
A CONSTRAINT FORMALIZATION OF FUX’S COUNTERPOINT

Damien Sprockeels, Thibault Wafflard, Peter Van Roy
Université catholique de Louvain

{damien.sprockeels, peter.vanroy}@uclouvain.be
thibault.wafflard@gmail.com

Karim Haddad
IRCAM

karim.haddad@ircam.fr

RÉSUMÉ

La composition musicale assistée par ordinateur est un do-
maine en plein essor depuis plusieurs décennies mainte-
nant, particulièrement dans le domaine de l’intelligence
artificielle appliquée à la composition musicale. Cet ar-
ticle vise à contribuer à ce domaine en offrant un outil
mathématique et informatique formalisant le contrepoint à
deux voix selon Johann Joseph Fux à l’aide de la program-
mation par contraintes. Cet outil s’inscrit dans un projet
plus ambitieux qui a pour but de créer un outil complet
basé sur la programmation par contraintes afin d’assister
les compositeurs dans leur processus de création, en ne
nécéssitant aucunes notions en informatique.

1. INTRODUCTION

The last decades have seen a great increase in the use
of computers for musical composition. Applications are
endless : from software aiming to facilitate the composer’s
work by providing an intuitive interface to write scores or
combine musical samples into a piece (LogicPro [16], Si-
belius [25], OpenMusic [20]), to using machine learning
to generate music fitting a given description or a certain
style (MusicLM [1]). Our work uses an approach based on
constraint programming. We observe that there is a close
correspondence between the theory of musical harmony
and the abilities of constraint programming. In this way,
we aim to build a tool that allows the composer to ex-
press musical ideas which are then implemented in terms
of constraints. The tool uses a constraint solver to generate
musical solutions that satisfy the constraints. This allows
the composers to think exclusively about musical ideas as
the tool is in charge of expressing these ideas as a score.

Constraint programming Constraint programming is a
field in computer science that allows for the specification
of a set of rules, called constraints, to be applied to a set
of variables modelling a problem. A solver then searches
for solutions for the problem that respect the constraints
specified. Ever since the invention of constraint program-
ming, it has been an appealing idea to encode musical
concepts as constraints. Many concepts can be expressed
in this way, as previous work has shown ([28], [29], [5]).
Constraint programming has the ability, given an appro-
priate interface, to allow the composer to specify their mu-
sical ideas at a high level of abstraction and it allows an

Figure 1. Example counterpoint in the style of Fux [14].

iterative process where the composer can refine his or her
musical ideas depending on the musical solution given by
the constraint solver.

Music composition using constraints Constraint pro-
gramming has often been applied to composition [23, 19,
17, 21], but this has not yet led to a practical tool usable by
composers. There are two main reasons for this : first, past
research was mainly focused on investigating how to ex-
press musical rules as constraints and second, the software
tools that were developed required skills in programming
and mathematics. A third problem that we have recogni-
zed in our own work is that in order to be practically useful
to a composer, the tool must incorporate knowledge of the
desired musical style. If it does not have such knowledge,
the composer must first create it from scratch which makes
it much harder to use. That is the main drawback of our
own previous work ([2], [6], [3]). Indeed, the prototypes
we developed are limited to a small set of constraints and
do not support a coherent style. Despite this, they give use-
ful proofs of concept and they can give interesting solu-
tions to musical problems. The present work goes beyond
these tools and is a first step towards a tool that supports a
coherent musical style.

Choice of the Fux theory Musical styles are complex
and few have been analyzed to a degree that would al-
low to easily formalize them as constraints. As our star-
ting point, we have therefore chosen a relatively simple
style that has been defined thoroughly, namely musical
counterpoint. We have chosen the theory of counterpoint
as presented by Johann Joseph Fux in his classic work
Gradus Ad Parnassum, which was first published in 1725
[13]. Figure 1 gives an example of fifth species counter-
point for two voices in the Fux theory. We have chosen
the Fux theory for three main reasons. First, it is presen-
ted in a clear and progressive way that steps from simple to
more complex forms of counterpoint. Second, it is defined

Peter Van Roy
Presented at JIM 2023 (Journées d’Informatique Musicale), Paris, France, May 24-26, 2023

with a strict and comprehensive set of rules that make it
straightforward to formalize in a mathematical language.
Third, it is considered as a classic work and many of its
rules are still present in various musical styles that are po-
pular today. We have chosen the Fux counterpoint theory
over other counterpoint theories, such as Jeppesen [15],
Dubois [26], and Kœchlin [4], because of its simplicity,
clarity, and completeness. Mikael Laurson gives a forma-
lization of counterpoint based on the Bach Chorals in the
context of the PWConstraints library of PatchWork [19].

