if P [0, j] = 1

costdir if P [0, j] = 2

moreover C = C ∪
∑

c∈Pcosts

c

(3.10)

1.P3 At the start of any measure, an octave cannot be reached by the lower voice going up
and the upper voice going down more than a third skip.

This rule can be represented by two sets of constraints. The first line of equation
3.11 represents the case where the counterpoint is on top while the second represents
the case where the cantus firmus is on top.

i := max(B),∀j ∈ [0,m− 1)

H[0, j + 1] = 0 ∧ P [i, j] = 0 ∧

{
Mbrut[i, j] < −4 ∧ IsCfB[i, j] ⇐⇒ ⊥
Mcf [i, j] < −4 ∧ ¬IsCfB[i, j] ⇐⇒ ⊥

where i stands for the last beat index in a measure.

(3.11)

33

Chapter 4

Second Species of Counterpoint
The second species of counterpoint consists of two notes bymeasure, two notes against
one note. In other words, only half notes.

Figure 4.1: Example of a 2nd species ctp. Score available here [45] and listen here [27].

Since the second species is distinguished by a strong beat followed by a weak beat,
the first species must be seen as a counterpoint composed of strong beats only. There-
fore, all the rules of the first species that only apply per measure apply in thesis (e.g.
rule 2.H1). However, rule 1.M2 applies generally with the exception 2.M1. Although
the rules concerning the motions still hold, motions themselves are determined differ-
ently (see rule 2.P1).

To sum up, first species harmonic rules are applied in thesis, while first species
melodic rules are applied for all notes, and first species motions rules are adapted to
the species.

4.1 Formalization in English

4.1.1 Harmonic Rules of the Second Species
2.H1 Thesis1 notes cannot be dissonant. Chevalier [22, p.64]
As explained above, this rule is consistent with the 1.H1 one. Actually, it is written

only to illustrate the associated logic because, in terms of constraints, the same are
applied.

2.H2 Arsis2 harmonies cannot be dissonant except if there is a diminution3. [22, p.64]
This might sound like a very restrictive rule but in reality, it is a common rule that

applies itself in tonal music. In fact, any dissonance is surrounded by a consonance
on each side.

Since ruleG7 insinuates that themelodic intervals are small, it makes perfect sense
to go from one thesis consonance to the next thesis consonance through an arsis dis-
sonance.

1Thesis means the note on the down beat.
2Arsis means the note on the upbeat.
3Diminution means an intermediate note that exists between two notes separated by a skip of a third.

34

https://www.noteflight.com/scores/view/932a33c1d4e0c55f2a934706c4ed2f83cc28885d
https://youtu.be/9yB4OGr4Cgk?t=70

Figure 4.2: Diminution in arsis, 2nd species.

2.H3 In addition to rules 1.H7 and 1.H8, in the penultimatemeasure the harmonic interval
of perfect fifth (unless exception 2.H4) must be used for the thesis note. [22, p.64-65]

The rules of the penultimate measure, although too strict for today’s music (see
rule 1.H7), are still consistentwith the other rules of the species. Since the penultimate
note is a major sixth or a major third, the closest consonance in thesis is a fifth4 (see
figure 4.3).

Figure 4.3: Basic penultimate measure, 2nd species.

2.H4 In the penultimate measure, if the harmonic interval of fifth in thesis is not available,
then a sixth interval must be used. [22, p.69]

When Fux makes exceptions, it can get tricky so it is highly recommended to un-
derstand rules G4 and 1.H4 and the notion of modes. It should also be noted that, at
the end of Fux’s examples, the cantus firmus tends to fall while the counterpoint tends
to rise. It makes sense because the last motion must always be contrary5.

Every musician knows that the seventh of the diatonic major scale does not have
a perfect fifth in its key. That’s why this rule exists. In figure 4.4a, the mode of E (i.e.
the Phrygian mode) is used and the cantus firmus plays an F above. To have a perfect
fifth, aB♭would have to be played, which is not available and is therefore replaced by
an A to form a sixth.

Where it gets tricky is when Fux shows this example (figure 4.4b) using the A
mode (i.e. the aeolian mode, the relative minor). Why does Fux allow himself to use
F♯which gives a perfect fifth to B? As always the key used is C major (no ♯ or ♭), but
since the tonic is A the scale used will be extended to notes of the A major scale (i.e.
F♯ and G♯)6.

One might ask: why not a sixth as in the first example (figure 4.4a)? There are two
reasons for this choice. First, the implicit ruleG6 that says chromaticism is forbidden

4With respect to the trend G7 that says that the melody is stepwise.
5Or oblique in some cases. In Fux’s examples, most of them tend to confirm this trend for the last two

or even three notes of the counterpoint depending on the species. The examples given in this thesis are
therefore strongly influenced by this idea which is omnipresent in the Gradus ad Parnassum.

6For more experienced musicians, this penultimate measure is immediately reminiscent of the
melodic minor scale [46], which is common in classical music.

35

(a) 6th in thesis. (b) ♯5th in thesis.

Figure 4.4: Different penultimate measures, 2nd species.

prevents a minor sixth because the melody would then be: G → G♯ → A. Secondly, it
could suggest that Fux prefers to go outside the diatonic scale to get a perfect fifth if
the mode allows it rather than breaking the ground rule 2.H3. More details regarding
the costs will be given in the next mathematical section.

4.1.2 Melodic Rules of the Second Species
2.M1 If the two voices are getting so close that there is no contrary motion possible without

crossing each other, then the melodic interval of the counterpoint can be an octave leap7. [22,
p.67-68]

"[. . .] if the parts have been led so close together that one does not know
where to take them; and if there is no possibility of using contrary motion,
this motion can be brought about by using the skip of [. . .] an octave [. . .]."
Mann [23, p.45]

More explicitly, this case occurs when:

• the brut harmonic gap is a third or less;
• the cantus firmus is both below (/above) and rising (/falling).

Why a third? Because there is no more closed consonance than the latter8.
According to Fux’s examples, this rule applies only to thesis → arsis melodic in-

tervals. Octave leaps seem to be unconditional in the case of arsis → thesis intervals.
Moreover, it goes hand in handwith ruleG7which says that melodic intervals should
be small. Indeed, the octave skip allows to reset the pitch of the melody to go down
(or up) again stepwisely (see figure 4.5).

Figure 4.5: Octave leap, 2nd species.

7The octave leap is quite natural and easy to sing because it is the first harmonic of the sound [47].
8Indeed, if the two voices are close, it is not possible to have a consonance other than unison (to be

avoided) in this case.

36

2.M2 Two consecutive notes cannot be the same.*9
In Fux’s examples, none of them have oblique motions. This makes sense with the
criticisms made for rule 1.P2. This rule applies to the third species.

4.1.3 Motion Rules of the Second Species
2.P1 If the melodic interval of the counterpoint between the thesis and the arsis is larger

than a third, then the motion is perceived based on the arsis note. [22, p.65-67]
Fux explains that the melodic interval between the note in thesis and the note in

arsis determines which note will be kept in our mind. A third skip does not deviate
enough from the thesis note to forget the latter. This implies that a perfect consonance
to a perfect consonance cannot be saved by a third skip (see figure 4.6a) because the
motion will be considered direct, which is not in accordance with rule 1.P1. However,
this rule allows the following situation in figure 4.6b.

(a) Bad direct motion with a 3rd skip. (b) Good contrary motion with a 4th leap.

Figure 4.6: Different motions based on different leaps, 2nd species.

2.P2 Rule 1.P3 on the battuta octave is adapted such that it focuses on the motion from the
note in arsis.*

Fux does not mention it in the second species. Instead of not applying the rule, it
is adapted to prevent the same situation but considering only the note in arsis.

4.2 Formalization into Constraints

4.2.1 Harmonic Constraints of the Second Species
2.H1 Thesis harmonies cannot be dissonant.

As explained above, there is no constraint to add because it would be a duplicate
of rule 1.H1.

2.H2 Arsis harmonies cannot be dissonant except if there is a diminution.
Let IsDim be a list of booleans of size m − 1 representing if an arsis note is a

diminution. A diminution can be described as follows: the interval between the notes
in thesis is a third and the two intervals that compose it are seconds (one or two semi-
tones).

∀j ∈ [0,m− 1)

IsDim[j] =

{
⊤ if M2[0, j] ∈ {3, 4} ∧M1[0, j] ∈ {1, 2} ∧M1[2, j] ∈ {1, 2}
⊥ otherwise

(4.1)

9"*" means that this rule is implicit.

37

There is no need to use the brut melodic intervals to check if the melody always
goes in the same direction10. This is because the constraint of third ensures the condi-
tions to be met: M2[0, j] =

∣∣M1
brut[0, j] +M1

brut[2, j]
∣∣. Besides, the constraint <= 2 can

be used to represent ∈ {1, 2} because the melodic intervals are never zero as will be
seen later.

Listing 4.1: Function that constrains IsDim to reprensent diminutions.
1 ; @m-intervals-ta: the melodic interval between each thesis and its following arsis
2 ; @m-intervals: the melodic interval between each thesis and its following thesis
3 ; @m-intervals-arsis: the melodic interval between each arsis and its following thesis
4 ; @is-dim-arr: the array of BoolVar to fill
5 (defun create-is-dim-arr (m-intervals-ta m-intervals m-intervals-arsis is-dim-arr)
6 (loop
7 for mta in m-intervals-ta ; inter(thesis, arsis)
8 for mtt in m-intervals ; inter(thesis, thesis + 1)
9 for mat in m-intervals-arsis ; inter(arsis, thesis + 1)

10 for b in is-dim-arr ; the BoolVar to constrain
11 do (let (
12 (btt3 (gil::add-bool-var *sp* 0 1)) ; s.f. mtt == 3
13 (btt4 (gil::add-bool-var *sp* 0 1)) ; s.f. mtt == 4
14 (bta-2nd (gil::add-bool-var *sp* 0 1)) ; s.f. mat <= 2
15 (btt-3rd (gil::add-bool-var *sp* 0 1)) ; s.f. mtt == 3 or 4
16 (bat-2nd (gil::add-bool-var *sp* 0 1)) ; s.f. mta <= 2
17 (b-and (gil::add-bool-var *sp* 0 1)) ; temporary BoolVar
18)
19 (gil::g-rel-reify *sp* mtt gil::IRT_EQ 3 btt3) ; btt3 = (mtt == 3)
20 (gil::g-rel-reify *sp* mtt gil::IRT_EQ 4 btt4) ; btt4 = (mtt == 4)
21 (gil::g-rel-reify *sp* mta gil::IRT_LQ 2 bta-2nd) ; bta-2nd = (mta <= 2)
22 (gil::g-rel-reify *sp* mat gil::IRT_LQ 2 bat-2nd) ; bat-2nd = (mat <= 2)
23 (gil::g-op *sp* btt3 gil::BOT_OR btt4 btt-3rd) ; btt-3rd = btt3 || btt4
24 (gil::g-op *sp* bta-2nd gil::BOT_AND btt-3rd b-and) ; temporay operation
25 (gil::g-op *sp* b-and gil::BOT_AND bat-2nd b) ; b = bta-2nd && btt-3rd && bat-2nd
26)))

To represent an action that produces only in one situation, this action must imply
that situation. So it can be established that a dissonance in arsis implies a diminution
like this:

∀j ∈ [0,m− 1) ¬IsCons[2, j] =⇒ IsDim[j] (4.2)

2.H3, 2.H4 In the penultimate measure the harmonic interval of perfect fifth must be used
for the thesis note if possible. Otherwise, a sixth interval should be used instead.

If onewants to followFux’s rules, it is important that the cost of leaving the diatonic
scale is less than the cost of not having a fifth. For this, costpenulthesis is set to <last
resort> which is greater than costOffKey (<high cost>).

H[0,m− 2] ∈ {7, 8, 9}

∴ penulthesiscost =

{
costpenulthesis if H[0,m− 2] ̸= 7

0 otherwise
moreover C = C ∪ penulthesiscost

(4.3)

4.2.2 Melodic Constraints of the Second Species
2.M1 If the two voices are getting so close that there is no contrary motion possible without
crossing each other, then the melodic interval of the counterpoint can be an octave leap.

∀j ∈ [0,m− 1),∀Mcf [j] ̸= 0

M [0, j] = 12 =⇒ (Habs[0, j] ≤ 4) ∧ (IsCfB[j] ⇐⇒ Mcf [j] > 0)
(4.4)

10The note would be a mere ornament like a suspended or added note instead of a diminution.

38

Where Habs[0, j] ≤ 4 states that there is no smaller consonance and IsCfB[j] ≡
Mcf [j] > 0 that the cantus firmus is getting closer to the counterpoint. As a reminder,
Mcf is not absolute soMcf > 0 states that the cantus firmus is necessarily rising.

2.M2 Two consecutive notes cannot be the same.

∀ρ ∈ positions(m) Cp[ρ] ̸= Cp[ρ+ 1] (4.5)

4.2.3 Motion Constraints of the Second Species
2.P1 If the melodic interval of the counterpoint between the thesis and the arsis is larger than
a third, then the motion is perceived based on the arsis note.

Let Preal be a list of size m − 1, with the same domain as a list of P , representing
which motion is perceived between that coming from the thesis note and that coming
from the arsis note. This implies that the costs of the motions and the first species
constraints on the motions are deducted from Preal.

∀j ∈ [0,m− 1) Preal[j] =

{
P [2, j] if M [0, j] > 4

P [0, j] otherwise
(4.6)

Listing 4.2: Function that constrains Preal to represent the real motions.
1 ; @m-intervals-ta: melodic intervals between the thesis and the arsis note
2 ; @motions: motions perceived from the thesis note
3 ; @motions-arsis: motions perceived from the arsis note
4 ; @real-motions: motions perceived by the human ear
5 (defun create-real-motions (m-intervals-ta motions motions-arsis real-motions)
6 (loop
7 for tai in m-intervals-ta
8 for t-move in motions
9 for a-move in motions-arsis

10 for r-move in real-motions
11 do (let (
12 (b (gil::add-bool-var *sp* 0 1)) ; s.f. (tai > 4)
13)
14 (gil::g-rel-reify *sp* tai gil::IRT_GR 4 b) ; b = (tai > 4)
15 (gil::g-ite *sp* b a-move t-move r-move) ; r-move = (b ? a-move : t-move)
16)))

2.P2 Rule 1.P3 on the battuta octave is adapted such that it focuses on the motion from the
note in arsis.

This constraint already had an adapted mathematical notation in the chapter of
the first species. Note that this constraint would indeed use P [2] and not Preal.

39

Chapter 5

Third Species of Counterpoint
The third species of counterpoint consists of four notes by measure, four notes against
one note. In other words, only quarter notes.

Figure 5.1: Example of a 3rd species ctp. Score available here [48] and listen here [27].

As in the previous chapter, the rules of the first species are applied to the thesis
note, i.e. the first note of the group of four quarter notes. The first note of a measure is
always the most important1, it is the one that establishes the main harmony perceived
by the human ear. To sum up, first species harmonic rules are applied in thesis, while
first species melodic rules are applied for all notes, and first species motions rules are
adapted to the species.

The third species is the one that starts to be vague in the explanations given by Fux.
Admittedly, he probably didn’t expect his work to be formalized through constraint
programming. But even formusicians, there’s no denying that some rules lack illustra-
tive examples and are a bit skimmed over. In addition, the original treatise is in Latin
and, despite access to several translations in French and English, the explanations do
not always mean exactly the same thing, and everyone knows that the devil’s in the
details. This is reflected, for example, in the formalization of the first two harmonic
rules, which are both created from fuzzy explanations and different translations.

5.1 Formalization in English

5.1.1 Harmonic rules of the third species
3.H1 If five notes follow each other by joint degrees in the same direction, then the harmonic

interval of the third note must be consonant. Chevalier [22, p.73]
The following analysis is more the work of a historian than a computer scientist.

The resulting formalization is therefore not the only way to go. As explained above,
not all translations are equivalent. Chevalier’s French translation, which is the most

1Unless there is syncopation as it will be explained in the next chapter.

40

https://www.noteflight.com/scores/view/0c58287f0fab7274cc266df98b627f743ed1ee45
https://youtu.be/9yB4OGr4Cgk?t=127

recent and used as the main source in this thesis, says (see the original text in the
appendix at A.3):

If it happens that five quarter notes follow each otherby joint degrees, either
ascending or descending, the first one must be consonant, the second one
may be dissonant, the third one again necessarily consonant, the fourth one
may be dissonant if the fifth one is a consonance.

In contrast, Mann’s English translation says:

"[. . .] if fives quarters follow each other either ascending or descending,
the first one [. . .]. The fourth one may be dissonant if the fifth is consonant
[. . .]." Mann [23, p.50]

Alternatively, other older references as [49, p.51] and [50, p.4] from the XVIII cen-
tury basically say:

When five quarters follow one another gradually either rising or falling, the
first, third and fifth note must be consonant. While the second and fourth
may be dissonant.

Several issues arise from these previous sentences. First, Mann’s English version
does not say "gradually" or "by joint degree"which changes the rule itself. These terms
make the constraint much more precise and therefore less restrictive. It can be said
without too much hesitation that the rule must be applied only in the case of joint
degrees because most translations propose a "gradually"2. Moreover, Fux’s examples
confirm this hypothesis.

Second problem: "if the fifth note is consonant". Why "if"? Actually, it’s more
complicated than that. For this rule, Fux does not explain if he is talking about:

(a) the four quarter notes of a measure plus the first one of the next measure;
(b) any five-note tuple;
(c) any independent five-note tuple that doesn’t overlap with the previous one.

In Fux’s examples, more than five notes follow each other several times, up to nine
notes in a row in some. If the second assumption were true, then the following figure
5.2 from the book would not be correct.

Figure 5.2: Nine quarters that follow each other gradually, 3rd species.

The third hypothesis (c) that states that Fux talks of any five-note tuple as long as it is
not itself in a previous five-note tuple does not work either. Otherwise, figure 5.3 would
not be right.

2In the original Latin text, Fux [8, p.63] states "continuò gradatim", which can be translated by "step
by step".

41

Figure 5.3: Six quarters that follow each other graduallywhere the 3rd one is dissonant,
3rd species.

It is clear that the third note is dissonant whereas with assumption (a), the rule
would bemaintained. As a result, it was decided that the first hypothesis was the right
one. But it does not explain why it is said "if the fifth note is consonant". With this
hypothesis, the fifth note is a thesis note and is therefore necessarily consonant thanks
to rule 2.H1. In the end, since saying that a note "may be dissonant" actually means
that no constraint is added, the only additional constraint is the one on the third note.

3.H2 If the third harmonic interval of a measure is dissonant then the second and the fourth
interval must be consonant and the third note must be a diminution3. [22, p.73-74]

Stepping back, this rule can be partly written in another more meaningful way:
any dissonance implies that it is surrounded by consonances. Which makes sense in music
because, in a melody, dissonances are often used to link the consonant notes of an
explicit or implicit chord. The logical proof is given in the mathematical section 5.2
that follows.

3.H3 It is best to avoid the second and third harmonies of a measure to be consonant with
a one-degree melodic interval between them. [22, p.74-75]

Fux calls this rule the cambiata note4. This rule is followed by composers of author-
ity who stimulate the use of dissonances. As shown in figure 5.4, the seventh interval
of the second note should be played rather than the sixth.

Figure 5.4: Use of the cambiata note in the second quarter.

3.H4 In addition to rule 1.H8, in the penultimate measure, if the cantus firmus is in the
upper part, then the harmonic interval of the first note should be a minor third. [22, p.75]

Fux, for some reason, does not always follow this rule, which he gives in a very
crude way with a single example (figure 5.5a) to follow without further explanation.
The only particularity of this measure is in the first and last note which are minor
thirds, which is consistent.

However, Fux gives this example (figure 5.5b)which is not detailed. Luckily,Mann
has footnoted that:

3An intermediate note that fills a skip of third.
4Literally translated from Italian to the "exchanged note". [23, p.51]

42

(a) Standard penultimate measure. (b) Fux’s deviation.

Figure 5.5: Different penultimate measures, 3rd species.

"The forming of sequences (the so-calledmonotonia) ought to be avoided
as far as possible. In the original [a] correction for the next to the last mea-
sure was added in manuscript". Mann [23, p.54]

This correction is yet another way of writing the penultimate measure. There is
nothingwrongwith Fux allowing deviations, that is what music is about in a way. But
it makes systematic formalization more difficult. It was chosen to ignore this example
and leave this rule optional because of its inconsistency with the rest.

5.1.2 Melodic rules of the third species
The melodic rule 2.M2 of the second species is applied to all notes.

3.M1 Each note and its two beats further peer are preferred to be different.*5

This implicit rule is already generally present. It is kind of complementary to rule
2.M2 but in a softer way. It happens several times in Fux’s work that the pupil prefers
to put himself in difficulty to avoid monotony in the melody. An important aspect
of this monotony can be found in the repetition of notes. In this species, it becomes
important because not taking that into account could lead to having only two different
notes per measure (see figure 5.6), which could be considered "boring". The cost of
this parameter is still adjustable by the user.

Figure 5.6: "Boring" example with only two different notes per measure, 3rd species.

5.1.3 Motion rules of the third species
3.P1 The motion is perceived based on the fourth note.*
Fux stops talking about motions explicitly from the chapter on the third species.

But the legacy of the first species, the idea of reaching perfect consonances by contrary
motion, remains present in all his examples.

5"*" means that this rule is implicit.

43

Figure 5.7: Contrarymotion based on the fourth note. Colors represent that themotion
is either contrary, oblique or direct.

The motion is here (figure 5.7) perceived from the note of the cantus firmus with
the fourth note of the counterpoint of the corresponding measure6. In fact, the third
species allows more flexibility in the motions because with more notes it is possible to
go up during the first three notes to come down (or vice versa) just before the start of
the next measure to obtain the desired motion as seen in figure 5.7.

5.2 Formalization into Constraints

5.2.1 Harmonic Constraints of the Third Species
3.H1 If five notes follow each other by joint degrees in the same direction, then the harmonic
interval of the third note must be consonant.

∀j ∈ [0,m− 1)(
3∧

i=0

M [i, j] ≤ 2

)
∧

(
3∧

i=0

Mbrut[i, j] > 0 ∨
3∧

i=0

Mbrut[i, j] < 0

)
=⇒ IsCons[2, j]

(5.1)

On the one hand, the M is used for the "joint degrees" property while the Mbrut

for the "same direction" one.

3.H2 If the third harmonic interval of a measure is dissonant then the second and the fourth
interval must be consonant and the third note must be a diminution.

To avoid negation in the code, which would require an additional step, the impli-
cation has been transformed into a logical or. The following constraints are set to be
true.

∀j ∈ [0,m− 1)

IsCons[2, j] ∨ (IsCons[1, j] ∧ IsCons[3, j] ∧ IsDim[j])

where IsDim[j] = ⊤when the 3rd note of the measure j is a diminution.
(5.2)

3.H3 It is best to avoid the second and third harmonies of a measure to be consonant with a
one-degree melodic interval between them.

Thedefault value of costCambiata is<last resort> because Fux almost seems to forbid
it but without a real musical reason to justify this convention.

6Towards the next note of the cantus firmuswith the first note of the counterpoint of the corresponding
measure.

44

∀j ∈ [0,m− 1)

Cambiatacosts[j] =

{
costCambiata if IsCons[1, j] ∧ IsCons[2, j] ∧M [1, j] ≤ 2

0 otherwise
(5.3)

3.H4 In the penultimate measure, if the cantus firmus is in the upper part, then the harmonic
interval of the first note should be a minor third.

¬IsCfB[m− 2] =⇒ H[0,m− 2] = 3 (5.4)

5.2.2 Melodic Constraints of the Third Species
3.M1 Each note and its two beats further peer are preferred to be different.

This rule is implicit so the default value of costMtwobSame is <low cost>.

∀ρ ∈ positions(m− 2)

MtwoSamecosts[i, j] =

{
costMtwobSame if M2[ρ] = 0

0 otherwise
(5.5)

5.2.3 Motion Constraints of the Third Species
3.P1 The motion is perceived based on the fourth note.

This implies that the costs of the motions and the first species constraints on the
motions are deducted from P [3].

45

Chapter 6

Fourth Species of Counterpoint
The fourth species of counterpoint consists of syncopations1, one note2 shifted half a
measure late against one note. In other words, only pairs of half notes3.

Figure 6.1: Two 4th species ctp. Score available here [51] and listen here [27].

The fourth species is particular because it does not have more notes than the pre-
ceding species, it even has less. Indeed, this species is more like the first one. Here the
syncopations are delays, which is roughly equivalent to using the first species with the
whole note in thesis shifted in arsis which then lasts until the next arsis beat. While
in the first species, all notes were consonant, here the syncopation requires more flex-
ibility because the same whole note (here represented by a pair of half notes) is con-
fronted with two different notes of the cantus firmus. First the second half of the first
and then the first half of the second. If the syncopation is a delay of the note in thesis,
then it is logical that the harmony it creates in arsis must be consonant (see rule 4.H1).
The specificity of the fourth species comes from the fact that dissonances can appear
in thesis.

6.1 Formalization in English
For a better reading experience, the subsection on motion rules has been placed first
as it is fundamental to understanding the other types of rules.

6.1.1 Motion Rules of the Fourth Species
For this species, no rule concerning the motions is given by Fux. Moreover, no invari-
ant, which could have served as a basis for creating an implicit rule, has been found

1Syncopation creates an off-balance rhythm through the accenting of normally unaccented beats.
2Or rather two half notes with the same pitch.
3Except that the penultimate measure never has syncopation and it happens in certain measures that

no syncopation is available.

46

https://www.noteflight.com/scores/view/146b72d15525d0e7f98aff9b63c6a99185e9c911
https://youtu.be/9yB4OGr4Cgk?t=184

in these examples. From another point of view, it could be seen that the motion cre-
ated by a syncopation is nothing else than the obliquemotion because one note stays in
placewhile the other changes. This is of little importance because the rules concerning
motions are somewhat adapted by rule 4.P2.

4.P1 Dissonant harmoniesmust be followed by the next lower consonant harmony. Cheva-
lier [22, p.78-81]

Any dissonant syncopation4 should be resolved by moving downwards. This im-
plies that if the cantus firmus is below, a second will resolve into a unison, narrowing
the harmonic gap. Whereas if the cantus firmus is above, a second will resolve into a
third, widening the harmonic gap. Figure 6.2 shows some examples of this rule.

Figure 6.2: Dissonant syncopations resolved, 4th species.

4.P2 If the cantus firmus is in the lower part then no second harmony can be preceded by
a unison/octave harmony. [22, p.79-80]

The idea behind this rule is that no octave/unison harmony in arsis can be followed by
an octave/unison harmony in the next arsis with a dissonant harmony in between. It is a kind
of adaptation of rule 1.P1 which says that perfect consonances cannot be reached by
direct motion. Indeed, according to rule 4.P1, a second that is dissonant must resolve
into a unison. This would result in a unison sequence (see figure 6.3) if the retardation
is removed, i.e. the second, which would violate rule 1.P1.

Figure 6.3: Seconds preceded by a unison, 4th species.

Now, let’s dive into the in-depth logic of this rule. Although Fux’s explanation is
logical and the rule is applied in his examples, the logic itself is not applied to other
similar problems later on. An example will speak for itself:

In figure 6.4a, a consonant syncopation consisting of an octave and a third5 is then
followed by an octave again. No problem, the rule is respected since no second has
appeared, but why put an octave whereas if the delay is removed, one falls back into
the same issue that originated this rule, (i.e. two consecutive arsis octaves)? Mann [23,
p.95] suggests that "[. . .] in measures containing dissonant syncopations the essential
part is the upbeat, the second, consonant, half." This can be paraphrased to say that the

4A dissonant syncopation is a syncopation that becomes dissonant at the changing note of the cantus
firmus. It differs from a consonant syncopation which is strictly always consonant with the cantus firmus.

5Here the third is actually a tenth.

47

(a) Two consecutive arsis octaves. (b) Two consecutive arsis fifths.

Figure 6.4: Consecutive perfect consonances in arsis, 4th species.

human ear is only interested in the first consonance of a measure. This explains why
the succession of octaves in the previous figure 6.4a is not one. Because the consonant
third cuts off this impression.

What about fifths, which are also perfect consonances? In figure 6.4b, a consonant
fifth (G − D) turns into a dissonant fourth (G − C) which is, as rule 4.P1 requires,
resolved into a fifth again (F − C). There is clearly a succession of fifths. But for a
reason that Fux does not detail but that Mann [23, p.57] points out: "In the case of
fifths, however, the retardation can mitigate the effect of parallel motion. Successions
of fifths may therefore be used with syncopations." Probably because the fifth brings
a little harmony where the octave does not really6. It is therefore only the current rule
4.P2 specific to octaves that is admitted.

All this thinking is explained for a reason: the purpose of the final software is to
assist a composer and that he can choose thanks to an obvious logic that some rules
are obsolete in his own case. It is therefore preferable to have logical rules such as "no
two perfect consonances in a row without another imperfect consonance in between".
This rulewould bemore contextual, more global andwould speakmore to a composer.
Here, the rule is adapted only for octaves so that it keeps the associated logic instead
of explaining it in the form of forbidding a second after a unison.

6.1.2 Harmonic Rules of the Fourth Species
4.H1 Arsis harmonies must be consonant. [22, p.78]
Although explicitly described by Fux, this rule is only an adaptation of fundamen-

tal rule 1.H1 as explained above.

4.H2 If the cantus firmus is in the upper part, then no harmonic seventh interval can occur.
The origin of this rule is the same as rule 4.P2. It is just less specific and therefore

more restrictive because it does not depend on the previous or next harmony. Fux
explains that this rule has no logical reason to exist. Nevertheless, the authoritative
composers respected it, as did Fux as a result. It is optional for the previous reason.

4.H3 For rule 1.H7 to be satisfied in the penultimate measure, if the cantus firmus is in
the lower part, then the harmonic interval of the thesis note must be a seventh.

The penultimate note cannot be a syncopation because the last note necessarily
ends at the same time as the last note of the cantus firmus (see figure 6.5).

As usual in this case, the penultimate note is always amajor sixth. The syncopation
ending on the penultimate measure must be a dissonant seventh 7. Following rule

6The octave is the simplest harmonic of its basic note with a frequency ratio of 2:1. Since it is the same
note in a higher register it is not really about "harmony" as such. [52]

7Because of the structure of the cantus firmus, the seventh is often the tonic. This is a classic melodic
progression at the end of a piece in tonal music that makes I - VII - I in degree (see degree in section 1.1.3).

48

Figure 6.5: Penultimate measure, 4th species.

4.P1, the dissonance is resolved to the nearest consonance below.

4.H4 For rule 1.H8 to be satisfied in the penultimate measure, if the cantus firmus is in
the upper part, then the harmonic interval of the thesis note must be a second.

The logic of the previous rule also applies to this one.

6.1.3 Melodic Rules of the Fourth Species
4.M1 Arsis half notes should be the same as their next halves in thesis.
In other words, syncopations should occur if possible. In theory, they are mandatory

except in the penultimate measure. However, it happens that Fux breaks this rule to
avoid monotony which is reflected by a repetition of a pattern in the musical work.
This means that the cost of not putting a syncopation is lower than the cost of repeat-
ing the same syncopations. The difficulty is to know which cost best represents the
monotony, which is quite subjective. Although all costs in the programhave functional
defaults, it’s up to the composer to test various combinations to make the software
shine. This will be shown in section 8.6.

4.M2 Each arsis note and its two measures further peer are preferred to be different.
This is amore or less implicit consequence of the previous rule and is also an adap-

tation of rule 3.M1. For the same reason as the latter, it is better to avoid alternating
only between two different syncopations. But this remains totally subjective because
one could look for this very repetition in the syncopations. This is why the associated
cost is customizable by the user.

6.2 Formalization into Constraints

Note that the arrays in index [0, 0] are empty because the syncope arrives two beats
late and leaves a silence in first thesis.

6.2.1 Motion Constraints of the Fourth Species
4.P1 Dissonant harmonies must be followed by the next lower consonant harmony.

There is no need to add the constraint IsCons[2, j] = ⊤ because it is already in-
cluded by rule 4.H1 (see equation 6.3).

∀j ∈ [1,m− 1) ¬IsCons[0, j] =⇒ Mbrut[0, j] ∈ {−1,−2} (6.1)

Listing 6.1: Function that constrains a dissonance to be followed by a consonance.
1 ; @m-succ-intervals-brut: list of IntVar, s.f. brut melodic intervals
2 ; @is-cons-arr: list of BoolVar, s.f. 1 -> the note is consonant
3 (defun add-h-dis-imp-cons-below-cst (m-succ-intervals-brut is-cons-arr)

49

4 (loop for m in m-succ-intervals-brut for b in is-cons-arr do
5 (let (
6 (b-not (gil::add-bool-var *sp* 0 1)) ; s.f. !b (dissonance)
7)
8 (gil::g-op *sp* b gil::BOT_EQV FALSE b-not) ; b-not = !b (dissonance)
9 (gil::g-rel-reify *sp* m gil::IRT_LE 0 b-not gil::RM_IMP) ; b-not => m<0

10 (gil::g-rel-reify *sp* m gil::IRT_GQ -2 b-not gil::RM_IMP) ; b-not => m>=-2
11)))

4.P2 If the cantus firmus is in the lower part then no second harmony can be preceded by a
unison/octave harmony.

∀j ∈ [1,m− 1)

IsCfB[j + 1] =⇒ H[2, j] ̸= 0 ∧H[0, j + 1] /∈ {1, 2}
(6.2)

6.2.2 Harmonic Constraints of the Fourth Species
4.H1 Arsis harmonies must be consonant.

∀j ∈ [0,m− 1) H[2, j] ∈ Cons (6.3)

4.H2 If the cantus firmus is in the upper part, then no harmonic seventh interval can occur.

∀j ∈ [1,m− 1) ¬IsCfB[j] =⇒ H[0, j] /∈ {10, 11} (6.4)

4.H3, 4.H4 In the penultimate measure, the harmonic interval of the thesis note must be a
major sixth or a minor third depending on the cantus firmus pitch.

H[0,m− 2] =

{
9 if IsCfB[m− 2]

3 otherwise
(6.5)

6.2.3 Melodic Constraints of the Fourth Species
4.M1 Arsis half notes should be the same as their next halves in thesis.

The cost of not having syncope is by default <last resort>. It is because of costs
like this that it is not really possible to compare the quality of two works of the same
length just with the raw cost. Indeed, some cantus firmus may not have possibilities
with syncopations only, which will artificially increase the total cost. It is therefore
important to keep in mind that the costs are only relative to the cantus firmus used.

∀j ∈ [0,m− 1) NoSynccosts =

{
costNoSync ifM [2, j] ̸= 0

0 otherwise
(6.6)

4.M2 Each arsis note and its two measures further peer are preferred to be different.
The default cost is <high cost> because monotony is very much avoided by Fux. It

is unclear whether this cost should be higher than the cost of not having syncope.

∀j ∈ [0,m− 1)

MtwomSamecosts =

{
costMtwomSame if Cp[2, j] = Cp[2, j + 2]

0 otherwise
(6.7)

50

Chapter 7

Fifth Species of Counterpoint
The fifth species of counterpoint, also called florid counterpoint, consists of a combina-
tion of the four preceding species but mainly of the third and fourth. Indeed, a florid
counterpoint in Fux’s work looks like an alternation between quarter notes and syn-
copations, with a few shorter syncopations and eighth notes (binding quarter notes).
It is more uncommon to find half notes and it is difficult to determine whether they
come from the second or the fourth species.

Figure 7.1: Two florid ctp. Score available here [28] and listen here [27].

The florid counterpoint is much free than its predecessors because the number of
possibilities increases drastically with the possibility of adapting the species and thus
the rhythm and the rules to obtain certain notes more easily than with the previous
species. Here, more flexibility means easier to find a solution but more possibilities to
explore for the solver. It is partly for these reasons that this chapter will be completely
different from the previous ones. Where the others were formalizations of rules, this
one is concernedwith another problem: the relations between the different constraints
of the previous species and the notion of rhythm that comes from them.

This chapter is mainly intended for computer scientists and mathematicians. This
implies that the reader is aware of the different notions established in chapter 2 and
that he understands the role of the variables previously introduced. Where the pre-
vious chapters were divided into two parts (natural language and constraints in the
form of mathematics), the present chapter develops logic as a whole.

7.1 Problem Differences from Previous Species
Several points differentiate this species from others and influence the approach to be
adopted:

• Fux does not describe new rules specific to this species, there are only new con-
straints linking the third and fourth species together. This is undoubtedly the lesson
with the least information about its functioning.

51

https://www.noteflight.com/scores/view/f75c61263ee5a50fa0d6941b8803a2b79aaed759
https://youtu.be/9yB4OGr4Cgk?t=231

• Fux shows variants at syncopations such that the second half note is replaced by
a quarter note; and variations on quarter notes by replacing themwith eighth notes to
fill in third skips or add mordent1.

• So far, the solver has no notion of rhythm, its only goal was to find a list of note
pitches. Now it must also be able to calculate which species are used where so that a
rhythm can be deduced.

• Since notes must be constrained differently depending on the species they are
part of, all species constraints cannot simply be applied to all notes. Furthermore,
it is impossible with Gecode to dynamically remove constraints after they have been
applied2. Therefore, another way must be found to have the constraints applied fully
dynamically.

7.2 Representation of Species as Constraints
As explained before, the only values that had to be calculated and explicitly provided
by the solver were the list of MIDI notes that form the generated counterpoint. Since
each species only has notes of equal duration (apart from the last note which is neces-
sarily a whole note), there is no constraint determining whether a note must exist or
not at a certain position. Moreover, in the lesson of the fifth species Fux gives only too
little information on any rhythm to follow to extract hard constraints.

7.2.1 Naive Solution
Anaive solutionwould be to individually generate solutions from the previous species
and somehow merge them. The problem with this approach is that the flexibility
offered by the fifth specieswould be lost. Indeed, certain notes of a certain speciesmay
be only accessible from the use of a note of another species. Therefore there would be
no interaction between the species and the main asset of the solver would be lost, i.e.
being able to find a better solution according to preferences and associated costs.

7.2.2 Species Array System
The only approach that seems correct is to create an array of integer variables the same
size as the counterpoint array Cp. Each variable would then represent which species
the note belongs to at the same location in Cp. In this case, all the variables will be
used, i.e. as many as the number of notes in a counterpoint of the third species con-
taining only quarter notes. If this array determines to which species the correspond-
ing note belongs, it also determines if a note does not belong to any species. That is,
whether a note at a certain beat of a certain measure exists or not. This is how the
notion of rhythm appears. Caution, declaring that a note does not exist implies that it
is not in the final result of the counterpoint that the user sees in the interface. But in
reality, the note does indeed exist in the space of constraints for the solver. There is an
important distinction between the notes displayed to the user and the notes calculated
by the solver. All this will be explained in more detail later.

1A mordent is a type of ornament referring to a quick alternation between a note and its upper or
lower neighbor.[32]

2It is possible to add constraints dynamically after the CSP has been created, but nothing has been
found to perform the operation the other way around, which seems much more complex.

52

A mathematical formalization is necessary. Let S be an array of same size and
structure as Cp3 representing to which species belongs the note at the same index in
the array Cp.

∀ρ ∈ positions(m)

S[ρ] =

0 if Cp[ρ] is not constrained by any species
1 if Cp[ρ] is constrained by the first species
2 if Cp[ρ] is constrained by the second species
3 if Cp[ρ] is constrained by the third species
4 if Cp[ρ] is constrained by the fourth species

(7.1)

Without going into details for the moment, the solver never generates solutions
with S[ρ] ∈ {1, 2} which gives in the current state a domain equal to {0, 3, 4}.

Figure 7.2: Representation of the species array S along a ctp., 5th species.

By analyzing figure 7.2, one may notice that some patterns are emerging: all syn-
copations are distinguished by 4 − 0 − 4 while quarter notes are never followed by
0. These patterns are rhythm constraints imposed in the solver but for now let’s leave
that and assume that S has coherent values, i.e. syncopations and quarter notes where
it is possible to have them.

Now let IsSx be another array of same size and structure asCp representingwhether
a note belongs to species x where x is the number assigned to the species in S just
above.

∀x ∈ {0, 1, 2, 3, 4}, ∀ρ ∈ positions(m)

IsSx[ρ] =

{
⊤ if S[ρ] = x

⊥ otherwise
(7.2)

For example, IsS0[i, j] = ⊤ means that the note at the beat i from the measure j
is not contrained by any species. This does not mean that no constraint is placed on
this note, only that the constraints of the species placed on this note are in this case
necessarily respected. When an∨⊤ is added to a constraint, it renders the original con-
straint useless because the whole thing then becomes a tautology which is equivalent
to remove the original constraint.

7.3 Formalization of the Species Rhythm into Constraints
In order for the array S and IsS to have relevant values, i.e. values which respect a
formatmaking it possible to produce a coherent rhythm, theremust be constraints im-
posing that certain species may or may not exist at certain positions. These constraints
come from common sense and have been created from the examples of the Gradus ad
Parnassum. The context is no longer Fux’s music theory but computer logic. The first

3Size of sm, composed of four lists each representing a beat over the entirety of the measures, as
always.

53

four rules are mandatory for the proper functioning of the system while additional
rules have been added to limit the possibilities of rhythm.