Previous attempts at modeling Fux counterpoint Se-
veral earlier attempts at modeling Fux counterpoint have
been made, some even using constraint programming. The
first attempt we could find was Schottstaedt [24], who
used a series of conditional statements to ensure a genera-
ted counterpoint would satisfy Fux’s rules. His work pro-
vides a preference system for each rule as well as a rela-
tively good efficiency (however, the fifth species could in
some cases be computationally heavy). The main draw-
backs were that the search for a solution was not customi-
zable and that his work required computer science know-
ledge to be useable by a composer. Ovans and Davidson
[22] provide an interactive interface where the composer
can select a note and observe dynamic changes in the avai-
lable possibilities for the remaining notes such that the re-
sult satisfies Fux’s rules for the first species of two voice
counterpoint. It does not however allow to generate coun-
terpoint for other species. Cope [7] used a learning ap-
proach to generating first species counterpoint. He does
not implement every rule for this species that Fux gives,
but rather uses an evaluation based on six criteria repre-
senting the main rules as well as the examples from Fux’s
treatise which are used to train the model. Torsten Anders
[28], in his Ph.D. work on Strasheela presents a constraint
formalization of the first species of the Fux theory for two
voices. We go beyond this to formalize all five species
of Fux two-voice counterpoint. More recently, Herremans
and al. [8] developed a tool allowing to generate fifth spe-
cies counterpoint using a variable neighbourhood search
algorithm to try and maximize an objective function. Our
work goes a step further by analysing different transla-
tions of Fux’s treatise and by allowing complete freedom
for the composer when it comes to how strictly they want
to follow the rules.

Ongoing project This paper is one step of a long-
term collaborative project on computer-aided composition
using constraint programming between UCLouvain and
IRCAM. We briefly summarize our past work. In 2020,
Baptiste Lapière [2] implemented Rhythm-Box, a proof
of concept tool to explore constraints for rhythm. Rhythm-
Box was implemented in the OpenMusic visual program-
ming platform for music composition [20] using the Ge-
code constraint solver [10]. This work was accompanied
by the development of GiL [11], an interface between Ge-
code and OpenMusic. In a next step, Damien Sprockeels
developed Melodizer [6], a proof of concept tool applying

constraint programming towards the modeling of simple
musical rules for pitch. This work was presented at the
IRCAM Forum in March 2022. Finally, we extended Me-
lodizer to combine rhythm and pitch and to support poly-
phony, giving Melodizer 2.0 [3]. Melodizer 2.0 has an im-
proved software architecture that supports a hierarchical
approach to create music by combining constraint blocks.
Future work aims to develop practical tools that target dif-
ferent musical styles, as explained in Section 5.

Contributions This paper makes three contributions :
— A mathematical formalization of the Fux theory of

counterpoint for two voices. For brevity, the present
paper presents the full formalization of the third
species and explains how the other species are for-
malized. The full formalization is expected to be
available by June 2023 in the master’s thesis of Thi-
bault Wafflard [27].

— An implementation of this formalization in Open-
Music using the Gecode constraint solver. This im-
plementation is available on github as explained in
Section 4.1.

— An evaluation of this implementation. We compare
solutions found by the constraint solver with the
counterpoints suggested by Fux in his treatise. We
also show how it is possible to generate new coun-
terpoints using the formalization.

Structure of the paper The paper is organized as fol-
lows :

— Section 2 summarizes the Fux theory of two-voice
counterpoint.

— Section 3 gives the formalization of the third spe-
cies of the Fux theory for two-voice counterpoint.

— Section 4 explains the implementation and eva-
luates it with respect to the Fux treatise.

— Section 5 explains how we intend to continue this
work towards a full-fledged tool for music compo-
sition.

— Section 6 recapitulates the work and gives some
conclusions.

2. FUX THEORY OF COUNTERPOINT

The Gradus Ad Parnassum by Johann Joseph Fux is
considered as a classic reference for counterpoint [13]. Fa-
mous composers such as Haydn, Beethoven, and Mozart
are all said to have studied it. The treatise is organised
in a didactical and progressive manner. It is presented as a
conversation between a master, Aloys, and his student, Jo-
seph, where Joseph is discovering and applying the rules
of counterpoint aided by Aloys. The treatise starts with
two-voice counterpoint, which is presented stepwise in
five progressive forms, called “species”. The elaboration
of a counterpoint starts with a theme given by the com-
poser, called the cantus firmus. The rules of counterpoint
are then used to generate additional voices, called coun-
terpoints. In the first species, both the cantus firmus and

Figure 2. Example counterpoint for the first species [14].

counterpoint consist of measures of whole note against
whole note. After a didactic conversation between mas-
ter and student, the treatise introduces the second species,
where the counterpoint consists of two half-notes per mea-
sure against a whole note cantus firmus. This leads to the
third species of counterpoint, where we have four quarter
notes against a whole note, the fourth species which is es-
sentially the first species with syncopation, and finally into
the fifth species which is called “florid counterpoint” and
is the result of the four other species combined. The trea-
tise then adds a third voice and repeats the same process,
and does it again for four voices. We now briefly summa-
rize the rules for each species of two-voice counterpoint.
Section 3 then gives the formalization of the third species.

Terminology To define his rules, Fux occasionally uses
terms that are no longer used today. He uses the terms
“thesis" and “arsis", the former referring to the downbeat,
and the latter referring to the upbeat. In 4

4 signature, they
correspond to the first and third beat respectively. He also
uses the term “diminution" to refer to a melodic interval
of a third that is filled by a diatonic note. When using the
term “perfect consonance", he refers to unisons, fifths and
octaves. When he uses the term “imperfect consonance",
he refers to thirds and sixths.

First species For the first species, the rules are as fol-
lows. All intervals between the counterpoint and the can-
tus firmus must be consonances, and imperfect conso-
nances should be preferred ; The first and last harmonic in-
tervals of the counterpoint must be a perfect consonance ;
The key tone is tuned according to the first note of the
cantus firmus ; A unison is only allowed on the first and
last notes ; In the next to last measure, a major sixth or a
major third must exist depending if the cantus firmus is in
the lower or upper part ; The melodic intervals can not be
greater than a minor sixth ; There can not be direct motion
to reach a perfect consonance ; There cannot be a battuta
octave, i.e., an octave reached by a lower voice going up
and an upper voice going down more than a third skip ;
Contrary motion is always preferred to oblique or paral-
lel motions. Figure 2 shows an example of two voice first
species counterpoint from Fux’s treatise.

Second species The rules from the first species regar-
ding harmony are applied on the notes on thesis, while the
rules regarding melody are applied to all notes. Rules re-
garding motion are either modified or more complex. Ad-
ditionally, the following rules are added : Notes on arsis

Figure 3. Example of counterpoint (second species) [14].

Figure 4. Example counterpoint for the third species [14].

cannot be dissonant unless there is a diminution ; In ad-
dition to the rules for the next to last note from the first
species, the thesis note of the next to last measure should
be an interval of a perfect fifth, and if that is not possible,
an interval of a sixth must be used ; If the two voices are
getting so close that there is no contrary motion possible
without crossing each other, then the melodic interval of
the counterpoint can be an octave leap ; Two consecutive
notes cannot be the same ; If the melodic interval of the
counterpoint between the thesis and the arsis is larger than
a third, then the motion is perceived on the basis of the ar-
sis note. Figure 3 shows an example of two voice second
species counterpoint.

Third species For the third species, the rules are as fol-
lows. If five notes follow each other by joint degrees in
the same direction, then the third note must be consonant ;
If the third note of a measure is dissonant then it must be
a diminution and the second and the fourth notes must be
consonant ; It is best to avoid the second and third har-
monies of a measure to be consonant with a one degree
melodic interval between them; In addition to the rule of
the next to last note of the first species, if the cantus firmus
is in the upper part, then the first note of the next to last
measure should be a minor third above the cantus firmus ;
Each note and its two beats further peer are preferred to
be different ; The motion is perceived on the basis of the
fourth note. Figure 4 shows an example of two voice third
species counterpoint.

Fourth species For the fourth species, dissonance can
appear in the thesis but the arsis must be consonant. In-
deed this species inherits most of the rules from the first
species but shifted by half a measure, corresponding to the

Figure 5. Example counterpoint (fourth species) [14].

Figure 6. Example counterpoint for the fifth species [14].