5.R1 There must always be a note in thesis and in arsis, except the very first thesis and the
very last arsis.

No species would allow not to have a note in thesis and only the first species does
not have a note in arsis, a species which is not used in florid counterpoint (the last
whole note of the counterpoint is the same in all species and is therefore not considered
a particularity of any species).

∀j ∈ [0,m)

¬IsS0[0, j] where j ̸= 0

¬IsS0[2, j] where j ̸= m− 1

(7.3)

5.R2 The 4th species can only exist in first and third beat.
Indeed, the notes beginning or ending a syncopation in this species are always

located in these beats.

∀i ∈ {1, 3}, ∀j ∈ [0,m) ¬IsS4[i, j] (7.4)

5.R3 A 4th species in the third beat necessarily implies a 4th species in the first beat of the
following measure and vice versa. The fourth beat should then have no note.

This simply describes the usual syncopation which consists of the mandatory 4−
0− 4 sequence (see figure 7.3).

Figure 7.3: Syncopation implication in the
S array, 5th species.

∀j ∈ [0,m− 1)

IsS4[2, j] ⇐⇒ IsS4[0, j + 1]

IsS4[2, j] =⇒ IsS0[3, j]

(7.5)

5.R4 A 3rd species cannot be followed by no note.
If a quarter note is followed by no note then there would be at least one beat of

silence, which is not intraseccally bad in music but is undesirable in counterpoint.

∀ρ ∈ positions(m− 1) IsS3[ρ] =⇒ ¬IsS0[ρ+ 1] (7.6)

5.R5 Only 3rd species and 4th species are used.
It has already been mentioned but as it stands, florid counterpoint is only com-

posed of the third and fourth species in the solver. The formulation that Fux say that
the fifth species is a mixture of the previous ones is confusing. Although species are
based on common rules, Fux’s examples clearly show a mixture of quarter notes and
syncopations. Moreover, the half notes in a florid counterpoint can be generated by
the second species as well as by the fourth (if the cost of not having syncopations is
low).

In S the species are in the original domain in case future developments lead to
adding the first and second species.

∀ρ ∈ positions(m) ¬IsS1[ρ] ∧ ¬IsS2[ρ] (7.7)

54

5.R6 The first and penultimate measures are linked to the 4th species.
Fux begins all of these counterpoints with an oblique motion created by syncopa-

tion and always ends them with a syncopation resolution before the last note. This
can result in a first measure and a penultimate measure comprising the sequences
0 − 0 − 4 − 0 and 4 − 0 − 4 − 0 respectively (see figure 42). Rule 5.R3 placed above
ensures that the syncopations are completed correctly.

IsS0[0, 0] ∧ IsS0[1, 0] ∧ IsS4[2, 0]

IsS4[0,m− 2] ∧ IsS0[1,m− 2] ∧ IsS4[2,m− 2]
(7.8)

Figure 7.4: First and penultimate measures in the S array, 5th species.

It is worth noting that the only silence occurs at the beginning of the counterpoint
and is defined by the sequence 0 − 0. This is the only time this sequence occurs. An-
other point, with the addition of this constraint, the last note of the counterpoint is
necessarily linked to the fourth species, which has no particular impact because this
note has the same role in all species, i.e. to be in perfect consonance with the cantus
firmus.

7.4 Logic Implication of the Species Constraints
Now that the solver knows when a note must be constrained by the rules of a species,
it is necessary to represent this concept in the form of constraints.

7.4.1 Generalization of the Species Implications
For this, it is necessary that the previously established rules have the possibility of
being activated only if the variables concerned by a rule are variables linked to the
species to which the present rule belongs. In other words, a constraint of xth species
on a set of variables V must be true only and only if the variables V are bound to notes
belonging to this xth species. Unfortunately, this concept cannot be generalized to all
the rules because some still apply when only part of the notes concerned is linked to
the corresponding species. But an attempt at generalizing this idea can be written as
such:

∀x ∈ {3, 4}, ∀cstx ∈ Constraints(x), ∀V ∈ V ariables(cstx)(∧
∀v∈V

IsSx[vpos]

)
=⇒ cstx(V)

where Constraints(x) is the set of constraints of the species x,
and V ariables(cstx) is the set of set of variables concerned by the constraint cstx,

and vpos is the position of the v related note in the array Cp.
(7.9)

55

It will be seen in equation 7.13 in the next section that all the variables concerned
by a constraint do not necessarily have to belong to the species in question. From the
point of view of programming, each rule had to be re-examined according to its basic
operation. This part of the work revealed some architectural concerns that the soft-
ware was not well enough adapted to handle this new logic, but this will be discussed
in section 9.

Let’s continue, in the current state of the program, florid counterpoint is consid-
ered to use either the third species or the fourth species. This means that a note has
only three possible states: 0, 3 or 4. For example, rule 1.H1 states by extension that
notes in thesis for the third species must be consonant but rule 4.H1 states that they
are the notes in arsis for the fourth species which must be consonant. The two rules,
hitherto distinct in two different species, result now in the fifth species in parallel.

Following the generalization:

∀V ∈ V ariables(1.H13)

(∧
∀v∈V

IsS3[vpos]

)
=⇒ 1.H13(V)

∀V ∈ V ariables(4.H14)

(∧
∀v∈V

IsS4[vpos]

)
=⇒ 4.H14(V)

(7.10)

And concretely:

∀j ∈ [0,m) IsS3[0, j] =⇒ (H[0, j] ∈ Cons)

∀j ∈ [0,m− 1) IsS4[2, j] =⇒ (H[2, j] ∈ Cons)
(7.11)

It may seem simple but applying this logic to all the constraints of species 3 and
4 is not an easy task with the use of GiL which does not simply allow the addition
of an implication on top of a constraint already written. The example above is one of
the only cases where this is possible in this way but it must be understood that with
GiL, which is only a precarious interface of Gecode, any intermediate step requires a
new basic equation with only one operator. Mathematically, the equations would all
follow the same notation which would basically just be a copy paste from the previous
chapters. The rest of this chapter will therefore focus on the sometimes very specific
relationships between species for certain rules that lead to slightly more complex con-
straints.

7.4.2 Avoiding Multiple Same Final Solutions
Onemight ask the question: what about noteswhereS = 0? These noteswill not show
up in the end user interface but the solver still calculates values for these notes. Does
this mean that for a single solution on the user side there are a multitude of solutions
on the solver side?

No, this is not the case because there is a constraint on the non-displayed notes,
aka the non-constrained notes: they must be of the same value as the note of the next
beat. In fact, it’s the same as putting a fixed note on all the notes that don’t appear, but
for a branching issue, it’s a little more efficient to work like that. The formulation is
written as such:

∀ρ ∈ positions(m− 1) IsS0[ρ] =⇒ (Cp[ρ] = Cp[ρ+ 1]) (7.12)

56

7.5 Formalization of Inter-species Rules into Constraints
Fux, before beginning the lesson of the fifth species, describes variations in syncopa-
tions and the introduction of eighth notes, without going into toomuch detail. Cheva-
lier [22, p.85]

Figure 7.5: Variation of a syncopation with quarter and eighth notes, 5th species.

This kind of variation is used a lot to get more interesting rhythms and melodies.
This can be considered as an inter-species rule and requires more attention than the
simple example given above (equation 7.11). Figure 7.5 shows two things:

1. In relation to rule 4.P14, the addition of quarter notes between the thesis and
the arsis does not change the requirement to have an arsis consonance.

2. If the second eighth note is omitted, the melody does not move, which then
implies that eighth notes can be used as mordents when the melodic interval between
two beats is zero.

How to formalize these concepts with the new species array system? For the ob-
servation 1, it must be understood what is the role of the first quarter note in thesis.
Since this is a quarter, shouldn’t it be constrained by the third species? No, because
this quarter note is part of the syncopation and is actually a 1/3 of the latter5 played in
arsis in the previous measure. This quarter note has no difference with the half note
found in the original version of the syncope apart from its duration. So this note must
be constrained by the fourth species. In fact, whether the duration of the note in the-
sis is one beat (quarter note) or two beats (half note) is only determined by whether
or not a quarter note takes place in the second beat of the measure. To summarize
the constraint that must be imposed: an arsis note, regardless of its species, must be the
consonance just below the thesis note if the latter belongs to the fourth species. This can be
mathematically described by:

∀j ∈ [1,m− 1)

¬IsCons[0, j] ∧ IsS4[0, j] =⇒ M2
brut[0, j] ∈ {−1,−2} ∧ IsCons[2, j]

(7.13)

There is indeed a constraint which is applied to the notes in [2, j]whereas the latter
do not necessarily belong to the fourth species according to the S array.

For the observation 2, Fux adds that:

"Furthermore, two eighthsmay occasionally be used in the next species;
that is, on the second and fourth beats of the measure but never on the first
and third." Mann [23, p.63]

4A dissonant harmony in thesis must resolve in arsis with the next lower consonant harmony.
5If a whole note is 1 unit long, then a half note lasts 1/2 unit and a quarter note lasts 1/4 unit. That

type of syncopation then lasts 3/4 unit which is equivalent to three quarter notes.

57

Figure 7.6: Addition of eighth notes in second and fourth beat, 5th species.

One might be disappointed to learn that these rules are not added as constraints
in the CSP but several points led to this.

First, even though the solver does not know anything about the second eighth note
(the first one being considered as the original quarter), the algorithm that generates
the rhythm (see next section) after the solver has run still creates eighth notes. The
end user therefore obtains counterpoints with eighth notes.

Second, the second eighth note of the eighths-pair is not bound by any rule. This
means that no new solution with eighth notes can be found by the solver except the
original solution with a quarter note instead. The eighth note only completes an al-
ready existing leap of third or adds a mordent.

Third, the architecture of the program was not designed to handle a whole new
note subdivision, especially compared to the almost non-existent interest.

However, the only constraint which changes, or rather which withdraws with this
system of eighths is that the melodic interval is not obliged to be zero between the sec-
ond and third beat and between the fourth and first beat of the next measure. There-
fore, rule 2.M2which stated that two consecutive notes cannot be the same no longer
applies at these positions.

7.6 Parsing of the Species Array in Rhythm
Rhythm species parsing occurs after the solver finds a solution. The parser therefore
does not dealwithGecode variables butwith values. Figure 7.8 is a simplified diagram
of the parser. It represents a recursive function that takes as input the entire ordered
lists Cp and S. This function outputs the final solution which will be shown to the
user. The parser checks what is the next sequence of species and notes to find the
corresponding note and associated duration. On the diagram, the notes are kept in
the list N and the durations of the notes are kept in the list R. Once a sequence is found,
it is removed from the lists Cp and S to be able to repeat the function again, this until
the Cp and S lists are empty. This looks like a classic recursion pattern where the
operation is performed on the head of the list and only the tail is kept for the next
step. Here it is not necessarily a single element that is processed at a time but one to
four elements.

58

The duration of notes in OpenMusic is represented as a fraction such that one unit
represents an entire measure. Therefore, 1 represents the duration of one whole note;
1/2 that of a half note; 1/4 that of a quarter note; etc. If the value is negative, then a
silence is played instead of a note. Also, in the diagram, the notation L=[x:] means
that the list L is stripped of its first x elements. This means that the previously checked
sequence occupied the space of x beats in total. Finally, for the parser towork correctly,
the last value of S is replaced by 1 to signify that it is a whole note.

For example, if the values of the lists Cp and S are the following:

Cp 72 72 72 72 72 71 71 69 67 69 69 69 69 68 68 69 69
S 0 0 4 0 4 3 3 3 3 3 4 0 4 0 4 0 1

Table 7.1: Example of Cp and S, 5th species. Only the values in bold will be kept in
the final solution.

Then the parsed output will be the following:

N 72 71 69 71 69 67 69 71 69 68 69
R -1/2 3/4 1/8 1/8 1/4 1/4 1/4 1/8 1/8 1 1/2 1

Table 7.2: Parsed output of table 7.1, 5th species.

Note that the sum of the absolute values of Rwill always be equal tom, the number
of measures. On the user side, this would appear:

Figure 7.7: Final outcome from table 7.2, 5th species.

59

Figure 7.8: Rhythm species parser algorithm diagram, 5th species. A red arrowmeans
the test failed while a blue one means it passed.

60

Chapter 8

Evaluation and Comparison
This chapter can be seen as the culmination of this dissertation. All the constraints
have been described but what about the results? Do the counterpoints found by the
solver equal those of Johann Joseph Fux? This is what this chapter will try to answer
by comparing the species one by one.

The evaluations of the first four species will be simple analyzes of the differences
and common points between the first counterpoint produced by the solver with the
default values and the Fux counterpoint presented at the beginning of each species
chapter. The analysis of the fifth species will bemore advanced by tweaking the solver
parameters to obtain more interesting counterpoints. A YouTube video is available
here[27] to listen to the counterpoints presented in this chapter. The video follows
the order of the following sections and includes a description with the time codes of
each counterpoint.

Determining what a good counterpoint is is subjective and cultural. The following
criticisms are therefore also subjective and cultural. Itwill be tried tomake sociological
objectivity and axiological neutrality1. It is thus good to note that these last are given
by a man of Belgian culture appreciating Western music. Most people would say that
Fux’s counterpoints "look very baroque". It is therefore hoped that the counterpoints
of the solver, presented below, will also be baroque. Moreover, the first four species
are complicated to judge because with the absence of rhythm, an interesting melody
will remain monotonous.

Let’s not forget that the main goal is to observe if constraint programming can be
useful in the field of music. Finally, these tests are performed with a version of the
solver still under development (dated May 17, 2023). Some default values may have
changed in the meantime during updates.

8.1 Evaluation of the First Species

The two counterpoints (see figure 8.12) are globally very similar. A few differences are
notable: the solver uses a fifth in 1st measure and does not use a sixth leap from the 5th
to the 6th measure. This makes sense because the sixth leap has a cost of 2. Moreover
this leap is surprising on the part of Fux because it is not melodically very interesting.
Between the 9th and 10th measures, a fifth and an oblique motion are used. They both
have a cost of 1. It would be the same to not have a fifth, but a sixth and therefore
have a direct motion between the 9th and 10th measure. It would make the end of the
song more moving and interesting. Another point is that Fux uses five direct motions
(motions supposed to be avoided) while the solver only uses one. This first example
shows what the solver is capable of. It respects the rules well and never surprises
because it is not aware of it. This point will be discussed further later.

1Axiological neutrality is a methodological posture proposed by the sociologist Max Weber. This
consists of the researcher becoming aware of his own values during his scientific work, in order to reduce
as much as possible the biases that his own value judgments could cause. [53]

2The solver solutions come from OpenMusic and have been stretched to better see the score lines.

61

https://youtu.be/9yB4OGr4Cgk

Figure 8.1: 1st species ctp. of Fux (above) vs. ctp. of the solver [0.132 s] (below).

8.2 Evaluation of the Second Species

Figure 8.2: 2nd species ctp. of Fux (above) vs. ctp. of the solver [26.849 s] (below).

For the general feeling, the counterpoint of the solver is relatively of the same qual-
ity as that of Fux. Besides that, the solver’s solution has a four-notemotif from the arsis
in the 8th measure to the thesis in the 10th measure (E → F → G → A). This motif is
repeated immediately raising the F and the G by a semitone. It sounds both strange
and interesting but one can doubt that Fux would appreciate this melody.

A surprising point is the use that Fux makes of the big leaps between the notes
in thesis and those in arsis. For example, he makes a fourth leap in the 3rd measure.
According to rule 2.P13, the resulting motion is perceived from the note in arsis, i.e.
the motion from the 3rd to the 4th measure is considered direct (cost of 2) instead of
contrary (no cost). This is typically the kind of behavior that does not occur with the
solver.

Finally, one can notice that the search time for the answer is much higher than
the previous one. This is a problem that particularly affects the second species and
sometimes the fifth. This seems to come from rule 2.P1 discussed just before. Indeed,
the best solutions of the solver (in terms of costs) often use large leaps to have more

3Reminder: If the melodic interval of the counterpoint between the thesis and the arsis is larger than
a third, then the motion is perceived based on the arsis note.

62

contrarymotions. It goes against stepwisemelodies and therefore takesmore time. As
proof, if the cost of the motions is not taken into account, the solution is found in 0.2
seconds. Alternatively, a trade-off can be made by first adding branching from small
values to the motions costs. Therefore, small costs for motions are calculated before
other costs. The first solution found then deviates from the lowest possible cost but is
found in 8 seconds. This is a fairly common optimization problem when the overall
cost minimization is composed of inversely proportional costs.

8.3 Evaluation of the Third Species

Figure 8.3: 3rd species ctp. of Fux (above) vs. ctp.
of the solver [1.789 s] (below).

The solver’s counterpoint is
musically quite poor. Generally
speaking, it is monotonous and
rambling. Compared to that of
Fux, it does not sound really
baroque. The big negative point
that emerges is the permanent
use of stepwise melodic inter-
vals. It is true that Fux is quite
mysterious about the rules that
make up a good melody and
that he uses a lot of one-step
intervals. However, "a lot" does
not mean "all". This is a very
important notion that will be
developed later: adding to the
solver this notion of compro-
mise, of surprise, of "a little
bit of that, a little bit of this",
etc. Typically, a way to force
a minimum of melodic skips
has been added to the solver to
counter this problem. Another
way to solve that is to put no
cost to the melodic intervals of
third for example.

Also, the solver’s counterpoint contains a redundant melody (A → G → A →
B) which isn’t bad in itself but seems to be randomly repeated and unsatisfactory.
Obviously, the solver has no notion concerning the repetition of a pattern. This is also
a major point to improve so that the solver can generate more human melodies. This
solver really lacks an adjustable notion of monotony.

A more detailed evaluation of the third species can be read in the article of Sproc-
keels et al. [54]. It contributed to the improvement of this tool on the melodic level.

8.4 Evaluation of the Fourth Species
This example strongly highlights a defect of the solver: a poor melody. Indeed, the
counterpoint is supposed to be composed of several melodies which, independently,
sound melodious and which, together, sound harmonious. This horizontal vision of
music is transcribed only through the fact that the counterpoint is generated from a

63

Figure 8.4: 4th species ctp. of Fux (above) vs. ctp. of the solver [0.012 s] (below).

counterpoint. But with Fux, no rule defines what the counterpoint should be as a con-
sistent whole. In fact, his rules could be considered the "micro rules" of counterpoint.
It would therefore be necessary for the solver to have "macro rules" defining the very
structure of the counterpoint in its entirety.

In the 5th and 6th measure of Fux’s counterpoint, the crossing between the two
voices creates, for the time of three half notes (F → A → C), a rising melody by skips
of third. This intertwining brings out an F major chord giving that nostalgic feeling to
the song. On the side of the solver, this opportunity is missed. But actually, the notes
are "identical"4 from the second half of the 4th measure. The only two real differences
between those counterpoints are that the solver starts on a fifth and that it prefers an
octave leap to the interruption of syncopations. This last point also shows that Fux
exaggerates when he explains that syncope should be used "wherever possible"[23,
p.89].

Although the generated counterpoint is average, it can allow amore or less experi-
enced composer to find a good counterpoint by shifting a few notes by one octave. It’s
not perfect, but for a musician who likes to experiment, the solver gives him a good
basis instantly that he can then exploit.

8.5 Evaluation of the Fifth Species
For this species, the analysis will be more advanced. First, the counterpoints will only
be compared and secondly, a more compositional approach will be put forward. In
section 8.5.1, the solver counterpoints are the first results obtained with the default
values. In section 8.5.2, the solver will be used more intelligently to obtain a more
interesting solution.

8.5.1 Comparison
Whether it is the lower or upper counterpoint, those of Fux are clearly more baroque
and are more melodious in general. Solvers’ counterpoints aren’t bad, but they’re far
from interesting. In figure 8.5, what Fux does in the 4th and 5th measure is the strong
point of the work. The 4th measure has a D three times, which provides a pleasant
rest before the repeat. He can afford this repetition because the D is the tonic of the

4In terms of the diatonic scale.

64

Figure 8.5: 5th species ctp. of Fux (above) vs. ctp. of the solver [0.174 s] (below).

piece. The solver does not have this notion of rest and tension related to the underlying
chord.

Also, the B♭ in the 5th measure adds a more nostalgic touch by suggesting a G
minor chord. This B♭ is not repeated in the next measure, which is rather original.
Again, it’s these kinds of little details that make Fux’s counterpoints sound better than
solver ones. The problem is the same as with the third species, i.e. the melodies are
too "stepwise". For information, the counterpoints in the lower part have been added
in the appendix in figure B.1 and the criticisms are generally the same.

One topic that hasn’t been covered so far is cost comparisons. Indeed, if we force
the solver with the same notes as the Fux counterpoint, it is possible to know what
its total cost is. This can give a good idea of how well Fux applies its own rules and
whether the costs assigned by the solver are consistent in determining what is or is
not a good counterpoint.

In this case, the solver’s solution costs 14 while that of Fux costs 29. It makes sense
that the solver finds solutions with a lower cost since that is the goal of its heuristic,
unlike Fux. The cost discrepancy comes mainly from the common use of skips and
leaps by Fux. This already costs 9 where the solver has none. This represents almost
a third of the total cost. In fact, this way of optimizing costs is not entirely consistent
with Fux’s music. On the other hand, the melody should still be mainly stepwise.
Maybe there is an alternative?

8.5.2 Refinement
A point which was not specified in the previous section but which is important is the
branching of the species array S. Indeed, the rhythm of the species is the same for
figure 8.5(below) and figure B.1(below). It’s not really a problem but the solver first
randomly5 determines which species are going to be used before it starts determining
the associated notes. Indeed, it is much harder for the solver to first find an inexpen-
sive solution and then determine if a rhythm can be associated with it. However, it is
expensive but not impossible. This further minimizes the cost.

Another point discussed above was the possibility of having more diversified so-
lutions at the level of melodic intervals. Three options have therefore been added to
the user interface.

• Irreverence artificially increases the minimum cost of the solution. This has two
5The randomization is controlled and is done from a seed. Currently, the same seed is always used

and there is no way to change it from the UI.

65

purposes: to prevent over-respecting solutions and/or to reduce the search time
because the solver starts cost minimization with a higher lower bound.

• Minimum percentage of skips forces the solver to use larger melodic intervals.

• Force joint contrary melody after skip activates a rule6 obliging a step melodic in-
terval in the opposite direction after a skip.

By using these options (see figure 8.6)
and lowering the costs associatedwith the
melodic intervals of thirds, fourths, and
fifths by one notch, a more interesting so-
lution can be generated.

Figure 8.6: Irreverence and Minimum per-
centage of skips used for solution 8.7.

Figure 8.7: 5th species refined counterpoint of the solver [2 min 58 s].

This solution took nearly 3 minutes to be found, which is not huge but not negli-
gible for a composer. Note that the notes boxed in red were changed to B♭7 to try the
solver in a more realistic context8. With a few manipulations and tweaking, a good
counterpoint is obtained in a few clicks and minutes. The solver shows that using it
as a support tool can be very inspiring.

8.6 Experimentation with the Fifth Species
On our side, as a "cantus firmus", a more contemporary bass of 17 measures includ-
ing chromatisms was tested. This example is presented at the end of the YouTube
video[27] (at 6:02) and shows the ability of the solver to adapt to "cantus firmus" which
are not at all classic. To be precise, the solver worked separately twice on this bassline
with different preferences. In total, it generates a piece of 33 measures, in just over 3
minutes. The scores are available in the appendix in figure B.2.

We found that the result was stunning. This is clearly a sufficient starting point for
at least one accompaniment in a piece of music. Indeed, it shows that even though the
solver had been designed around music theory dating back to the Baroque era, it was
still able to generate good melodies outside of its primary use.

Obviously, the music has several instruments giving more texture to the piece but
all the instrumentation was chosen based on the melody generated by the solver. In
the end, this is very good news because this solver is only a first step towards more
complex and expert solvers. This demonstrates that it is quite possible in the future to
use this kind of solver for more recent and freer music.

6Coming from a work of Gallon and Bitsch [42].
7These notes have only been transposed by one or two semitones to stay close to the original solution.
8Where a composer allows himself to change the few notes that bother him.

66

https://youtu.be/9yB4OGr4Cgk?t=362

Chapter 9

Future Improvements
Given the vast field of computer-aided composition, several points could not be cov-
ered in this paper. This thesis is part of a large-scale project and several developers
will continue this work which is gradually taking shape. This chapter will therefore
cover the few points that need to be improved, as well as a few suggestions to ensure
that the project progresses as smoothly as possible.

9.1 Software Architecture
A brief explanation of the project’s architecture is available in appendix D to better
understand how the software works overall. The Lisp code in this thesis does not
have a good architecture for scalability. Indeed, the lack of Lisp skills and an iterative
approach with short deadlines has led to an architecture containing "code smells"1.
For example, object-oriented programming is a good paradigm for developing this
project, but its use was not really emphasized.

Currently, constraints are added to a species via a long function that dispatches
the constraints, rather than via class inheritance. Ideally, object-oriented inheritance
should be used to represent the different variable arrays and species. All variable
arrays (H ,M , P , etc.) have something in common, whether in terms of their size rel-
ative to the cantus firmus, or in terms of the way certain rules are applied. A relatively
abstract class should represent this type of array to enable these commonalities to be
brought together.

The same applies to species that share common rules and should have been repre-
sented in a class system of their own. It would be logical for species to be children of
the first species. Unfortunately, the scope of this work does not allow for a complete
overhaul of the architecture. Moreover, in the near future, the entire code may have
to be redone in C++ for reasons of performance, features, maintainability, and so on.
Also, GiL has reached its limits, both in terms of ease of programming and in terms of
possibilities. The Lisp language is not designed for writing mathematics, since each
operation requires a different function call. Code readability can become complicated
because these calls are all represented by parentheses. At the same time, it is not pos-
sible with GiL to combine basicmathematical operations to form a larger one. One has
to break down each complex operation into simple intermediate basic operations a bit
like writing assembly, which is undesirable for larger projects. Not to mention that
branch-and-bound, heuristics, and multithreading seem complicated to implement in
GiL.

Gecode is already a parser implemented in C++, so we strongly advise against
using and maintaining GiL in future projects. Constraints should all be written in
C++ using the features and facilities that have been implemented in Gecode.

1A code smell is a characteristic of a bad code that indicates a certain type of problem[55]. In this
case, the code contains some bloaters and change preventers[56].

67

9.2 Solver Performances
So far, few optimizations have been implemented to reduce the search time of the
solver. Performancewas not a particularly important point until the fifth specieswhich
requiresmore resources. Most of the time, the solutions are found quickly but in some
cases, the solutions can take several minutes, or even never be found in a reasonable
time. Indeed, some extreme cases lead to inefficient branching which only finds solu-
tions in infinite time. This is due to several points.

First, the branching is not very dynamic and therefore does not adapt much to the
parameters chosen by the user. It is just different with respect to the species. Also,
a minimal cost to the solution is provided to prevent the solver from looking for so-
lutions with too low costs that cannot exist. But this remains rudimentary and is not
sufficient to find solutions with certain parameters.

Second, for minimization problems, Gecode uses a specific class where the space
cost is kept in a variable to be able to minimize it efficiently. Gecode has optimized its
algorithm for this kind of problem and does not use simple naive branching. GiL, a
priori, does not allow the use of this feature, which undoubtedly considerably slows
down the search for a solution. Also, the solver’s solutions don’t have to be the best
but just "good enough".

Third, the current branching is very naive. For example, for the third and fifth
species, a branching is done on the cost of the melodic intervals to start finding so-
lutions with no cost on this level. By default, this means that the solver searches for
stepwise solutions which, indeed, makes finding solutions much easier. But in fact, it
would be better to have a function for this part of the heuristic to first find solutions
with mainly joint intervals but also some disjoint intervals. This third point is related
to both the performance and the quality of the solutions.

9.3 Solution Quality
During the evaluation, it was shown that several notions on the global architecture
of the melody were missing from the formalization. Whether through constraints,
heuristic functions, or branch-and-bound, these notions must be represented to find
more human solutions. The human ear likes to be able to predict notes but also needs
to be surprised from time to time so as not to get bored. This is exactly the problem
the solver is struggling to handle. Everything is a question of balance which should
be represented by the direction the solver takes when looking for solutions.

As explained above, this can be introduced by a more complex heuristic, capable
of looking for solutions including certain skips at places that seem coherent. It can
also be introduced by a heuristic including certain patterns in the solution to try to
either repeat them or avoid them. It is also possible to find other formalizations of
counterpoint giving "macro rules" capable of governing the progression of counter-
point as a whole. Some of these rules can be detected via more general works or via
counterpoint statistical analyzes using certain algorithms or certain machine learning
models. Several possibilities are offered to the next developers of this project.

Lately, an interesting feature would be that composers can impose a rhythm and
certain notes so that the user experience ismore complete. Thiswouldmake it possible
to create variations to the melodies and to use the tool as a real component in the
creation of a complete work where counterpoint would only be part of it.

68

Conclusion
In conclusion, this thesis has made significant progress towards the development of
a constraint programming based tool for creating music. However, it is important to
note that the work presented here is still a work in progress, with several areas that
require further exploration and refinement.

One of the key findings of this research is the recognition that a comprehensive
formalization of musical rules is crucial for CP to be a relevant approach. The for-
malization of musical rules using discrete mathematics and constraints provides a
solid foundation for generating musically correct solutions. However, it is essential
to acknowledge that the process of formalizing all the intricate nuances of music is
a challenging task. The use of more precise works could be useful to formalize the
counterpoint even better.

The analysis of the generated counterpoint compositions based on Fux’s rules has
highlighted the need for additional constraints on melodic development, particularly
in terms of long-range melodic relationships. While the tool successfully creates har-
monically interdependent and melodically independent counterpoints, incorporating
constraints that generate more interesting melodies would be a valuable direction.
Also, from a technical point of view, the software architecture, performance, and qual-
ity of the solutions must be more taken into consideration in the future.

In addition, the successful experimentation outcome signifies that while the cur-
rent solver represents an initial step, it holds great potential for more complex and
advanced solvers in the future. These findings provide optimistic prospects for using
similar solvers outside the domain of counterpoint. Indeed, the approach presented
in this thesis can be extended to more complex musical styles. CP has the potential to
be a powerful paradigm in computer-aided composition for a wide range of musical
genres. The application of specific rules and constraints for different styles will open
up new possibilities for composers and expand the creative potential of the tool.

In summary, while this thesis has laid a foundation for the development of a con-
straint programming based composition tool, there is still work to be done. Further
research and development are needed to refine the formalization process, incorporate
additional constraints on melodic development, and explore the application of CP in
more complexmusical styles. With continued efforts and advancements in these areas,
we hope that constraint programming has the potential to revolutionize computer-
aided composition and empower composers with new tools for musical creativity and
expression.

69

Bibliography
[1] IRCAM website Authors. L’Ircam. IRCAM. May 30, 2023. url: https://www.

ircam.fr/lircam.
[2] Gecode website Authors. Generic Constraint Development Environment. Gecode.

June 1, 2023. url: https://www.gecode.org/index.html.
[3] OpenMusic website Authors. OpenMusic. GitHub. June 1, 2023. url: https:

//openmusic-project.github.io.
[4] GiL Contributors. GiL. GitHub. May 3, 2023. url: https : / / github . com /

sprockeelsd/GiL.
[5] Christine Payne. MuseNet. OpenAI. Apr. 25, 2019. url: https://openai.com/

blog/musenet.
[6] Cheng-Zhi AnnaHuang, Ian Simon, andMonicaDinculescu.Music Transformer:

Generating Music with Long-Term Structure. Magenta. Sept. 16, 2019. url: https:
//magenta.tensorflow.org/music-transformer.

[7] Lucas N. Ferreira and JimWhitehead. Learning to Generate Music With Sentiment.
2021. arXiv: 2103.06125 [cs.LG].

[8] Johann Joseph Fux. Gradus ad Parnassum. Latin. Ed. by Johann Peter van Ghe-
len. 1966 New York Broude Bros reprint. Vienna, 1725. url: http://vmirror.
imslp . org / files / imglnks / usimg / 2 / 22 / IMSLP286170 - PMLP187246 -
gradusadparnassu00fuxj_0.pdf.

[9] Klaus-Jürgen Sachs and Carl Dahlhaus. Counterpoint. Oxford University Press.
2001. doi: 10.1093/gmo/9781561592630.article.06690. url: https://www.
oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.
001.0001/omo-9781561592630-e-0000006690.

[10] Steven G. Laitz and. The Complete Musician. An Integrated Approach to Tonal The-
ory, Analysis, and Listening. Ed. by Oxford University Press. 2007.

[11] Bill Schottstaedt. Automatic Species Counterpoint. Research Report STAN-M-19.
System Development Foundation, CCRMA, Departement of Music, Stanford
University, 1984.url: https://ccrma.stanford.edu/files/papers/stanm19.
pdf.

[12] Wikipedia Contributors. Expert system. Wikipedia. 2023-04-01. url: https://
en.wikipedia.org/wiki/Expert_system.

[13] Russell Ovans and Rod Davison. An Interactive Constraint-Based Expert Assistant
for Music Composition. Research Report. Expert Systems Lab, Centre for Systems
Science, Simon Fraser University, 1992. url: https://citeseerx.ist.psu.
edu/viewdoc/download;jsessionid=36F6D0C404D11E0ABF5D566E1E9294D2?
doi=10.1.1.53.1060&rep=rep1&type=pdf.

[14] Francois Pachet and Pierre Roy. “Musical Harmonization with Constraints: A
Survey”. In: Constraints (2001). url: https://www.francoispachet.fr/wp-
content/uploads/2021/01/pachet-01-Musical_Harmonization_with_

Constraints.pdf.

70

https://www.ircam.fr/lircam
https://www.ircam.fr/lircam
https://www.gecode.org/index.html
https://openmusic-project.github.io
https://openmusic-project.github.io
https://github.com/sprockeelsd/GiL
https://github.com/sprockeelsd/GiL
https://openai.com/blog/musenet
https://openai.com/blog/musenet
https://magenta.tensorflow.org/music-transformer
https://magenta.tensorflow.org/music-transformer
https://arxiv.org/abs/2103.06125
http://vmirror.imslp.org/files/imglnks/usimg/2/22/IMSLP286170-PMLP187246-gradusadparnassu00fuxj_0.pdf
http://vmirror.imslp.org/files/imglnks/usimg/2/22/IMSLP286170-PMLP187246-gradusadparnassu00fuxj_0.pdf
http://vmirror.imslp.org/files/imglnks/usimg/2/22/IMSLP286170-PMLP187246-gradusadparnassu00fuxj_0.pdf
https://doi.org/10.1093/gmo/9781561592630.article.06690
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000006690
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000006690
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000006690
https://ccrma.stanford.edu/files/papers/stanm19.pdf
https://ccrma.stanford.edu/files/papers/stanm19.pdf
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Expert_system
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=36F6D0C404D11E0ABF5D566E1E9294D2?doi=10.1.1.53.1060&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=36F6D0C404D11E0ABF5D566E1E9294D2?doi=10.1.1.53.1060&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=36F6D0C404D11E0ABF5D566E1E9294D2?doi=10.1.1.53.1060&rep=rep1&type=pdf
https://www.francoispachet.fr/wp-content/uploads/2021/01/pachet-01-Musical_Harmonization_with_Constraints.pdf
https://www.francoispachet.fr/wp-content/uploads/2021/01/pachet-01-Musical_Harmonization_with_Constraints.pdf
https://www.francoispachet.fr/wp-content/uploads/2021/01/pachet-01-Musical_Harmonization_with_Constraints.pdf

[15] Örjan Sandred. “Constraint-Solving Systems in Music Creation”. In: Handbook
of Artificial Intelligence for Music. Springer International Publishing, 2021. url:
https://www.springerprofessional.de/constraint-solving-systems-
in-music-creation/19323922.

[16] Jean-Pierre Briot and François Pachet. “Deep learning for music generation:
challenges and directions”. In: Neural Computing and Applications (2020). url:
https://doi.org/10.1007/s00521-018-3813-6.

[17] Cheng-ZhiAnnaHuang et al.Music Transformer. 2018. arXiv: 1809.04281 [cs.LG].
[18] Cheng-Zhi Anna Huang et al. Counterpoint by Convolution. 2019. arXiv: 1903.

07227 [cs.LG].
[19] Baptiste Lapière. “Computer-aided musical composition Constraint program-

ming and music”. Prom. by Peter Van Roy. MA thesis. Ecole polytechnique de
Louvain, Université catholique de Louvain, 2020.

[20] Damien Sprockeels. “Melodizer:AConstraint ProgrammingTool ForComputer-
aided Musical Composition”. Prom. by Peter Van Roy. MA thesis. Ecole poly-
technique de Louvain, Université catholique de Louvain, 2021.

[21] Clément Chardon, Amaury Diels, and Federico Gobbi. “Melodizer 2.0: A Con-
straint Programming Tool For Computer-aided Musical Composition”. Prom.
byPeterVanRoy.MA thesis. Ecole polytechniquedeLouvain,Université catholique
de Louvain, 2022.

[22] SimonneChevalier.Gradus ad Parnassum. Johann Joseph Fux. French. Ed. byGabriel
Foucou. Trans. Latin by Simmone Chevalier. 2019. isbn: 978-2-9556093-6-1.

[23] Alfred Mann. The Study of Counterpoint. From Johann Joseph Fux’s Gradus ad Par-
nassum. English. Ed. and trans. Latin by Alfred Mann. Revised Edition. 500
Fifth Avenue, New York, N.Y. 10110: W.W. Norton & Company, 1971. isbn: 0-
393-00277-2. url: http://www.opus28.co.uk/Fux_Gradus.pdf.

[24] Christian Shulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and Program-
ming with Gecode. Gecode. May 28, 2019. url: https://www.gecode.org/doc-
latest/MPG.pdf.

[25] Coralie Diatkine.OpenMusic Documentation. IRCAM. June 21, 2011. url: https:
//support.ircam.fr/docs/om/om6-manual/co/OM-Documentation.html.

[26] ThibaultWafflard. First Species Counterpoint - A (aeolian)mode. From the Gradus ad
Parnassum of Johann Joseph Fux. Noteflight. 2023.url: https://www.noteflight.
com/scores/view/a60f5776648f8042aa5e49c7320a6b6b839471be.

[27] Thibault Wafflard. Evaluation of a Constraint Programming Based Tool designed for
Counterpoint. Thibault Wafflard, Youtube. May 28, 2023. url: https://youtu.
be/9yB4OGr4Cgk.

[28] ThibaultWafflard. Fifth Species Counterpoint - D (dorian) mode. From the Gradus ad
Parnassum of Johann Joseph Fux. Noteflight. 2023.url: https://www.noteflight.
com/scores/view/f75c61263ee5a50fa0d6941b8803a2b79aaed759.

[29] Wikipedia Contributors. MIDI. Wikipedia. Jan. 3, 2023. url: https : / / en .
wikipedia.org/wiki/MIDI.

[30] Grove Music Online Contributors. Step. Oxford University Press. 2001. doi: 10.
1093/gmo/9781561592630.article.26686.url: https://www.oxfordmusiconline.
com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-
9781561592630-e-0000026686.

71

https://www.springerprofessional.de/constraint-solving-systems-in-music-creation/19323922
https://www.springerprofessional.de/constraint-solving-systems-in-music-creation/19323922
https://doi.org/10.1007/s00521-018-3813-6
https://arxiv.org/abs/1809.04281
https://arxiv.org/abs/1903.07227
https://arxiv.org/abs/1903.07227
http://www.opus28.co.uk/Fux_Gradus.pdf
https://www.gecode.org/doc-latest/MPG.pdf
https://www.gecode.org/doc-latest/MPG.pdf
https://support.ircam.fr/docs/om/om6-manual/co/OM-Documentation.html
https://support.ircam.fr/docs/om/om6-manual/co/OM-Documentation.html
https://www.noteflight.com/scores/view/a60f5776648f8042aa5e49c7320a6b6b839471be
https://www.noteflight.com/scores/view/a60f5776648f8042aa5e49c7320a6b6b839471be
https://youtu.be/9yB4OGr4Cgk
https://youtu.be/9yB4OGr4Cgk
https://www.noteflight.com/scores/view/f75c61263ee5a50fa0d6941b8803a2b79aaed759
https://www.noteflight.com/scores/view/f75c61263ee5a50fa0d6941b8803a2b79aaed759
https://en.wikipedia.org/wiki/MIDI
https://en.wikipedia.org/wiki/MIDI
https://doi.org/10.1093/gmo/9781561592630.article.26686
https://doi.org/10.1093/gmo/9781561592630.article.26686
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000026686
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000026686
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000026686

[31] Wikipedia Contributors. Steps and skips. Wikipedia. 2022-08-20. url: https://
en.wikipedia.org/wiki/Steps_and_skips.

[32] GroveMusicOnlineContributors.Mordent. 2001.doi: 10.1093/gmo/9781561592630.
article.48831. url: https://www.oxfordmusiconline.com/grovemusic/
view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-
0000048831.

[33] William Drabkin. Degree. Oxford University Press. 2001. doi: 10.1093/gmo/
9781561592630.article.07408. url: https://www.oxfordmusiconline.
com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-
9781561592630-e-0000007408.

[34] GreerGarden andRobertDonington.Diminution. OxfordUniversity Press. 2001.
doi: 10.1093/gmo/9781561592630.article.42071. url: https://www.
oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.
001.0001/omo-9781561592630-e-0000042071.