Interval Unison/Octave Second Third Fourth
Type Perfect Minor Major Minor Major Perfect
Value 0 1 2 3 4 5

Interval Tritone Fifth Sixth Seventh
Type ♯4 / ♭5 Perfect Minor Major Minor Major
Value 6 7 8 9 10 11

Table 1. MIDI values of the intervals over an octave range.

delay resulting from syncopation. The rules for this spe-
cies are as follows. Arsis harmonies must be consonant ;
Dissonant harmonies must be followed by the next lower
consonant harmony ; If the cantus firmus is in the lower
part then no second harmony can be preceded by a uni-
son/octave harmony ; If the cantus firmus is in the upper
part, then no harmonic seventh interval can occur ; For the
rule of species 1 about the next to last measure to be sa-
tisfied, if the cantus firmus is in the lower part, then the
harmonic interval of the thesis note must be a seventh, and
if the cantus firmus is in the upper part, then the harmonic
interval of the thesis note must be a second ; Thesis half
notes should be the same as the preceding arsis half note
and be linked to it ; Each arsis note and its two measures
further peer are preferred to be different. Figure 5 shows
an example of two voice fourth species counterpoint.

Fifth species The fifth species is the result of the combi-
nation of the previous four species and more particularly
species 3 and 4. It can be seen as small pieces of these
species combined into a single counterpoint. It is then no
longer a question of new rules but rather of the previous
rules so that they can all merge and apply to the notes de-
pending on the species from which they come. Figure 6
shows an example of two voice fifth species counterpoint.

3. FORMALIZATION OF THE THIRD SPECIES
FOR TWO-VOICE COUNTERPOINT

Presenting the formalization for all species would be
too long for this paper. We choose to detail the formali-
zation of the third species because it is more interesting
than the others and in addition it reuses rules from the
first species. We exclude the fifth species since it is es-
sentially just the union of all the rules of the other spe-
cies. The complete formalization will be available in June
2023 as a master’s thesis [27]. To make it easier to re-
present intervals mathematically, we will be using MIDI
notation. Table 1 presents the main intervals together with
their MIDI value.

It is important to realize that Fux’s treatise is a natural-
language text that does not always present rules in a way
that is easy to transform into mathematical expressions.

Indeed, some rules are considered as obvious by Fux and
are not mentioned explicitly but all the examples present
in his treatise seem to follow them. Some rules deal with
composer preferences, which requires a cost function in
the formalization. Assigning values to those costs can al-
ter the accuracy of the representation of Fux’s ideas, espe-
cially because preferences are subjective, which is why in
the implementation discussed in section 4 the costs are ad-
justable by the user and not considered to be fixed. Finally,
some rules differ depending on the edition and translation
of the treatise. For these rules, we cross-referenced three
different versions (French [12], English [14], and Latin
[13]) and used a critical analysis of Fux’s examples to de-
termine the most appropriate formulation. For example,
rule 9 in section 3.3 varies depending on the translation.

In order to express the musical rules mathematically
as clearly as possible, we first define some common
constants and variables.

3.1. Constants

m is the number of notes in the cantus firmus. Since the
cantus firmus consists exclusively of whole notes, it is also
the number of measures of the cantus firmus and by exten-
sion of the counterpoint.

m ∈ N (1)

n is the number of notes in the counterpoint.

n ∈ N
n = 4 ∗ (m− 1) + 1

(2)

Since the counterpoint in the last measure is a whole note.

Consp is the set of perfect consonances in the form of
MIDI values representing the interval between two notes.

Consp = {0, 7} (3)

Consimp is the set of imperfect consonances, also in the
form of MIDI values representing the interval between
two notes.

Consimp = {3, 4, 8, 9} (4)

Cons is the set of all consonances.

Cons = Consp ∪ Consimp (5)

Cf is an array of size m representing the cantus firmus.

Cf = (a1, a2, . . . , am) (6)

For all notes ai we have ai ∈ {0, 1, . . . , 127}. ai corres-
ponds to the MIDI value of note i of the cantus firmus.

j is the index of a measure in the cantus firmus.

j ∈ [1,m] (7)

l is an index excluding the last measure of the cantus
firmus.

l ∈ [1,m− 1] (8)

3.2. Variables

Cp is an array of size n representing the notes of the
counterpoint.