[35] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming. Ed. by Elsevier. First Edition. 2006. url: https://www.dcs.gla.ac.
uk/~pat/cpM/papers/CP_Handbook-20060315-final.pdf.

[36] Grove Music Online Contributors. Leading note. Oxford University Press. 2001.
doi: 10.1093/gmo/9781561592630.article.16179. url: https://www.
oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.
001.0001/omo-9781561592630-e-0000016179.

[37] DaveWave.What is a Tritone? Tritone Explained in 2Minutes (Music Theory). Dave
Wave, Youtube. July 16, 2018. url: https://youtu.be/JJIO-Jr0E8o.

[38] William Drabkin. Tritone. Oxford University Press. 2001. doi: 10.1093/gmo/
9781561592630.article.28403. url: https://www.oxfordmusiconline.
com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-
9781561592630-e-0000028403.

[39] Giovanni Battista Martini. Esemplare a sia saggio fondamentale pratico di contrap-
punto sopra il canto fermo. Bologne, 1774.

[40] Jean-Louis Fabre. Le contrepoint, les règlesmélodiques et les règles harmoniques. French.
Gradus adParnassum,Youtube. Feb. 27, 2020.url: https://youtu.be/O5gbaT8sv-
U?t=71.

[41] Gradus ad Parnassumwebsite Authors. Le Professeur. French. 2022. url: https:
//www.gradusadparnassum.fr/accueil_professeur.php.

[42] Noël Gallon and Marcel Bitsch. Traité De Contrepoint. French. Ed. by Durand
et Cie. Paris, 1964. url: https://www.scribd.com/document/410592892/
TRAITE-DE-CONTREPOINT-Noel-Gallon-Marcel-Bitsch-pdf.

[43] Marcel Dupré.Cours de Contrepoint. French. Ed. by Alphonse Leduc. Paris, 1957.
url: https://www.scribd.com/doc/47338178/10063033- Cours- de-
Contrepoint-Marcel-Dupre.

[44] Wikipedia Contributors. Seventh chord. Wikipedia. 2022-10-19. url: https://
en.wikipedia.org/wiki/Seventh_chord.

[45] ThibaultWafflard. Second Species Counterpoint - A (aeolian) mode. From the Gradus
ad Parnassum of Johann Joseph Fux. Noteflight. 2023.url: https://www.noteflight.
com/scores/view/932a33c1d4e0c55f2a934706c4ed2f83cc28885d.

72

https://en.wikipedia.org/wiki/Steps_and_skips
https://en.wikipedia.org/wiki/Steps_and_skips
https://doi.org/10.1093/gmo/9781561592630.article.48831
https://doi.org/10.1093/gmo/9781561592630.article.48831
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000048831
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000048831
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000048831
https://doi.org/10.1093/gmo/9781561592630.article.07408
https://doi.org/10.1093/gmo/9781561592630.article.07408
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000007408
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000007408
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000007408
https://doi.org/10.1093/gmo/9781561592630.article.42071
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000042071
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000042071
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000042071
https://www.dcs.gla.ac.uk/~pat/cpM/papers/CP_Handbook-20060315-final.pdf
https://www.dcs.gla.ac.uk/~pat/cpM/papers/CP_Handbook-20060315-final.pdf
https://doi.org/10.1093/gmo/9781561592630.article.16179
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000016179
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000016179
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000016179
https://youtu.be/JJIO-Jr0E8o
https://doi.org/10.1093/gmo/9781561592630.article.28403
https://doi.org/10.1093/gmo/9781561592630.article.28403
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000028403
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000028403
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000028403
https://youtu.be/O5gbaT8sv-U?t=71
https://youtu.be/O5gbaT8sv-U?t=71
https://www.gradusadparnassum.fr/accueil_professeur.php
https://www.gradusadparnassum.fr/accueil_professeur.php
https://www.scribd.com/document/410592892/TRAITE-DE-CONTREPOINT-Noel-Gallon-Marcel-Bitsch-pdf
https://www.scribd.com/document/410592892/TRAITE-DE-CONTREPOINT-Noel-Gallon-Marcel-Bitsch-pdf
https://www.scribd.com/doc/47338178/10063033-Cours-de-Contrepoint-Marcel-Dupre
https://www.scribd.com/doc/47338178/10063033-Cours-de-Contrepoint-Marcel-Dupre
https://en.wikipedia.org/wiki/Seventh_chord
https://en.wikipedia.org/wiki/Seventh_chord
https://www.noteflight.com/scores/view/932a33c1d4e0c55f2a934706c4ed2f83cc28885d
https://www.noteflight.com/scores/view/932a33c1d4e0c55f2a934706c4ed2f83cc28885d

[46] William Drabkin. Minor (i). Oxford University Press. 2001. doi: 10.1093/gmo/
9781561592630.article.18743. url: https://www.oxfordmusiconline.
com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-
9781561592630-e-0000018743.

[47] Wikipedia Contributors. Octave. Wikipedia. 2023-01-07. url: https : / / en .
wikipedia.org/wiki/Octave.

[48] ThibaultWafflard. Third Species Counterpoint - F (lydian)mode. From the Gradus ad
Parnassum of Johann Joseph Fux. Noteflight. 2023.url: https://www.noteflight.
com/scores/view/0c58287f0fab7274cc266df98b627f743ed1ee45.

[49] Pierre Denis. Traité De Composition Musicale. Fait par le célèbre Fux. French. Ed.
by Diod Bijoutier and Garnier & Cadet. Trans. Latin by Pierre Denis. Paris,
1773. url: http://vmirror.imslp.org/files/imglnks/usimg/b/b2/
IMSLP231222-PMLP187246-fux_traite_de_composition_1773.pdf.

[50] Unidentified Translator. Pratical Rules for Learning Composition. Translated from a
Work intitled Gradus ad Parnassum written originally in Latin by John Joseph Feux.
English. Ed. by Welcker. London, ca. 1750. url: http://vmirror.imslp.org/
files/imglnks/usimg/3/31/IMSLP370587-PMLP187246-practicalrulesfo00fuxj.
pdf.

[51] ThibaultWafflard. Fourth Species Counterpoint - E (phrygian)mode. From theGradus
ad Parnassum of Johann Joseph Fux. Noteflight. 2023.url: https://www.noteflight.
com/scores/view/146b72d15525d0e7f98aff9b63c6a99185e9c911.

[52] William Drabkin. Octave (i). Oxford University Press. 2001. doi: 10.1093/gmo/
9781561592630.article.50054. url: https://www.oxfordmusiconline.
com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-
9781561592630-e-0000050054.

[53] Julien Freund. “I. La neutralité axiologique”. French. In: Études sur Max Weber.
Ed. by Librairie Droz. Genève, 1990, pp. 11–69. isbn: 9782600041263. url: https:
//www.cairn.info/etudes-sur-max-weber--9782600041263-p-11.htm.

[54] Damien Sprockeels et al. “A constraint formalization of Fux’s counterpoint”.
In: Actes des Journées d’Informatique Musicale 2023. Journées d’Informatique Mu-
sicale 2023 (May 23–26, 2023). CICM, Laboratoire Musidanse, Université Paris
8, MSH Paris Nord. 2023. url: https://jim2023.sciencesconf.org/data/
pages/3_2_SPROCKEELS_ET_AL.pdf.

[55] Wikipedia Contributors. Code smell. Wikipedia. 2023-02-12. url: https://en.
wikipedia.org/wiki/Code_smell.

[56] Refactoring.GuruwebsiteAuthors.Code Smells. Refactoring.Guru.May 30, 2023.
url: https://refactoring.guru/fr/refactoring/smells.

73

https://doi.org/10.1093/gmo/9781561592630.article.18743
https://doi.org/10.1093/gmo/9781561592630.article.18743
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000018743
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000018743
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000018743
https://en.wikipedia.org/wiki/Octave
https://en.wikipedia.org/wiki/Octave
https://www.noteflight.com/scores/view/0c58287f0fab7274cc266df98b627f743ed1ee45
https://www.noteflight.com/scores/view/0c58287f0fab7274cc266df98b627f743ed1ee45
http://vmirror.imslp.org/files/imglnks/usimg/b/b2/IMSLP231222-PMLP187246-fux_traite_de_composition_1773.pdf
http://vmirror.imslp.org/files/imglnks/usimg/b/b2/IMSLP231222-PMLP187246-fux_traite_de_composition_1773.pdf
http://vmirror.imslp.org/files/imglnks/usimg/3/31/IMSLP370587-PMLP187246-practicalrulesfo00fuxj.pdf
http://vmirror.imslp.org/files/imglnks/usimg/3/31/IMSLP370587-PMLP187246-practicalrulesfo00fuxj.pdf
http://vmirror.imslp.org/files/imglnks/usimg/3/31/IMSLP370587-PMLP187246-practicalrulesfo00fuxj.pdf
https://www.noteflight.com/scores/view/146b72d15525d0e7f98aff9b63c6a99185e9c911
https://www.noteflight.com/scores/view/146b72d15525d0e7f98aff9b63c6a99185e9c911
https://doi.org/10.1093/gmo/9781561592630.article.50054
https://doi.org/10.1093/gmo/9781561592630.article.50054
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000050054
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000050054
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000050054
https://www.cairn.info/etudes-sur-max-weber--9782600041263-p-11.htm
https://www.cairn.info/etudes-sur-max-weber--9782600041263-p-11.htm
https://jim2023.sciencesconf.org/data/pages/3_2_SPROCKEELS_ET_AL.pdf
https://jim2023.sciencesconf.org/data/pages/3_2_SPROCKEELS_ET_AL.pdf
https://en.wikipedia.org/wiki/Code_smell
https://en.wikipedia.org/wiki/Code_smell
https://refactoring.guru/fr/refactoring/smells

Appendix A

Transcriptions
"Ça ce n’est pas bien, j’ai trois fois sol, même deux fois je m’en prive.

Alors bon, exceptionnellement je peux permettre de temps en temps
d’avoir deux fois lamême notemais c’est vrai que dans les traités tels qu’on
les utilise, ceux de par exemple: Marcel Bitsch, Marcel Dupré, les traités
du XIXème siècle, on évite, enfin on proscrit même la répétition de la note.
Bon et bien ça c’est une règle de bon sens en fait. Ce n’est pas une règle
imposée comme ça demanière arbitraire. C’est que le contrepoint doit être
une ligne en perpétuelmouvement [. . .]. Attention, chez Fux il le fait, donc
c’est intéressant de voir que lui se permet ce genre de choses." Fabre [Jean-
Louis Fabre’s opinion on the repetition of the same note in counterpoint.
40, 1min 11]

Transcription A.1: French transcription of the video Le contrepoint, les règles mélodiques
et les règles harmoniques for rule 1.P2.

Which can be translated as:

This is not good, I have three times G, even twice I do not use it. So,
exceptionally, I can allow from time to time to have the same note twice, but
it is true that in the treatises as we use them, those of for example: Marcel
Bitsch, Marcel Dupré, the treatises of the XIXth century, we avoid, well we
even proscribe the repetition of the note. Well, this is a rule of common
sense in fact. It is not a rule imposed arbitrarily. It is that the counterpoint
must be a line in perpetual movement [. . .]. Mind you, Fux does this, so
it’s interesting to see that he allows himself this kind of thing.

Transcription A.2: English translation of the above quotation A.1.

"[. . .] s’il arrive que cinq noires se suivent par degrés conjoints, soit en
montant soit en descendant, la première doit être consonante, la deuxième
peut être dissonante, la troisième à nouveau nécessairement consonante,
la quatrième pourra être dissonante si la cinquième est une consonance;"

Transcription A.3: Original text from Chevalier [22, p.73] for rule 3.H1.

"Tertia Contrapuncti Species est quatuor semiminimarum contra unam
semibrevem Compositio. Ubi principiò animadvertendum est, quòd, si
quinque semiminimas vei ascendendo, vel descendendo continuò grada-
tim se sequi contingat, prima Consonans esse debeat, secunda dissonans
esse possit. Tertia denuoConsonans sit, necesse est. Quarta dissonans esse
poterit, si quinta Consonantia fuerit;"

Transcription A.4: Original text from Fux [8, p.63-64] for rule 3.H1.

74

Appendix B

Additional Material

Range -1 0 1 2 3 4 5 6 7 8 9
C 0 12 24 36 48 60 72 84 96 108 120

C♯ / D♭ 1 13 25 37 49 61 73 85 97 109 121
D 2 14 26 38 50 62 74 86 98 110 122

D♯ / E♭ 3 15 27 39 51 63 75 87 99 111 123
E 4 16 28 40 52 64 76 88 100 112 124
F 5 17 29 41 53 65 77 89 101 113 125

F♯ / G♭ 6 18 30 42 54 66 78 90 102 114 126
G 7 19 31 43 55 67 79 91 103 115 127

G♯ / A♭ 8 20 32 44 56 68 80 92 104 116 -
A 9 21 33 45 57 69 81 93 105 117 -

A♯ / B♭ 10 22 34 46 58 70 82 94 106 118 -
B 11 23 35 47 59 71 83 95 107 119 -

Table B.1: MIDI note values.

Figure B.1: 5th species upper ctp. of Fux (above) vs. upper ctp. of the solver [2.690 s]
(below).

75

Figure B.2: Solver-generated 5th species "ctp." with a chromatic "cantus firmus".

76

Appendix C

User Guide
This user guide provides a overview of FuxCP, covering its installation process, usage
within OpenMusic, and a description of the costs displayed in the interface. While
FuxCP is designed to be compatiblewith all platforms, it relies onGiL,which currently
works only on MacOS and Linux. Unfortunately, GiL does not support Windows due
to compatibility issues between the 32-bit Lisp license used by OpenMusic and the
64-bit Gecode Windows version. Although it is technically possible to obtain a 32-bit
version of Gecode for Windows, it is not recommended.

C.1 Installing FuxCP

C.1.1 Prerequisites
To use FuxCP, it is necessary to download and install the following tools:

• Gecode on https://www.gecode.org/download.html

• OpenMusic on https://openmusic-project.github.io/openmusic/

And download the following libraries:

• GiL on https://github.com/sprockeelsd/GiLv2.0

• FuxCP : https://github.com/sprockeelsd/Melodizer

On the last github, other tools such as Melodizer and Melodizer2.0 are available. In
the context of this user guide, only the FuxCP folder will be necessary.

C.1.2 Loading FuxCP in OpenMusic
Touse the previous libraries, OpenMusicmust be launched. Uponopening anyworkspace,
locate the toolbar at the top of the interface. Click on the "Windows" button, high-
lighted in figure C.1, and select "Library" from the dropdown menu. This action will
unveil a new window. In the toolbar of this window, choose "File" and then "Add
remote library." Navigate through your file system to find the path where the pre-
viously downloaded FuxCP and Gil libraries are stored. Once located, the libraries
should appear under the "libraries" folder in the "Library" window, as depicted in fig-
ure C.2. Right-click on "fuxcp" and select "Load Library". If no errors occur, the setup
is complete.

However, if an error arises, it may be a linking issue with the Gecode library. For
MacOS users, a script can be used from the c++ folder of the gil library. Edit the path to
Gecode inside the script tomatch your system’s configuration. Linux users should add
the Gecode library to the LD_LIBRARY_PATH variable. Go to the /etc/ld.so.conf.d
folder and create a new .conffile if one does not already exist. In this file, paste the full
path to the Gecode library, save it, and run sudo ldconfig to update the systemwith
the new library. Don’t forget to restart OpenMusic and don’t stop believing. Following
these steps should ensure the proper utilization of FuxCP.

77

https://www.gecode.org/download.html
https://openmusic-project.github.io/openmusic/
https://github.com/sprockeelsd/GiLv2.0
https://github.com/sprockeelsd/Melodizer

Figure C.1: Opening the "Library" window in OpenMusic.

Figure C.2: Loading the "fuxcp" library in OpenMusic.

C.2 Using FuxCP in OpenMusic
It is straightforward to use FuxCP in OpenMusic. There is a single block comprising
the entire graphical interface of the tool. This block or class is called cp-params. To
load it, it is possible to type fuxcp::cp-params in a new patch entry; or load the block
of the class by loading "cp-params" from the drop-downmenu by right-clicking in the
patch (Classes → Libraries → FuxCP → Solver → CP − PARAMS).

Once this block has appeared, all you have to do is bind an OM voice object, rep-
resenting the cantus firmus, to the second argument of cp-params as shown in figure
C.3. Don’t forget to block the input voice object and evaluate cp-params so it can de-
tect the new input. Now cp-params can be blocked too. From now on, you could
directly use the interface and generate counterpoints using the tool. If you want to
retrieve the voice object containing the counterpoint generated by the tool, just bind
the third argument on the output side to a voice object. Once bound, it is then possible
to evaluate the voice object so that it updates.

But how to use the interface? Just double-click on the block to make it appear. The
interface is sorted from left to right, so that the preferences are separated into three
different categories: "Preferences for Melodic Intervals of. . . ", "General Preferences",

78

Figure C.3: View of a patch using fuxcp::cp-params in OpenMusic.

"Species Specific Preferences", "Solver Configuration", and in the lower right corner,
"Solver Launcher" (see figure C.4). Once the preferences have been chosen, the default
ones representing the style of Fux, you must save the parameters ("Save Config") in
order to then be able to launch the search for a solution ("Next Solution"). This search
can take a fraction of a second just as it can take tens of minutes, or even hours if the
parameters chosen make the search difficult. If a search takes too long, it is always
possible to stop it by clicking on "Stop". You can then either change the preferences
in a way (often at the level of the costs of the melodic intervals), or increase the "Ir-
reverence" to obtain potentially less "good" but faster solutions. The description of the
parameters is available in the next section.

Figure C.4: User interface of the fuxcp::cp-params class in OpenMusic.

79

C.3 Interface Parameters Description
Table C.1 describes all the parameters available in the interface. A low cost represents
a high preference while a high cost represents a low preference.

Name Description Default value
Step Preference for melodic intervals of one step or less. No cost
Third Preference for melodic third skips. Low cost
Fourth Preference for melodic fourth leaps. Low cost
Tritone Preference for melodic tritone leaps. Forbidden
Fifth Preference for melodic fifth leaps. Medium cost
Sixth Preference for melodic sixth leaps. Medium cost
Seventh Preference for melodic seventh leaps. Medium cost
Octave Preference for melodic octave leaps. Low cost

Borrowing mode
Type of scale from which notes can be borrowed to generate counterpoint. The first
note of the cantus firmus determines the tonic of this scale. Applies everywhere except
the penultimate bar.

Major

Borrowed notes Preference for borrowed notes outside the diatonic scale. These notes are defined by
the "Borrowing mode" parameter. High cost

Fifths in down beats Preference to have harmonic fifths on the first beat of a bar. Low cost
Octaves in down beats Preference to have harmonic octaves on the first beat of a bar. Low cost
Contrary motions Preference to have, between two bars, one voice rising while the other is falling. No cost
Oblique motions Preference to have, between two bars, one static voice while the other is moving. Low cost
Direct motions Preference to have, between two bars, the two voices going in the same direction. Medium cost

Apply specific penulti-
mate note rules

Force all rules on the notes of the penultimate measure. This mainly refers to the
penultimate note that must harmonically be either a major sixth or a minor third de-
pending on whether the counterpoint is above or below.

Checked

2nd: Penultimate the-
sis note is not a fifth

Preference for the first note of the penultimate bar to be something other than a har-
monic fifth Last resort

3rd: Non-cambiata
notes

Preference for the second quarter note of a bar to be a consonance already surrounded
by two consonances. High cost

3rd: Same notes two
beats apart

Preference to have the same quarter notes two beats apart. A high cost allows to avoid
a certain monotony. Low cost

3rd: Force joint con-
trarymelody after skip

Force that a melodic skip or leap is followed by a melodic step in the opposite direc-
tion. Unchecked

4th: Same syncopa-
tions two bars apart

Preference to have the same half notes two bars apart. A high cost allows to avoid a
certain monotony. High cost

4th: No syncopation Preference to have distinct half notes instead of syncopations. Last resort
5th: Preferences to a
lot of quarters or a lot
of syncopations

Determines the minimum percentage of quarter notes (to the left) and syncopations
(to the right) in the fifth species. Pushing the slider all the way to one side is not
recommended.

<center>

Chosen species
Determines the type of counterpoint that the tool will generate. From whole notes
to syncopations, passing through quarter notes. The fifth species uses the rules and
preferences of the previous species.

5th

Voice range Determines around which pitch the counterpoint will be generated depending on the
pitch of the first note of the cantus firmus. Above

Irreverence
Artificially increases the minimum cost of the solution to obtain counterpoints that
are less respectful of the established preferences. Can also be used to get solutions
faster.

0

Minimum % of skips Determines, depending on the counterpoint size, the percentage of melodic intervals
larger than one step. 0%

Save Config Saves all established preferences and allows you to start a new search for this config-
uration later. -

Next Solution
Starts or continues searching for the previously saved configuration. Displays a new
window with the solution when it is found. Displays an error message if no other
solution can be found.

-

Stop Pause the search. It may take up to 5 seconds. -

Table C.1: Description of the parameters of fuxcp::cp-params.

80

Appendix D

Software Architecture
This appendix summarizes the architecture of the software. First, from the point of
view of the role of FuxCP as a tool and second, from the point of view of the organi-
zation of the code in FuxCP.

As shown in figure D.1, FuxCP is an OpenMusic library that uses GiL to com-
municate constraints with Gecode. The solver itself therefore runs well in Gecode
directly. At the level of the distribution of the files (see figure D.2), all the functions
that break the constraints have been placed in a single and same file. The different
species, which represent a set of rules, call these functions such that the constraints
set reflect the rules of these species. This architecture is not terrible and should rely
on object-oriented inheritance. Apart from that, the interface calls the main CSP cre-
ation and search functions via the fuxcp-main.lisp file. The latter chooses what to
do, in particular according to the type of counterpoint chosen.

Figure D.1: Macro architecture, overview of the links between FuxCP and the other
tools.

81

Figure D.2: Micro architecture, overview of the links between the files.

82

Appendix E

Source Code
E.1 FuxCP.lisp

1 (in-package :om)
2

3 (defvar *fuxcp-sources-dir* nil)
4 (setf *fuxcp-sources-dir* (make-pathname :directory (append (pathname-directory *load-pathname*)

’("sources"))))
5

6

7 (mapc ’compile&load (list
8 (make-pathname :directory (append (pathname-directory *load-pathname*) (list "sources")) :

name "package" :type "lisp")
9 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "utils" :type "lisp

")
10 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "constraints" :type

"lisp")
11 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "1sp-ctp" :type "

lisp")
12 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "2sp-ctp" :type "

lisp")
13 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "3sp-ctp" :type "

lisp")
14 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "4sp-ctp" :type "

lisp")
15 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "5sp-ctp" :type "

lisp")
16 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "fuxcp-main" :type

"lisp")
17 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "interface" :type "

lisp")
18))
19

20

21 (fill-library ’(
22 ("Solver" nil (fuxcp::cp-params) nil)
23))
24

25 (print "FuxCP Loaded")

E.2 package.lisp

1 (in-package :om)
2

3 (defvar *FuxCP-path* (make-pathname :directory (append (pathname-directory *load-pathname*) (
list "FuxCP"))))

4

5 (require-library "GIL")
6

7 (defpackage :fuxcp
8 (:use "COMMON-LISP" "OM" "CL-USER"))

83

E.3 interface.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard
4 ; Date: June 3, 2023
5 ; This file contains all the cp-params interface.
6 ; That is to say the interface blocks, as well as the global variables updated via the interface

.
7

8 ;;;====================
9 ;;;= cp-params OBJECT =

10 ;;;====================
11

12 (print "Loading cp-params object...")
13

14 (om::defclass! cp-params ()
15 ;attributes
16 (
17 ; ---------- Input cantus firmus ----------
18 (cf-voice :accessor cf-voice :initarg :cf-voice :initform nil :documentation "")
19 ; ---------- Melodic parameters ----------
20 (m-step-cost-param :accessor m-step-cost-param :initform "No cost" :type string :

documentation "")
21 (m-third-cost-param :accessor m-third-cost-param :initform "Low cost" :type string :

documentation "")
22 (m-fourth-cost-param :accessor m-fourth-cost-param :initform "Low cost" :type string :

documentation "")
23 (m-tritone-cost-param :accessor m-tritone-cost-param :initform "Forbidden" :type string :

documentation "")
24 (m-fifth-cost-param :accessor m-fifth-cost-param :initform "Medium cost" :type string :

documentation "")
25 (m-sixth-cost-param :accessor m-sixth-cost-param :initform "Medium cost" :type string :

documentation "")
26 (m-seventh-cost-param :accessor m-seventh-cost-param :initform "Medium cost" :type string :

documentation "")
27 (m-octave-cost-param :accessor m-octave-cost-param :initform "Low cost" :type string :

documentation "")
28 ; ---------- Global parameters (species 1) ----------
29 (borrow-mode-param :accessor borrow-mode-param :initform "Major" :type string :documentation

"")
30 (borrow-cost-param :accessor borrow-cost-param :initform "High cost" :type string :

documentation "")
31 (h-fifth-cost-param :accessor h-fifth-cost-param :initform "Low cost" :type string :

documentation "")
32 (h-octave-cost-param :accessor h-octave-cost-param :initform "Low cost" :type string :

documentation "")
33 (con-motion-cost-param :accessor con-motion-cost-param :initform "No cost" :type string :

documentation "")
34 (obl-motion-cost-param :accessor obl-motion-cost-param :initform "Low cost" :type string :

documentation "")
35 (dir-motion-cost-param :accessor dir-motion-cost-param :initform "Medium cost" :type string

:documentation "")
36 (penult-rule-check-param :accessor penult-rule-check-param :initform t :type boolean :

documentation "")
37 ; ---------- Species parameters ----------
38 ; Species 2
39 (penult-sixth-cost-param :accessor penult-sixth-cost-param :initform "Last resort" :type

string :documentation "")
40 ; Species 3
41 (non-cambiata-cost-param :accessor non-cambiata-cost-param :initform "High cost" :type

string :documentation "")
42 (two-beats-apart-cost-param :accessor two-beats-apart-cost-param :initform "Low cost" :type

string :documentation "")
43 (con-m-after-skip-check-param :accessor con-m-after-skip-check-param :initform nil :type

boolean :documentation "")
44 ; Species 4

84

45 (two-bars-apart-cost-param :accessor two-bars-apart-cost-param :initform "High cost" :type
string :documentation "")

46 (no-syncopation-cost-param :accessor no-syncopation-cost-param :initform "Last resort" :type
string :documentation "")

47 ; Species 5
48 (pref-species-slider-param :accessor pref-species-slider-param :initform 50 :type integer :

documentation "")
49 ; ---------- Solver parameters ----------
50 (species-param :accessor species-param :initform "5th" :type string :documentation "")
51 (voice-type-param :accessor voice-type-param :initform "Above" :type string :documentation "

")
52 (irreverence-slider-param :accessor irreverence-slider-param :initform 0 :type integer :

documentation "")
53 (min-skips-slider-param :accessor min-skips-slider-param :initform 0 :type integer :

documentation "")
54 ; ---------- Output & Stop ----------
55 (current-csp :accessor current-csp :initform nil :documentation "")
56 (result-voice :accessor result-voice :initarg :result-voice :initform nil :documentation "")
57)
58 (:icon 225)
59 (:documentation "This class implements FuxCP.
60 FuxCP is a constraints programming based tool aiming to generate counterpoints based on

cantus firmus.")
61)
62

63 ; the editor for the object
64 (defclass params-editor (om::editorview) ())
65

66 (defmethod om::class-has-editor-p ((self cp-params)) t)
67 (defmethod om::get-editor-class ((self cp-params)) ’params-editor)
68

69 (defmethod om::om-draw-contents ((view params-editor))
70 (let* ((object (om::object view)))
71 (om::om-with-focused-view view)
72)
73)
74

75 ; this function creates the elements for the main panel
76 (defun make-main-view (editor)
77 ; background colour
78 (om::om-set-bg-color editor om::*om-light-gray-color*)
79)
80

81 ; To access the melodizer object, (om::object self)
82 (defmethod initialize-instance ((self params-editor) &rest args)
83 ;;; do what needs to be done by default
84 (call-next-method) ; start the search by default?
85 (make-my-interface self)
86)
87

88 ; function to create the tool’s interface
89 (defmethod make-my-interface ((self params-editor))
90 (print "Creating interface...")
91 ; create the main view of the object
92 (make-main-view self)
93

94 (let*
95 (
96 ;;;
97 ;;; setting the different regions of the tool ;;;
98 ;;;
99 (melodic-params-panel (om::om-make-view ’om::om-view

100 :size (om::om-make-point 400 450)
101 :position (om::om-make-point 5 5)
102 :bg-color om::*azulito*)
103)
104 (general-params-panel (om::om-make-view ’om::om-view

85

105 :size (om::om-make-point 400 450)
106 :position (om::om-make-point 410 5)
107 :bg-color om::*azulote*)
108)
109 (species-params-panel (om::om-make-view ’om::om-view
110 :size (om::om-make-point 400 450)
111 :position (om::om-make-point 815 5)
112 :bg-color (om::make-color-255 230 190 165))
113)
114 (search-params-panel (om::om-make-view ’om::om-view
115 :size (om::om-make-point 400 450)
116 :position (om::om-make-point 1220 5)
117 :bg-color om::*maq-color*)
118)
119 (search-buttons (om::om-make-view ’om::om-view
120 :size (om::om-make-point 390 120)
121 :position (om::om-make-point 1225 330)
122 :bg-color om::*workspace-color*)
123)
124)
125

126 (make-general-params-panel self general-params-panel)
127 (make-melodic-params-panel self melodic-params-panel)
128 (make-species-params-panel self species-params-panel)
129 (make-search-params-panel self search-params-panel)
130 (make-search-buttons self search-buttons)
131 ; ; add the subviews for the different parts into the main view
132 (om::om-add-subviews
133 self
134 search-buttons
135 search-params-panel
136 species-params-panel
137 general-params-panel
138 melodic-params-panel
139)
140)
141 ; return the editor
142 self
143)
144

145 (defun make-melodic-params-panel (editor melodic-params-panel)
146 (om::om-add-subviews
147 melodic-params-panel
148 (om::om-make-dialog-item
149 ’om::om-static-text
150 (om::om-make-point 90 2)
151 (om::om-make-point 220 20)
152 "Preferences for Melodic Intervals of..."
153 :font om::*om-default-font2b*
154)
155

156 (om::om-make-dialog-item
157 ’om::om-static-text
158 (om::om-make-point 15 50)
159 (om::om-make-point 150 20)
160 "Step"
161 :font om::*om-default-font1b*
162)
163

164 (om::om-make-dialog-item
165 ’om::pop-up-menu
166 (om::om-make-point 170 50)
167 (om::om-make-point 200 20)
168 "Step"
169 :range (costs-list t)
170 :value (m-step-cost-param (om::object editor))
171 :di-action #’(lambda (cost)

86

172 (setf (m-step-cost-param (om::object editor)) (nth (om::om-get-selected-item-index
cost) (om::om-get-item-list cost)))

173)
174)
175

176 (om::om-make-dialog-item
177 ’om::om-static-text
178 (om::om-make-point 15 100)
179 (om::om-make-point 150 20)
180 "Third"
181 :font om::*om-default-font1b*
182)
183

184 (om::om-make-dialog-item
185 ’om::pop-up-menu
186 (om::om-make-point 170 100)
187 (om::om-make-point 200 20)
188 "Third"
189 :range (costs-list)
190 :value (m-third-cost-param (om::object editor))
191 :di-action #’(lambda (cost)
192 (setf (m-third-cost-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
193)
194)
195

196 (om::om-make-dialog-item
197 ’om::om-static-text
198 (om::om-make-point 15 150)
199 (om::om-make-point 150 20)
200 "Fourth"
201 :font om::*om-default-font1b*
202)
203

204 (om::om-make-dialog-item
205 ’om::pop-up-menu
206 (om::om-make-point 170 150)
207 (om::om-make-point 200 20)
208 "Fourth"
209 :range (costs-list)
210 :value (m-fourth-cost-param (om::object editor))
211 :di-action #’(lambda (cost)
212 (setf (m-fourth-cost-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
213)
214)
215

216 (om::om-make-dialog-item
217 ’om::om-static-text
218 (om::om-make-point 15 200)
219 (om::om-make-point 150 20)
220 "Tritone"
221 :font om::*om-default-font1b*
222)
223

224 (om::om-make-dialog-item
225 ’om::pop-up-menu
226 (om::om-make-point 170 200)
227 (om::om-make-point 200 20)
228 "Tritone"
229 :range (costs-list)
230 :value (m-tritone-cost-param (om::object editor))
231 :di-action #’(lambda (cost)
232 (setf (m-tritone-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
233)
234)

87

235

236 (om::om-make-dialog-item
237 ’om::om-static-text
238 (om::om-make-point 15 250)
239 (om::om-make-point 150 20)
240 "Fifth"
241 :font om::*om-default-font1b*
242)
243

244 (om::om-make-dialog-item
245 ’om::pop-up-menu
246 (om::om-make-point 170 250)
247 (om::om-make-point 200 20)
248 "Fifth"
249 :range (costs-list)
250 :value (m-fifth-cost-param (om::object editor))
251 :di-action #’(lambda (cost)
252 (setf (m-fifth-cost-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
253)
254)
255

256 (om::om-make-dialog-item
257 ’om::om-static-text
258 (om::om-make-point 15 300)
259 (om::om-make-point 150 20)
260 "Sixth"
261 :font om::*om-default-font1b*
262)
263

264 (om::om-make-dialog-item
265 ’om::pop-up-menu
266 (om::om-make-point 170 300)
267 (om::om-make-point 200 20)
268 "Sixth"
269 :range (costs-list)
270 :value (m-sixth-cost-param (om::object editor))
271 :di-action #’(lambda (cost)
272 (setf (m-sixth-cost-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
273)
274)
275

276 (om::om-make-dialog-item
277 ’om::om-static-text
278 (om::om-make-point 15 350)
279 (om::om-make-point 150 20)
280 "Seventh"
281 :font om::*om-default-font1b*
282)
283

284 (om::om-make-dialog-item
285 ’om::pop-up-menu
286 (om::om-make-point 170 350)
287 (om::om-make-point 200 20)
288 "Seventh"
289 :range (costs-list)
290 :value (m-seventh-cost-param (om::object editor))
291 :di-action #’(lambda (cost)
292 (setf (m-seventh-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
293)
294)
295

296 (om::om-make-dialog-item
297 ’om::om-static-text
298 (om::om-make-point 15 400)

88

299 (om::om-make-point 150 20)
300 "Octave"
301 :font om::*om-default-font1b*
302)
303

304 (om::om-make-dialog-item
305 ’om::pop-up-menu
306 (om::om-make-point 170 400)
307 (om::om-make-point 200 20)
308 "Octave"
309 :range (costs-list)
310 :value (m-octave-cost-param (om::object editor))
311 :di-action #’(lambda (cost)
312 (setf (m-octave-cost-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
313)
314)
315)
316)
317

318 (defun make-general-params-panel (editor general-params-panel)
319 (om::om-add-subviews
320 general-params-panel
321 (om::om-make-dialog-item
322 ’om::om-static-text
323 (om::om-make-point 140 2)
324 (om::om-make-point 220 20)
325 "General Preferences"
326 :font om::*om-default-font2b*
327)
328

329 (om::om-make-dialog-item
330 ’om::om-static-text
331 (om::om-make-point 15 50)
332 (om::om-make-point 150 20)
333 "Borrowing mode"
334 :font om::*om-default-font1b*
335)
336

337 (om::om-make-dialog-item
338 ’om::pop-up-menu
339 (om::om-make-point 170 50)
340 (om::om-make-point 200 20)
341 "Borrowing mode"
342 :range (list "None" "Major" "Minor")
343 :value (borrow-mode-param (om::object editor))
344 :di-action #’(lambda (cost)
345 (setf (borrow-mode-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
346)
347)
348

349 (om::om-make-dialog-item
350 ’om::om-static-text
351 (om::om-make-point 15 100)
352 (om::om-make-point 150 20)
353 "Borrowed notes"
354 :font om::*om-default-font1b*
355)
356

357 (om::om-make-dialog-item
358 ’om::pop-up-menu
359 (om::om-make-point 170 100)
360 (om::om-make-point 200 20)
361 "Borrowed notes"
362 :range (costs-list t)
363 :value (borrow-cost-param (om::object editor))

89

364 :di-action #’(lambda (cost)
365 (setf (borrow-cost-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
366)
367)
368

369 (om::om-make-dialog-item
370 ’om::om-static-text
371 (om::om-make-point 15 150)
372 (om::om-make-point 150 20)
373 "Fifths in down beats"
374 :font om::*om-default-font1b*
375)
376

377 (om::om-make-dialog-item
378 ’om::pop-up-menu
379 (om::om-make-point 170 150)
380 (om::om-make-point 200 20)
381 "Fifths in down beats"
382 :range (costs-list t)
383 :value (h-fifth-cost-param (om::object editor))
384 :di-action #’(lambda (cost)
385 (setf (h-fifth-cost-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
386)
387)
388

389 (om::om-make-dialog-item
390 ’om::om-static-text
391 (om::om-make-point 15 200)
392 (om::om-make-point 150 20)
393 "Octaves in down beats"
394 :font om::*om-default-font1b*
395)
396

397 (om::om-make-dialog-item
398 ’om::pop-up-menu
399 (om::om-make-point 170 200)
400 (om::om-make-point 200 20)
401 "Octaves in down beats"
402 :range (costs-list t)
403 :value (h-octave-cost-param (om::object editor))
404 :di-action #’(lambda (cost)
405 (setf (h-octave-cost-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
406)
407)
408

409 (om::om-make-dialog-item
410 ’om::om-static-text
411 (om::om-make-point 15 250)
412 (om::om-make-point 150 20)
413 "Contrary motions"
414 :font om::*om-default-font1b*
415)
416

417 (om::om-make-dialog-item
418 ’om::pop-up-menu
419 (om::om-make-point 170 250)
420 (om::om-make-point 200 20)
421 "Contrary motions"
422 :range (costs-list t)
423 :value (con-motion-cost-param (om::object editor))
424 :di-action #’(lambda (cost)
425 (setf (con-motion-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
426)

90

427)
428

429 (om::om-make-dialog-item
430 ’om::om-static-text
431 (om::om-make-point 15 300)
432 (om::om-make-point 150 20)
433 "Oblique motions"
434 :font om::*om-default-font1b*
435)
436

437 (om::om-make-dialog-item
438 ’om::pop-up-menu
439 (om::om-make-point 170 300)
440 (om::om-make-point 200 20)
441 "Oblique motions"
442 :range (costs-list)
443 :value (obl-motion-cost-param (om::object editor))
444 :di-action #’(lambda (cost)
445 (setf (obl-motion-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
446)
447)
448

449 (om::om-make-dialog-item
450 ’om::om-static-text
451 (om::om-make-point 15 350)
452 (om::om-make-point 150 20)
453 "Direct motions"
454 :font om::*om-default-font1b*
455)
456

457 (om::om-make-dialog-item
458 ’om::pop-up-menu
459 (om::om-make-point 170 350)
460 (om::om-make-point 200 20)
461 "Direct motions"
462 :range (costs-list t)
463 :value (dir-motion-cost-param (om::object editor))
464 :di-action #’(lambda (cost)
465 (setf (dir-motion-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
466)
467)
468

469 (om::om-make-dialog-item
470 ’om::om-static-text
471 (om::om-make-point 15 400)
472 (om::om-make-point 150 20)
473 "Apply specific penultimate note rules"
474 :font om::*om-default-font1b*
475)
476

477 (om::om-make-dialog-item
478 ’om::om-check-box
479 (om::om-make-point 170 400)
480 (om::om-make-point 20 20)
481 "Apply specific penultimate note rules"
482 ::checked-p (penult-rule-check-param (om::object editor))
483 :di-action #’(lambda (c)
484 (if (om::om-checked-p c)
485 (setf (penult-rule-check-param (om::object editor)) t)
486 (setf (penult-rule-check-param (om::object editor)) nil)
487)
488)
489)
490)
491)

91

492

493 (defun make-species-params-panel (editor species-params-panel)
494 (om::om-add-subviews
495 species-params-panel
496 (om::om-make-dialog-item
497 ’om::om-static-text
498 (om::om-make-point 130 2)
499 (om::om-make-point 220 20)
500 "Species Specific Preferences"
501 :font om::*om-default-font2b*
502)
503

504 (om::om-make-dialog-item
505 ’om::om-static-text
506 (om::om-make-point 15 50)
507 (om::om-make-point 150 20)
508 "2nd: Penultimate thesis note is not a fifth"
509 :font om::*om-default-font1b*
510)
511

512 (om::om-make-dialog-item
513 ’om::pop-up-menu
514 (om::om-make-point 170 50)
515 (om::om-make-point 200 20)
516 "2nd: Penultimate thesis note is not a fifth"
517 :range (costs-list t)
518 :value (penult-sixth-cost-param (om::object editor))
519 :di-action #’(lambda (cost)
520 (setf (penult-sixth-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
521)
522)
523

524 (om::om-make-dialog-item
525 ’om::om-static-text
526 (om::om-make-point 15 100)
527 (om::om-make-point 150 20)
528 "3rd: Non-cambiata notes"
529 :font om::*om-default-font1b*
530)
531

532 (om::om-make-dialog-item
533 ’om::pop-up-menu
534 (om::om-make-point 170 100)
535 (om::om-make-point 200 20)
536 "3rd: Non-cambiata notes"
537 :range (costs-list t)
538 :value (non-cambiata-cost-param (om::object editor))
539 :di-action #’(lambda (cost)
540 (setf (non-cambiata-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
541)
542)
543

544 (om::om-make-dialog-item
545 ’om::om-static-text
546 (om::om-make-point 15 150)
547 (om::om-make-point 150 20)
548 "3rd: Same notes two beats apart"
549 :font om::*om-default-font1b*
550)
551

552 (om::om-make-dialog-item
553 ’om::pop-up-menu
554 (om::om-make-point 170 150)
555 (om::om-make-point 200 20)
556 "3rd: Same notes two beats apart"

92

557 :range (costs-list)
558 :value (two-beats-apart-cost-param (om::object editor))
559 :di-action #’(lambda (cost)
560 (setf (two-beats-apart-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
561)
562)
563

564 (om::om-make-dialog-item
565 ’om::om-static-text
566 (om::om-make-point 15 200)
567 (om::om-make-point 150 20)
568 "3rd: Force joint contrary melody after skip (from Bitsch)"
569 :font om::*om-default-font1b*
570)
571

572 (om::om-make-dialog-item
573 ’om::om-check-box
574 (om::om-make-point 170 200)
575 (om::om-make-point 20 20)
576 "3rd: Force joint contrary melody after skip (from Bitsch)"
577 ::checked-p (con-m-after-skip-check-param (om::object editor))
578 :di-action #’(lambda (c)
579 (if (om::om-checked-p c)
580 (setf (con-m-after-skip-check-param (om::object editor)) t)
581 (setf (con-m-after-skip-check-param (om::object editor)) nil)
582)
583)
584)
585

586 (om::om-make-dialog-item
587 ’om::om-static-text
588 (om::om-make-point 15 250)
589 (om::om-make-point 150 20)
590 "4th: Same syncopations two bars apart"
591 :font om::*om-default-font1b*
592)
593

594 (om::om-make-dialog-item
595 ’om::pop-up-menu
596 (om::om-make-point 170 250)
597 (om::om-make-point 200 20)
598 "4th: Same syncopations two bars apart"
599 :range (costs-list)
600 :value (two-bars-apart-cost-param (om::object editor))
601 :di-action #’(lambda (cost)
602 (setf (two-bars-apart-cost-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
603)
604)
605

606 (om::om-make-dialog-item
607 ’om::om-static-text
608 (om::om-make-point 15 300)
609 (om::om-make-point 150 20)
610 "4th: No syncopation"
611 :font om::*om-default-font1b*
612)
613

614 (om::om-make-dialog-item
615 ’om::pop-up-menu
616 (om::om-make-point 170 300)
617 (om::om-make-point 200 20)
618 "4th: No syncopation"
619 :range (costs-list t)
620 :value (no-syncopation-cost-param (om::object editor))
621 :di-action #’(lambda (cost)

93

622 (setf (no-syncopation-cost-param (om::object editor)) (nth (om::
om-get-selected-item-index cost) (om::om-get-item-list cost)))

623)
624)
625

626 (om::om-make-dialog-item
627 ’om::om-static-text
628 (om::om-make-point 15 350)
629 (om::om-make-point 150 50)
630 "5th: Preference to a lot of quarters [left] OR a lot of syncopations [right]"
631 :font om::*om-default-font1b*
632)
633

634 (om::om-make-dialog-item
635 ’om::om-slider
636 (om::om-make-point 170 350)
637 (om::om-make-point 200 20)
638 "5th: Preference to a lot of quarters [left] OR a lot of syncopations [right]"
639 :range ’(0 100)
640 :increment 1
641 :value (pref-species-slider-param (om::object editor))
642 :di-action #’(lambda (s)
643 (setf (pref-species-slider-param (om::object editor)) (om::om-slider-value s))
644)
645)
646)
647)
648

649 (defun make-search-params-panel (editor search-params-panel)
650 (om::om-add-subviews
651 search-params-panel
652 (om::om-make-dialog-item
653 ’om::om-static-text
654 (om::om-make-point 140 2)
655 (om::om-make-point 200 20)
656 "Solver Configuration"
657 :font om::*om-default-font2b*
658)
659

660 (om::om-make-dialog-item
661 ’om::om-static-text
662 (om::om-make-point 15 50)
663 (om::om-make-point 150 20)
664 "Chosen species"
665 :font om::*om-default-font1b*
666)
667

668 (om::om-make-dialog-item
669 ’om::pop-up-menu
670 (om::om-make-point 170 50)
671 (om::om-make-point 200 20)
672 "Chosen species"
673 :range (list "1st" "2nd" "3rd" "4th" "5th")
674 :value (species-param (om::object editor))
675 :di-action #’(lambda (cost)
676 (setf (species-param (om::object editor)) (nth (om::om-get-selected-item-index cost)

(om::om-get-item-list cost)))
677)
678)
679

680 (om::om-make-dialog-item
681 ’om::om-static-text
682 (om::om-make-point 15 100)
683 (om::om-make-point 150 20)
684 "Voice range"
685 :font om::*om-default-font1b*
686)

94

687

688 (om::om-make-dialog-item
689 ’om::pop-up-menu
690 (om::om-make-point 170 100)
691 (om::om-make-point 200 20)
692 "Voice range"
693 :range (list "Really far above" "Far above" "Above" "Same range" "Below" "Far below" "

Really far below")
694 :value (voice-type-param (om::object editor))
695 :di-action #’(lambda (cost)
696 (setf (voice-type-param (om::object editor)) (nth (om::om-get-selected-item-index

cost) (om::om-get-item-list cost)))
697)
698)
699

700 (om::om-make-dialog-item
701 ’om::om-static-text
702 (om::om-make-point 15 150)
703 (om::om-make-point 150 20)
704 "Irreverence"
705 :font om::*om-default-font1b*
706)
707

708 (om::om-make-dialog-item
709 ’om::om-slider
710 (om::om-make-point 170 150)
711 (om::om-make-point 200 20)
712 "Irreverence"
713 :range ’(0 40)
714 :increment 1
715 :value (irreverence-slider-param (om::object editor))
716 :di-action #’(lambda (s)
717 (setf (irreverence-slider-param (om::object editor)) (om::om-slider-value s))
718)
719)
720

721 (om::om-make-dialog-item
722 ’om::om-static-text
723 (om::om-make-point 15 200)
724 (om::om-make-point 150 20)
725 "Minimum % of skips"
726 :font om::*om-default-font1b*
727)
728

729 (om::om-make-dialog-item
730 ’om::om-slider
731 (om::om-make-point 170 200)
732 (om::om-make-point 200 20)
733 "Minimum % of skips"
734 :range ’(0 100)
735 :increment 1
736 :value (min-skips-slider-param (om::object editor))
737 :di-action #’(lambda (s)
738 (setf (min-skips-slider-param (om::object editor)) (om::om-slider-value s))
739)
740)
741)
742)
743

744 (defun make-search-buttons (editor search-buttons)
745 (om::om-add-subviews
746 search-buttons
747 (om::om-make-dialog-item
748 ’om::om-static-text
749 (om::om-make-point 140 5)
750 (om::om-make-point 150 20)
751 "Solver Launcher"

95

752 :font om::*om-default-font3b*
753)
754

755 (om::om-make-dialog-item
756 ’om::om-button
757 (om::om-make-point 10 50) ; position (horizontal, vertical)
758 (om::om-make-point 120 20) ; size (horizontal, vertical)
759 "Save Config"
760 :di-action #’(lambda (b)
761 (if (null (cf-voice (om::object editor))); if the problem is not initialized
762 (error "No voice has been given to the solver. Please set a cantus firmus into

the second input and try again.")
763)
764 (set-global-cf-variables
765 (cf-voice (om::object editor))
766 (convert-to-voice-integer (voice-type-param (om::object editor)))
767 (borrow-mode-param (om::object editor))
768)
769 (defparameter *params* (make-hash-table))
770 ;; set melodic parameters
771 (setparam-cost ’m-step-cost (m-step-cost-param (om::object editor)))
772 (setparam-cost ’m-third-cost (m-third-cost-param (om::object editor)))
773 (setparam-cost ’m-fourth-cost (m-fourth-cost-param (om::object editor)))
774 (setparam-cost ’m-tritone-cost (m-tritone-cost-param (om::object editor)))
775 (setparam-cost ’m-fifth-cost (m-fifth-cost-param (om::object editor)))
776 (setparam-cost ’m-sixth-cost (m-sixth-cost-param (om::object editor)))
777 (setparam-cost ’m-seventh-cost (m-seventh-cost-param (om::object editor)))
778 (setparam-cost ’m-octave-cost (m-octave-cost-param (om::object editor)))
779 ;; set general parameters
780 (setparam ’borrow-mode (borrow-mode-param (om::object editor)))
781 (setparam-cost ’borrow-cost (borrow-cost-param (om::object editor)))
782 (setparam-cost ’h-fifth-cost (h-fifth-cost-param (om::object editor)))
783 (setparam-cost ’h-octave-cost (h-octave-cost-param (om::object editor)))
784 (setparam-cost ’con-motion-cost (con-motion-cost-param (om::object editor)))
785 (setparam-cost ’obl-motion-cost (obl-motion-cost-param (om::object editor)))
786 (setparam-cost ’dir-motion-cost (dir-motion-cost-param (om::object editor)))
787 (setparam ’penult-rule-check (penult-rule-check-param (om::object editor)))
788 ;; set species specific parameters
789 (setparam-cost ’penult-sixth-cost (penult-sixth-cost-param (om::object editor)))
790 (setparam-cost ’non-cambiata-cost (non-cambiata-cost-param (om::object editor)))
791 (setparam-cost ’two-beats-apart-cost (two-beats-apart-cost-param (om::object editor)

))
792 (setparam ’con-m-after-skip-check (con-m-after-skip-check-param (om::object editor))

)
793 (setparam-cost ’two-bars-apart-cost (two-bars-apart-cost-param (om::object editor)))
794 (setparam-cost ’no-syncopation-cost (no-syncopation-cost-param (om::object editor)))
795 (setparam-slider ’pref-species-slider (pref-species-slider-param (om::object editor)

))
796 ;; set search parameters
797 (setparam-slider ’irreverence-slider (irreverence-slider-param (om::object editor)))
798 (setparam-slider ’min-skips-slider (min-skips-slider-param (om::object editor)))
799 (setf (current-csp (om::object editor)) (fux-cp (convert-to-species-integer (

species-param (om::object editor)))))
800)
801)
802

803 (om::om-make-dialog-item
804 ’om::om-button
805 (om::om-make-point 135 50) ; position
806 (om::om-make-point 120 20) ; size
807 "Next Solution"
808 :di-action #’(lambda (b)
809 (if (typep (current-csp (om::object editor)) ’null); if the problem is not

initialized
810 (error "The problem has not been initialized. Please set the input and press

Start.")
811)

96

812 (print "Searching for the next solution")
813 ;reset the boolean because we want to continue the search
814 (setparam ’is-stopped nil)
815 ;get the next solution
816 (mp:process-run-function ; start a new thread for the execution of the next method
817 "solver-thread" ; name of the thread, not necessary but useful for debugging
818 nil ; process initialization keywords, not needed here
819 (lambda () ; function to call
820 (setf
821 (result-voice (om::object editor))
822 (search-next-fux-cp (current-csp (om::object editor)))
823)
824 (om::openeditorframe ; open a voice window displaying the solution
825 (om::omNG-make-new-instance (result-voice (om::object editor)) "Current

solution")
826)
827)
828)
829)
830)
831

832 (om::om-make-dialog-item
833 ’om::om-button
834 (om::om-make-point 260 50) ; position (horizontal, vertical)
835 (om::om-make-point 120 20) ; size (horizontal, vertical)
836 "Stop"
837 :di-action #’(lambda (b)
838 (setparam ’is-stopped t)
839)
840)
841)
842)
843

844 ; return the list of available costs for the preferences
845 ; @is-required: if true, "Forbidden" is removed
846 (defun costs-list (&optional (is-required nil))
847 (let (
848 (costs (list "No cost" "Low cost" "Medium cost" "High cost" "Last resort" "Cost prop. to

length" "Forbidden"))
849)
850 (if is-required
851 (butlast costs)
852 costs
853)
854)
855)
856

857 ; set the value @v in the hash table @h with key @k
858 (defun seth (h k v)
859 (setf (gethash k h) v)
860)
861

862 ; set the value @v in the parameters with key @k
863 (defun setparam (k v)
864 (seth *params* k v)
865)
866

867 ; set the cost-converted value @of v in the parameters with key @k
868 (defun setparam-cost (k v)
869 (setparam k (convert-to-cost-integer v))
870)
871

872 ; set the species-converted value @of v in the parameters with key @k
873 (defun setparam-species (k v)
874 (setparam k (convert-to-species-integer v))
875)
876

97

877 ; set the slider-converted value @of v in the parameters with key @k
878 (defun setparam-slider (k v)
879 (setparam k (convert-to-percent v))
880)
881

882 ; convert a cost to an integer
883 (defun convert-to-cost-integer (param)
884 (cond
885 ((equal param "No cost") 0)
886 ((equal param "Low cost") 1)
887 ((equal param "Medium cost") 2)
888 ((equal param "High cost") 4)
889 ((equal param "Last resort") 8)
890 ((equal param "Cost prop. to length") (* 2 *cf-len))
891 ((equal param "Forbidden") (* 64 *cf-len))
892)
893)
894

895 ; convert a species to an integer
896 (defun convert-to-species-integer (param)
897 (cond
898 ((equal param "1st") 1)
899 ((equal param "2nd") 2)
900 ((equal param "3rd") 3)
901 ((equal param "4th") 4)
902 ((equal param "5th") 5)
903)
904)
905

906 ;; convert the string for the voice type to an integer
907 ;; belong to {"Really far above" "Far above" "Above" "Same range" "Below" "Far below" "Really

far below"}
908 ;; convert to {-3 -2 -1 0 1 2 3}
909 (defun convert-to-voice-integer (param)
910 (cond
911 ((equal param "Really far above") 3)
912 ((equal param "Far above") 2)
913 ((equal param "Above") 1)
914 ((equal param "Same range") 0)
915 ((equal param "Below") -1)
916 ((equal param "Far below") -2)
917 ((equal param "Really far below") -3)
918)
919)
920

921 ; convert a slider value to a percentage
922 (defun convert-to-percent (param)
923 (float (/ param 100))
924)
925

926 ; convert a mode to an integer
927 (defun convert-to-mode-integer (param tone)
928 (cond
929 ((equal param "Major") (mod tone 12))
930 ((equal param "Minor") (mod (+ tone 3) 12))
931 ((equal param "None") nil)
932)
933)
934

935 ; define all the global variables
936 (defun set-global-cf-variables (cantus-firmus voice-type borrow-mode)
937 ; Lower bound and upper bound related to the cantus firmus pitch
938 (defparameter VOICE_TYPE voice-type)
939 (defparameter RANGE_UB (+ 12 (* 6 VOICE_TYPE)))
940 (defparameter RANGE_LB (+ -6 (* 6 VOICE_TYPE)))
941 (defparameter *prev-sol-check nil)
942 (defparameter rythmic+pitches nil)

98

943 (defparameter rythmic-om nil)
944 (defparameter pitches-om nil)
945 ; get the tonalite of the cantus firmus
946 (defparameter *tonalite-offset (get-tone-offset cantus-firmus))
947 ; get the *scale of the cantus firmus
948 (defparameter *scale (build-scaleset (get-scale) *tonalite-offset))
949 ; *chromatic *scale
950 (defparameter *chromatic-scale (build-scaleset (get-scale "chromatic") *tonalite-offset))
951 ; get the first note of each chord of the cantus firmus
952 (defparameter *cf (mapcar #’first (to-pitch-list (om::chords cantus-firmus))))
953 ; get the tempo of the cantus firmus
954 (defparameter *cf-tempo (om::tempo cantus-firmus))
955 ; get the first note of the cantus firmus ;; just used for the moment
956 (defparameter *tone-pitch-cf (first *cf))
957 ; get the borrowed scale of the cantus firmus, i.e. some notes borrowed from the natural

scale of the tone (useful for modes)
958 (setq mode-param (convert-to-mode-integer borrow-mode *tone-pitch-cf))
959 (if mode-param
960 (defparameter *borrowed-scale (build-scaleset (get-scale "borrowed") mode-param))
961 (defparameter *borrowed-scale (list))
962)
963 ; get notes that are not in the natural scale of the tone
964 (defparameter *off-scale (set-difference *chromatic-scale *scale))
965 ; set the pitch range of the counterpoint
966 (defparameter *cp-range (range (+ *tone-pitch-cf RANGE_UB) :min (+ *tone-pitch-cf RANGE_LB))

) ; arbitrary range
967 ; set counterpoint pitch domain
968 (defparameter *cp-domain (intersection *cp-range *scale))
969 ; penultimate (first *cp) note domain
970 (defparameter *chromatic-cp-domain (intersection *cp-range *chromatic-scale))
971 ; set counterpoint extended pitch domain
972 (defparameter *extended-cp-domain (intersection *cp-range (union *scale *borrowed-scale)))
973 ; set the domain of the only barrowed notes
974 (defparameter *off-domain (intersection *cp-range *off-scale))
975 ; length of the cantus firmus
976 (defparameter *cf-len (length *cf))
977 ; *cf-last-index is the number of melodic intervals in the cantus firmus
978 (defparameter *cf-last-index (- *cf-len 1))
979 ; *cf-penult-index is the number of larger (n -> n+2) melodic intervals in the cantus firmus
980 (defparameter *cf-penult-index (- *cf-len 2))
981 ; COST_UB is the upper bound of the cost function
982 (defparameter COST_UB (* *cf-len 20))
983)

E.4 fuxcp-main.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard
4 ; Date: June 3, 2023
5 ; This file contains the functions that:
6 ; - dispatch to the right species functions
7 ; - set the global variables of the CSP
8 ; - manage the search for solutions
9

10 (print "Loading fux-cp...")
11

12 ; get the value at key @k in the hash table @h as a list
13 (defun geth-dom (h k)
14 (list (gethash k h))
15)
16

17 ; get the value at key @k in the parameters table as a list
18 (defun getparam-val (k)
19 (geth-dom *params* k)

99

20)
21

22 ; get the value at key @k in the parameters table as a domain
23 (defun getparam-dom (k)
24 (list 0 (getparam k))
25)
26

27 ; get the value at key @k in the parameters table
28 (defun getparam (k)
29 (gethash k *params*)
30)
31

32 ; get if borrow-mode param is allowed
33 (defun is-borrow-allowed ()
34 (not (equal (getparam ’borrow-mode) "None"))
35)
36

37 ; re/define all the variables the CSP needs
38 (defun set-space-variables ()
39 ; THE CSP SPACE
40 (defparameter *sp* (gil::new-space))
41

42 ;; CONSTANTS
43 ; Number of costs added
44 (defparameter *n-cost-added 0)
45 ; Motion types
46 (defparameter DIRECT 2)
47 (defparameter OBLIQUE 1)
48 (defparameter CONTRARY 0)
49

50 ;; COSTS
51 ;; Melodic costs
52 (defparameter *m-step-cost* (gil::add-int-var-dom *sp* (getparam-val ’m-step-cost)))
53 (defparameter *m-third-cost* (gil::add-int-var-dom *sp* (getparam-val ’m-third-cost)))
54 (defparameter *m-fourth-cost* (gil::add-int-var-dom *sp* (getparam-val ’m-fourth-cost)))
55 (defparameter *m-tritone-cost* (gil::add-int-var-dom *sp* (getparam-val ’m-tritone-cost)))
56 (defparameter *m-fifth-cost* (gil::add-int-var-dom *sp* (getparam-val ’m-fifth-cost)))
57 (defparameter *m-sixth-cost* (gil::add-int-var-dom *sp* (getparam-val ’m-sixth-cost)))
58 (defparameter *m-seventh-cost* (gil::add-int-var-dom *sp* (getparam-val ’m-seventh-cost)))
59 (defparameter *m-octave-cost* (gil::add-int-var-dom *sp* (getparam-val ’m-octave-cost)))
60 ;; General costs
61 (defparameter *borrow-cost* (gil::add-int-var-dom *sp* (getparam-val ’borrow-cost)))
62 (defparameter *h-fifth-cost* (gil::add-int-var-dom *sp* (getparam-val ’h-fifth-cost)))
63 (defparameter *h-octave-cost* (gil::add-int-var-dom *sp* (getparam-val ’h-octave-cost)))
64 (defparameter *con-motion-cost* (gil::add-int-var-dom *sp* (getparam-val ’con-motion-cost)))
65 (defparameter *obl-motion-cost* (gil::add-int-var-dom *sp* (getparam-val ’obl-motion-cost)))
66 (defparameter *dir-motion-cost* (gil::add-int-var-dom *sp* (getparam-val ’dir-motion-cost)))
67 ;; Species specific costs
68 (defparameter *penult-sixth-cost* (gil::add-int-var-dom *sp* (getparam-val ’

penult-sixth-cost)))
69 (defparameter *non-cambiata-cost* (gil::add-int-var-dom *sp* (getparam-val ’

non-cambiata-cost)))
70 (defparameter *two-beats-apart-cost* (gil::add-int-var-dom *sp* (getparam-val ’

two-beats-apart-cost)))
71 (defparameter *two-bars-apart-cost* (gil::add-int-var-dom *sp* (getparam-val ’

two-bars-apart-cost)))
72 (defparameter *no-syncopation-cost* (gil::add-int-var-dom *sp* (getparam-val ’

no-syncopation-cost)))
73

74 ;; Params domains
75 (defparameter *motions-domain*
76 (remove-duplicates (mapcar (lambda (x) (getparam x))
77 (list ’con-motion-cost ’obl-motion-cost ’dir-motion-cost)
78))
79)
80

81 ; Integer constants (to represent costs or intervals)

100

82 ; 0 in IntVar
83 (defparameter ZERO (gil::add-int-var-dom *sp* (list 0)))
84 ; 1 in IntVar
85 (defparameter ONE (gil::add-int-var-dom *sp* (list 1)))
86 ; 3 in IntVar (minor third)
87 (defparameter THREE (gil::add-int-var-dom *sp* (list 3)))
88 ; 9 in IntVar (major sixth)
89 (defparameter NINE (gil::add-int-var-dom *sp* (list 9)))
90

91 ; Boolean constants
92 ; 0 in BoolVar
93 (defparameter FALSE (gil::add-bool-var *sp* 0 0))
94 ; 1 in BoolVar
95 (defparameter TRUE (gil::add-bool-var *sp* 1 1))
96

97 ; Intervals constants
98 ; perfect consonances intervals
99 (defparameter P_CONS (list 0 7))

100 ; imperfect consonances intervals
101 (defparameter IMP_CONS (list 3 4 8 9))
102 ; all consonances intervals
103 (defparameter ALL_CONS (union P_CONS IMP_CONS))
104 ; dissonances intervals
105 (defparameter DIS (list 1 2 5 6 10 11))
106 ; penultimate intervals, i.e. minor third and major sixth
107 (defparameter PENULT_CONS (list 3 9))
108 ; penultimate thesis intervals, i.e. perfect fifth and sixth
109 (defparameter PENULT_THESIS (list 7 8 9))
110 ; penultimate 1st quarter note intervals, i.e. minor third, major sixth and octave/unisson
111 (defparameter PENULT_1Q (list 0 3 8))
112 ; penultimate syncope intervals, i.e. seconds and sevenths
113 (defparameter PENULT_SYNCOPE (list 1 2 10 11))
114

115 ; P_CONS in IntVar
116 (defparameter P_CONS_VAR (gil::add-int-var-const-array *sp* P_CONS))
117 ; IMP_CONS in IntVar
118 (defparameter IMP_CONS_VAR (gil::add-int-var-const-array *sp* IMP_CONS))
119 ; ALL_CONS in IntVar
120 (defparameter ALL_CONS_VAR (gil::add-int-var-const-array *sp* ALL_CONS))
121 ; PENULT_CONS in IntVar
122 (defparameter PENULT_CONS_VAR (gil::add-int-var-const-array *sp* PENULT_CONS))
123 ; PENULT_THESIS in IntVar
124 (defparameter PENULT_THESIS_VAR (gil::add-int-var-const-array *sp* PENULT_THESIS))
125 ; PENULT_1Q in IntVar
126 (defparameter PENULT_1Q_VAR (gil::add-int-var-const-array *sp* PENULT_1Q))
127 ; PENULT_SYNCOPE in IntVar
128 (defparameter PENULT_SYNCOPE_VAR (gil::add-int-var-const-array *sp* PENULT_SYNCOPE))
129

130 ; *cf-brut-intervals is the list of brut melodic intervals in the cantus firmus
131 (setq *cf-brut-m-intervals (gil::add-int-var-array *sp* *cf-last-index -127 127))
132

133 ;; FIRST SPECIES COUNTERPOINT GLOBAL VARIABLES
134 (defparameter *cp (list nil nil nil nil))
135 (defparameter *h-intervals (list nil nil nil nil))
136 (defparameter *m-intervals-brut (list nil nil nil nil))
137 (defparameter *m-intervals (list nil nil nil nil))
138 (defvar *m2-intervals-brut)
139 (defvar *m2-intervals)
140 (defvar *cf-brut-m-intervals)
141 (defvar *is-p-cons-arr)
142 (defparameter *motions (list nil nil nil nil))
143 (defparameter *motions-cost (list nil nil nil nil))
144 (defvar *is-cf-bass)
145 (defparameter *is-cf-bass-arr (list nil nil nil nil))
146 (defvar *is-cp-off-key-arr)
147 (defvar *N-COST-FACTORS)
148 (defvar *cost-factors)

101

149 (defvar *total-cost)
150 (defvar *p-cons-cost)
151 (defvar *fifth-cost)
152 (defvar *octave-cost)
153 (defvar *m-degrees-cost)
154 (defvar *m-degrees-type)
155 (defvar *off-key-cost)
156

157 ;; SECOND SPECIES COUNTERPOINT GLOBAL VARIABLES
158 (defvar *h-intervals-abs)
159 (defvar *h-intervals-brut)
160 (defparameter *m-succ-intervals (list nil nil nil))
161 (defparameter *m-succ-intervals-brut (list nil nil nil))
162 (defvar *m2-len)
163 (defvar *total-m-len)
164 (defvar *m-all-intervals)
165 (defvar *m-all-intervals-brut)
166 (defvar *real-motions)
167 (defvar *real-motions-cost)
168 (defvar *is-ta-dim-arr)
169 (defvar *is-nbour-arr)
170 (defvar *penult-thesis-cost)
171 (defvar *total-cp)
172

173 ;; THIRD SPECIES COUNTERPOINT GLOBAL VARIABLES
174 (defvar *is-5qn-linked-arr)
175 (defvar *total-cp-len)
176 (defparameter *is-cons-arr (list nil nil nil nil))
177 (defparameter *cons-cost (list nil nil nil nil))
178 (defvar *is-not-cambiata-arr)
179 (defvar *not-cambiata-cost)
180 (defvar *m2-eq-zero-cost)
181

182 ;; FOURTH SPECIES COUNTERPOINT GLOBAL VARIABLES
183 (defvar *is-no-syncope-arr)
184 (defvar *no-syncope-cost)
185

186 ;; FIFTH SPECIES COUNTERPOINT GLOBAL VARIABLES
187 (defvar *species-arr) ; 0: no constraint, 1: first species, 2: second species, 3: third

species, 4: fourth species
188 (defvar *sp-arr) ; represents *species-arr by position in the measure
189 (defparameter *is-nth-species-arr (list nil nil nil nil nil)) ; if *species-arr is n, then *

is-nth-species-arr is true
190 (defparameter *is-3rd-species-arr (list nil nil nil nil)) ; if *species-arr is 3, then *

is-3rd-species-arr is true
191 (defparameter *is-4th-species-arr (list nil nil nil nil)) ; if *species-arr is 4, then *

is-4th-species-arr is true
192 (defvar *is-2nd-or-3rd-species-arr) ; if *species-arr is 2 or 3, then *

is-2nd-or-3rd-species-arr is true
193 (defvar *m-ta-intervals) ; represents the m-intervals between the thesis note and the arsis

note of the same measure
194 (defvar *m-ta-intervals-brut) ; same but without the absolute reduction
195 (defvar *is-mostly-3rd-arr) ; true if second, third and fourth notes are from the 3rd

species
196 (defvar *is-constrained-arr) ; represents !(*is-0th-species-arr) i.e. there are species

constraints
197 (defparameter *is-cst-arr (list nil nil nil nil)) ; represents *is-constrained-arr for all

beats of the measure
198

199 ; array representing the brut melodic intervals of the cantus firmus
200 (create-cf-brut-m-intervals *cf *cf-brut-m-intervals)
201)
202

203

204

205 ;; DISPATCHER FUNCTION
206 (defun fux-cp (species)

102

207 "Dispatches the counterpoint generation to the appropriate function according to the species
."

208 ; re/set global variables
209 (set-space-variables)
210

211 (print (list "Choosing species: " species))
212 (case species ; [1, 2, 3, 4, 5]
213 (1 (progn
214 (setq *N-COST-FACTORS 5)
215 (fux-cp-1st)
216))
217 (2 (progn
218 (setq *N-COST-FACTORS 6)
219 (fux-cp-2nd)
220))
221 (3 (progn
222 (setq *N-COST-FACTORS 7)
223 (fux-cp-3rd)
224))
225 (4 (progn
226 (setq *N-COST-FACTORS 6)
227 (fux-cp-4th)
228))
229 (5 (progn
230 (setq *N-COST-FACTORS 8)
231 (fux-cp-5th)
232))
233 (otherwise (error "Species ~A not implemented" species))
234)
235)
236

237 (defun fux-search-engine (the-cp &optional (species 1))
238 (let (se tstop sopts)
239 ; TOTAL COST
240 (gil::g-sum *sp* *total-cost *cost-factors) ; sum of all the cost factors
241 (gil::g-cost *sp* *total-cost) ; set the cost function
242

243 ;; SPECIFY SOLUTION VARIABLES
244 (print "Specifying solution variables...")
245 (gil::g-specify-sol-variables *sp* the-cp)
246 (gil::g-specify-percent-diff *sp* 0)
247

248 ;; BRANCHING
249 (print "Branching...")
250 (setq var-branch-type gil::INT_VAR_DEGREE_SIZE_MAX)
251 (setq val-branch-type gil::INT_VAL_RANGE_MIN)
252

253 ; 5th species specific
254 (if (eq species 5) ; otherwise there is no species array
255 (gil::g-branch *sp* *species-arr var-branch-type gil::INT_VAL_RND)
256)
257

258 ; 3rd and 5th species specific
259 (if (member species (list 3 5))(progn
260 (gil::g-branch *sp* *m-degrees-cost var-branch-type val-branch-type)
261 (gil::g-branch *sp* *off-key-cost var-branch-type val-branch-type)
262)
263 (progn ; else
264 (if (eq species 2)(progn
265 ; (gil::g-branch *sp* *real-motions-cost var-branch-type val-branch-type)
266 ; (gil::g-branch *sp* *m-degrees-cost var-branch-type gil::INT_VAL_SPLIT_MIN)
267 ; (gil::g-branch *sp* *off-key-cost var-branch-type val-branch-type)
268))
269)
270)
271

272 ; 5th species specific

103

273 (if (and (eq species 5) (>= VOICE_TYPE 0)) ; otherwise there is no species array
274 (progn
275 (gil::g-branch *sp* *no-syncope-cost var-branch-type val-branch-type)
276 (gil::g-branch *sp* *not-cambiata-cost var-branch-type val-branch-type)
277)
278)
279

280 ; branching *total-cost
281 (gil::g-branch *sp* *total-cost var-branch-type val-branch-type)
282 (if (eq species 2)
283 (gil::g-branch *sp* *cost-factors var-branch-type val-branch-type)
284)
285

286 ;; Solution variables branching
287 (gil::g-branch *sp* the-cp var-branch-type val-branch-type)
288

289 ; time stop
290 (setq tstop (gil::t-stop)); create the time stop object
291 (setq timeout 5)
292 (gil::time-stop-init tstop (* timeout 1000)); initialize it (time is expressed in ms)
293

294 ; search options
295 (setq sopts (gil::search-opts)); create the search options object
296 (gil::init-search-opts sopts); initialize it
297 ; (gil::set-n-threads sopts 1)
298 (gil::set-time-stop sopts tstop); set the timestop object to stop the search if it takes

too long
299

300 ;; SEARCH ENGINE
301 (print "Search engine...")
302 (setq se (gil::search-engine *sp* (gil::opts sopts) gil::DFS));
303 (print se)
304

305 (print "CSP constructed")
306 (list se the-cp tstop sopts)
307)
308)
309

310

311

312 ; SEARCH-NEXT-SOLUTION
313 ; <l> is a list containing in that order the search engine for the problem, the variables
314 ; this function finds the next solution of the CSP using the search engine given as an argument
315 (defun search-next-fux-cp (l)
316 (print "Searching next solution...")
317 (let (
318 (se (first l))
319 (the-cp (second l))
320 (tstop (third l))
321 (sopts (fourth l))
322 (species (fifth l))
323 (check t)
324 sol sol-pitches sol-species
325)
326

327 (time (om::while check :do
328 ; reset the tstop timer before launching the search
329 (gil::time-stop-reset tstop)
330 ; try to find a solution
331 (time (setq sol (try-find-solution se)))
332 (if (null sol)
333 ; then check if there are solutions left and if the user wishes to continue

searching
334 (stopped-or-ended (gil::stopped se) (getparam ’is-stopped))
335 ; else we have found a solution so break the loop
336 (setf check nil)
337)

104

338))
339

340 ; print the solution from GiL
341 (print "Solution: ")
342 #| (case species
343 (1 (progn
344 (print "PRINT 1st species")
345 (print (list "(first *m-intervals-brut)" (gil::g-values sol (first *

m-intervals-brut))))
346 (print (list "*cf-brut-m-intervals " (gil::g-values sol *cf-brut-m-intervals

)))
347 (print (list "(first *motions) " (gil::g-values sol (first *motions))))
348 (print (list "(first *h-intervals) " (gil::g-values sol (first *h-intervals)

)))
349))
350 (2 (progn
351 (print "PRINT 2nd species")
352 (print (list "(first *cp) " (gil::g-values sol (first *cp))))
353 (print (list "(third *cp) " (gil::g-values sol (third *cp))))
354 (print (list "(third *h-intervals)" (gil::g-values sol (third *h-intervals))))
355 (print (list "*m-all-intervals" (gil::g-values sol *m-all-intervals)))
356 (print (list "*real-motions" (gil::g-values sol *real-motions)))
357 (print (list "*penult-thesis-cost" (gil::g-values sol *penult-thesis-cost)))
358))
359 (3 (progn
360 (print "PRINT 3rd species")
361 (print (list "(first *cp) " (gil::g-values sol (first *cp))))
362 (print (list "(second *cp)" (gil::g-values sol (second *cp))))
363 (print (list "(third *cp) " (gil::g-values sol (third *cp))))
364 (print (list "(fourth *cp)" (gil::g-values sol (fourth *cp))))
365 (print (list "*extended-cp-domain" *extended-cp-domain))
366 (print (list "(first *h-intervals) " (gil::g-values sol (first *h-intervals))))
367 (print (list "(second *h-intervals)" (gil::g-values sol (second *h-intervals))))
368 (print (list "(third *h-intervals) " (gil::g-values sol (third *h-intervals))))
369 (print (list "(fourth *h-intervals)" (gil::g-values sol (fourth *h-intervals))))
370 (print (list "*m-all-intervals" (gil::g-values sol *m-all-intervals)))
371 ; (print (list "(fourth *m-intervals-brut)" (gil::g-values sol (fourth *

m-intervals-brut))))
372 ; (print (list "(first *motions) " (gil::g-values sol (first *motions))))
373 (print (list "(fourth *motions)" (gil::g-values sol (fourth *motions))))
374 (print (list "*not-cambiata-cost " (gil::g-values sol *not-cambiata-cost)))
375 (print (list "*m2-eq-zero-cost " (gil::g-values sol *m2-eq-zero-cost)))
376 ; (print (list "(first *cons-cost) " (gil::g-values sol (first *cons-cost))))
377 ; (print (list "(second *cons-cost) " (gil::g-values sol (second *cons-cost))))
378 ; (print (list "(third *cons-cost) " (gil::g-values sol (third *cons-cost))))
379 ; (print (list "(fourth *cons-cost) " (gil::g-values sol (fourth *cons-cost))))
380))
381 (4 (progn
382 (print "PRINT 4th species")
383 (print (list "(first *cp) " (gil::g-values sol (first *cp))))
384 (print (list "(third *cp) " (gil::g-values sol (third *cp))))
385 (print (list "(first *h-intervals)" (gil::g-values sol (first *h-intervals))))
386 (print (list "(third *h-intervals)" (gil::g-values sol (third *h-intervals))))
387 (print (list "*m-all-intervals " (gil::g-values sol *m-all-intervals)))
388 (print (list "(third *m-intervals) " (gil::g-values sol (third *m-intervals)

)))
389 (print (list "(first *m-succ-intervals) " (gil::g-values sol (first *

m-succ-intervals))))
390 (print (list "*no-syncope-cost" (gil::g-values sol *no-syncope-cost)))
391))
392 (5 (progn
393 (print "PRINT 5th species")
394 (print (list "(first *cp) " (gil::g-values sol (first *cp))))
395 (print (list "(second *cp)" (gil::g-values sol (second *cp))))
396 (print (list "(third *cp) " (gil::g-values sol (third *cp))))
397 (print (list "(fourth *cp)" (gil::g-values sol (fourth *cp))))
398 (print (list "(first *h-intervals) " (gil::g-values sol (first *h-intervals))))

105

399 (print (list "(second *h-intervals)" (gil::g-values sol (second *h-intervals))))
400 (print (list "(third *h-intervals) " (gil::g-values sol (third *h-intervals))))
401 (print (list "(fourth *h-intervals)" (gil::g-values sol (fourth *h-intervals))))
402 (print (list "*m-all-intervals" (gil::g-values sol *m-all-intervals)))
403 ; (print (list "(fourth *m-intervals-brut)" (gil::g-values sol (fourth *

m-intervals-brut))))
404 ; (print (list "(first *motions) " (gil::g-values sol (first *motions))))
405 (print (list "(fourth *motions)" (gil::g-values sol (fourth *motions))))
406 (print (list "*not-cambiata-cost " (gil::g-values sol *not-cambiata-cost)))
407 (print (list "*m2-eq-zero-cost " (gil::g-values sol *m2-eq-zero-cost)))
408 ; (print (list "(first *cons-cost) " (gil::g-values sol (first *cons-cost))))
409 (print (list "(second *cons-cost) " (gil::g-values sol (second *cons-cost))))
410 (print (list "(third *cons-cost) " (gil::g-values sol (third *cons-cost))))
411 (print (list "(fourth *cons-cost) " (gil::g-values sol (fourth *cons-cost))))
412 (print (list "*species-arr" sol-species))
413 (print (list "*sp-arr1" (gil::g-values sol (first *sp-arr))))
414 (print (list "*sp-arr2" (gil::g-values sol (second *sp-arr))))
415 (print (list "*sp-arr3" (gil::g-values sol (third *sp-arr))))
416 (print (list "*sp-arr4" (gil::g-values sol (fourth *sp-arr))))
417))
418)
419 (print (list "*m-degrees-cost " (gil::g-values sol *m-degrees-cost)))
420 (print (list "*m-degrees-type " (gil::g-values sol *m-degrees-type)))
421 (print (list "*off-key-cost " (gil::g-values sol *off-key-cost)))
422 (print (list "*fifth-cost " (gil::g-values sol *fifth-cost)))
423 (print (list "*octave-cost " (gil::g-values sol *octave-cost)))
424 (print (list "*cost-factors" (gil::g-values sol *cost-factors)))
425 (print (list "### COST ### " (gil::g-values sol *total-cost)))
426 (print (list "scale " *scale))
427 (print (list "borrowed-scale" *borrowed-scale))
428 (print (list "off-scale " (reverse *off-scale))) |#
429 (setq sol-pitches (gil::g-values sol the-cp)) ; store the values of the solution
430 (print sol-pitches)
431 (case species
432 (4 (progn
433 (setq rythmic+pitches (get-basic-rythmic 4 *cf-len sol-pitches)) ; get the

rythmic correpsonding to the species
434 (setq rythmic-om (first rythmic+pitches))
435 (setq pitches-om (second rythmic+pitches))
436))
437 (5 (progn
438 (setq sol-species (gil::g-values sol *species-arr)) ; store the values of the

solution
439 (setq rythmic+pitches (parse-species-to-om-rythmic sol-species sol-pitches))
440 (setq rythmic-om (first rythmic+pitches))
441 ; (print (list "rythmic-om" rythmic-om))
442 (setq pitches-om (second rythmic+pitches))
443 ; (print (list "pitches-om" pitches-om))
444 (setq check (checksum-sol pitches-om rythmic-om))
445 ; (print (list "check" check))
446 (if (not (null *prev-sol-check))
447 ; then compare the pitches of the previous solution with the current one
448 ; if they are the same launch a new search
449 (if (member check *prev-sol-check)
450 (progn
451 (search-next-fux-cp l)
452)
453 (progn
454 (print *prev-sol-check)
455 (setq *prev-sol-check (append *prev-sol-check (list check)))
456)
457)
458 ; else register the pitches of the current solution
459 (progn
460 (setq *prev-sol-check (list check))
461)
462)