Cp = (b1, b2, . . . , bn) (9)

For all notes bi we have bi ∈ {0, 1, . . . , 127}. bi corres-
ponds to the MIDI value of note i of the counterpoint. It is
possible to access the values of the counterpoint on the ba-
sis of the index of the measure. For example, for measure
j, the notes of the counterpoint are

{Cp[4 ∗ (j − 1) + 1],Cp[4 ∗ (j − 1) + 2],

Cp[4 ∗ (j − 1) + 3],Cp[4 ∗ (j − 1) + 4]}
(10)

H is a m ∗ 4 array where m is the number of measures
and the number of notes in the cantus firmus. It represents
the harmonic interval between the counterpoint and the
cantus firmus in absolute value.

∀i ∈ {1, 2, 3, 4} H[j, i] = |Cp[4 ∗ (j − 1) + i]− Cf[j]|
(11)

M is an array of size n-1 representing the melodic inter-
val between notes of the counterpoint.

∀i ∈ [1, n− 1] M [i] = |Cp[i+ 1]− Cp[i]| (12)

P is an array of size m-1 representing the relative mo-
tion of the counterpoint and the cantus firmus between two
consecutive measures.

P = (c1, c2, . . . , cm−1) (13)

For all elements ci, we have ci ∈ {0, 1, 2} where a value
of 0 represents contrary motion, a value of 1 represents
oblique motion and a value of 2 represents parallel motion.

3.3. Rules

It is important to mention that some rules are conside-
red as obvious by Fux and are not mentioned explicitly in
his treatise. Nevertheless, they are important and will be
marked with a star * in the rest of this section. The follo-
wing rules are valid for all species :

— The number of measures of the counterpoint is the
same as for the cantus firmus*.

— The counterpoint must have the same time signa-
ture and tempo as the cantus firmus. The time si-
gnature must be 4

4*.
— The counterpoint must be in the same key and

mode as the cantus firmus*. Fux determines the
key with the first note of the cantus firmus, and the
mode is such that there are no accidentals. How-
ever, depending on the key, some notes can be bor-
rowed from the major or minor mode of that key
for the counterpoint.

— Chromatic melodies are forbidden* :

∀k ∈ [1, n− 2]

¬(M [k] = 1 ∧M [k + 1] = 1 ∧ Cp[i] ̸= Cp[i+ 2])

(14)

Rules inherited from the first species We now give the
rules specific to the third species. The first eight rules are
inherited from the first species and are only applied to the
first note of the measures, except for the melodic rules
(rule 6 and preference 2) that are applied to all notes.

Rule 1 All harmonic intervals must be consonances.

H[j, 1] ∈ Cons (15)

Rule 2 The first and last harmonic intervals of the coun-
terpoint must be a perfect consonance.

H[1, 1] ∈ Consp ∧H[m, 1] ∈ Consp (16)

Rule 3 The key tone is tuned according to the first note
of the cantus firmus such that the first and last notes in the
bass must be the tonic.

Cp[1] < Cf[1] =⇒ H[1, 1] mod 12 = 0

Cp[m] < Cf[m] =⇒ H[m, 1] mod 12 = 0
(17)

Rule 4 The counterpoint and the cantus firmus cannot
play the same note at the same time except in the first and
last measure.

∀i ∈ [2,m− 1],∀k ∈ [1, 4] H[i, k] ̸= 0 (18)

Rule 5 If the cantus firmus is in the lower part, the har-
monic interval of the penultimate note must be a major
sixth ; if the cantus firmus is in the upper part, the harmo-
nic interval of the penultimate note must be a minor third.

Cp[4 ∗ (m− 1)] > Cf[m− 1] =⇒ H[m− 1, 4] = 9

Cp[4 ∗ (m− 1)] < Cf[m− 1] =⇒ H[m− 1, 4] = 3

(19)

Rule 6 Melodic intervals cannot exceed a minor sixth
interval unless they are an octave.

∀i ∈ [1, n− 1] M [i] /∈ {9, 10, 11} (20)

Rule 7 Perfect consonances cannot be reached by direct
motion.

H[l + 1, 1] ∈ Consp =⇒ P [l] ̸= 2 (21)

Rule 8 In the start of any measure, an octave cannot be
reached by the lower voice going up and the upper voice
going down more than a third skip*.

UpperFirst := max(Cp[4 ∗ (l − 1) + 4],Cf[l])

LowerFirst := min(Cp[4 ∗ (l − 1) + 4],Cf[l])

UpperSecond := max(Cp[4 ∗ l + 1],Cf[l + 1])

LowerSecond := min(Cp[4 ∗ l + 1],Cf[l + 1])

UpperSecond − UpperFirst ≥ 4

∧LowerFirst − LowerSecond ≥ 4

=⇒ H[l + 1, 1] ̸= 12

(22)

This equation seems quite complicated but is actually
straightforward. The first four lines of the equation aim
to identify the upper and lower notes of the voices for the
end of the previous measure and the beginning of the cur-
rent measure. The remaining two lines say that if, between
the fourth beat of measure l and the first beat of measure
l+1, the upper voice goes up by a major third or more and
the lower voice goes down a major third or more, the har-
monic interval between the cantus firmus and the counter-
point on the first beat of measure l+1 can not be an octave.