106

463))
464 (otherwise (progn
465 (setq rythmic-om (get-basic-rythmic species *cf-len)) ; get the rythmic

correpsonding to the species
466 (setq pitches-om sol-pitches)
467))
468)
469 (make-instance ’voice :chords (to-midicent pitches-om) :tree (om::mktree rythmic-om ’(4

4)) :tempo *cf-tempo)
470)
471)
472

473 ; try to find a solution, catch errors from GiL and Gecode and restart the search
474 (defun try-find-solution (se)
475 (handler-case
476 (gil::search-next se) ; search the next solution, sol is the space of the solution
477 (error (c)
478 (print "gil::ERROR")
479 (try-find-solution se)
480)
481)
482)
483

484 ; determines if the search has been stopped by the solver because there are no more solutions or
if the user has stopped the search

485 (defun stopped-or-ended (stopped-se stop-user)
486 (print (list "stopped-se" stopped-se "stop-user" stop-user))
487 (if (= stopped-se 0); if the search has not been stopped by the TimeStop object, there is no

more solutions
488 (error "There are no more solutions.")
489)
490 ;otherwise, check if the user wants to keep searching or not
491 (if stop-user
492 (error "The search has been stopped. Press next to continue the search.")
493)
494)

E.5 1sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard
4 ; Date: June 3, 2023
5 ; This file contains the function that adds all the necessary constraints to the first species.
6

7 ;;==========================#
8 ;; FIRST SPECIES #
9 ;;==========================#

10 (defun fux-cp-1st (&optional (species 1))
11 "Create the CSP for the first species of Fux’s counterpoint."
12

13 ;== CREATING GIL ARRAYS
=============================

14 ;; initialize the variables
15 (print "Initializing variables...")
16

17 ; add the counterpoint array to the space with the domain *cp-domain
18 (setf (first *cp) (gil::add-int-var-array-dom *sp* *cf-len *extended-cp-domain))
19

20 (if (and (eq species 1) (is-borrow-allowed))
21 ; then add to the penultimate note more possibilities
22 (setf (nth *cf-penult-index (first *cp)) (gil::add-int-var-dom *sp* *chromatic-cp-domain

))
23)
24 ; creating harmonic intervals array

107

25 (print "Creating harmonic intervals array...")
26

27 ; array of IntVar representing the absolute intervals % 12 between the cantus firmus and the
counterpoint

28 (setf (first *h-intervals) (gil::add-int-var-array *sp* *cf-len 0 11))
29 (create-h-intervals (first *cp) *cf (first *h-intervals))
30

31 ; creating melodic intervals array
32 (print "Creating melodic intervals array...")
33 ; array of IntVar representing the absolute intervals between two notes in a row of the

counterpoint
34 (setf (first *m-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 12))
35 (setf (first *m-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -12 12))
36 (create-m-intervals-self (first *cp) (first *m-intervals) (first *m-intervals-brut))
37

38 (if (eq species 1) ; only for the first species
39 ; then
40 (progn
41 ; creating melodic intervals array between the note n and n+2
42 (setq *m2-intervals (gil::add-int-var-array *sp* *cf-penult-index 0 12))
43 (setq *m2-intervals-brut (gil::add-int-var-array *sp* *cf-penult-index -12 12))
44 (create-m2-intervals (first *cp) *m2-intervals *m2-intervals-brut)
45

46 ; creating boolean is counterpoint off key array
47 (print "Creating is counterpoint off key array...")
48 (setq *is-cp-off-key-arr (gil::add-bool-var-array *sp* *cf-len 0 1))
49 (create-is-member-arr (first *cp) *is-cp-off-key-arr *off-domain)
50)
51)
52

53 ; creating perfect consonances boolean array
54 (print "Creating perfect consonances boolean array...")
55 ; array of BoolVar representing if the interval between the cantus firmus and the

counterpoint is a perfect consonance
56 (setq *is-p-cons-arr (gil::add-bool-var-array *sp* *cf-len 0 1))
57 (create-is-p-cons-arr (first *h-intervals) *is-p-cons-arr)
58

59 ; creating order/role of pitch array (if cantus firmus is higher or lower than counterpoint)
60 ; 0 for being the bass, 1 for being above
61 (print "Creating order of pitch array...")
62 (setf (first *is-cf-bass-arr) (gil::add-bool-var-array *sp* *cf-len 0 1))
63 (create-is-cf-bass-arr (first *cp) *cf (first *is-cf-bass-arr))
64

65 ; creating motion array
66 (print "Creating motion array...")
67 (setf (first *motions) (gil::add-int-var-array *sp* *cf-last-index 0 2)) ; 0 = contrary, 1 =

oblique, 2 = direct/parallel
68 (setf (first *motions-cost) (gil::add-int-var-array-dom *sp* *cf-last-index *motions-domain

*))
69 (create-motions (first *m-intervals-brut) *cf-brut-m-intervals (first *motions) (first *

motions-cost))
70

71

72 ;== HARMONIC CONSTRAINTS
============================

73 (print "Posting constraints...")
74

75 ; for all intervals between the cantus firmus and the counterpoint, the interval must be a
consonance

76 (print "Harmonic consonances...")
77 (case species
78 (1 (add-h-cons-cst *cf-len *cf-penult-index (first *h-intervals)))
79 (2 (add-h-cons-cst *cf-len *cf-penult-index (first *h-intervals) PENULT_THESIS_VAR))
80 (3 (add-h-cons-cst *cf-len *cf-penult-index (first *h-intervals) PENULT_1Q_VAR))
81 (otherwise (error "Species not supported"))
82)
83

108

84 ; no unisson between the cantus firmus and the counterpoint unless it is the first note or
the last note

85 (print "No unisson...")
86 (add-no-unisson-cst (first *cp) *cf)
87

88 (if (/= species 3)
89 ; then
90 (progn
91 ; must start with a perfect consonance
92 (print "Perfect consonance at the beginning...")
93 (add-p-cons-start-cst (first *h-intervals))
94

95 ; must end with a perfect consonance
96 (print "Perfect consonance at the end...")
97 (add-p-cons-end-cst (first *h-intervals))
98)
99)

100

101 ; if penultimate measure, a major sixth or a minor third must be used
102 ; depending if the cantus firmus is at the bass or on the top part
103 (print "Penultimate measure...")
104 (if (eq species 1)
105 ; then
106 (add-penult-cons-cst (penult (first *is-cf-bass-arr)) (penult (first *h-intervals)))
107)
108

109

110 ;== MELODIC CONSTRAINTS
=============================

111

112 ; NOTE: with the degree iii in penultimate *cf measure -> no solution bc there is a *tritone
between I#(minor third) and V.

113 (print "Melodic constraints...")
114 (if (eq species 1)
115 ; then
116 (progn
117 ; no more than minor sixth melodic interval
118 (print "No more than minor sixth...")
119 (add-no-m-jump-cst (first *m-intervals))
120

121 ; no *chromatic motion between three consecutive notes
122 (print "No chromatic motion...")
123 (add-no-chromatic-m-cst (first *m-intervals-brut) *m2-intervals-brut)
124

125 ;==================================== MOTION CONSTRAINTS
============================

126 (print "Motion constraints...")
127

128 ; no direct motion to reach a perfect consonance
129 (print "No direct motion to reach a perfect consonance...")
130 (add-no-direct-move-to-p-cons-cst (first *motions) *is-p-cons-arr)
131

132 ; no battuta kind of motion
133 ; i.e. contrary motion to an *octave, lower voice up, higher voice down,

counterpoint melodic interval < -4
134 (print "No battuta kind of motion...")
135 (add-no-battuta-cst (first *motions) (first *h-intervals) (first *m-intervals-brut)

(first *is-cf-bass-arr))
136)
137)
138

139

140 ;== COST FACTORS
====================================

141 (print "Cost function...")
142

143 (if (eq species 1)

109

144 ; then
145 (progn
146 (setq *m-all-intervals (first *m-intervals))
147 (set-cost-factors)
148 ; 1, 2) imperfect consonances are preferred to perfect consonances
149 (print "Imperfect consonances are preferred to perfect consonances...")
150 (add-p-cons-cost-cst)
151 ; 3, 4) add off-key cost, m-degrees cost and tritons cost
152 (set-general-costs-cst *cf-len)
153

154 ; 5) motion costs
155 (add-cost-to-factors (first *motions-cost))
156)
157)
158

159

160 ; RETURN
161 (if (eq species 1)
162 ; then create the search engine
163 (append (fux-search-engine (first *cp)) (list species))
164 ; else
165 nil
166)
167)

E.6 2sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard
4 ; Date: June 3, 2023
5 ; This file contains the function that adds all the necessary constraints to the second species.
6

7 ;;==========================#
8 ;; SECOND SPECIES #
9 ;;==========================#

10 ;; Note: fux-cp-2nd execute the first species algorithm without some constraints.
11 ;; In this function, all the variable names without the arsis-suffix refers to thesis notes AKA

the first species notes.
12 ;; All the variable names with the arsis-suffix refers to arsis notes AKA notes on the upbeat.
13 (defun fux-cp-2nd (&optional (species 2))
14 "Create the CSP for the 2nd species of Fux’s counterpoint, with the cantus firmus as input"
15

16 ;; ADD FIRST SPECIES CONSTRAINTS
17 (fux-cp-1st 2)
18

19 (print "########## SECOND SPECIES ##########")
20

21 ;== CREATION OF GIL ARRAYS ==========================
22 (print "Initializing variables...")
23 ; add the arsis counterpoint array (of [*cf-len - 1] length) to the space with the domain *

cp-domain
24 (setf (third *cp) (gil::add-int-var-array-dom *sp* *cf-last-index *extended-cp-domain))
25 ; add to the penultimate note more possibilities
26 (if (is-borrow-allowed)
27 (setf (nth *cf-penult-index (third *cp)) (gil::add-int-var-dom *sp* *chromatic-cp-domain

))
28)
29

30 ; merging cp and cp-arsis into one array
31 (setq *total-cp-len (+ *cf-len *cf-last-index))
32 (setq *total-cp (gil::add-int-var-array *sp* *total-cp-len 0 127)) ; array of IntVar

representing thesis and arsis notes combined
33 (merge-cp (list (first *cp) (third *cp)) *total-cp) ; merge the two counterpoint arrays into

one

110

34

35 ; creating harmonic intervals array
36 (print "Creating harmonic intervals array...")
37 ; array of IntVar representing the absolute intervals % 12 between the cantus firmus and the

counterpoint (arsis notes)
38 (setf (third *h-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 11))
39 (create-h-intervals (third *cp) (butlast *cf) (third *h-intervals))
40 ; array of IntVar representing the absolute intervals (not % 12) and brut (just p - q)
41 ; between the cantus firmus and the counterpoint (thesis notes)
42 (setq *h-intervals-abs (gil::add-int-var-array *sp* *cf-len 0 127))
43 (setq *h-intervals-brut (gil::add-int-var-array *sp* *cf-len -127 127))
44 (create-intervals *cf (first *cp) *h-intervals-abs *h-intervals-brut)
45

46

47 ; creating melodic intervals array
48 (print "Creating melodic intervals array...")
49 ; array of IntVar representing the melodic intervals between arsis note and next thesis note

of the counterpoint
50 (setf (third *m-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 12))
51 (setf (third *m-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -12 12)) ; same

without absolute reduction
52 (create-m-intervals-next-meas (third *cp) (first *cp) (third *m-intervals) (third *

m-intervals-brut))
53 ; array of IntVar representing the melodic intervals between a thesis and an arsis note of

the same measure the counterpoint
54 (setf (first *m-succ-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 12))
55 (setf (first *m-succ-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -12 12))
56 (create-m-intervals-in-meas (first *cp) (third *cp) (first *m-succ-intervals) (first *

m-succ-intervals-brut))
57

58

59 ; creating melodic intervals array between the note n and n+2 for the whole counterpoint
60 (setq *m2-len (- (* *cf-last-index 2) 1)) ; number of melodic intervals between n and n+2

for thesis and arsis notes combined
61 (setq *m2-intervals (gil::add-int-var-array *sp* *m2-len 0 12))
62 (setq *m2-intervals-brut (gil::add-int-var-array *sp* *m2-len -12 12))
63 (create-m2-intervals *total-cp *m2-intervals *m2-intervals-brut)
64

65 ; creating melodic intervals array between the note n and n+1 for the whole counterpoint
66 (setq *total-m-len (* *cf-last-index 2)) ; number of melodic intervals between n and n+1 for

thesis and arsis notes combined
67 (setq *m-all-intervals (gil::add-int-var-array *sp* *total-m-len 0 12))
68 (setq *m-all-intervals-brut (gil::add-int-var-array *sp* *total-m-len -12 12))
69 (create-m-intervals-self *total-cp *m-all-intervals *m-all-intervals-brut)
70

71 ; creating motion array
72 ; 0 = contrary, 1 = oblique, 2 = direct/parallel
73 (print "Creating motion array...")
74 (setf (third *motions) (gil::add-int-var-array *sp* *cf-last-index 0 2))
75 (setf (third *motions-cost) (gil::add-int-var-array-dom *sp* *cf-last-index *motions-domain

*))
76 (setq *real-motions (gil::add-int-var-array *sp* *cf-last-index 0 2))
77 (setf *real-motions-cost (gil::add-int-var-array-dom *sp* *cf-last-index *motions-domain*))
78 (create-motions (third *m-intervals-brut) *cf-brut-m-intervals (third *motions) (third *

motions-cost))
79 (create-real-motions (first *m-succ-intervals) (first *motions) (third *motions) *

real-motions (first *motions-cost) (third *motions-cost) *real-motions-cost)
80

81 ; creating boolean diminution array
82 (print "Creating diminution array...")
83 ; Note: a diminution is the intermediate note that exists between two notes separated by a

jump of a third
84 ; i.e. E -> D (dim) -> C
85 (setq *is-ta-dim-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1))
86 (print "DEBUG")
87 (print (first *m-succ-intervals))
88 (print (first *m-intervals))

111

89 (print (third *m-intervals))
90 (create-is-ta-dim-arr (first *m-succ-intervals) (first *m-intervals) (third *m-intervals) *

is-ta-dim-arr)
91

92

93 ; creating boolean is cantus firmus bass array
94 (print "Creating is cantus firmus bass array...")
95 ; array of BoolVar representing if the cantus firmus is lower than the arsis counterpoint
96 (setf (third *is-cf-bass-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
97 (create-is-cf-bass-arr (third *cp) (butlast *cf) (third *is-cf-bass-arr))
98

99 ; creating boolean is cantus firmus neighboring the counterpoint array
100 (print "Creating is cantus firmus neighboring array...")
101 (setq *is-nbour-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1))
102 (create-is-nbour-arr *h-intervals-abs (first *is-cf-bass-arr) *cf-brut-m-intervals *

is-nbour-arr)
103

104 ; creating boolean is counterpoint off key array
105 (print "Creating is counterpoint off key array...")
106 (setq *is-cp-off-key-arr (gil::add-bool-var-array *sp* *total-cp-len 0 1))
107 (create-is-member-arr *total-cp *is-cp-off-key-arr *off-domain)
108

109

110 ;== HARMONIC CONSTRAINTS ============================
111 (print "Posting constraints...")
112

113 (print "Harmonic consonances...")
114

115 ; for all harmonic intervals between the cantus firmus and the arsis notes, the interval
must be a consonance

116 ; unless the arsis note is a diminution
117 (print "No dissonance unless diminution for arsis notes...")
118 (add-h-cons-arsis-cst *cf-len *cf-penult-index (third *h-intervals) *is-ta-dim-arr)
119

120 ; Fux does not follow this rule so deactivate ?
121 ; no unisson between the cantus firmus and the arsis counterpoint
122 ; (print "No unisson at all...")
123 ; (add-no-unisson-at-all-cst (third *cp) (butlast *cf))
124

125 ; if penultimate measure, a major sixth or a minor third must be used
126 ; depending if the cantus firmus is at the bass or on the top part
127 (print "Penultimate measure...")
128 ; (gil::g-rel *sp* (fourth (first *h-intervals)) gil::IRT_NQ 7) ; TODO: fix this
129 (add-penult-cons-cst (lastone (third *is-cf-bass-arr)) (lastone (third *h-intervals)))
130

131

132 ;== MELODIC CONSTRAINTS =============================
133 (print "Melodic constraints...")
134

135 ; no more than minor sixth melodic interval between thesis and arsis notes UNLESS:
136 ; - the interval between the cantus firmus and the thesis note <= major third
137 ; - the cantus firmus is getting closer to the thesis note
138 (print "No more than minor sixth melodic interval between thesis and arsis notes unless...")
139 (add-m-inter-arsis-cst (first *m-succ-intervals) *is-nbour-arr)
140

141 ; Fux does not follow this rule, deactivate ?
142 ; (print "No more than minor sixth melodic interval between arsis and thesis notes...")
143 ; (add-no-m-jump-cst (third *m-intervals))
144

145 ; no *chromatic motion between three consecutive notes
146 (print "No chromatic motion...")
147 (add-no-chromatic-m-cst *m-all-intervals-brut *m2-intervals-brut)
148

149 ; no unisson between two consecutive notes
150 (print "No unisson between two consecutive notes...")
151 (add-no-unisson-at-all-cst *total-cp (rest *total-cp))
152

112

153

154 ;== MOTION CONSTRAINTS ============================
155 (print "Motion constraints...")
156

157 ; no direct motion to reach a perfect consonance
158 (print "No direct motion to reach a perfect consonance...")
159 (add-no-direct-move-to-p-cons-cst *real-motions *is-p-cons-arr)
160

161 ; no battuta kind of motion
162 ; i.e. contrary motion to an *octave, lower voice up, higher voice down, counterpoint

melodic interval < -4
163 (print "No battuta kind of motion...")
164 (add-no-battuta-cst (third *motions) (first *h-intervals) (third *m-intervals-brut) (third *

is-cf-bass-arr))
165

166

167

168 ;== COST FACTORS ====================================
169 (set-cost-factors)
170 ; 1, 2) imperfect consonances are preferred to perfect consonances
171 (print "Imperfect consonances are preferred to perfect consonances...")
172 (add-p-cons-cost-cst)
173

174 ; 3, 4) add off-key cost, m-degrees cost
175 (set-general-costs-cst)
176

177 ; 5) contrary motion is preferred
178 (add-cost-to-factors *real-motions-cost)
179

180 ; 6) the penultimate thesis note is not a fifth
181 (print "Penultimate thesis note is not a fifth...")
182 ; *penult-thesis-cost = *cf-len (big cost) if penultimate *h-interval /= 7
183 (setq *penult-thesis-cost (gil::add-int-var-dom *sp* (getparam-dom ’penult-sixth-cost)))
184 (add-single-cost-cst (penult (first *h-intervals)) gil::IRT_NQ 7 *penult-thesis-cost *

penult-sixth-cost*)
185 (setf (nth *n-cost-added *cost-factors) *penult-thesis-cost)
186 (incf *n-cost-added)
187

188

189 ;== COST FUNCTION ===================================
190 (print "Cost function...")
191

192 ; RETURN
193 (if (eq species 2)
194 ; then create the search engine
195 (append (fux-search-engine *total-cp 2) (list species))
196 ; else
197 nil
198)
199)

E.7 3sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard
4 ; Date: June 3, 2023
5 ; This file contains the function that adds all the necessary constraints to the third species.
6

7 ;;==========================#
8 ;; THIRD SPECIES #
9 ;;==========================#

10 ;; Note: fux-cp-3rd execute the first species algorithm without some constraints.
11 ;; In this function, 4 quarter notes by measure are assumed.
12 (defun fux-cp-3rd (&optional (species 3))

113

13 "Create the CSP for the 3rd species of Fux’s counterpoint, with the cantus firmus as input"
14 (print "Creating the CSP for the 3rd species of Fux’s counterpoint...")
15

16 ;; ADD FIRST SPECIES CONSTRAINTS
17 (fux-cp-1st 3)
18

19 (print "########## THIRD SPECIES ##########")
20

21 ;== CREATION OF GIL ARRAYS ==========================
22 (print "Initializing variables...")
23

24 (loop for i from 1 to 3 do
25 ; add all quarter notes to the space with the domain *cp-domain
26 (setf (nth i *cp) (gil::add-int-var-array-dom *sp* *cf-last-index *extended-cp-domain))
27

28 (if (and (eq i 3) (is-borrow-allowed))
29 ; then add to the penultimate note more possibilities
30 (setf (nth *cf-penult-index (nth i *cp)) (gil::add-int-var-dom *sp* *

chromatic-cp-domain))
31)
32)
33

34 (loop for i from 1 to 3 do
35 (setq i-1 (- i 1))
36 ; creating harmonic intervals array
37 ; array of IntVar representing the absolute intervals % 12 between the cantus firmus and

the counterpoint
38 (setf (nth i *h-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 11))
39 (create-h-intervals (nth i *cp) (butlast *cf) (nth i *h-intervals))
40

41 ; array of IntVar representing the absolute intervals between a thesis and an arsis note
of the same measure the counterpoint

42 (setf (nth i-1 *m-succ-intervals) (gil::add-int-var-array *sp* *cf-last-index 1 12))
43 (setf (nth i-1 *m-succ-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -12

12))
44 (create-intervals (nth i-1 *cp) (nth i *cp) (nth i-1 *m-succ-intervals) (nth i-1 *

m-succ-intervals-brut))
45)
46

47 ; merging cp and cp-arsis into one array
48 (print "Mergin cps...")
49 (setq *total-cp-len (+ *cf-len (* *cf-last-index 3))) ; total length of the counterpoint

array
50 (setq *total-cp (gil::add-int-var-array *sp* *total-cp-len 0 127)) ; array of IntVar

representing thesis and arsis notes combined
51 (merge-cp *cp *total-cp) ; merge the four counterpoint arrays into one
52

53 ; creating melodic intervals array
54 (print "Creating melodic intervals array...")
55 ; array of IntVar representing the absolute intervals
56 ; between the last note of measure m and the first note of measure m+1 of the counterpoint
57 (setf (fourth *m-intervals) (gil::add-int-var-array *sp* *cf-last-index 1 12))
58 (setf (fourth *m-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -12 12)) ; same

without absolute reduction
59 (create-m-intervals-next-meas (fourth *cp) (first *cp) (fourth *m-intervals) (fourth *

m-intervals-brut))
60

61 ; creating melodic intervals array between the note n and n+2 for the whole counterpoint
62 (setq *m2-len (- (* *cf-last-index 4) 1)) ; number of melodic intervals between n and n+2

for the total counterpoint
63 (setq *m2-intervals (gil::add-int-var-array *sp* *m2-len 0 12))
64 (setq *m2-intervals-brut (gil::add-int-var-array *sp* *m2-len -12 12))
65 (create-m2-intervals *total-cp *m2-intervals *m2-intervals-brut)
66

67 ; creating melodic intervals array between the note n and n+1 for the whole counterpoint
68 (setq *total-m-len (* *cf-last-index 4)) ; number of melodic intervals between n and n+1 for

the total counterpoint

114

69 (setq *m-all-intervals (gil::add-int-var-array *sp* *total-m-len 0 12))
70 (setq *m-all-intervals-brut (gil::add-int-var-array *sp* *total-m-len -12 12))
71 (create-m-intervals-self *total-cp *m-all-intervals *m-all-intervals-brut)
72

73 ; creating motion array
74 ; 0 = contrary, 1 = oblique, 2 = direct/parallel
75 (print "Creating motion array...")
76 (setf (fourth *motions) (gil::add-int-var-array *sp* *cf-last-index 0 2))
77 (setf (fourth *motions-cost) (gil::add-int-var-array-dom *sp* *cf-last-index *motions-domain

*))
78 (create-motions (fourth *m-intervals-brut) *cf-brut-m-intervals (fourth *motions) (fourth *

motions-cost))
79

80 ; creating boolean is cantus firmus bass array
81 (print "Creating is cantus firmus bass array...")
82 ; array of BoolVar representing if the cantus firmus is lower than the arsis counterpoint
83 (setf (fourth *is-cf-bass-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
84 (create-is-cf-bass-arr (fourth *cp) (butlast *cf) (fourth *is-cf-bass-arr))
85

86 ; creating boolean are five consecutive notes by joint degree array
87 (print "Creating are five consecutive notes by joint degree array...")
88 ; array of BoolVar representing if the five consecutive notes are by joint degree
89 (setq *is-5qn-linked-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1))
90 (create-is-5qn-linked-arr *m-all-intervals *m-all-intervals-brut *is-5qn-linked-arr)
91

92 ; creating boolean diminution array
93 (print "Creating diminution array...")
94 ; Note: a diminution is the intermediate note that exists between two notes separated by a

jump of a third
95 ; i.e. E -> D (dim) -> C
96 (setq *is-ta-dim-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1))
97 (create-is-ta-dim-arr (second *m-succ-intervals) (collect-by-4 *m2-intervals 1 T) (third *

m-succ-intervals) *is-ta-dim-arr)
98

99 ; creating boolean is consonant array
100 (print "Creating is consonant array...")
101 (loop for i from 0 to 3 do
102 ; array of BoolVar representing if the interval is consonant
103 (if (eq i 0)
104 (setf (nth i *is-cons-arr) (gil::add-bool-var-array *sp* *cf-len 0 1))
105 (setf (nth i *is-cons-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
106)
107 (create-is-member-arr (nth i *h-intervals) (nth i *is-cons-arr))
108)
109

110 ; creating boolean is not cambiata array
111 (print "Creating is not cambiata array...")
112 (setq *is-not-cambiata-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1))
113 (create-is-not-cambiata-arr (second *is-cons-arr) (third *is-cons-arr) (second *

m-succ-intervals) *is-not-cambiata-arr)
114

115 ; creating boolean is counterpoint off key array
116 (print "Creating is counterpoint off key array...")
117 (setq *is-cp-off-key-arr (gil::add-bool-var-array *sp* *total-cp-len 0 1))
118 (create-is-member-arr *total-cp *is-cp-off-key-arr *off-domain)
119

120

121 ;== HARMONIC CONSTRAINTS ============================
122 (print "Posting constraints...")
123 ; must start with a perfect consonance
124 (print "Perfect consonance at the beginning...")
125 (add-p-cons-start-cst (first *h-intervals))
126

127 ; must end with a perfect consonance
128 (print "Perfect consonance at the end...")
129 (add-p-cons-end-cst (first *h-intervals))
130

115

131 ; if penultimate measure, a major sixth or a minor third must be used
132 ; depending if the cantus firmus is at the bass or on the top part
133 (print "Penultimate measure...")
134 (add-penult-cons-cst (lastone (fourth *is-cf-bass-arr)) (lastone (fourth *h-intervals)))
135 ; the third note of the penultimate measure must be below the fourth one.
136 (gil::g-rel *sp* (lastone (third *m-succ-intervals-brut)) gil::IRT_GR 1)
137 ; the second note and the third note of the penultimate measure must be distant by greater

than 1 semi-tone from the fourth note
138 (gil::g-rel *sp* (penult *m2-intervals) gil::IRT_NQ 1)
139

140

141 ; five consecutive notes by joint degree implies that the first and the third note are
consonants

142 (print "Five consecutive notes by joint degree...")
143 (add-linked-5qn-cst (third *is-cons-arr) *is-5qn-linked-arr)
144

145 ; any dissonant note implies that it is surrounded by consonant notes
146 (print "Any dissonant note...")
147 (add-h-dis-or-cons-3rd-cst (second *is-cons-arr) (third *is-cons-arr) (fourth *is-cons-arr)

*is-ta-dim-arr)
148

149

150 ;== MELODIC CONSTRAINTS =============================
151 (print "Melodic constraints...")
152

153 ; no melodic interval between 9 and 11
154 (loop for m in *m-succ-intervals do
155 (add-no-m-jump-extend-cst m)
156)
157 (add-no-m-jump-extend-cst (fourth *m-intervals))
158

159 ; no *chromatic motion between three consecutive notes
160 (print "No chromatic motion...")
161 (add-no-chromatic-m-cst *m-all-intervals-brut *m2-intervals-brut)
162

163 ; Marcel’s rule: contrary melodic step after skip
164 (print "Marcel’s rule...")
165 (add-contrary-step-after-skip-cst *m-all-intervals *m-all-intervals-brut)
166

167 ;== MOTION CONSTRAINTS ============================
168 (print "Motion constraints...")
169

170 ; no direct motion to reach a perfect consonance
171 (print "No direct motion to reach a perfect consonance...")
172 (add-no-direct-move-to-p-cons-cst (fourth *motions) *is-p-cons-arr)
173

174 ; no battuta kind of motion
175 ; i.e. contrary motion to an *octave, lower voice up, higher voice down, counterpoint

melodic interval < -4
176 (print "No battuta kind of motion...")
177 (add-no-battuta-cst (fourth *motions) (first *h-intervals) (fourth *m-intervals-brut) (

fourth *is-cf-bass-arr)) ; TODO
178

179 ;== COST FACTORS ====================================
180 (set-cost-factors)
181 ; 1, 2) imperfect consonances are preferred to perfect consonances
182 (print "Imperfect consonances are preferred to perfect consonances...")
183 (add-p-cons-cost-cst)
184

185 ; 3, 4) add off-key cost, m-degrees cost and tritons cost
186 (set-general-costs-cst)
187

188 ; 5) contrary motion is preferred
189 (add-cost-to-factors (fourth *motions-cost))
190

191 ; 6) cambiata notes are preferred (cons - dis - cons > cons - cons - cons)
192 (print "Cambiata notes are preferred...")

116

193 ; IntVar array representing the cost to have cambiata notes
194 (setq *not-cambiata-cost (gil::add-int-var-array-dom *sp* *cf-last-index (getparam-dom ’

non-cambiata-cost)))
195 (add-cost-bool-cst *is-not-cambiata-arr *not-cambiata-cost *non-cambiata-cost*)
196 (add-cost-to-factors *not-cambiata-cost)
197

198 ; 7) intervals between notes n and n+2 are prefered greater than zero
199 (print "Intervals between notes n and n+2 are prefered different than zero...")
200 ; IntVar array representing the cost to have intervals between notes n and n+2 equal to zero
201 (setq *m2-eq-zero-cost (gil::add-int-var-array-dom *sp* *m2-len (getparam-dom ’

two-beats-apart-cost)))
202 (add-cost-cst *m2-intervals gil::IRT_EQ 0 *m2-eq-zero-cost *two-beats-apart-cost*)
203 (add-cost-to-factors *m2-eq-zero-cost)
204

205

206 ;== COST FUNCTION ===================================
207 (print "Cost function...")
208

209

210 ; RETURN
211 (if (eq species 3)
212 ; then create the search engine
213 (append (fux-search-engine *total-cp 3) (list species))
214 ; else
215 nil
216)
217)

E.8 4sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard
4 ; Date: June 3, 2023
5 ; This file contains the function that adds all the necessary constraints to the fourth species.
6

7 ;;==========================#
8 ;; FOURTH SPECIES #
9 ;;==========================#

10 ;; Note: fux-cp-4th execute the first species algorithm without some constraints.
11 ;; In this function, the first notes are in Arsis because of the syncopation.
12 (defun fux-cp-4th (&optional (species 4))
13 "Create the CSP for the 2nd species of Fux’s counterpoint, with the cantus firmus as input"
14

15 (print "########## FOURTH SPECIES ##########")
16

17 ;== CREATION OF GIL ARRAYS ==========================
18 (print "Initializing variables...")
19 ; add the arsis counterpoint array (of [*cf-len - 1] length) to the space with the domain *

cp-domain
20 (setf (third *cp) (gil::add-int-var-array-dom *sp* *cf-last-index *extended-cp-domain))
21 (setf (first *cp) (gil::add-int-var-array-dom *sp* *cf-last-index *extended-cp-domain))
22 ; add to the penultimate note more possibilities
23 (if (is-borrow-allowed)
24 (progn
25 (setf (nth *cf-penult-index (third *cp)) (gil::add-int-var-dom *sp* *chromatic-cp-domain

))
26 (setf (nth *cf-penult-index (first *cp)) (gil::add-int-var-dom *sp* *chromatic-cp-domain

))
27)
28)
29

30 ; merging cp and cp-arsis into one array
31 (setq *total-cp-len (* *cf-last-index 2))

117

32 (setq *total-cp (gil::add-int-var-array *sp* *total-cp-len 0 127)) ; array of IntVar
representing thesis and arsis notes combined

33 (merge-cp-same-len (list (third *cp) (first *cp)) *total-cp) ; merge the two counterpoint
arrays into one

34

35 ; creating harmonic intervals array
36 (print "Creating harmonic intervals array...")
37 ; array of IntVar representing the absolute intervals % 12 between the cantus firmus and the

counterpoint (arsis notes)
38 (setf (third *h-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 11))
39 (setf (first *h-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 11))
40 (create-h-intervals (third *cp) (butlast *cf) (third *h-intervals))
41 (create-h-intervals (first *cp) (rest *cf) (first *h-intervals))
42

43

44 ; creating melodic intervals array
45 (print "Creating melodic intervals array...")
46 ; array of IntVar representing the melodic intervals between arsis and next thesis note of

the counterpoint
47 (setf (third *m-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 8))
48 (setf (third *m-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -12 12)) ; same

without absolute reduction
49 (create-intervals (third *cp) (first *cp) (third *m-intervals) (third *m-intervals-brut))
50 ; array of IntVar representing the melodic intervals between a thesis and an arsis note of

the same measure the counterpoint
51 (setf (first *m-succ-intervals) (gil::add-int-var-array *sp* *cf-penult-index 1 12))
52 (setf (first *m-succ-intervals-brut) (gil::add-int-var-array *sp* *cf-penult-index -12 12))
53 (create-m-intervals-in-meas (first *cp) (rest (third *cp)) (first *m-succ-intervals) (first

*m-succ-intervals-brut))
54

55

56 ; creating melodic intervals array between the note n and n+2 for the whole counterpoint
57 (setq *m2-len (- (* *cf-last-index 2) 2)) ; number of melodic intervals between n and n+2

for thesis and arsis notes combined
58 (setq *m2-intervals (gil::add-int-var-array *sp* *m2-len 0 12))
59 (setq *m2-intervals-brut (gil::add-int-var-array *sp* *m2-len -12 12))
60 (create-m2-intervals *total-cp *m2-intervals *m2-intervals-brut)
61

62 ; creating melodic intervals array between the note n and n+1 for the whole counterpoint
63 (setq *total-m-len (- (* *cf-last-index 2) 1)) ; number of melodic intervals between n and n

+1 for thesis and arsis notes combined
64 (setq *m-all-intervals (gil::add-int-var-array *sp* *total-m-len 0 12))
65 (setq *m-all-intervals-brut (gil::add-int-var-array *sp* *total-m-len -12 12))
66 (create-m-intervals-self *total-cp *m-all-intervals *m-all-intervals-brut)
67

68 ; creating perfect consonances boolean array
69 (print "Creating perfect consonances boolean array...")
70 ; array of BoolVar representing if the interval between the cantus firmus and the

counterpoint is a perfect consonance
71 (setq *is-p-cons-arr (gil::add-bool-var-array *sp* *cf-len 0 1))
72 (create-is-p-cons-arr (first *h-intervals) *is-p-cons-arr)
73

74 ; creating boolean is cantus firmus bass array
75 (print "Creating is cantus firmus bass array...")
76 ; array of BoolVar representing if the cantus firmus is lower than the arsis counterpoint
77 (setf (third *is-cf-bass-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
78 (setf (first *is-cf-bass-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
79 (create-is-cf-bass-arr (third *cp) (butlast *cf) (third *is-cf-bass-arr))
80 (create-is-cf-bass-arr (first *cp) (rest *cf) (first *is-cf-bass-arr))
81

82 ; creating boolean is counterpoint off key array
83 (print "Creating is counterpoint off key array...")
84 (setq *is-cp-off-key-arr (gil::add-bool-var-array *sp* *total-cp-len 0 1))
85 (create-is-member-arr *total-cp *is-cp-off-key-arr *off-domain)
86

87 ; creating boolean is consonant array
88 (print "Creating is consonant array...")

118

89 ; array of BoolVar representing if the interval is consonant
90 (setf (first *is-cons-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
91 (create-is-member-arr (first *h-intervals) (first *is-cons-arr))
92

93 ; creation boolean is no syncope array
94 (print "Creating is no syncope array...")
95 ; array of BoolVar representing if the thesis note is note related to the previous one
96 (setq *is-no-syncope-arr (gil::add-bool-var-array *sp* *cf-penult-index 0 1))
97 (create-is-no-syncope-arr (third *m-intervals) *is-no-syncope-arr)
98

99

100 ;== HARMONIC CONSTRAINTS ============================
101 (print "Posting constraints...")
102

103 ; for all harmonic intervals between the cantus firmus and the thesis notes, the interval
must be a consonance

104 (print "Harmonic consonances...")
105 ; here the penultimate thesis note must be a seventh or a second and the arsis note must be

a major sixth or a minor third
106 (add-penult-dom-cst (penult (first *h-intervals)) PENULT_SYNCOPE_VAR)
107 (add-h-cons-cst *cf-len *cf-penult-index (third *h-intervals))
108 (add-no-sync-h-cons (first *h-intervals) *is-no-syncope-arr)
109

110 ; must start with a perfect consonance
111 (print "Perfect consonance at the beginning...")
112 (add-p-cons-start-cst (third *h-intervals))
113

114 ; must end with a perfect consonance
115 (print "Perfect consonance at the end...")
116 (add-p-cons-end-cst (first *h-intervals))
117

118 ; no seventh dissonance if the cantus firmus is at the top
119 (print "No seventh dissonance if the cantus firmus is at the top...")
120 (add-no-seventh-cst (first *h-intervals) (first *is-cf-bass-arr))
121

122 ; if penultimate measure, a major sixth or a minor third must be used
123 ; depending if the cantus firmus is at the bass or on the top part
124 (print "Penultimate measure...")
125 (add-penult-cons-cst (lastone (third *is-cf-bass-arr)) (lastone (third *h-intervals)))
126

127

128 ;== MELODIC CONSTRAINTS =============================
129 (print "Melodic constraints...")
130

131 ; melodic intervals cannot be greater than a minor sixth expect the octave
132 (print "No more than minor sixth melodic interval between arsis and thesis notes...")
133 (add-no-m-jump-extend-cst (first *m-succ-intervals))
134

135 ; no *chromatic motion between three consecutive notes
136 (print "No chromatic motion...")
137 (add-no-chromatic-m-cst *m-all-intervals-brut *m2-intervals-brut)
138

139

140 ;== MOTION CONSTRAINTS ============================
141 (print "Motion constraints...")
142

143 ; dissonant notes must be followed by the consonant note below
144 (print "Dissonant notes must be followed by the consonant note below...")
145 (add-h-dis-imp-cons-below-cst (first *m-succ-intervals-brut) (first *is-cons-arr))
146

147 ; no second dissonance if the cantus firmus is at the bass and a octave/unisson precedes it
148 (print "No second dissonance if the cantus firmus is at the bass...")
149 (add-no-second-cst (third *h-intervals) (first *h-intervals) (first *is-cf-bass-arr))
150

151

152 ;== COST FACTORS ====================================
153 (print "Cost factors...")

119

154 (set-cost-factors)
155 ; 1, 2) imperfect consonances are preferred to perfect consonances
156 (add-p-cons-cost-cst t)
157

158 ; 3, 4) add off-key cost, m-degrees cost and tritons cost
159 (set-general-costs-cst)
160

161 ; 5) add no syncopation cost
162 (print "No syncopation cost...")
163 (setq *no-syncope-cost (gil::add-int-var-array-dom *sp* *cf-penult-index (getparam-dom ’

no-syncopation-cost)))
164 (add-cost-cst (butlast (third *m-intervals)) gil::IRT_NQ 0 *no-syncope-cost *

no-syncopation-cost*)
165 (add-cost-to-factors *no-syncope-cost)
166

167 ; 6) add m2-intervals equal to 0 cost
168 (print "Monotonia...")
169 (setq *m2-eq-zero-cost (gil::add-int-var-array-dom *sp* (- *cf-len 3) (getparam-dom ’

two-bars-apart-cost)))
170 (add-cost-multi-cst (third *cp) gil::IRT_EQ (cddr (third *cp)) *m2-eq-zero-cost *

two-bars-apart-cost*)
171 (add-cost-to-factors *m2-eq-zero-cost)
172

173 ;== COST FUNCTION ===================================
174 (print "Cost function...")
175

176 ; RETURN
177 (if (eq species 4)
178 ; then create the search engine
179 (append (fux-search-engine *total-cp 4) (list species))
180 ; else
181 nil
182)
183)

E.9 5sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard
4 ; Date: June 3, 2023
5 ; This file contains the function that adds all the necessary constraints to the fifth species.
6

7 ;;==========================#
8 ;; FIFTH SPECIES #
9 ;;==========================#

10 ;; Note: fux-cp-5th execute the first species algorithm without some constraints.
11 ;; In this function, 4 notes by measure are assumed.
12 (defun fux-cp-5th (&optional (species 5))
13 "Create the CSP for the 3rd species of Fux’s counterpoint, with the cantus firmus as input"
14 (print "Creating the CSP for the 3rd species of Fux’s counterpoint...")
15

16 ;; CLEANING PREVIOUS SOLUTIONS
17 (setq *prev-sol-check nil)
18 (setq rythmic+pitches nil)
19 (setq rythmic-om nil)
20 (setq pitches-om nil)
21

22 (print "########## FIFTH SPECIES ##########")
23

24 ;== CREATION OF BOOLEAN SPECIES ARRAYS ==============
25 (print "Creation of boolean species arrays...")
26 ; total length of the counterpoint array
27 (setq *total-cp-len (+ *cf-len (* *cf-last-index 3)))

120

28 ; array representing the species type [0: no constraint, 1: 1st species, 2: 2nd species, 3:
3rd species, 4: 4th species]

29 (setq *species-arr (gil::add-int-var-array *sp* *total-cp-len 0 4))
30 (create-species-arr *species-arr)
31 ; arrays representing if a note is constraint by a species
32 (setf (nth 0 *is-nth-species-arr) (gil::add-bool-var-array *sp* *total-cp-len 0 1))
33 (create-simple-boolean-arr *species-arr gil::IRT_EQ 0 (nth 0 *is-nth-species-arr))
34 (setf (nth 1 *is-nth-species-arr) (gil::add-bool-var-array *sp* *total-cp-len 0 1))
35 (create-simple-boolean-arr *species-arr gil::IRT_EQ 1 (nth 1 *is-nth-species-arr))
36 (setf (nth 2 *is-nth-species-arr) (gil::add-bool-var-array *sp* *total-cp-len 0 1))
37 (create-simple-boolean-arr *species-arr gil::IRT_EQ 2 (nth 2 *is-nth-species-arr))
38 (setf (nth 3 *is-nth-species-arr) (gil::add-bool-var-array *sp* *total-cp-len 0 1))
39 (create-simple-boolean-arr *species-arr gil::IRT_EQ 3 (nth 3 *is-nth-species-arr))
40 (setf (nth 4 *is-nth-species-arr) (gil::add-bool-var-array *sp* *total-cp-len 0 1))
41 (create-simple-boolean-arr *species-arr gil::IRT_EQ 4 (nth 4 *is-nth-species-arr))
42

43 ; creating boolean is constrained array
44 (print "Creating is constrained array...")
45 ; array of BoolVar representing if the interval is constrained
46 (setq *is-constrained-arr (collect-not-array (nth 0 *is-nth-species-arr)))
47

48

49 ;== CREATION OF GIL ARRAYS ==========================
50 (print "Initializing variables...")
51

52 (loop for i from 0 to 3 do
53 (if (eq i 0)
54 (progn
55 ; add all quarter notes to the space with the domain *cp-domain
56 (setf (nth i *cp) (gil::add-int-var-array-dom *sp* *cf-len *extended-cp-domain))
57 ; then add to the penultimate note more possibilities
58 (if (is-borrow-allowed)
59 (setf (nth *cf-penult-index (nth i *cp)) (gil::add-int-var-dom *sp* *

chromatic-cp-domain))
60)
61 ; creating harmonic intervals array
62 (print "Creating harmonic intervals array...")
63 ; array of IntVar representing the absolute intervals % 12 between the cantus

firmus and the counterpoint
64 (setf (nth i *h-intervals) (gil::add-int-var-array *sp* *cf-len 0 11))
65 (create-h-intervals (nth i *cp) *cf (nth i *h-intervals))
66)
67 (progn
68 ; same as above but 1 note shorter
69 (setf (nth i *cp) (gil::add-int-var-array-dom *sp* *cf-last-index *

extended-cp-domain))
70 (if (is-borrow-allowed)
71 (setf (nth *cf-penult-index (nth i *cp)) (gil::add-int-var-dom *sp* *

chromatic-cp-domain))
72)
73 (setf (nth i *h-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 11))
74 (create-h-intervals (nth i *cp) (butlast *cf) (nth i *h-intervals))
75)
76)
77)
78

79 (loop for i from 0 to 2 do
80 (setq i+1 (+ i 1))
81 (setf (nth i *m-succ-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -12 12)

)
82 (if (eq i 1)
83 ; then melodic interval could be 0 if there was a dissonant syncope before (see that

later)
84 (setf (nth i *m-succ-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 12))
85 ; else no melodic interval of 0
86 (setf (nth i *m-succ-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 12))
87)

121

88 (create-intervals (nth i *cp) (nth i+1 *cp) (nth i *m-succ-intervals) (nth i *
m-succ-intervals-brut))

89)
90

91

92 ; merging all cp arrays into one
93 (print "Mergin cps...")
94 (setq *total-cp (gil::add-int-var-array *sp* *total-cp-len 0 127)) ; array of IntVar

representing thesis and arsis notes combined
95 (merge-cp *cp *total-cp) ; merge the four counterpoint arrays into one
96

97 ; creating melodic intervals array
98 (print "Creating melodic intervals array...")
99 ; array of IntVar representing the melodic intervals between arsis and next thesis note of

the counterpoint
100 (setf (third *m-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 16))
101 (setf (third *m-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -16 16)) ; same

without absolute reduction
102 (create-m-intervals-next-meas (third *cp) (first *cp) (third *m-intervals) (third *

m-intervals-brut))
103 ; array of IntVar representing the absolute intervals
104 ; between the last note of measure m and the first note of measure m+1 of the counterpoint
105 (setf (fourth *m-intervals) (gil::add-int-var-array *sp* *cf-last-index 0 12)) ; can be 0 if

this is replace by 2 eight note
106 (setf (fourth *m-intervals-brut) (gil::add-int-var-array *sp* *cf-last-index -12 12)) ; same

without absolute reduction
107 (create-m-intervals-next-meas (fourth *cp) (first *cp) (fourth *m-intervals) (fourth *

m-intervals-brut))
108

109 ; array of IntVar representing the melodic intervals between the thesis note and the arsis
note of the same measure

110 (setq *m-ta-intervals (gil::add-int-var-array *sp* *cf-last-index 0 16))
111 (setq *m-ta-intervals-brut (gil::add-int-var-array *sp* *cf-last-index -16 16)) ; same

without absolute reduction
112 (create-intervals (first *cp) (third *cp) *m-ta-intervals *m-ta-intervals-brut)
113

114 ; creating melodic intervals array between the note n and n+2 for the whole counterpoint
115 (setq *m2-len (- (* *cf-last-index 4) 1)) ; number of melodic intervals between n and n+2

for the total counterpoint
116 (setq *m2-intervals (gil::add-int-var-array *sp* *m2-len 0 16))
117 (setq *m2-intervals-brut (gil::add-int-var-array *sp* *m2-len -16 16))
118 (create-m2-intervals *total-cp *m2-intervals *m2-intervals-brut)
119

120 ; creating melodic intervals array between the note n and n+1 for the whole counterpoint
121 (setq *total-m-len (* *cf-last-index 4)) ; number of melodic intervals between n and n+1 for

the total counterpoint
122 (setq *m-all-intervals (gil::add-int-var-array *sp* *total-m-len 0 12))
123 (setq *m-all-intervals-brut (gil::add-int-var-array *sp* *total-m-len -12 12))
124 (create-m-intervals-self *total-cp *m-all-intervals *m-all-intervals-brut *

is-constrained-arr)
125

126 ; creating motion array
127 ; 0 = contrary, 1 = oblique, 2 = direct/parallel
128 (print "Creating motion array...")
129 (setf (fourth *motions) (gil::add-int-var-array *sp* *cf-last-index 0 2))
130 (setf (fourth *motions-cost) (gil::add-int-var-array-dom *sp* *cf-last-index *motions-domain

*))
131 (create-motions (fourth *m-intervals-brut) *cf-brut-m-intervals (fourth *motions) (fourth *

motions-cost))
132

133 ; creating boolean is cantus firmus bass array
134 (print "Creating is cantus firmus bass array...")
135 ; array of BoolVar representing if the cantus firmus is lower than the arsis counterpoint
136 (setf (first *is-cf-bass-arr) (gil::add-bool-var-array *sp* *cf-len 0 1))
137 (create-is-cf-bass-arr (first *cp) (rest *cf) (first *is-cf-bass-arr)) ; 5th
138 (setf (third *is-cf-bass-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
139 (create-is-cf-bass-arr (third *cp) (butlast *cf) (third *is-cf-bass-arr)) ; 5th

122

140 (setf (fourth *is-cf-bass-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
141 (create-is-cf-bass-arr (fourth *cp) (butlast *cf) (fourth *is-cf-bass-arr))
142

143 ; creating boolean are five consecutive notes by joint degree array
144 (print "Creating are five consecutive notes by joint degree array...")
145 ; array of BoolVar representing if the five consecutive notes are by joint degree
146 (setq *is-5qn-linked-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1))
147 (create-is-5qn-linked-arr *m-all-intervals *m-all-intervals-brut *is-5qn-linked-arr)
148 (setq *is-mostly-3rd-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1)) ; 5th
149 (create-is-mostly-3rd-arr (nth 3 *is-nth-species-arr) *is-mostly-3rd-arr)
150

151 ; creating boolean is consonant array + species array
152 (print "Creating is consonant array and species array...")
153 (loop for i from 0 to 3 do
154 ; array of BoolVar representing if the interval is consonant
155 (if (eq i 0)
156 (progn
157 (setf (nth i *is-cons-arr) (gil::add-bool-var-array *sp* *cf-len 0 1))
158 (setf (nth i *is-3rd-species-arr) (gil::add-bool-var-array *sp* *cf-len 0 1))
159 (setf (nth i *is-4th-species-arr) (gil::add-bool-var-array *sp* *cf-len 0 1))
160 (setf (nth i *is-cst-arr) (gil::add-bool-var-array *sp* *cf-len 0 1))
161)
162 (progn
163 (setf (nth i *is-cons-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
164 (setf (nth i *is-3rd-species-arr) (gil::add-bool-var-array *sp* *cf-last-index 0

1))
165 (setf (nth i *is-4th-species-arr) (gil::add-bool-var-array *sp* *cf-last-index 0

1))
166 (setf (nth i *is-cst-arr) (gil::add-bool-var-array *sp* *cf-last-index 0 1))
167)
168)
169 (create-is-member-arr (nth i *h-intervals) (nth i *is-cons-arr))
170 (create-by-4 (nth 3 *is-nth-species-arr) (nth i *is-3rd-species-arr) i)
171 (create-by-4 (nth 4 *is-nth-species-arr) (nth i *is-4th-species-arr) i)
172 (create-by-4 *is-constrained-arr (nth i *is-cst-arr) i)
173)
174

175 ; creating boolean diminution array
176 (print "Creating diminution array...")
177 ; Note: a diminution is the intermediate note that exists between two notes separated by a

jump of a third
178 ; i.e. E -> D (dim) -> C
179 (setq *is-ta-dim-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1))
180 (create-is-ta-dim-arr (second *m-succ-intervals) (collect-by-4 *m2-intervals 1 T) (third *

m-succ-intervals) *is-ta-dim-arr)
181

182 ; creating boolean is not cambiata array
183 (print "Creating is not cambiata array...")
184 (setq *is-not-cambiata-arr (gil::add-bool-var-array *sp* *cf-last-index 0 1))
185 (create-is-not-cambiata-arr (second *is-cons-arr) (third *is-cons-arr) (second *

m-succ-intervals) *is-not-cambiata-arr)
186

187 ; creating boolean is counterpoint off key array
188 (print "Creating is counterpoint off key array...")
189 (setq *is-cp-off-key-arr (gil::add-bool-var-array *sp* *total-cp-len 0 1))
190 (create-is-member-arr *total-cp *is-cp-off-key-arr *off-domain)
191

192 ; creating perfect consonances boolean array
193 (print "Creating perfect consonances boolean array...")
194 ; array of BoolVar representing if the interval between the cantus firmus and the

counterpoint is a perfect consonance
195 (setq *is-p-cons-arr (gil::add-bool-var-array *sp* *cf-len 0 1))
196 (create-is-p-cons-arr (first *h-intervals) *is-p-cons-arr)
197

198 ; creation boolean is no syncope array
199 (print "Creating is no syncope array...")
200 ; array of BoolVar representing if the thesis note is note related to the previous one

123

201 (setq *is-no-syncope-arr (gil::add-bool-var-array *sp* *cf-penult-index 0 1))
202 (create-is-no-syncope-arr (third *m-intervals) *is-no-syncope-arr)
203

204

205 ;== HARMONIC CONSTRAINTS ============================
206 (print "Posting constraints...")
207

208 ; one possible value for non-constrained notes
209 (print "One possible value for non-constrained notes...")
210 (add-one-possible-value-cst *total-cp (nth 0 *is-nth-species-arr))
211

212 ; perfect consonances should be used at the start and at the end of the piece
213 (print "Perfect consonances at the start and at the end...")
214 ; if first note is constrained then it must be a perfect consonance
215 (add-p-cons-cst-if (first (first *h-intervals)) (first *is-constrained-arr))
216 ; if first note is not constrained then the third note must be a perfect consonance
217 (add-p-cons-cst-if (first (third *h-intervals)) (first (nth 0 *is-nth-species-arr)))
218 ; no matter what species it is, the last harmonic interval must be a perfect consonance
219 (add-p-cons-end-cst (first *h-intervals))
220

221 ; if penultimate measure, a major sixth or a minor third must be used
222 ; depending if the cantus firmus is at the bass or on the top part
223 (print "Penultimate measure...")
224 (add-penult-cons-cst (lastone (fourth *is-cf-bass-arr)) (lastone (fourth *h-intervals))
225 (penult (nth 3 *is-nth-species-arr))
226) ; 3rd species
227 ; the third note of the penultimate measure must be below the fourth one. (3rd species)
228 (gil::g-rel-reify *sp* (lastone (third *m-succ-intervals-brut)) gil::IRT_GR 1
229 (penult (nth 3 *is-nth-species-arr)) gil::RM_IMP
230) ; 3rd species
231 ; the second note and the third note of the penultimate measure must be
232 ; distant by greater than 1 semi-tone from the fourth note (3rd species)
233 (gil::g-rel-reify *sp* (penult *m2-intervals) gil::IRT_NQ 1
234 (nth (total-index *cf-penult-index 1) (nth 3 *is-nth-species-arr)) gil::RM_IMP
235) ; 3rd species
236

237 ; for the 4th species, the thesis note must be a seventh or a second and the arsis note must
be a major sixth or a minor third

238 ; major sixth or minor third
239 (add-penult-cons-cst (lastone (third *is-cf-bass-arr)) (lastone (third *h-intervals))
240 (penult (butlast (nth 4 *is-nth-species-arr)))
241) ; 4th species
242 ; seventh or second
243 ; (note: a => !b <=> !(a ^ b)), so here we use the negation of the conjunction
244 (gil::g-op *sp* (penult (first *is-4th-species-arr)) gil::BOT_AND (penult (first *

is-cons-arr)) 0) ; 4th species
245

246 ; every thesis note should be consonant if it does not belong to the fourth species (or not
constrained at all)

247 (print "Every thesis note should be consonant...")
248 (add-h-cons-cst-if (first *is-cons-arr) (collect-by-4 (nth 1 *is-nth-species-arr))) ; 1st

species
249 (add-h-cons-cst-if (first *is-cons-arr) (collect-by-4 (nth 2 *is-nth-species-arr))) ; 2nd

species
250 (add-h-cons-cst-if (first *is-cons-arr) (first *is-3rd-species-arr)) ; 3rd species
251 (add-h-cons-cst-if (third *is-cons-arr) (third *is-4th-species-arr)) ; 4th species
252 (add-h-cons-cst-if (first *is-cons-arr) (collect-bot-array (rest (first *is-4th-species-arr)

) *is-no-syncope-arr)) ; 4th species
253

254 ; five consecutive notes by joint degree implies that the first and the third note are
consonants

255 (print "Five consecutive notes by joint degree...") ; 3rd species
256 (add-linked-5qn-cst (third *is-cons-arr) (collect-bot-array *is-5qn-linked-arr *

is-mostly-3rd-arr))
257

258 ; any dissonant note implies that it is surrounded by consonant notes
259 (print "Any dissonant note...") ; 3rd species

124

260 (add-h-dis-or-cons-3rd-cst
261 (second *is-cons-arr)
262 (collect-t-or-f-array (third *is-cons-arr) (third *is-3rd-species-arr))
263 (fourth *is-cons-arr)
264 *is-ta-dim-arr
265)
266

267 ; no seventh dissonance if the cantus firmus is at the top
268 (print "No seventh dissonance if the cantus firmus is at the top...")
269 (add-no-seventh-cst (first *h-intervals) (first *is-cf-bass-arr) (first *is-4th-species-arr)

) ; 4th species
270

271

272 ;== MELODIC CONSTRAINTS =============================
273 (print "Melodic constraints...")
274

275 ; no melodic interval between 9 and 11
276 (add-no-m-jump-extend-cst *m-all-intervals (collect-bot-array (butlast *is-constrained-arr)

(rest *is-constrained-arr)))
277

278 ; no unisson between two consecutive notes
279 ; exept for in the second part or the fourth part of the measure
280 (print "No unisson between two consecutive notes...")
281 ; if 1st note and 2nd note exists (it means it belongs to a species)
282 (add-no-unisson-at-all-cst
283 (first *cp) (second *cp)
284 (collect-bot-array (first *is-cst-arr) (second *is-cst-arr))
285) ; 5th
286 (add-no-unisson-at-all-cst
287 (third *cp) (fourth *cp)
288 (collect-bot-array (third *is-cst-arr) (fourth *is-cst-arr))
289) ; 5th
290

291 ; melodic intervals between thesis and arsis note from the same measure
292 ; can’t be greater than a minor sixth expect the octave (just for the fourth species)
293 (print "No more than minor sixth melodic interval between arsis and thesis notes...")
294 ; only applied if the the second note is not constrained
295 (add-no-m-jump-extend-cst *m-ta-intervals (collect-by-4 (nth 0 *is-nth-species-arr) 1)) ; 4

th species
296

297 ; no same syncopation if 4th species
298 (add-no-same-syncopation-cst (first *cp) (third *cp) (collect-bot-array (first *

is-4th-species-arr) (third *is-cst-arr)))
299

300

301 ;== MOTION CONSTRAINTS ============================
302 (print "Motion constraints...")
303

304 ; no direct motion to reach a perfect consonance
305 (print "No direct motion to reach a perfect consonance...")
306 (add-no-direct-move-to-p-cons-cst (fourth *motions) (collect-bot-array *is-p-cons-arr (

fourth *is-3rd-species-arr)) nil) ; 3rd species
307

308 ; no battuta kind of motion
309 ; i.e. contrary motion to an *octave, lower voice up, higher voice down, counterpoint

melodic interval < -4
310 (print "No battuta kind of motion...")
311 (add-no-battuta-cst
312 (fourth *motions) (first *h-intervals) (fourth *m-intervals-brut) (fourth *

is-cf-bass-arr) (fourth *is-3rd-species-arr)
313) ; 3rd species
314

315 ; dissonant notes must be followed by the consonant note below
316 (print "Dissonant notes must be followed by the consonant note below...")
317 (add-h-dis-imp-cons-below-cst *m-ta-intervals-brut (first *is-cons-arr) (first *

is-4th-species-arr)) ; TODO 4th species
318

125

319 ; no second dissonance if the cantus firmus is at the bass and a octave/unisson precedes it
320 (print "No second dissonance if the cantus firmus is at the bass...")
321 (add-no-second-cst
322 (third *h-intervals) (rest (first *h-intervals)) (rest (first *is-cf-bass-arr))
323 (rest (first *is-4th-species-arr))
324) ; TODO 4th species
325

326 ; Marcel’s rule
327 (add-contrary-step-after-skip-cst *m-all-intervals *m-all-intervals-brut)
328

329

330 ;== COST FACTORS ====================================
331 (set-cost-factors)
332 (print "Imperfect consonances are preferred to perfect consonances...")
333 (setq *fifth-cost (gil::add-int-var-array-dom *sp* *cf-len (getparam-dom ’h-fifth-cost))) ;

IntVar array representing the cost to have fifths
334 (setq *octave-cost (gil::add-int-var-array-dom *sp* *cf-len (getparam-dom ’h-octave-cost)))

; IntVar array representing the cost to have octaves
335 (add-cost-cst-if (first *h-intervals) gil::IRT_EQ 7 (first *is-cst-arr) *fifth-cost *

h-fifth-cost*) ; *fifth-cost = 1 if *h-interval == 7
336 (add-cost-cst-if (first *h-intervals) gil::IRT_EQ 0 (first *is-cst-arr) *octave-cost *

h-octave-cost*) ; *octave-cost = 1 if *h-interval == 0
337 (add-cost-to-factors *fifth-cost)
338 (add-cost-to-factors *octave-cost)
339

340 ; 3, 4) add off-key cost, m-degrees cost and tritons cost
341 (set-general-costs-cst *total-cp-len *is-constrained-arr (collect-bot-array (butlast *

is-constrained-arr) (rest *is-constrained-arr)))
342

343 ; 5) contrary motion is preferred
344 (add-cost-to-factors (fourth *motions))
345

346 ; 6) cambiata notes are preferred (cons - dis - cons > cons - cons - cons)
347 (print "Cambiata notes are preferred...")
348 ; IntVar array representing the cost to have cambiata notes
349 (setq *not-cambiata-cost (gil::add-int-var-array-dom *sp* *cf-last-index (getparam-dom ’

non-cambiata-cost)))
350 (add-cost-bool-cst-if *is-not-cambiata-arr *is-mostly-3rd-arr *not-cambiata-cost *

non-cambiata-cost*)
351 (add-cost-to-factors *not-cambiata-cost)
352

353 ; 7) intervals between notes n and n+2 are prefered greater than zero
354 (print "Intervals between notes n and n+2 are prefered different than zero...")
355 ; IntVar array representing the cost to have intervals between notes n and n+2 equal to zero
356 (setq *m2-eq-zero-cost (gil::add-int-var-array-dom *sp* *m2-len (getparam-dom ’

two-beats-apart-cost)))
357 (add-cost-cst-if
358 *m2-intervals gil::IRT_EQ 0
359 (collect-bot-array (butlast (butlast *is-constrained-arr)) (rest (rest *

is-constrained-arr)))
360 *m2-eq-zero-cost *two-beats-apart-cost*
361)
362 (add-cost-to-factors *m2-eq-zero-cost)
363

364 ; 8) add no syncopation cost
365 (setq *no-syncope-cost (gil::add-int-var-array-dom *sp* *cf-penult-index (getparam-dom ’

no-syncopation-cost)))
366 (add-cost-cst-if
367 (butlast (third *m-intervals)) gil::IRT_NQ 0
368 (third *is-4th-species-arr)
369 *no-syncope-cost
370 *no-syncopation-cost*
371)
372 (add-cost-to-factors *no-syncope-cost)
373

374

375 ;== COST FUNCTION ===================================

126

376 (print "Cost function...")
377

378 (loop for i from 0 to 3 do
379 (setf (nth i *cons-cost) (gil::add-int-var-array *sp* *cf-last-index 0 1)) ; IntVar

representing the cost to have a consonance
380 (add-cost-bool-cst (nth i *is-cons-arr) (nth i *cons-cost)) ; *cons-cost = 1 if *

is-cons-arr == 1
381)
382

383

384 (print *extended-cp-domain)
385

386 ; RETURN
387 (if (eq species 5)
388 ; then create the search engine
389 ; (append (fux-search-engine *total-cp) (list species))
390 (append (fux-search-engine *total-cp 5) ’(5))
391 ; else
392 nil
393)
394)

E.10 constraints.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard
4 ; Date: June 3, 2023
5 ; This file contains all the functions adding constraints to the CSP.
6 ; They are all called from the different species.
7

8

9 ;== CP CONSTRAINTS UTILS
============================

10

11

12 ; add a single cost regarding if the relation rel-type(tested, cst-val) is true
13 (defun add-single-cost-cst (tested rel-type cst-val cost &optional (cost-value ONE))
14 (let (
15 (b (gil::add-bool-var *sp* 0 1)) ; to store the result of the test
16)
17 (gil::g-rel-reify *sp* tested rel-type cst-val b) ; test the relation
18 (gil::g-ite *sp* b cost-value ZERO cost) ; add the cost if the test is true
19)
20)
21

22 ; add a cost regarding if the relation rel-type(tested-var, cst-val) is true
23 (defun add-cost-cst (tested-var-arr rel-type cst-val costs &optional (cost-value ONE))
24 (loop
25 for cost in costs
26 for tested in tested-var-arr
27 do
28 (add-single-cost-cst tested rel-type cst-val cost cost-value)
29)
30)
31

32 ; add a cost regarding if the relation rel-type(tested-var, cst-val) is true
33 ; NOTE: the difference with add-cost-cst is that the cst-val is an array
34 (defun add-cost-multi-cst (tested-var-arr rel-type cst-val-arr costs &optional (cost-value ONE))
35 (loop
36 for cost in costs
37 for tested in tested-var-arr
38 for cst-val in cst-val-arr
39 do
40 (add-single-cost-cst tested rel-type cst-val cost cost-value)

127

41)
42)
43

44 ; add a cost regarding if the relation rel-type(tested-var, cst-val) is true AND is-cst is true
45 (defun add-cost-cst-if (tested-var-arr rel-type cst-val is-cst-arr costs &optional (cost-value

ONE))
46 (loop
47 for cost in costs
48 for tested in tested-var-arr
49 for is-cst in is-cst-arr
50 do
51 (add-single-cost-cst-if tested rel-type cst-val is-cst cost cost-value)
52)
53)
54

55 (defun add-single-cost-cst-if (tested rel-type cst-val is-cst cost cost-value)
56 (let (
57 (b (gil::add-bool-var *sp* 0 1)) ; to store the result of the test
58 (b-and (gil::add-bool-var *sp* 0 1)) ; b and cst
59)
60 (gil::g-rel-reify *sp* tested rel-type cst-val b)
61 (gil::g-op *sp* b gil::BOT_AND is-cst b-and) ; b-and = b and cst
62 (gil::g-ite *sp* b-and cost-value ZERO cost) ; add the cost if the test is true
63)
64)
65

66 ; add a cost regarding if the booleans are true in bool-arr
67 (defun add-cost-bool-cst (bool-arr costs &optional (cost-value ONE))
68 (loop
69 for b in bool-arr
70 for cost in costs
71 do
72 (gil::g-ite *sp* b cost-value ZERO cost)
73)
74)
75

76 ; add a cost regarding if the booleans are true in bool-arr AND if is-cst is true in is-cst-arr
77 (defun add-cost-bool-cst-if (bool-arr is-cst-arr costs &optional (cost-value ONE))
78 (loop
79 for b in bool-arr
80 for cst in is-cst-arr
81 for cost in costs
82 do
83 (add-single-cost-bool-cst-if b cst cost cost-value)
84)
85)
86

87 ; add a cost regarding if b is true AND if cst is true
88 (defun add-single-cost-bool-cst-if (b cst cost cost-value)
89 (let (
90 (b-and (gil::add-bool-var *sp* 0 1)) ; b and cst
91)
92 (gil::g-op *sp* b gil::BOT_AND cst b-and) ; b-and = b and cst
93 (gil::g-ite *sp* b-and cost-value ZERO cost) ; add the cost if the test is true
94)
95)
96

97 ; add a cost regarding only if b AND cst are true (do not force ZERO if false)
98 (defun add-single-cost-bool-cst-eqv (b cst cost cost-value)
99 (let (

100 (b-and (gil::add-bool-var *sp* 0 1)) ; b and cst
101)
102 (gil::g-op *sp* b gil::BOT_AND cst b-and) ; b-and = b and cst
103 (gil::g-rel-reify *sp* cost gil::IRT_EQ cost-value b-and gil::RM_IMP) ; add the cost if

the test is true
104)
105)

128

106

107 ; add constraints such that costs =
108 ; - 0 if m-degree in [0, 1, 2]
109 ; - 1 if m-degree in [3, 4, 12]
110 ; - 2 otherwise
111 ; @m-all-intervals: all the melodic intervals of cp in a row
112 ; @m-degrees-cost: the cost of each melodic interval
113 (defun add-m-degrees-cost-cst (m-all-intervals m-degrees-cost m-degrees-type &optional (

is-cst-arr nil))
114 (loop
115 for m in m-all-intervals
116 for c in m-degrees-cost
117 for d in m-degrees-type
118 do
119 (let (
120 (b-l3 (gil::add-bool-var *sp* 0 1)) ; true if m < 3
121 (b-3 (gil::add-bool-var *sp* 0 1)) ; true if m == 3
122 (b-4 (gil::add-bool-var *sp* 0 1)) ; true if m == 4
123 (b-34 (gil::add-bool-var *sp* 0 1)) ; true if m in [3, 4]
124 (b-5 (gil::add-bool-var *sp* 0 1)) ; true if m == 5
125 (b-6 (gil::add-bool-var *sp* 0 1)) ; true if m == 6
126 (b-7 (gil::add-bool-var *sp* 0 1)) ; true if m == 7
127 (b-8 (gil::add-bool-var *sp* 0 1)) ; true if m == 8
128 (b-9 (gil::add-bool-var *sp* 0 1)) ; true if m == 9
129 (b-89 (gil::add-bool-var *sp* 0 1)) ; true if m in [8, 9]
130 (b-10 (gil::add-bool-var *sp* 0 1)) ; true if m == 10
131 (b-11 (gil::add-bool-var *sp* 0 1)) ; true if m == 11
132 (b-1011 (gil::add-bool-var *sp* 0 1)) ; true if m in [10, 11]
133 (b-12 (gil::add-bool-var *sp* 0 1)) ; true if m == 12
134)
135 (gil::g-rel-reify *sp* m gil::IRT_LE 3 b-l3) ; m < 3
136 (gil::g-rel-reify *sp* m gil::IRT_EQ 3 b-3) ; m = 3
137 (gil::g-rel-reify *sp* m gil::IRT_EQ 4 b-4) ; m = 4
138 (gil::g-op *sp* b-3 gil::BOT_OR b-4 b-34) ; m in [3, 4]
139 (gil::g-rel-reify *sp* m gil::IRT_EQ 5 b-5) ; m = 5
140 (gil::g-rel-reify *sp* m gil::IRT_EQ 6 b-6) ; m = 6
141 (gil::g-rel-reify *sp* m gil::IRT_EQ 7 b-7) ; m = 7
142 (gil::g-rel-reify *sp* m gil::IRT_EQ 8 b-8) ; m = 8
143 (gil::g-rel-reify *sp* m gil::IRT_EQ 9 b-9) ; m = 9
144 (gil::g-op *sp* b-8 gil::BOT_OR b-9 b-89) ; m in [8, 9]
145 (gil::g-rel-reify *sp* m gil::IRT_EQ 10 b-10) ; m = 10
146 (gil::g-rel-reify *sp* m gil::IRT_EQ 11 b-11) ; m = 11
147 (gil::g-op *sp* b-10 gil::BOT_OR b-11 b-1011) ; m in [10, 11]
148 (gil::g-rel-reify *sp* m gil::IRT_EQ 12 b-12) ; m = 12
149 ; set costs
150 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-step-cost* b-l3 gil::RM_IMP)
151 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-third-cost* b-34 gil::RM_IMP)
152 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-fourth-cost* b-5 gil::RM_IMP)
153 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-tritone-cost* b-6 gil::RM_IMP)
154 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-fifth-cost* b-7 gil::RM_IMP)
155 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-sixth-cost* b-89 gil::RM_IMP)
156 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-seventh-cost* b-1011 gil::RM_IMP)
157 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-octave-cost* b-12 gil::RM_IMP)
158 ; set types
159 (gil::g-rel-reify *sp* d gil::IRT_EQ 2 b-l3 gil::RM_IMP)
160 (gil::g-rel-reify *sp* d gil::IRT_EQ 3 b-34 gil::RM_IMP)
161 (gil::g-rel-reify *sp* d gil::IRT_EQ 4 b-5 gil::RM_IMP)
162 (gil::g-rel-reify *sp* d gil::IRT_EQ 1 b-6 gil::RM_IMP)
163 (gil::g-rel-reify *sp* d gil::IRT_EQ 5 b-7 gil::RM_IMP)
164 (gil::g-rel-reify *sp* d gil::IRT_EQ 6 b-89 gil::RM_IMP)
165 (gil::g-rel-reify *sp* d gil::IRT_EQ 7 b-1011 gil::RM_IMP)
166 (gil::g-rel-reify *sp* d gil::IRT_EQ 8 b-12 gil::RM_IMP)
167)
168)
169)
170

129

171 ; add cost constraints such that a cost is added when a fifth or an octave is present in the 1st
beat

172 ; except for the 4th species where it is the 3rd beat
173 ; @is-sync: true means it is the 4th species
174 (defun add-p-cons-cost-cst (&optional (is-sync nil))
175 (setq *fifth-cost (gil::add-int-var-array-dom *sp* *cf-penult-index (getparam-dom ’

h-fifth-cost))) ; IntVar array representing the cost to have fifths
176 (setq *octave-cost (gil::add-int-var-array-dom *sp* *cf-penult-index (getparam-dom ’

h-octave-cost))) ; IntVar array representing the cost to have octaves
177 (if is-sync
178 ; then 4th species
179 (add-h-inter-cost-cst (rest (third *h-intervals)))
180 ; else
181 (add-h-inter-cost-cst (restbutlast (first *h-intervals)))
182)
183 (add-cost-to-factors *fifth-cost)
184 (add-cost-to-factors *octave-cost)
185)
186

187 ; add cost constraints such that a cost is added when a fifth or an octave is present in
@h-intervals

188 (defun add-h-inter-cost-cst (h-intervals)
189 (add-cost-cst h-intervals gil::IRT_EQ 7 *fifth-cost *h-fifth-cost*) ; *fifth-cost = 1 if

*h-interval == 7
190 (add-cost-cst h-intervals gil::IRT_EQ 0 *octave-cost *h-octave-cost*) ; *octave-cost = 1

if *h-interval == 0
191)
192

193 ; Get the minimum cost possible for a counterpoint depending on the costs of the melodic
intervals

194 ; @m-len: number of melodic intervals
195 (defun get-min-m-cost (m-len)
196 ; get the minimum cost for skips
197 (setq min-skip-cost (min
198 (getparam ’m-third-cost)
199 (getparam ’m-fourth-cost)
200 (getparam ’m-tritone-cost)
201 (getparam ’m-fifth-cost)
202 (getparam ’m-sixth-cost)
203 (getparam ’m-seventh-cost)
204 (getparam ’m-octave-cost)
205))
206 ; get the minimum number of skips
207 (setq int-min-skip (ceiling (* (getparam ’min-skips-slider) m-len)))
208 ; return the minimum cost
209 (+
210 (* int-min-skip min-skip-cost)
211 (* (- m-len int-min-skip) (min (getparam ’m-step-cost) min-skip-cost))
212)
213)
214

215 ; setup the cost factors with the minimum cost possible
216 (defun set-cost-factors ()
217 (setq m-len (length *m-all-intervals))
218 (setq lb-max (max (ceiling (/ *cf-len 4)) (get-min-m-cost m-len)))
219 ; (print (list "lb-max: " lb-max))
220 (setq lb-i (floor (* (getparam ’irreverence-slider) (* 2 m-len))))
221 ; (print (list "lb-i: " lb-i))
222 (defparameter COST_LB (+ lb-max lb-i))
223 ; (print ’("COST_LB: " COST_LB))
224 ; IntVar array representing all the cost factors
225 (setq *cost-factors (gil::add-int-var-array *sp* *N-COST-FACTORS 0 COST_UB))
226 ; IntVar representing the *total *cost
227 (setq *total-cost (gil::add-int-var *sp* COST_LB COST_UB))
228 (print ’debug123)
229)
230

130

231 ; add general costs for most of the species
232 (defun set-general-costs-cst (&optional (cp-len *total-cp-len) (is-cst-arr1 nil) (is-cst-arr2

nil))
233 (let (
234 (m-len (- cp-len 1))
235)
236 ; 2) sharps and flats should be used sparingly
237 (print "Sharps and flats should be used sparingly...")
238 (setq *off-key-cost (gil::add-int-var-array-dom *sp* cp-len (getparam-dom ’borrow-cost))

) ; IntVar array representing the cost to have off-key notes
239 (if (null is-cst-arr1)
240 ; then
241 (add-cost-bool-cst *is-cp-off-key-arr *off-key-cost *borrow-cost*)
242 ; else
243 (add-cost-bool-cst-if *is-cp-off-key-arr is-cst-arr1 *off-key-cost *borrow-cost*)
244)
245 ; sum of the cost of the off-key notes
246 (add-cost-to-factors *off-key-cost)
247

248 ; 3) melodic intervals should be as small as possible
249 (print "Melodic intervals should be as small as possible...")
250 ; IntVar array representing the cost to have melodic large intervals
251 (setq degrees-cost-domain
252 (remove-duplicates (mapcar (lambda (x) (getparam x))
253 (list ’m-step-cost ’m-third-cost ’m-fourth-cost ’m-tritone-cost ’m-fifth-cost ’

m-sixth-cost ’m-seventh-cost ’m-octave-cost)
254))
255)
256 (setq *m-degrees-cost (gil::add-int-var-array-dom *sp* m-len degrees-cost-domain))
257 (setq *m-degrees-type (gil::add-int-var-array *sp* m-len 1 8))
258 (add-m-degrees-cost-cst *m-all-intervals *m-degrees-cost *m-degrees-type is-cst-arr2)
259 (add-cost-to-factors *m-degrees-cost)
260 (gil::g-count *sp* *m-degrees-type 2 gil::IRT_LQ (floor (* (- 1 (getparam ’

min-skips-slider)) m-len)))
261)
262)
263

264 ; merge lists intermittently such that the first element of the first list is followed by the
first element of the second list, etc.

265 ; attention: cp-len is lenght of the first list in cp-list and it should be 1 more than the
lenght of the other lists

266 (defun merge-cp (cp-list total-cp)
267 (let (
268 (cp-len-1 (- (length (first cp-list)) 1))
269 (n-list (length cp-list))
270)
271 (loop
272 for i from 0 below cp-len-1
273 do
274 (loop for j from 0 below n-list do
275 (setf (nth (+ (* i n-list) j) total-cp) (nth i (nth j cp-list)))
276)
277)
278 (gil::g-rel *sp* (lastone total-cp) gil::IRT_EQ (lastone (first cp-list)))
279)
280)
281

282 ; merge lists intermittently such that the first element of the first list is followed by the
first element of the second list, etc.

283 ; attention: lengths should be the same
284 (defun merge-cp-same-len (cp-list total-cp)
285 (let (
286 (cp-len (length (first cp-list)))
287 (n-list (length cp-list))
288)
289 (loop
290 for i from 0 below cp-len

131

291 do
292 (loop for j from 0 below n-list do
293 (setf (nth (+ (* i n-list) j) total-cp) (nth i (nth j cp-list)))
294)
295)
296)
297)
298

299 ; create the harmonic intervals between @cp and @cf in @h-intervals
300 (defun create-h-intervals (cp cf h-intervals)
301 (loop
302 for p in cp
303 for q in cf
304 for i in h-intervals do
305 (inter-eq-cst *sp* p q i) ; add a constraint to *sp* such that i = |p - q| % 12
306)
307)
308

309 ; create the intervals between @line1 and @line2 in @intervals and @brut-intervals
310 (defun create-intervals (line1 line2 intervals brut-intervals)
311 (loop
312 for p in line1
313 for q in line2
314 for i in intervals
315 for ib in brut-intervals
316 do
317 (inter-eq-cst-brut *sp* q p ib i) ; add a constraint to *sp* such that ib = p - q

and i = |ib|
318)
319)
320

321 ; create the intervals between @line1 and @line2 in @intervals and @brut-intervals where
@is-cst-arr is true

322 (defun create-intervals-for-cst (line1 line2 intervals brut-intervals is-cst-arr)
323 (loop
324 for p in line1
325 for q in line2
326 for i in intervals
327 for ib in brut-intervals
328 for is-cst in is-cst-arr
329 do
330 (inter-eq-cst-brut-for-cst *sp* q p ib i is-cst) ; add a constraint to *sp* such

that ib = p - q and i = |ib|
331)
332)
333

334 ; create the melodic intervals of @cp in @m-intervals and @m-intervals-brut
335 ; @is-cst-arr is a list of booleans indicating whether the melodic interval is constrained or

not
336 (defun create-m-intervals-self (cp m-intervals m-intervals-brut &optional (is-cst-arr nil))
337 (if is-cst-arr
338 ; then
339 (create-intervals-for-cst (butlast cp) (rest cp) m-intervals m-intervals-brut is-cst-arr

)
340 ; else
341 (create-intervals (butlast cp) (rest cp) m-intervals m-intervals-brut)
342)
343)
344

345 ; create an array of IntVar with the melodic interval between each arsis and its following
thesis

346 (defun create-m-intervals-next-meas (cp-arsis cp m-intervals-arsis m-intervals-arsis-brut)
347 (create-intervals cp-arsis (rest cp) m-intervals-arsis m-intervals-arsis-brut)
348)
349

350 ; create the melodic intervals two positions apart of @cp in @m2-intervals and
@m2-intervals-brut

132

351 (defun create-m2-intervals (cp m2-intervals m2-intervals-brut)
352 (create-intervals (butlast (butlast cp)) (rest (rest cp)) m2-intervals m2-intervals-brut)
353)
354

355 ; create the melodic intervals between the thesis of @cp and the arsis of @cp-arsis in
@m-intervals and @m-intervals-brut

356 (defun create-m-intervals-in-meas (cp cp-arsis ta-intervals ta-intervals-brut)
357 (create-intervals (butlast cp) cp-arsis ta-intervals ta-intervals-brut)
358)
359

360 ; create the brut melodic intervals of @cf in @cf-brut-m-intervals
361 (defun create-cf-brut-m-intervals (cf cf-brut-m-intervals)
362 (loop
363 for p in (butlast cf)
364 for q in (rest cf)
365 for i in cf-brut-m-intervals do
366 (let (
367 (ib (inter q p t))
368)
369 (gil::g-rel *sp* i gil::IRT_EQ ib)
370)
371)
372)
373

374 ; create the boolean array @is-p-cons-arr indicating if the interval is a perfect consonance or
not

375 (defun create-is-p-cons-arr (h-intervals is-p-cons-arr)
376 (loop
377 for i in h-intervals
378 for p in is-p-cons-arr
379 do
380 (let (
381 (b-7 (gil::add-bool-var *sp* 0 1))
382 (b-0 (gil::add-bool-var *sp* 0 1))
383)
384 (gil::g-rel-reify *sp* i gil::IRT_EQ 7 b-7) ; b-7 = (i == 7) -> the interval is

a fifth
385 (gil::g-rel-reify *sp* i gil::IRT_EQ 0 b-0) ; b-0 = (i == 0) -> the interval is

an octave
386 (gil::g-op *sp* b-0 gil::BOT_OR b-7 p) ; p = b-7 || b-0
387)
388)
389)
390

391 ; create the boolean array @is-cf-bass-arr indicating if the cantus firmus is the bass or not
392 (defun create-is-cf-bass-arr (cp cf is-cf-bass-arr)
393 (loop
394 for p in cp
395 for q in cf
396 for b in is-cf-bass-arr
397 do
398 (gil::g-rel-reify *sp* p gil::IRT_GQ q b) ; b = (p >= q)
399)
400)
401

402 ; create an array of BoolVar such that is-ta-dim-arr is true if the note is a diminution:
403 ; 1 -> inter(thesis, arsis) == 1 or 2 && inter(thesis, thesis + 1) == 3 or 4 && inter(arsis,

thesis + 1) == 1 or 2
404 ; @m-intervals-ta: the melodic interval between each thesis and its following arsis
405 ; @m-intervals: the melodic interval between each thesis and its following thesis
406 ; @m-intervals-arsis: the melodic interval between each arsis and its following thesis
407 ; @is-ta-dim-arr: the array of BoolVar to fill
408 (defun create-is-ta-dim-arr (m-intervals-ta m-intervals m-intervals-arsis is-ta-dim-arr)
409 (loop
410 for mta in m-intervals-ta ; inter(thesis, arsis)
411 for mtt in m-intervals ; inter(thesis, thesis + 1)
412 for mat in m-intervals-arsis ; inter(arsis, thesis + 1)

133

413 for b in is-ta-dim-arr ; the BoolVar to create
414 do
415 (let (
416 (btt3 (gil::add-bool-var *sp* 0 1)) ; for mtt == 3
417 (btt4 (gil::add-bool-var *sp* 0 1)) ; for mtt == 4
418 (bta-second (gil::add-bool-var *sp* 0 1)) ; for mat <= 2
419 (btt-third (gil::add-bool-var *sp* 0 1)) ; for mtt == 3 or 4
420 (bat-second (gil::add-bool-var *sp* 0 1)) ; for mta <= 2
421 (b-and (gil::add-bool-var *sp* 0 1)) ; temporary BoolVar
422)
423 (gil::g-rel-reify *sp* mtt gil::IRT_EQ 3 btt3) ; btt3 = (mtt == 3)
424 (gil::g-rel-reify *sp* mtt gil::IRT_EQ 4 btt4) ; btt4 = (mtt == 4)
425 (gil::g-rel-reify *sp* mta gil::IRT_LQ 2 bta-second) ; bta2 = (mta <= 2)
426 (gil::g-rel-reify *sp* mat gil::IRT_LQ 2 bat-second) ; bat1 = (mat <= 2)
427 (gil::g-op *sp* btt3 gil::BOT_OR btt4 btt-third) ; btt-third = btt3 || btt4
428 (gil::g-op *sp* bta-second gil::BOT_AND btt-third b-and) ; temporay operation
429 (gil::g-op *sp* b-and gil::BOT_AND bat-second b) ; b = bta-second && btt-third

&& bat-second
430)
431)
432)
433

434 ; create an array of BoolVar
435 ; 1 -> inter(cp, cf) <= 4 && cf getting closer to cp
436 (defun create-is-nbour-arr (h-intervals-abs is-cf-bass-arr cf-brut-m-intervals is-nbour-arr)
437 (loop
438 for hi in (butlast h-intervals-abs)
439 for bass in (butlast is-cf-bass-arr)
440 for mi in cf-brut-m-intervals
441 for n in is-nbour-arr
442 do
443 (let (
444 (b-hi (gil::add-bool-var *sp* 0 1)) ; for (hi <= 4)
445 (b-cfu (gil::add-bool-var *sp* 0 1)) ; for cf going up
446 (b-cfgc (gil::add-bool-var *sp* 0 1)) ; for cf getting closer to cp
447)
448 (gil::g-rel-reify *sp* hi gil::IRT_LQ 4 b-hi) ; b-hi = (hi <= 4)
449 (gil::g-rel-reify *sp* mi gil::IRT_GQ 0 b-cfu) ; b-cfu = (mi >= 0)
450 (gil::g-op *sp* bass gil::BOT_EQV b-cfu b-cfgc) ; b-cfgc = (bass == b-cfu)
451 (gil::g-op *sp* b-hi gil::BOT_AND b-cfgc n) ; n = b-hi && b-cfgc
452)
453)
454)
455

456 ; TODO: new version below should be used instead of this one
457 ; create an array of BoolVar
458 ; 1 -> 5 quarter notes strictly ups or downs and are linked by joint degrees
459 ; Note: the rule is applied measure by measure
460 (defun create-is-5qn-linked-arr (m-all-intervals m-all-intervals-brut is-5qn-linked-arr)
461 (loop
462 for i from 0 to (- (length m-all-intervals) 3)
463 for m1 in m-all-intervals
464 for m2 in (rest m-all-intervals)
465 for m3 in (rest (rest m-all-intervals))
466 for m4 in (rest (rest (rest m-all-intervals)))
467 for mb1 in m-all-intervals-brut
468 for mb2 in (rest m-all-intervals-brut)
469 for mb3 in (rest (rest m-all-intervals-brut))
470 for mb4 in (rest (rest (rest m-all-intervals-brut)))
471 for b in is-5qn-linked-arr
472 do
473 (if (eq (mod i 4) 0)
474 ; then
475 (let (
476 (b1 (gil::add-bool-var *sp* 0 1)) ; (m1 <= 2)
477 (b2 (gil::add-bool-var *sp* 0 1)) ; (m2 <= 2)
478 (b3 (gil::add-bool-var *sp* 0 1)) ; (m3 <= 2)

134

479 (b4 (gil::add-bool-var *sp* 0 1)) ; (m4 <= 2)
480 (bb1 (gil::add-bool-var *sp* 0 1)) ; (mb1 > 0)
481 (bb2 (gil::add-bool-var *sp* 0 1)) ; (mb2 > 0)
482 (bb3 (gil::add-bool-var *sp* 0 1)) ; (mb3 > 0)
483 (bb4 (gil::add-bool-var *sp* 0 1)) ; (mb4 > 0)
484 (b-and1 (gil::add-bool-var *sp* 0 1)) ; (b1 && b2)
485 (b-and2 (gil::add-bool-var *sp* 0 1)) ; (b3 && b4)
486 (b-and3 (gil::add-bool-var *sp* 0 1)) ; (b-and1 && b-and2)
487 (b-eq1 (gil::add-bool-var *sp* 0 1)) ; (mb1 == mb2)
488 (b-eq2 (gil::add-bool-var *sp* 0 1)) ; (mb3 == mb3)
489 (b-eq3 (gil::add-bool-var *sp* 0 1)) ; (b-eq1 == b-eq2)
490)
491 (gil::g-rel-reify *sp* m1 gil::IRT_LQ 2 b1) ; b1 = (m1 <= 2)
492 (gil::g-rel-reify *sp* m2 gil::IRT_LQ 2 b2) ; b2 = (m2 <= 2)
493 (gil::g-rel-reify *sp* m3 gil::IRT_LQ 2 b3) ; b3 = (m3 <= 2)
494 (gil::g-rel-reify *sp* m4 gil::IRT_LQ 2 b4) ; b4 = (m4 <= 2)
495 (gil::g-rel-reify *sp* mb1 gil::IRT_GQ 0 bb1) ; bb1 = (mb1 > 0)
496 (gil::g-rel-reify *sp* mb2 gil::IRT_GQ 0 bb2) ; bb2 = (mb2 > 0)
497 (gil::g-rel-reify *sp* mb3 gil::IRT_GQ 0 bb3) ; bb3 = (mb3 > 0)
498 (gil::g-rel-reify *sp* mb4 gil::IRT_GQ 0 bb4) ; bb4 = (mb4 > 0)
499 (gil::g-op *sp* b1 gil::BOT_AND b2 b-and1) ; b-and1 = b1 && b2
500 (gil::g-op *sp* b3 gil::BOT_AND b4 b-and2) ; b-and2 = b3 && b4
501 (gil::g-op *sp* b-and1 gil::BOT_AND b-and2 b-and3) ; b-and3 = b-and1 && b-and2
502 (gil::g-op *sp* bb1 gil::BOT_EQV bb2 b-eq1) ; b-eq1 = (bb1 == bb2)
503 (gil::g-op *sp* bb3 gil::BOT_EQV bb4 b-eq2) ; b-eq2 = (bb3 == bb4)
504 (gil::g-op *sp* b-eq1 gil::BOT_EQV b-eq2 b-eq3) ; b-eq3 = (b-eq1 == b-eq2)
505 (gil::g-op *sp* b-and3 gil::BOT_AND b-eq3 b) ; b = b-and3 && b-eq3
506)
507)
508)
509)
510

511 ; create an array of BoolVar representing if the second note is not cambiata
512 (defun create-is-not-cambiata-arr (is-cons-arr2 is-cons-arr3 m-intervals is-not-cambiata-arr)
513 (loop
514 for b2 in is-cons-arr2
515 for b3 in is-cons-arr3
516 for m in m-intervals
517 for b in is-not-cambiata-arr
518 do
519 (let (
520 (b-m (gil::add-bool-var *sp* 0 1)) ; (m <= 2)
521 (b-and (gil::add-bool-var *sp* 0 1)) ; (b2 && b3)
522)
523 (gil::g-op *sp* b2 gil::BOT_AND b3 b-and) ; b-and = b2 && b3
524 (gil::g-rel-reify *sp* m gil::IRT_LQ 2 b-m) ; b-m = (m <= 2)
525 (gil::g-op *sp* b-and gil::BOT_AND b-m b) ; b = b-and && b-m
526)
527)
528)
529

530 ; create an array of BoolVar representing if there is no syncopation
531 (defun create-is-no-syncope-arr (m-intervals is-no-syncope-arr)
532 (loop
533 for m in (butlast m-intervals)
534 for b in is-no-syncope-arr
535 do
536 (gil::g-rel-reify *sp* m gil::IRT_NQ 0 b)
537)
538)
539

540 ; add constraints such that @b-member is true iff @candidate is a member of @member-list
541 (defun add-is-member-cst (candidate member-list b-member)
542 (let (
543 (results (gil::add-int-var-array *sp* (length member-list) 0 1)) ; where candidate == m
544 (sum (gil::add-int-var *sp* 0 (length member-list))) ; sum(results)
545)

135

546 (loop
547 for m in member-list
548 for r in results
549 do
550 (let (
551 (b1 (gil::add-bool-var *sp* 0 1)) ; b1 = (candidate == m)
552)
553 (gil::g-rel-reify *sp* candidate gil::IRT_EQ m b1) ; b1 = (candidate == m)
554 (gil::g-ite *sp* b1 ONE ZERO r) ; r = (b1 ? 1 : 0)
555)
556)
557 (gil::g-sum *sp* sum results) ; sum = sum(results)
558 (gil::g-rel-reify *sp* sum gil::IRT_GR 0 b-member) ; b-member = (sum >= 1)
559)
560)
561

562 ; create an array of BoolVar
563 ; 1 -> the harmonic interval is member of the set (consonances set by default)
564 (defun create-is-member-arr (h-intervals cons-arr &optional (cons-set ALL_CONS))
565 (loop
566 for h in h-intervals
567 for b in cons-arr
568 do
569 (add-is-member-cst h cons-set b)
570)
571)
572

573 ; add the constraint such that the harmonies in @h-intervals are consonances expect the
penultimate note (specific rule)

574 ; @len: the length of the counterpoint
575 ; @cf-penult-index: the index of penultimate note in the counterpoint
576 ; @h-intervals: the array of harmonic intervals
577 ; @penult-dom-var: the domain of the penultimate note
578 (defun add-h-cons-cst (len cf-penult-index h-intervals &optional (penult-dom-var PENULT_CONS_VAR

))
579 (loop for i from 0 below len do
580 (setq h-interval (nth i h-intervals))
581 (if (eq i cf-penult-index) ; if it is the penultimate note
582 ; then add major sixth + minor third by default
583 (add-penult-dom-cst h-interval penult-dom-var)
584 ; else add all consonances
585 (if (not (null h-interval))
586 (gil::g-member *sp* ALL_CONS_VAR h-interval)
587)
588)
589)
590)
591

592 ; add the constraint such that the penultimate note belongs to the domain @penult-dom-var
593 (defun add-penult-dom-cst (h-interval penult-dom-var)
594 (if (getparam ’penult-rule-check)
595 (gil::g-member *sp* penult-dom-var h-interval)
596)
597)
598

599 ; add the constraint such that is-cst-arr[i] => is-cons-arr[i] is true
600 ; -is-cons-arr: array of BoolVar, 1 -> the harmonic interval is a consonance
601 ; -is-cst-arr: array of BoolVar, 1 -> the note is constrained by a species
602 (defun add-h-cons-cst-if (is-cons-arr is-cst-arr)
603 (loop
604 for is-cons in is-cons-arr
605 for is-cst in is-cst-arr
606 do
607 (gil::g-op *sp* is-cst gil::BOT_IMP is-cons 1) ; (is-cst => is-cons) = 1
608)
609)
610

136

611 ; add the constraint such that h-intervals[i] belongs to ALL_CONS_VAR is-no-syncope-arr[i] is
true

612 ; in other words, if there is no syncopation the note cannot be dissonant
613 (defun add-no-sync-h-cons (h-intervals is-no-syncope-arr)
614 (loop
615 for h in h-intervals
616 for b in is-no-syncope-arr
617 do
618 (loop for d in DIS do
619 (gil::g-rel-reify *sp* h gil::IRT_NQ d b gil::RM_IMP) ; b => (h != d)
620)
621)
622)
623

624 ; for future work: should use not(nth i is-cons-arr) instead of add a constraint for each
dissonance in DIS

625 ; -len: length of the harmonic array
626 ; -cf-penult-index: index of the penultimate note in the counterpoint
627 ; -h-intervals-arsis: harmonic intervals of the arsis of the counterpoint
628 ; -is-ta-dim-arr: array of BoolVar, 1 -> the note in arsis is a diminution
629 ; -penult-dom-var: domain of the penultimate note
630 (defun add-h-cons-arsis-cst (len cf-penult-index h-intervals-arsis is-ta-dim-arr &optional (

penult-dom-var PENULT_CONS_VAR))
631 (loop
632 for i from 0 below len
633 for b in is-ta-dim-arr
634 do
635 (if (eq i cf-penult-index) ; if it is the penultimate note
636 ; then add major sixth + minor third
637 (add-penult-dom-cst (nth i h-intervals-arsis) penult-dom-var)
638 ; else dissonance implies there is a diminution
639 (loop for d in DIS do
640 (gil::g-rel-reify *sp* (nth i h-intervals-arsis) gil::IRT_EQ d b gil::RM_PMI)
641)
642)
643)
644)
645

646 ; add the constraint such that (c3 OR (c2 AND c4)) AND (c3 OR dim) is true,
647 ; where : - cn represents if the nth note of the measure is consonant
648 ; - dim represents if the 3rd note is a diminution
649 (defun add-h-dis-or-cons-3rd-cst (is-cons-2nd is-cons-3rd is-cons-4th is-dim &optional (

is-cst-arr nil))
650 (loop
651 for b-c2nd in is-cons-2nd
652 for b-c3rd in is-cons-3rd
653 for b-c4th in is-cons-4th
654 for b-dim in is-dim
655 do
656 (let (
657 (b-and1 (gil::add-bool-var *sp* 0 1)) ; s.f. b-c2nd AND b-c4th
658)
659 (gil::g-op *sp* b-c2nd gil::BOT_AND b-c4th b-and1) ; b-and1 = b-c2nd AND b-c4th
660 (gil::g-op *sp* b-c3rd gil::BOT_OR b-dim 1) ; b-and2 = b-c2nd AND b-c4th AND b-dim
661)
662)
663)
664

665 ; add constraints such that
666 ; any dissonant note implies that it is followed by the next consonant note below
667 ; @m-succ-intervals-brut: list of IntVar, s.f. brut melodic intervals between thesis and arsis
668 ; @is-cons-arr: list of BoolVar, s.f. 1 -> the note is consonant
669 ; @is-cst-arr: list of BoolVar, s.f. 1 -> the note is constrained by a species
670 (defun add-h-dis-imp-cons-below-cst (m-succ-intervals-brut is-cons-arr &optional (is-cst-arr nil

))
671 (loop
672 for m in m-succ-intervals-brut

137

673 for b in is-cons-arr
674 for i from 0 below (length m-succ-intervals-brut)
675 do
676 (let (
677 (b-not (gil::add-bool-var *sp* 0 1)) ; s.f. !b (dissonance)
678 (is-cst (true-if-null is-cst-arr i)) ; s.f. is-cst = 1 -> the note is constrained by

a species
679 (b-and (gil::add-bool-var *sp* 0 1)) ; s.f. b-not && is-cst
680)
681 (gil::g-op *sp* b gil::BOT_EQV FALSE b-not) ; b-not = !b (dissonance)
682 (gil::g-op *sp* b-not gil::BOT_AND is-cst b-and) ; b-and = b-not && is-cst
683 (gil::g-rel-reify *sp* m gil::IRT_LE 0 b-and gil::RM_IMP) ; b-and => m < 0
684 (gil::g-rel-reify *sp* m gil::IRT_GQ -2 b-and gil::RM_IMP) ; b-and => m >= -2
685)
686)
687)
688

689 ; add constraints such that if a melodic interval is greater than one step (2)
690 ; then the next melodic interval should be one step and in the opposite direction
691 (defun add-contrary-step-after-skip-cst (m-all-intervals m-all-intervals-brut)
692 (if (not (getparam ’con-m-after-skip-check))
693 (return-from add-contrary-step-after-skip-cst)
694)
695 (loop
696 for m in m-all-intervals
697 for m+1 in (rest m-all-intervals)
698 for mb in m-all-intervals-brut
699 for mb+1 in (rest m-all-intervals-brut)
700 do
701 (let (
702 (b-skip (gil::add-bool-var *sp* 0 1)) ; m > 2
703 (b-mb-up (gil::add-bool-var *sp* 0 1)) ; mb > 0
704 (b-mb+1-down (gil::add-bool-var *sp* 0 1)) ; mb+1 < 0
705 (b-contrary (gil::add-bool-var *sp* 0 1)) ; b-mb-up <=> b-mb+1-down
706)
707 (gil::g-rel-reify *sp* m gil::IRT_GR 2 b-skip) ; b-skip := m > 2
708 (gil::g-rel-reify *sp* mb gil::IRT_GR 0 b-mb-up) ; b-mb-up := mb > 0
709 (gil::g-rel-reify *sp* mb+1 gil::IRT_LE 0 b-mb+1-down) ; b-mb+1-down := mb+1 < 0
710 (gil::g-op *sp* b-mb-up gil::BOT_EQV b-mb+1-down b-contrary) ; b-contrary := b-mb-up

<=> b-mb+1-down
711 (gil::g-rel-reify *sp* m+1 gil::IRT_LQ 2 b-skip gil::RM_IMP) ; b-skip => m+1 <= 2
712 (gil::g-op *sp* b-skip gil::BOT_IMP b-contrary 1) ; b-skip => b-contrary
713)
714)
715)
716

717 ; is-5qn-linked-arr implies that is-cons-arr1 (supposed to always be true) and is-cons-arr3 are
true

718 (defun add-linked-5qn-cst (is-cons-arr3 is-5qn-linked-arr)
719 (loop
720 ; for b1 in is-cons-arr1
721 for b3 in is-cons-arr3
722 for b in is-5qn-linked-arr
723 do
724 (gil::g-op *sp* b gil::BOT_IMP b3 1) ; b => b3
725)
726)
727

728 ; add the constraint such that there cp is never equal to cf
729 (defun add-no-unisson-at-all-cst (cp cf &optional (is-cst-arr nil))
730 (loop
731 for p in cp
732 for q in cf
733 for i from 0 below (length cp)
734 do
735 (rel-reify-if p gil::IRT_NQ q (nth i is-cst-arr))
736)

138

737)
738

739 ; add the constraint such that there is no unisson unless it is the first or last note
740 (defun add-no-unisson-cst (cp cf)
741 (add-no-unisson-at-all-cst (restbutlast cp) (restbutlast cf))
742)
743

744 ; add the constraint such that the first harmonic interval is a perfect consonance
745 (defun add-p-cons-start-cst (h-intervals)
746 (gil::g-member *sp* P_CONS_VAR (first h-intervals))
747)
748

749 ; add the constraint such that the last harmonic interval is a perfect consonance
750 (defun add-p-cons-end-cst (h-intervals)
751 (gil::g-member *sp* P_CONS_VAR (lastone h-intervals))
752)
753

754 ; add the constraint such that the first and last harmonic interval are 0 if cp is at the bass
755 ; not(is-cf-bass[0, 0]) => h-interval[0, 0] = 0
756 ; not(is-cf-bass[-1, -1]) => h-interval[-1, -1] = 0
757 ; @h-interval: the harmonic interval array
758 ; @is-cf-bass-arr: boolean variables indicating if cf is at the bass
759 (defun add-tonic-tuned-cst (h-interval is-cf-bass-arr)
760 (let (
761 (bf-not (gil::add-bool-var *sp* 0 1)) ; for !(first is-cf-bass-arr)
762 (bl-not (gil::add-bool-var *sp* 0 1)) ; for !(lastone is-cf-bass-arr)
763)
764 (gil::g-op *sp* (first is-cf-bass-arr) gil::BOT_EQV FALSE bf-not) ; bf-not = !(first

is-cf-bass-arr)
765 (gil::g-op *sp* (lastone is-cf-bass-arr) gil::BOT_EQV FALSE bl-not) ; bl-not = !(lastone

is-cf-bass-arr)
766 (gil::g-rel-reify *sp* (first h-interval) gil::IRT_EQ 0 bf-not gil::RM_IMP) ; bf-not =>

h-interval[0, 0] = 0
767 (gil::g-rel-reify *sp* (lastone h-interval) gil::IRT_EQ 0 bl-not gil::RM_IMP) ; bl-not

=> h-interval[-1, -1] = 0
768)
769)
770

771 ; add the constraint such that the harmonic interval is a perfect consonance if it is
constrained by a species

772 (defun add-p-cons-cst-if (h-inter is-cst)
773 (let (
774 (b-fifth (gil::add-bool-var *sp* 0 1)) ; b-fifth = h-inter is a fifth
775 (b-octave (gil::add-bool-var *sp* 0 1)) ; b-octave = h-inter is an octave
776 (b-p-cons (gil::add-bool-var *sp* 0 1)) ; b-p-cons = h-inter is a perfect consonance
777)
778 (gil::g-rel-reify *sp* h-inter gil::IRT_EQ 7 b-fifth) ; b-fifth = h-inter is a fifth
779 (gil::g-rel-reify *sp* h-inter gil::IRT_EQ 0 b-octave) ; b-octave = h-inter is an octave
780 (gil::g-op *sp* b-fifth gil::BOT_OR b-octave b-p-cons) ; b-p-cons = b-fifth or b-octave
781 (gil::g-op *sp* is-cst gil::BOT_IMP b-p-cons 1) ; is-cst => b-p-cons
782)
783)
784

785 (defun add-penult-cons-cst (b-bass h-interval &optional (and-cond nil))
786 (if (getparam ’penult-rule-check)
787 (if (null and-cond)
788 (gil::g-ite *sp* b-bass NINE THREE h-interval)
789 (and-ite b-bass NINE THREE h-interval and-cond)
790)
791)
792)
793

794 ; add a constraint such that there is no seventh harmonic interval if cf is at the top
795 (defun add-no-seventh-cst (h-intervals is-cf-bass-arr &optional (is-cst-arr nil))
796 (loop
797 for h in h-intervals
798 for b in is-cf-bass-arr

139

799 for i from 0 below (length h-intervals)
800 do
801 (let (
802 (b-not (gil::add-bool-var *sp* 0 1)) ; b-not = !b
803 (is-cst (nth i is-cst-arr)) ; is-cst = is-cst-arr[i]
804 (b-and (gil::add-bool-var *sp* 0 1)) ; b-and = b-not and is-cst
805)
806 (gil::g-op *sp* b gil::BOT_EQV FALSE b-not) ; b-not = !b
807 (if (null is-cst)
808 (gil::g-op *sp* b-not gil::BOT_AND TRUE b-and) ; b-and = b-not
809 (gil::g-op *sp* b-not gil::BOT_AND is-cst b-and) ; b-and = b-not and is-cst
810)
811 (gil::g-rel-reify *sp* h gil::IRT_NQ 10 b-and gil::RM_IMP) ; b-and => h != 10
812 (gil::g-rel-reify *sp* h gil::IRT_NQ 11 b-and gil::RM_IMP) ; b-and => h != 11
813)
814)
815)
816

817 ; add a constraint such that there is no second harmonic interval if:
818 ; - cf is at the bass AND
819 ; - octave/unisson harmonic interval precedes it
820 (defun add-no-second-cst (h-intervals-arsis h-intervals-thesis is-cf-bass-arr &optional (

is-cst-arr nil))
821 (loop
822 for ia in h-intervals-arsis
823 for it in h-intervals-thesis
824 for b in is-cf-bass-arr
825 for i from 0 below (length h-intervals-arsis)
826 do
827 (let (
828 (b-uni (gil::add-bool-var *sp* 0 1)) ; b-uni = (ia == 0)
829 (b-and (gil::add-bool-var *sp* 0 1)) ; b-and = b AND b-uni
830 (is-cst (true-if-null is-cst-arr i)) ; is-cst = is-cst-arr[i] or TRUE
831 (b-and-cst (gil::add-bool-var *sp* 0 1)) ; b-and-cst = b-and AND is-cst
832)
833 (gil::g-rel-reify *sp* ia gil::IRT_EQ 0 b-uni) ; b-uni = (ia == 0)
834 (gil::g-op *sp* b gil::BOT_AND b-uni b-and) ; b-and = b AND b-uni
835 (gil::g-op *sp* b-and gil::BOT_AND is-cst b-and-cst) ; b-and-cst = b-and AND is-cst
836 (gil::g-rel-reify *sp* it gil::IRT_NQ 1 b-and-cst gil::RM_IMP)
837 (gil::g-rel-reify *sp* it gil::IRT_NQ 2 b-and-cst gil::RM_IMP)
838)
839)
840)
841

842 ; add a constraint such that there is no melodic interval greater than @jump (8, minor 6th by
default)

843 (defun add-no-m-jump-cst (m-intervals &optional (jump 8))
844 (gil::g-rel *sp* m-intervals gil::IRT_LQ jump)
845)
846

847 ; add a constraint such that m-intervals does not belong to [9, 10, 11]
848 (defun add-no-m-jump-extend-cst (m-intervals &optional (is-cst-arr nil))
849 (if (null is-cst-arr)
850 ; then
851 (progn
852 (gil::g-rel *sp* m-intervals gil::IRT_NQ 9)
853 (gil::g-rel *sp* m-intervals gil::IRT_NQ 10)
854 (gil::g-rel *sp* m-intervals gil::IRT_NQ 11)
855)
856 ; else
857 (progn
858 (loop
859 for m in m-intervals
860 for b in is-cst-arr
861 do
862 (gil::g-rel-reify *sp* m gil::IRT_NQ 9 b gil::RM_IMP)
863 (gil::g-rel-reify *sp* m gil::IRT_NQ 10 b gil::RM_IMP)

140

864 (gil::g-rel-reify *sp* m gil::IRT_NQ 11 b gil::RM_IMP)
865)
866)
867)
868)
869

870 ; add melodic interval constraints such that:
871 ; - minor sixth intervals and octave intervals implies that is-nbour is true
872 ; - no seventh intervals
873 (defun add-m-inter-arsis-cst (m-intervals-ta is-nbour-arr)
874 (loop
875 for m in m-intervals-ta
876 for n in is-nbour-arr
877 do
878 (let (
879 (b-maj-six (gil::add-bool-var *sp* 0 1)) ; for (m = 9)
880 (b-min-sev (gil::add-bool-var *sp* 0 1)) ; for (m == 10)
881 (b-maj-sev (gil::add-bool-var *sp* 0 1)) ; for (m == 11)
882 (b-or (gil::add-bool-var *sp* 0 1)) ; temporary variable for (b-min-sev or

b-maj-sev)
883)
884 (gil::g-rel-reify *sp* m gil::IRT_EQ 12 n gil::RM_PMI) ; m == 12 implies n is

true
885 (gil::g-rel-reify *sp* m gil::IRT_EQ 9 b-maj-six) ; b-maj-six = (m == 9)
886 (gil::g-rel-reify *sp* m gil::IRT_EQ 10 b-min-sev) ; b-min-sev = (m == 10)
887 (gil::g-rel-reify *sp* m gil::IRT_EQ 11 b-maj-sev) ; b-maj-sev = (m == 11)
888 (gil::g-op *sp* b-min-sev gil::BOT_OR b-maj-sev b-or) ; b-or = (b-min-sev or

b-maj-sev)
889 (gil::g-op *sp* b-or gil::BOT_OR b-maj-six 0) ; not (b-min-sev || b-maj-sev)
890)
891)
892)
893

894 ; add melodic interval constraints such that there is no chromatic interval:
895 ; - no m1 == 1 and m2 == 2 OR
896 ; - no m1 == -1 and m2 == -2
897 (defun add-no-chromatic-m-cst (m-intervals-brut m2-intervals-brut)
898 (loop
899 for m1 in (rest m-intervals-brut)
900 for m2 in m2-intervals-brut do
901 (let (
902 (b1 (gil::add-bool-var *sp* 0 1)) ; for (m1 == 1)
903 (b2 (gil::add-bool-var *sp* 0 1)) ; for (m2 == 2)
904 (b3 (gil::add-bool-var *sp* 0 1)) ; for (m1 == -1)
905 (b4 (gil::add-bool-var *sp* 0 1)) ; for (m2 == -2)
906)
907 (gil::g-rel-reify *sp* m1 gil::IRT_EQ 1 b1) ; b1 = (m1 == 1)
908 (gil::g-rel-reify *sp* m2 gil::IRT_EQ 2 b2) ; b2 = (m2 == 2)
909 (gil::g-op *sp* b1 gil::BOT_AND b2 0) ; not(b1 and b2)
910 (gil::g-rel-reify *sp* m1 gil::IRT_EQ -1 b3) ; b3 = (m1 == -1)
911 (gil::g-rel-reify *sp* m2 gil::IRT_EQ -2 b4) ; b4 = (m2 == -2)
912 (gil::g-op *sp* b3 gil::BOT_AND b4 0) ; not(b3 and b4)
913)
914)
915)
916

917 ; add melodic interval constraints such that there is no chromatic interval:
918 ; - no m1 == 1 and m2 == 1 OR
919 ; - no m1 == -1 and m2 == -1
920 ; @m-intervals-brut: list of all the melodic intervals
921 (defun add-no-chromatic-allm-cst (m-intervals-brut)
922 (loop
923 for m1 in m-intervals-brut
924 for m2 in (rest m-intervals-brut) do
925 (let (
926 (b1 (gil::add-bool-var *sp* 0 1)) ; for (m1 == 1)
927 (b2 (gil::add-bool-var *sp* 0 1)) ; for (m2 == 1)

141

928 (b3 (gil::add-bool-var *sp* 0 1)) ; for (m1 == -1)
929 (b4 (gil::add-bool-var *sp* 0 1)) ; for (m2 == -1)
930)
931 (gil::g-rel-reify *sp* m1 gil::IRT_EQ 1 b1) ; b1 = (m1 == 1)
932 (gil::g-rel-reify *sp* m2 gil::IRT_EQ 1 b2) ; b2 = (m2 == 1)
933 (gil::g-op *sp* b1 gil::BOT_AND b2 0) ; not(b1 and b2)
934 (gil::g-rel-reify *sp* m1 gil::IRT_EQ -1 b3) ; b3 = (m1 == -1)
935 (gil::g-rel-reify *sp* m2 gil::IRT_EQ -1 b4) ; b4 = (m2 == -1)
936 (gil::g-op *sp* b3 gil::BOT_AND b4 0) ; not(b3 and b4)
937)
938)
939)
940

941 (defun create-motions (m-intervals-brut cf-brut-m-intervals motions costs)
942 (loop
943 for p in m-intervals-brut
944 for q in cf-brut-m-intervals
945 for m in motions
946 for c in costs
947 do
948 (let (
949 ; boolean variables
950 (b-pu (gil::add-bool-var *sp* 0 1)) ; boolean p up
951 (b-qu (gil::add-bool-var *sp* 0 1)) ; boolean q up
952 (b-ps (gil::add-bool-var *sp* 0 1)) ; boolean p stays
953 (b-qs (gil::add-bool-var *sp* 0 1)) ; boolean q stays
954 (b-pd (gil::add-bool-var *sp* 0 1)) ; boolean p down
955 (b-qd (gil::add-bool-var *sp* 0 1)) ; boolean q down
956 ; direct motion
957 (b-both-up (gil::add-bool-var *sp* 0 1)) ; boolean both up
958 (b-both-stays (gil::add-bool-var *sp* 0 1)) ; boolean both stays
959 (b-both-down (gil::add-bool-var *sp* 0 1)) ; boolean both down
960 (dm-or1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
961 (dm-or2 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
962 ; oblique motion
963 (b-pu-qs (gil::add-bool-var *sp* 0 1)) ; boolean p up and q stays
964 (b-pd-qs (gil::add-bool-var *sp* 0 1)) ; boolean p down and q stays
965 (b-ps-qu (gil::add-bool-var *sp* 0 1)) ; boolean p stays and q up
966 (b-ps-qd (gil::add-bool-var *sp* 0 1)) ; boolean p stays and q down
967 (om-or1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
968 (om-or2 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
969 (om-or3 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
970 ; contrary motion
971 (b-pu-qd (gil::add-bool-var *sp* 0 1)) ; boolean p up and q down
972 (b-pd-qu (gil::add-bool-var *sp* 0 1)) ; boolean p down and q up
973 (cm-or1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
974)
975 (gil::g-rel-reify *sp* p gil::IRT_LE 0 b-pd) ; b-pd = (p < 0)
976 (gil::g-rel-reify *sp* p gil::IRT_EQ 0 b-ps) ; b-ps = (p == 0)
977 (gil::g-rel-reify *sp* p gil::IRT_GR 0 b-pu) ; b-pu = (p > 0)
978 (gil::g-rel-reify *sp* q gil::IRT_LE 0 b-qd) ; b-qd = (q < 0)
979 (gil::g-rel-reify *sp* q gil::IRT_EQ 0 b-qs) ; b-qs = (q == 0)
980 (gil::g-rel-reify *sp* q gil::IRT_GR 0 b-qu) ; b-qu = (q > 0)
981 ; direct motion
982 (gil::g-op *sp* b-pu gil::BOT_AND b-qu b-both-up) ; b-both-up = (b-pu and b-qu)
983 (gil::g-op *sp* b-ps gil::BOT_AND b-qs b-both-stays) ; b-both-stays = (b-ps and

b-qs)
984 (gil::g-op *sp* b-pd gil::BOT_AND b-qd b-both-down) ; b-both-down = (b-pd and

b-qd)
985 (gil::g-op *sp* b-both-up gil::BOT_OR b-both-stays dm-or1) ; dm-or1 = (b-both-up

or b-both-stays)
986 (gil::g-op *sp* dm-or1 gil::BOT_OR b-both-down dm-or2) ; dm-or2 = (dm-or1 or

b-both-down)
987 (gil::g-rel-reify *sp* m gil::IRT_EQ DIRECT dm-or2) ; m = 1 if dm-or2
988 (gil::g-rel-reify *sp* c gil::IRT_EQ *dir-motion-cost* dm-or2) ; add the cost of

direct motion
989 ; oblique motion

142

990 (gil::g-op *sp* b-pu gil::BOT_AND b-qs b-pu-qs) ; b-pu-qs = (b-pu and b-qs)
991 (gil::g-op *sp* b-pd gil::BOT_AND b-qs b-pd-qs) ; b-pd-qs = (b-pd and b-qs)
992 (gil::g-op *sp* b-ps gil::BOT_AND b-qu b-ps-qu) ; b-ps-qu = (b-ps and b-qu)
993 (gil::g-op *sp* b-ps gil::BOT_AND b-qd b-ps-qd) ; b-ps-qd = (b-ps and b-qd)
994 (gil::g-op *sp* b-pu-qs gil::BOT_OR b-pd-qs om-or1) ; om-or1 = (b-pu-qs or

b-pd-qs)
995 (gil::g-op *sp* om-or1 gil::BOT_OR b-ps-qu om-or2) ; om-or2 = (om-or1 or b-ps-qu

)
996 (gil::g-op *sp* om-or2 gil::BOT_OR b-ps-qd om-or3) ; om-or3 = (om-or2 or b-ps-qd

)
997 (gil::g-rel-reify *sp* m gil::IRT_EQ OBLIQUE om-or3) ; m = 0 if om-or3
998 (gil::g-rel-reify *sp* c gil::IRT_EQ *obl-motion-cost* om-or3) ; add the cost of

oblique motion
999 ; contrary motion

1000 (gil::g-op *sp* b-pu gil::BOT_AND b-qd b-pu-qd) ; b-pu-qd = (b-pu and b-qd)
1001 (gil::g-op *sp* b-pd gil::BOT_AND b-qu b-pd-qu) ; b-pd-qu = (b-pd and b-qu)
1002 (gil::g-op *sp* b-pu-qd gil::BOT_OR b-pd-qu cm-or1) ; cm-or1 = (b-pu-qd or

b-pd-qu)
1003 (gil::g-rel-reify *sp* m gil::IRT_EQ CONTRARY cm-or1) ; m = -1 if cm-or1
1004 (gil::g-rel-reify *sp* c gil::IRT_EQ *con-motion-cost* cm-or1) ; add the cost of

contrary motion
1005)
1006)
1007)
1008

1009 ; create the motion list variable as it is perceived by the human ear,
1010 ; i.e. if the interval between the thesis and the arsis note is greater than a third,
1011 ; then the motion is perceived from the arsis note and not from the thesis note
1012 ; @m-intervals-ta: melodic intervals between the thesis and the arsis note
1013 ; @motions: motions perceived from the thesis note
1014 ; @motions-arsis: motions perceived from the arsis note
1015 ; @real-motions: motions perceived by the human ear
1016 (defun create-real-motions (m-intervals-ta motions motions-arsis real-motions motions-costs

motions-arsis-costs real-motions-costs)
1017 (loop
1018 for tai in m-intervals-ta
1019 for t-move in motions
1020 for a-move in motions-arsis
1021 for r-move in real-motions
1022 for t-c in motions-costs
1023 for a-c in motions-arsis-costs
1024 for r-c in real-motions-costs
1025 do
1026 (let (
1027 (b (gil::add-bool-var *sp* 0 1)) ; for (tai > 4)
1028)
1029 (gil::g-rel-reify *sp* tai gil::IRT_GR 4 b) ; b = (tai > 4)
1030 (gil::g-ite *sp* b a-move t-move r-move) ; r-move = (b ? a-move : t-move)
1031 (gil::g-ite *sp* b a-c t-c r-c) ; r-c = (b ? a-c : t-c)
1032)
1033)
1034)
1035

1036 ; add the constraint such that there is no perfect consonance in thesis that is reached by
direct motion

1037 (defun add-no-direct-move-to-p-cons-cst (motions is-p-cons-arr &optional (r t))
1038 (loop
1039 for m in motions
1040 for b in (rest-if is-p-cons-arr r)
1041 do
1042 (gil::g-rel-reify *sp* m gil::IRT_NQ DIRECT b gil::RM_IMP)
1043)
1044)
1045

1046 ; return the rest of the list if the boolean is true, else return the list
1047 (defun rest-if (l b)
1048 (if b

143

1049 (rest l)
1050 l
1051)
1052)
1053

1054 ; TODO pass to new version function below
1055 ; add the constraint such that there is no battuta kind of motion, i.e.:
1056 ; - contrary motion
1057 ; - skip in the upper voice
1058 ; - lead to an octave
1059 (defun add-no-battuta-cst (motions h-intervals m-intervals-brut is-cf-bass-arr &optional (

is-cst-arr nil))
1060 (loop
1061 for move in motions
1062 for hi in (rest h-intervals)
1063 for mi in m-intervals-brut
1064 for b in (butlast is-cf-bass-arr)
1065 for i from 0 below *cf-last-index
1066 do
1067 (let (
1068 (is-cm (gil::add-bool-var *sp* 0 1)) ; is contrary motion
1069 (is-oct (gil::add-bool-var *sp* 0 1)) ; is moving to octave
1070 (is-cp-down (gil::add-bool-var *sp* 0 1)) ; is counterpoint going down
1071 (b-and1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1072 (b-and2 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1073 (b-and3 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1074)
1075 (gil::g-rel-reify *sp* move gil::IRT_EQ CONTRARY is-cm) ; is-cm = (m == -1)
1076 (gil::g-rel-reify *sp* hi gil::IRT_EQ 0 is-oct) ; is-oct = (hi == 0)
1077 (gil::g-rel-reify *sp* mi gil::IRT_LE -4 is-cp-down) ; is-cp-down = (mi < -4)
1078 (gil::g-op *sp* is-cm gil::BOT_AND is-oct b-and1) ; b-and1 = (is-cm and is-oct)
1079 (gil::g-op *sp* b-and1 gil::BOT_AND is-cp-down b-and2) ; b-and2 = (b-and1 and

is-cp-down)
1080 (if (null is-cst-arr)
1081 ; then constraint is always added
1082 (gil::g-op *sp* b-and2 gil::BOT_AND b 0) ; (is-cm and is-oct and is-cp-down and

b) = FALSE
1083 ; else constraint is added only if the current note is constrained
1084 (progn
1085 (gil::g-op *sp* b-and2 gil::BOT_AND b b-and3) ; b-and3 = (b-and2 and b)
1086 ; is-cst => (b-and3 == 0) can be written as not (is-cst and b-and3)
1087 (gil::g-op *sp* (nth i is-cst-arr) gil::BOT_AND b-and3 0)
1088)
1089)
1090)
1091)
1092)
1093

1094 ; TEST new version
1095 ; add the constraint such that there is no battuta kind of motion, i.e.:
1096 ; - contrary motion
1097 ; - skip in the upper voice
1098 ; - lead to an octave
1099 (defun add-no-battuta-bis-cst (motions h-intervals m-intervals-brut cf-brut-m-intervals

is-cf-bass-arr &optional (is-cst-arr nil))
1100 (loop
1101 for move in motions
1102 for hi in (rest h-intervals)
1103 for mi in m-intervals-brut
1104 for cf-mi in cf-brut-m-intervals
1105 for b in (butlast is-cf-bass-arr)
1106 for i from 0 below *cf-last-index
1107 do
1108 (let (
1109 (is-cm (gil::add-bool-var *sp* 0 1)) ; is contrary motion
1110 (is-oct (gil::add-bool-var *sp* 0 1)) ; is moving to octave

144

1111 (is-cp-down (gil::add-bool-var *sp* 0 1)) ; is counterpoint going down more than 4
semi-tones

1112 (is-cf-down (gil::add-bool-var *sp* 0 1)) ; is cantus firmus going down more than 4
semi-tones

1113 (b-not (gil::add-bool-var *sp* 0 1)) ; !b = cantus firmus is not the bass
1114 (b-and1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1115 (b-and2 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1116 (b-and3 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1117)
1118 (gil::g-rel-reify *sp* move gil::IRT_EQ CONTRARY is-cm) ; is-cm = (m == 0)
1119 (gil::g-rel-reify *sp* hi gil::IRT_EQ 0 is-oct) ; is-oct = (hi == 0)
1120 (gil::g-rel-reify *sp* mi gil::IRT_LE -4 is-cp-down) ; is-cp-down = (mi < -4)
1121 (gil::g-rel-reify *sp* cf-mi gil::IRT_LE -4 is-cf-down) ; is-cf-down = (cf-mi < -4)
1122 (gil::g-op *sp* b gil::BOT_EQV FALSE b-not) ; b-not = !b
1123 (gil::g-op *sp* is-cm gil::BOT_AND is-oct b-and1) ; b-and1 = (is-cm and is-oct)
1124 (gil::g-op *sp* b gil::BOT_AND is-cp-down b-and2) ; b-and2 = (b-and1 and is-cp-down)
1125 (gil::g-op *sp* b-not gil::BOT_AND is-cf-down b-and3) ; b-and3 = (b-not and

is-cf-down)
1126

1127 (if (null is-cst-arr)
1128 ; then constraint is always added
1129 (progn
1130 ; first case: (is-cm and is-oct and b and is-cp-down) = FALSE
1131 (gil::g-op *sp* b-and1 gil::BOT_AND b-and2 0)
1132 ; second case: (is-cm and is-oct and b-not and is-cf-down) = FALSE
1133 (gil::g-op *sp* b-and1 gil::BOT_AND b-and3 0)
1134)
1135 ; else constraint is added only if the current note is constrained
1136 (progn (let (
1137 (b-and4 (gil::add-bool-var *sp* 0 1)) ; first case
1138 (b-and5 (gil::add-bool-var *sp* 0 1)) ; second case
1139)
1140 (gil::g-op *sp* b-and1 gil::BOT_AND b-and2 b-and4) ; first case: b-and4 = (

b-and1 and b-and2)
1141 (gil::g-op *sp* b-and1 gil::BOT_AND b-and3 b-and5) ; second case: b-and5 = (

b-and1 and b-and3)
1142 ; is-cst => (b-and == 0) can be written as not (is-cst and b-and)
1143 (gil::g-op *sp* (nth i is-cst-arr) gil::BOT_AND b-and4 0) ; first case
1144 (gil::g-op *sp* (nth i is-cst-arr) gil::BOT_AND b-and5 0) ; second case
1145))
1146)
1147)
1148)
1149)
1150

1151 ;; 5th species methods
1152 ; add the constraint such that the selected notes are the same as the midi-selected notes
1153 (defun add-selected-notes-cst (selected midi-selected cp)
1154 (print "Adding selected notes constraint")
1155 (print selected)
1156 (print midi-selected)
1157 (loop
1158 for i in selected
1159 for ms in midi-selected
1160 do
1161 (setq i+1 (+ i 1))
1162 (gil::g-rel *sp* (nth i cp) gil::IRT_EQ (first ms))
1163 (gil::g-rel *sp* (nth i+1 cp) gil::IRT_EQ (second ms))
1164)
1165)
1166

1167 ; add constraints such that the boolean array is true if the simple constraint is respected
1168 (defun create-simple-boolean-arr (candidate-arr rel-type cst b-arr)
1169 (loop
1170 for c in candidate-arr
1171 for b in b-arr
1172 do

145

1173 (gil::g-rel-reify *sp* c rel-type cst b)
1174)
1175)
1176

1177 ; do the gil::g-ite constraint but only if and-cond is true
1178 (defun and-ite (test then else var and-cond)
1179 (let (
1180 (b-and-then (gil::add-bool-var *sp* 0 1)) ; b-and-then = test and and-cond
1181 (test-not (gil::add-bool-var *sp* 0 1)) ; test-not = !test
1182 (b-and-else (gil::add-bool-var *sp* 0 1)) ; b-and-else = !test and and-cond
1183)
1184 (gil::g-op *sp* test gil::BOT_AND and-cond b-and-then) ; b-and-then = test and and-cond
1185 (gil::g-op *sp* test gil::BOT_EQV FALSE test-not) ; test-not = !test
1186 (gil::g-op *sp* test-not gil::BOT_AND and-cond b-and-else) ; b-and-else = !test and

and-cond
1187 (gil::g-rel-reify *sp* var gil::IRT_EQ then b-and-then gil::RM_IMP) ; b-and-then => var

= then
1188 (gil::g-rel-reify *sp* var gil::IRT_EQ else b-and-else gil::RM_IMP) ; b-and-else => var

= else
1189)
1190)
1191

1192 ; merge the boolean arrays with the and operator
1193 (defun bot-merge-array (b-arr1 b-arr2 b-collect-arr &optional (bot gil::BOT_AND))
1194 (loop
1195 for b1 in b-arr1
1196 for b2 in b-arr2
1197 for b in b-collect-arr
1198 do
1199 (gil::g-op *sp* b1 bot b2 b)
1200)
1201)
1202

1203 ; merge the boolean arrays with the or operator and just return it
1204 (defun collect-bot-array (b-arr1 b-arr2 &optional (bot gil::BOT_AND))
1205 (let (
1206 (b-collect-arr (gil::add-bool-var-array *sp* (length b-arr1) 0 1))
1207)
1208 (loop
1209 for b1 in b-arr1
1210 for b2 in b-arr2
1211 for b in b-collect-arr
1212 do
1213 (gil::g-op *sp* b1 bot b2 b)
1214)
1215 b-collect-arr
1216)
1217)
1218

1219

1220 (defun collect-t-or-f-array (yes-arr no-arr)
1221 (collect-bot-array
1222 yes-arr
1223 (collect-not-array no-arr)
1224 gil::BOT_OR
1225)
1226)
1227

1228 (defun collect-not-array (arr)
1229 (collect-bot-array arr (gil::add-bool-var-array *sp* (length arr) 0 0) gil::BOT_EQV)
1230)
1231

1232 ; do the gil::g-rel-reify constraint but use the condition that (b AND and-cond) is true
1233 (defun bot-reify (var rel-type cst b and-cond &optional (bot gil::BOT_AND) (mode gil::RM_EQV))
1234 (let (
1235 (b-and (gil::add-bool-var *sp* 0 1)) ; b-and = b and and-cond
1236)

146

1237 (gil::g-op *sp* b bot and-cond b-and) ; b-and = b and and-cond
1238 (gil::g-rel-reify *sp* var rel-type cst b-and mode) ; b-and == var rel-type cst
1239)
1240)
1241

1242 ; return the index of a note as all the notes are in a row,
1243 ; i.e. return the total index of the note at the given measure at the given beat assuming that

we are in 4 4 time
1244 ; the index is 0-based, same for measure and beat
1245 (defun total-index (measure beat)
1246 (+ (* measure 4) beat)
1247)
1248

1249 ; is-mostly-3rd is true if second, third and fourth notes are from 3rd species
1250 ; note that is-mostly-3rd-arr have a length 4 times shorter than is-3rd-species-arr
1251 (defun create-is-mostly-3rd-arr (is-3rd-species-arr is-mostly-3rd-arr)
1252 (loop
1253 for meas from 0 below (length is-mostly-3rd-arr)
1254 do
1255 (let (
1256 (b-23 (gil::add-bool-var *sp* 0 1)) ; b-23 = is-3rd-species-arr[meas][1] AND

is-3rd-species-arr[meas][2]
1257)
1258 ; b-23
1259 (gil::g-op *sp* (nth (total-index meas 1) is-3rd-species-arr) gil::BOT_AND (nth (

total-index meas 2) is-3rd-species-arr) b-23)
1260 ; b-23 and "b-4" are stocked in is-mostly-3rd-arr[meas]
1261 (gil::g-op *sp* b-23 gil::BOT_AND (nth (total-index meas 3) is-3rd-species-arr) (nth

meas is-mostly-3rd-arr))
1262)
1263)
1264)
1265

1266 ; collect elements all the 4 elements of the array, i.e. n, n+4, n+8, n+12, etc.
1267 ; note: n is the offset
1268 (defun collect-by-4 (arr &optional (offset 0) (b nil) (up-bound 4))
1269 (setq len (if (eq offset 0) *cf-len *cf-last-index))
1270 (if (null b)
1271 ; then make a boolean array
1272 (setq ret (gil::add-bool-var-array *sp* len 0 1))
1273 ; else make a integer array
1274 (setq ret (gil::add-int-var-array *sp* len 0 up-bound))
1275)
1276 (loop
1277 for i from offset below (length arr) by 4
1278 for j from 0 below len
1279 do
1280 (gil::g-rel *sp* (nth i arr) gil::IRT_EQ (nth j ret))
1281)
1282 ret
1283)
1284

1285 ; create an array for one beat from the entire array
1286 (defun create-by-4 (arr-from arr-to &optional (offset 0))
1287 (loop
1288 for i from offset below (length arr-from) by 4
1289 for j in arr-to
1290 do
1291 (gil::g-rel *sp* (nth i arr-from) gil::IRT_EQ j)
1292)
1293)
1294

1295 ; add a reify constraint if @b is not nil, else add a rel constraint
1296 (defun rel-reify-if (var rel-type cst &optional (b nil) (rm gil::RM_IMP))
1297 (if (null b)
1298 (gil::g-rel *sp* var rel-type cst)
1299 (gil::g-rel-reify *sp* var rel-type cst b rm)

147

1300)
1301)
1302

1303 ; return BoolVar true if nil element
1304 (defun true-if-null (arr i)
1305 (if (null arr)
1306 ; then
1307 TRUE
1308 ; else
1309 (nth i arr)
1310)
1311)
1312

1313 ; add the constraint such that if sp3 is 4th species, then sp4 is 0 and the next sp1 is 4th
species

1314 ; and vice versa (cannot have 4th species in first position without 4th species in third
position)

1315 ; - sp-arr3: array of IntVar for species at the third position
1316 ; - sp-arr4: array of IntVar for species at the fourth position
1317 ; - sp-arr1: array of IntVar for species at the first position
1318 (defun add-4th-rythmic-cst (sp-arr3 sp-arr4 sp-arr1)
1319 (loop
1320 for sp3 in sp-arr3
1321 for sp4 in sp-arr4
1322 for sp1 in (rest sp-arr1)
1323 do
1324 (let (
1325 (b-34 (gil::add-bool-var *sp* 0 1)) ; b-34 = sp3 == 4th species
1326 (b-14 (gil::add-bool-var *sp* 0 1)) ; b-14 = sp1 == 4th species
1327)
1328 (gil::g-rel-reify *sp* sp3 gil::IRT_EQ 4 b-34) ; b-34 = sp3 == 4th species
1329 (gil::g-rel-reify *sp* sp1 gil::IRT_EQ 4 b-14) ; b-14 = sp1 == 4th species
1330 (gil::g-rel-reify *sp* sp4 gil::IRT_EQ 0 b-34 gil::RM_IMP) ; b-34 => sp4 == 0
1331 (gil::g-op *sp* b-34 gil::BOT_EQV b-14 1) ; b-34 <=> b-14
1332)
1333)
1334)
1335

1336 ; add the constraint such that if n belongs to @species, then n+m have to exist (not 0)
1337 ; by default, the constraint is added for the third species
1338 ; - species-arr: array of IntVar for species
1339 ; - spec: species to check
1340 ; - offset: offset to check
1341 (defun add-no-silence-cst (species-arr &key (spec 3) (offset 1))
1342 (loop
1343 for n in species-arr
1344 for n+m in (nthcdr offset species-arr)
1345 do
1346 (let (
1347 (b (gil::add-bool-var *sp* 0 1)) ; b = (n == species)
1348)
1349 (gil::g-rel-reify *sp* n gil::IRT_EQ spec b) ; b = (n == spec)
1350 (gil::g-rel-reify *sp* n+m gil::IRT_NQ 0 b gil::RM_IMP) ; b => (n+m != 0)
1351)
1352)
1353)
1354

1355 ; add the constraint such that there is maximum 2 consecutive measures without 4th species
1356 (defun add-min-syncope-cst (third-sp-arr)
1357 (loop
1358 for sp1 in (nthcdr 1 third-sp-arr)
1359 for sp2 in (nthcdr 2 third-sp-arr)
1360 for sp3 in (nthcdr 3 third-sp-arr)
1361 do
1362 (let (
1363 (b1-not-4 (gil::add-bool-var *sp* 0 1)) ; b1-not-4 = sp1 != 4
1364 (b2-not-4 (gil::add-bool-var *sp* 0 1)) ; b2-not-4 = sp2 != 4

148

1365 (b-and (gil::add-bool-var *sp* 0 1)) ; b-and = b1-not-4 && b2-not-4
1366)
1367 (gil::g-rel-reify *sp* sp1 gil::IRT_NQ 4 b1-not-4) ; b1-not-4 = sp1 != 4
1368 (gil::g-rel-reify *sp* sp2 gil::IRT_NQ 4 b2-not-4) ; b2-not-4 = sp2 != 4
1369 (gil::g-op *sp* b1-not-4 gil::BOT_AND b2-not-4 b-and) ; b-and = b1-not-4 && b2-not-4
1370 (gil::g-rel-reify *sp* sp3 gil::IRT_EQ 4 b-and gil::RM_IMP) ; b-and => sp3 == 4
1371)
1372)
1373)
1374

1375 ; add all constraints to create a rythmic and select what species to use
1376 ; mandatory rules are:
1377 ; - 4th species is only used in third and first position
1378 ; - 4th species in third position is followed by a 0 (no note/constraint) and then a 4th species
1379 ; - no 3rd species followed by 0
1380 ; classic rules are:
1381 ; - first and penultimate measure are 4th species
1382 ; - only 3rd and 4th species are used
1383 ; - 3rd species should represent at least 1/3 of the notes
1384 ; - 4th species should represent at least 1/4 of the notes
1385 (defun create-species-arr (species-arr &key (min-3rd-pc (* (- 1 (getparam ’pref-species-slider))

0.66)) (min-4th-pc (* (getparam ’pref-species-slider) 0.5)))
1386 (print "Create species array...")
1387 (let* (
1388 (count-3rd (gil::add-int-var-array *sp* *total-cp-len 0 1))
1389 (count-4th (gil::add-int-var-array *sp* *total-cp-len 0 1))
1390 (n-3rd-int (floor (* *total-cp-len min-3rd-pc))) ; minimum number of 3rd species
1391 (n-4th-int (floor (* *total-cp-len min-4th-pc))) ; minimum number of 4th species
1392 (sum-3rd (gil::add-int-var *sp* n-3rd-int *total-cp-len)) ; set the bounds of sum-3rd
1393 (sum-4th (gil::add-int-var *sp* n-4th-int *total-cp-len)) ; set the bounds of sum-4th
1394)
1395 (setq *sp-arr (list
1396 (collect-by-4 species-arr 0 t)
1397 (collect-by-4 species-arr 1 t)
1398 (collect-by-4 species-arr 2 t)
1399 (collect-by-4 species-arr 3 t)
1400))
1401

1402 (print "Counting 3rd and 4th species...")
1403 ; count the number of 3rd and 4th species
1404 (add-cost-cst species-arr gil::IRT_EQ 3 count-3rd)
1405 (add-cost-cst species-arr gil::IRT_EQ 4 count-4th)
1406 ; sum the number of 3rd and 4th species
1407 (gil::g-sum *sp* sum-3rd count-3rd)
1408 (gil::g-sum *sp* sum-4th count-4th)
1409

1410 ; 4th species is only used in third and first position
1411 (gil::g-rel *sp* (second *sp-arr) gil::IRT_NQ 4) ; second position not 4th species
1412 (gil::g-rel *sp* (fourth *sp-arr) gil::IRT_NQ 4) ; fourth position not 4th species
1413

1414 ; 4th species in third position is followed by a 0 (no note/constraint) and then a 4th
species

1415 (add-4th-rythmic-cst (third *sp-arr) (fourth *sp-arr) (first *sp-arr))
1416

1417 ; only 3rd and 4th species are used
1418 (gil::g-rel *sp* species-arr gil::IRT_NQ 1) ; not 1st species
1419 (gil::g-rel *sp* species-arr gil::IRT_NQ 2) ; not 2nd species
1420

1421 ; first and penultimate measure are 4th species
1422 ; first measure = [0 0 4 0]
1423 (gil::g-rel *sp* (first (first *sp-arr)) gil::IRT_EQ 0) ; first note is silent
1424 (gil::g-rel *sp* (first (second *sp-arr)) gil::IRT_EQ 0) ; second note is silent
1425 (gil::g-rel *sp* (first (third *sp-arr)) gil::IRT_EQ 4) ; third note is 4th species
1426 ; penultimate measure = [4 0 4 0]
1427 (gil::g-rel *sp* (penult (first *sp-arr)) gil::IRT_EQ 4) ; first note is 4th species
1428 (gil::g-rel *sp* (lastone (second *sp-arr)) gil::IRT_EQ 0) ; second note does not exist
1429 (gil::g-rel *sp* (lastone (third *sp-arr)) gil::IRT_EQ 4) ; third note is 4th species

149

1430

1431 ; no silence after 3rd species notes
1432 (add-no-silence-cst species-arr)
1433

1434 ; no silence after 4th species notes in n+4 position
1435 (add-no-silence-cst species-arr :spec 4 :offset 4)
1436

1437 ; maximum two consecutive measures without 4th species
1438 (add-min-syncope-cst (third *sp-arr))
1439)
1440)
1441

1442 ; add constraints such that the non-constrained notes have only one possible value
1443 (defun add-one-possible-value-cst (cp is-not-cst-arr)
1444 (loop
1445 for p in cp
1446 for p+1 in (nthcdr 1 cp)
1447 for b-not-cst in is-not-cst-arr
1448 do
1449 (gil::g-rel-reify *sp* p gil::IRT_EQ p+1 b-not-cst gil::RM_IMP) ; TODO the value of the

note
1450)
1451)
1452

1453 ; add constraints such that consecutives syncopations cannot be the same
1454 ; depending on @is-syncope-arr which is true if the note is a syncopation
1455 (defun add-no-same-syncopation-cst (cp-thesis cp-arsis is-syncope-arr)
1456 (loop
1457 for th in (rest cp-thesis)
1458 for ar in (rest cp-arsis)
1459 for b in (rest is-syncope-arr)
1460 do
1461 (gil::g-rel-reify *sp* th gil::IRT_NQ ar b gil::RM_IMP)
1462)
1463)
1464

1465 ; find the next @type note in the borrowed scale,
1466 ; if there is no note in the range then return the note of the other @type
1467 ; - note: integer for the current note
1468 ; - type: atom [lower | higher] for the type of note to find
1469 ; note: this function has noting to do with GECODE
1470 (defun find-next-note (note type)
1471 (let (
1472 ; first sort the scale corresponding to the type
1473 (sorted-scale (if (eq type ’lower)
1474 (sort *extended-cp-domain #’>)
1475 (sort *extended-cp-domain #’<)
1476))
1477)
1478 (if (eq type ’lower)
1479 ; then we search the first note in the sorted scale that is lower than the current

note
1480 (progn
1481 (loop for n in sorted-scale do
1482 (if (< n note) (return-from find-next-note n))
1483)
1484 ; no note so we return the penultimate element of the sorted scale
1485 (penult sorted-scale)
1486)
1487 ; else we search the first note in the sorted scale that is higher than the current

note
1488 (progn
1489 (loop for n in sorted-scale do
1490 (if (> n note) (return-from find-next-note n))
1491)
1492 ; no note so we return the penultimate element of the sorted scale
1493 (penult sorted-scale)

150

1494)
1495)
1496)
1497)
1498

1499 ; parse the species array to get the corresponding rythmic pattern for open music
1500 ; - species-arr: array of integer for species (returned by the next-solution algorithm)
1501 ; - cp-arr: array of integer for counterpoint notes (returned by the next-solution algorithm)
1502 ; note: this function has noting to do with GECODE
1503 (defun parse-species-to-om-rythmic (species-arr cp-arr)
1504 ; replace the last element of the species array by 1
1505 (setf (first (last species-arr)) 1)
1506 (build-rythmic-pattern species-arr cp-arr)
1507)
1508

1509 ; build the rythmic pattern for open music from the species array
1510 ; - species-arr: array of integer for species
1511 ; - cp-arr: array of integer for counterpoint notes
1512 ; - rythmic-arr: array of integer for the rythmic (supposed to be nil and then filled by the

recursive function)
1513 ; - notes-arr: array of interger for notes (supposed to be nil and then filled by the recursive

function)
1514 ; - b-debug: boolean to print debug info
1515 ; note: this function has noting to do with GECODE
1516 (defun build-rythmic-pattern (species-arr cp-arr &optional (rythmic-arr nil) (notes-arr nil) (

b-debug nil))
1517 ; print debug info
1518 (if b-debug
1519 (progn
1520 (print "Current species and notes:")
1521 (print species-arr)
1522 (print cp-arr)
1523 (print "Current answer:")
1524 (print rythmic-arr)
1525 (print notes-arr)
1526)
1527)
1528 ; base case
1529 (if (null species-arr)
1530 ; then return the rythmic pattern
1531 (list rythmic-arr notes-arr)
1532)
1533

1534 (let (
1535 (sn (first species-arr)) ; current species
1536 (sn+1 (second species-arr)) ; next species
1537 (sn+2 (third species-arr)) ; next next species
1538 (sn+3 (fourth species-arr)) ; next next next species
1539 (cn (first cp-arr)) ; current counterpoint note
1540 (cn+1 (second cp-arr)) ; next counterpoint note
1541 (cn+2 (third cp-arr)) ; next next counterpoint note
1542 (cn+3 (fourth cp-arr)) ; next next next counterpoint note
1543)
1544 ; replace all nil by -1 for the species
1545 (if (null sn) (setf sn -1))
1546 (if (null sn+1) (setf sn+1 -1))
1547 (if (null sn+2) (setf sn+2 -1))
1548 (if (null sn+3) (setf sn+3 -1))
1549 ; replace all nil by -1 for the counterpoint
1550 (if (null cn) (setf cn -1))
1551 (if (null cn+1) (setf cn+1 -1))
1552 (if (null cn+2) (setf cn+2 -1))
1553 (if (null cn+3) (setf cn+3 -1))
1554

1555 (if b-debug
1556 (progn
1557 (print (format nil "sn: ~a, sn+1: ~a, sn+2: ~a, sn+3: ~a" sn sn+1 sn+2 sn+3))

151

1558 (print (format nil "cn: ~a, cn+1: ~a, cn+2: ~a, cn+3: ~a" cn cn+1 cn+2 cn+3))
1559)
1560)
1561

1562 (cond
1563 ; 1 if it is the last note [1 -1 ...]
1564 ((and (eq sn 1) (eq sn+1 -1))
1565 (list (append rythmic-arr (list 1)) (append notes-arr (list cn)))
1566)
1567

1568 ; if [4 0 4 ...] -> which syncope ?
1569 ((and (eq sn 4) (eq sn+1 0) (eq sn+2 4))
1570 (if (/= cn cn+2) ; syncopation but different notes ?
1571 ; then same as half note
1572 (if (eq sn+3 3)
1573 ; then 1/2 + 1/4 if [4 0 4 3] (syncopation catch up by a quarter note)
1574 (build-rythmic-pattern
1575 (nthcdr 3 species-arr)
1576 (nthcdr 3 cp-arr)
1577 (append rythmic-arr (list 1/2 1/4))
1578 (append notes-arr (list cn cn+2))
1579)
1580 ; else 1/2 + 1/2 if [4 0 4 0] (basic syncopation)
1581 (build-rythmic-pattern
1582 (nthcdr 4 species-arr)
1583 (nthcdr 4 cp-arr)
1584 (append rythmic-arr (list 1/2 1/2))
1585 (append notes-arr (list cn cn+2))
1586)
1587)
1588 ; else same as full note syncopated
1589 (if (eq sn+3 3)
1590 ; then 3/4 if [4 0 4 3] (syncopation catch up by a quarter note)
1591 (build-rythmic-pattern
1592 (nthcdr 3 species-arr)
1593 (nthcdr 3 cp-arr)
1594 (append rythmic-arr (list 3/4))
1595 (append notes-arr (list cn))
1596)
1597 ; else 1 if [4 0 4 0] (basic syncopation)
1598 (build-rythmic-pattern
1599 (nthcdr 4 species-arr)
1600 (nthcdr 4 cp-arr)
1601 (append rythmic-arr (list 1))
1602 (append notes-arr (list cn))
1603)
1604)
1605))
1606

1607 ; 1/8 note (croche) if cn == cn+1 AND [!0 (3 or 4) ...]
1608 ((and (eq cn cn+1) (/= sn 0) (or (eq sn+1 3) (eq sn+1 4)))
1609 (if (>= (lastone notes-arr) cn)
1610 ; then eighth note with the next lower note
1611 (build-rythmic-pattern
1612 (nthcdr 1 species-arr)
1613 (nthcdr 1 cp-arr)
1614 (append rythmic-arr (list 1/8 1/8))
1615 (append notes-arr (list cn (find-next-note cn ’lower)))
1616)
1617 ; else eighth note with the next higher note
1618 (build-rythmic-pattern
1619 (nthcdr 1 species-arr)
1620 (nthcdr 1 cp-arr)
1621 (append rythmic-arr (list 1/8 1/8))
1622 (append notes-arr (list cn (find-next-note cn ’higher)))
1623)
1624)

152

1625)
1626

1627 ; silence if [0 0 ...]
1628 ((and (eq sn 0) (eq sn+1 0))
1629 (build-rythmic-pattern
1630 (nthcdr 2 species-arr)
1631 (nthcdr 2 cp-arr)
1632 (append rythmic-arr (list -1/2))
1633 notes-arr
1634)
1635)
1636

1637 ; 1 if [1 0 0 0] (full note)
1638 ((and (eq sn 1) (eq sn+1 0) (eq sn+2 0) (eq sn+3 0))
1639 (build-rythmic-pattern
1640 (nthcdr 4 species-arr)
1641 (nthcdr 4 cp-arr)
1642 (append rythmic-arr (list 1))
1643 (append notes-arr (list cn))
1644)
1645)
1646

1647 ; 1/2 if [2 0 ...] (half note)
1648 ((and (eq sn 2) (eq sn+1 0))
1649 (build-rythmic-pattern
1650 (nthcdr 2 species-arr)
1651 (nthcdr 2 cp-arr)
1652 (append rythmic-arr (list 1/2))
1653 (append notes-arr (list cn))
1654)
1655)
1656

1657 ; 1/4 if [3 ...] (quarter note)
1658 ((eq sn 3)
1659 (build-rythmic-pattern
1660 (nthcdr 1 species-arr)
1661 (nthcdr 1 cp-arr)
1662 (append rythmic-arr (list 1/4))
1663 (append notes-arr (list cn))
1664)
1665)
1666

1667 ; 1/2 if [4 0 1 ...] (penultimate note for the 4th species)
1668 ((and (eq sn 4) (eq sn+1 0) (eq sn+2 1))
1669 (build-rythmic-pattern
1670 (nthcdr 2 species-arr)
1671 (nthcdr 2 cp-arr)
1672 (append rythmic-arr (list 1/2))
1673 (append notes-arr (list cn))
1674)
1675)
1676)
1677)
1678)
1679

1680 ; get the basic rythmic pattern for a given species
1681 ; - species: the species [1 2 3 4]
1682 ; - len: the length of the counterpoint
1683 ; examples:
1684 ; (1 5) -> (1 1 1 1 1)
1685 ; (2 5) -> (1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1)
1686 ; (3 5) -> (1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1)
1687 ; (4 5) -> ~(-1/2 1 1 1 1/2 1/2 1) depending on the counterpoint
1688 (defun get-basic-rythmic (species len &optional (cp nil))
1689 (setq len-1 (- len 1))
1690 (setq len-2 (- len 2))
1691 (setq cp-len (+ (* 4 len-1) 1))

153

1692 (case species
1693 (1 (make-list len :initial-element 1))
1694 (2 (append (make-list (* 2 len-1) :initial-element 1/2) ’(1)))
1695 (3 (append (make-list (* 4 len-1) :initial-element 1/4) ’(1)))
1696 (4 (build-rythmic-pattern
1697 (get-4th-species-array len-2)
1698 (get-4th-notes-array cp cp-len)
1699))
1700)
1701)
1702

1703 ; return a species array for a 4th species counterpoint
1704 ; - len-2: the length of the counterpoint - 2
1705 (defun get-4th-species-array (len-2)
1706 (append (list 0 0) (get-n-4040 len-2) (list 4 0 1))
1707)
1708

1709 ; return a note array for a 4th species counterpoint
1710 ; - len: the length of the cantus firmus
1711 (defun get-4th-notes-array (cp len)
1712 (let* (
1713 (notes (make-list len :initial-element 0)) ; notes that we don’t care about can be 0
1714)
1715 (loop
1716 for n from 2 below len by 2 ; we move from 4 to 4 (4 0 4 ...) after the silence (0 0) at

the start
1717 for p in cp
1718 do
1719 (setf (nth n notes) p)
1720)
1721 notes
1722)
1723)
1724

1725 ; return a list with n * (4 0 4 0), used to build the rythmic pattern for the 4th species
1726 ; - n: the number of times the pattern is repeated
1727 (defun get-n-4040 (n)
1728 (if (eq n 0)
1729 nil
1730 (append (list 4 0 4 0) (get-n-4040 (- n 1)))
1731)
1732)
1733

1734 ; return the tone offset of the voice
1735 ; => [0, ..., 11]
1736 ; 0 = C, 1 = C#, 2 = D, 3 = D#, 4 = E, 5 = F, 6 = F#, 7 = G, 8 = G#, 9 = A, 10 = A#, 11 = B
1737 (defun get-tone-offset (voice)
1738 (let (
1739 (tone (om::tonalite voice))
1740)
1741 (if (eq tone nil)
1742 ; then default to C major
1743 0
1744 ; else check if the mode is major or minor
1745 (let (
1746 (mode (om::mode tone))
1747)
1748 (if (eq (third mode) 300)
1749 (midicent-to-midi-offset (+ (om::tonmidi tone) 300))
1750 (midicent-to-midi-offset (om::tonmidi tone))
1751)
1752)
1753)
1754)
1755)
1756

1757 ; converts a midicent value to the corresponding offset midi value

154

1758 ; note:[0, 12700] -> [0, 11]
1759 ; 0 corresponds to C, 11 to B
1760 (defun midicent-to-midi-offset (note)
1761 (print (list "midicent-to-midi-offset..." note))
1762 (mod (/ note 100) 12)
1763)
1764

1765 ; return the absolute difference between two midi notes modulo 12
1766 ; or the brut interval if b is true
1767 (defun inter (n1 n2 &optional (b nil))
1768 (if b
1769 (- n1 n2)
1770 (mod (abs (- n1 n2)) 12)
1771)
1772)
1773

1774 ; add constraint in sp such that the interval between the two notes is a member of interval-set
1775 (defun inter-member-cst (sp n1-var n2-val interval-set)
1776 (let (
1777 (t1 (gil::add-int-var-expr sp n1-var gil::IOP_SUB n2-val)) ; t1 = n1 - n2
1778 (t2 (gil::add-int-var sp 0 127)) ; used to store the absolute value of t1
1779 note-inter
1780)
1781 (gil::g-abs sp t1 t2) ; t2 = |t1|
1782 (setq note-inter (gil::add-int-var-expr sp t1 gil::IOP_MOD 12)) ; note-inter = t1 % 12
1783 (gil::g-member sp interval-set note-inter) ; note-inter in interval-set
1784)
1785)
1786

1787 ; add constraint such that n3-var = |n1-var - n2-val| % 12
1788 (defun inter-eq-cst (sp n1-var n2-val n3-var)
1789 (let (
1790 (t1 (gil::add-int-var-expr sp n1-var gil::IOP_SUB n2-val)) ; t1 = n1 - n2
1791 (t2 (gil::add-int-var sp 0 127)) ; used to store the absolute value of t1
1792 (modulo (gil::add-int-var-dom sp ’(12))) ; the IntVar just used to store 12
1793)
1794 (gil::g-abs sp t1 t2) ; t2 = |t1|
1795 (gil::g-mod sp t2 modulo n3-var) ; n3-var = t2 % 12
1796)
1797)
1798

1799 ; add constraint such that
1800 ; brut-var = n1-var - n2
1801 ; abs-var = |brut-var|
1802 (defun inter-eq-cst-brut (sp n1-var n2 brut-var abs-var)
1803 (let (
1804 (t1 (gil::add-int-var-expr sp n1-var gil::IOP_SUB n2)) ; t1 = n1-var - n2
1805)
1806 (gil::g-rel sp t1 gil::IRT_EQ brut-var) ; t1 = brut-var
1807 (gil::g-abs sp t1 abs-var) ; abs-var = |t1|
1808)
1809)
1810

1811 ; add constraint such that
1812 ; brut-var = n1-var - n2
1813 ; abs-var = |brut-var|
1814 (defun inter-eq-cst-brut-for-cst (sp n1-var n2 brut-var abs-var is-cst)
1815 (let (
1816 (t1 (gil::add-int-var-expr sp n1-var gil::IOP_SUB n2)) ; t1 = n1-var - n2
1817 (t2 (gil::add-int-var sp 0 12)) ; store the absolute value of t1
1818)
1819 (gil::g-abs sp t1 t2) ; t2 = |t1|
1820 (gil::g-ite sp is-cst t1 ZERO brut-var) ; brut-var = t1 if is-cst, else brut-var = 0
1821 (gil::g-ite sp is-cst t2 ZERO abs-var) ; abs-var = t2 if is-cst, else abs-var = 0
1822)
1823)
1824

155

1825 ; return the last element of a list
1826 (defun lastone (l)
1827 (first (last l))
1828)
1829

1830 ; return the rest of a list without its last element
1831 (defun restbutlast (l)
1832 (butlast (rest l))
1833)
1834

1835 ; return the penultimate element of a list
1836 (defun penult (l)
1837 (nth (- (length l) 2) l)
1838)
1839

1840 ; return an approximative checksum of pitches associated to a rythmic
1841 ; - p: the list of pitches
1842 ; - r: the list of rythmic values (with the -1/2 at the beginning)
1843 (defun checksum-sol (p r)
1844 (let (
1845 (l (length p))
1846)
1847 (mod (floor (reduce #’+
1848 (mapcar #’* (range (+ l 5) :min 5) (rest r) p)))
1849 (expt l 12))
1850)
1851)
1852

1853 ; add a the sum of the @factor-arr as a cost to the *cost-factors array and increment *
n-cost-added

1854 (defun add-cost-to-factors (factor-arr)
1855 (gil::g-sum *sp* (nth *n-cost-added *cost-factors) factor-arr)
1856 (incf *n-cost-added)
1857)

156

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

	Introduction
	Related Work
	Theoretical Background
	Music Theory
	Concept of Counterpoint
	Equivalent American vs British English Terms
	Music Concepts

	Constraint Programming Prerequisites
	Constraint Programming Concept
	Branching
	Advantages

	Introduction to the Formalization of Fux's Theory
	Array Logic and Notation
	Logic of the arrays
	Notations of the arrays

	Definitions of the Constants, Costs, Variables and Functions
	Constants
	Costs
	Variables
	Fonctions

	Implicit General Rules of Counterpoint
	Formalization in English
	Formalization into Constraints

	Types of rules

	First Species of Counterpoint
	Formalization in English
	Harmonic Rules of the First Species
	Melodic Rules of the First Species
	Motion Rules of the First Species

	Formalization into Constraints
	Harmonic Constraints of the First Species
	Melodic Constraints of the First Species
	Motion Constraints of the First Species

	Second Species of Counterpoint
	Formalization in English
	Harmonic Rules of the Second Species
	Melodic Rules of the Second Species
	Motion Rules of the Second Species

	Formalization into Constraints
	Harmonic Constraints of the Second Species
	Melodic Constraints of the Second Species
	Motion Constraints of the Second Species

	Third Species of Counterpoint
	Formalization in English
	Harmonic rules of the third species
	Melodic rules of the third species
	Motion rules of the third species

	Formalization into Constraints
	Harmonic Constraints of the Third Species
	Melodic Constraints of the Third Species
	Motion Constraints of the Third Species

	Fourth Species of Counterpoint
	Formalization in English
	Motion Rules of the Fourth Species
	Harmonic Rules of the Fourth Species
	Melodic Rules of the Fourth Species

	Formalization into Constraints
	Motion Constraints of the Fourth Species
	Harmonic Constraints of the Fourth Species
	Melodic Constraints of the Fourth Species

	Fifth Species of Counterpoint
	Problem Differences from Previous Species
	Representation of Species as Constraints
	Naive Solution
	Species Array System

	Formalization of the Species Rhythm into Constraints
	Logic Implication of the Species Constraints
	Generalization of the Species Implications
	Avoiding Multiple Same Final Solutions

	Formalization of Inter-species Rules into Constraints
	Parsing of the Species Array in Rhythm

	Evaluation and Comparison
	Evaluation of the First Species
	Evaluation of the Second Species
	Evaluation of the Third Species
	Evaluation of the Fourth Species
	Evaluation of the Fifth Species
	Comparison
	Refinement

	Experimentation with the Fifth Species

	Future Improvements
	Software Architecture
	Solver Performances
	Solution Quality

	Conclusion
	Bibliography
	Transcriptions
	Additional Material
	User Guide
	Installing FuxCP
	Prerequisites
	Loading FuxCP in OpenMusic

	Using FuxCP in OpenMusic
	Interface Parameters Description

	Software Architecture
	Source Code
	FuxCP.lisp
	package.lisp
	interface.lisp
	fuxcp-main.lisp
	1sp-ctp.lisp
	2sp-ctp.lisp
	3sp-ctp.lisp
	4sp-ctp.lisp
	5sp-ctp.lisp
	constraints.lisp