Rules specific to the third species The following rules
are specific to the third species. Some rules for this species
are subject to interpretation. For example, some rules are
stated differently depending on the language the treatise
is translated in. When there is room for interpretation, our
decision will be clearly explained.

Rule 9 If five notes follow each other by joint degrees in
the same direction, then the harmonic interval of the third
note must be consonant.

∀k ∈ [1, n− 4]

beat := ((k + 2) + 3) mod 4 + 1

measure := ((k + 2)− 1)÷ 4 + 1

isJoint(Cp[k],Cp[k + 1],Cp[k + 2],

Cp[k + 3],Cp[k + 4])

=⇒ H[beat,measure] ∈ Cons

(23)

Beat and measure are just mathematical expressions to get
the beat and measure corresponding to the note k+2 of
the counterpoint. The function isJoint has been introduced
to make the equation easier to read. This function returns
true if the difference between adjacent arguments is smal-
ler than or equal to 2 and if they are all in increasing or
decreasing order. This rule differed among the three trans-
lations [14, 13, 12], so we used common sense and logical
deduction to interpret it as best we could.

Rule 10 If the third note of a measure is dissonant then it
must be a diminution and the second and the fourth notes
must be consonant.

H[j, 3] /∈ Cons =⇒
H[j, 2] ∈ Cons ∧H[j, 4] ∈ Cons

(24)

Interval Unison/Octave Second Third Fourth
Type Perfect Minor Major Minor Major Perfect
Value 1 0 0 1 1 2

Interval Triton Fifth Sixth Seventh
Type ♯4 / ♭5 Perfect Minor Major Minor Major
Value forbidden 2 2 forbidden forbidden forbidden

Table 2. Cost values for melodic intervals

H[j, 3] /∈ Cons =⇒
|Cp[4 ∗ (j − 1) + 4]− Cp[4 ∗ (j − 1) + 3]| ≤ 2

(25)

H[j, 3] /∈ Cons =⇒
|Cp[4 ∗ (j − 1) + 3]− Cp[4 ∗ (j − 1) + 2]| ≤ 2

(26)

H[j, 3] /∈ Cons =⇒
Cp[4 ∗ (j − 1) + 4] > Cp[4 ∗ (j − 1) + 3]

> Cp[4 ∗ (j − 1) + 2]

∨Cp[4 ∗ (j − 1) + 4] < Cp[4 ∗ (j − 1) + 3]

< Cp[4 ∗ (j − 1) + 2]

(27)

The first equation ensures that the first and third note are
consonant, the second and third equations ensure that the
intervals are seconds, and the fourth equation ensures that
the intervals are in the same direction. The second and
third equation together make sure that it is a diminution.

Rule 11 In the penultimate measure, if the cantus firmus
is in the upper part, then the harmonic interval of the first
note should be a minor third.

Cp[4 ∗ (m− 2) + 1] > Cf[m− 1] =⇒ H[m− 1, 1] = 3
(28)

3.4. Preference modelled with costs

In addition to the rules presented previously, Fux gives
a series of preferences both explicitly and implicitly. We
model preferences mathematically using a cost function.
This section gives the mathematical expressions for the
preferences and then gives a value for the cost function
to evaluate each preference. The solver then minimizes
the sum of the costs. Since Fux does not give values for
the preferences and does not provide a hierarchy between
them, the values presented here are an attempt at model-
ling Fux’s preferences as closely as possible. However,
Fux often decides to break the stated preferences to create
more original counterpoints.

Preference 1 Imperfect consonances are preferred to
perfect consonances for the first note of each measure.

cost(H[j, 1] ∈ Consimp) = 0

cost(H[j, 1] ∈ Consp) = 1
(29)

Preference 2 Tritone intervals are forbidden.

∀i ∈ [1, n− 1] cost(M [i] = 6) = ∞ (30)

Preference 3 Contrary motions are preferred to other
types of motion.

cost(P [j] = 0) = 0

cost(P [j] = 1) = 1

cost(P [j] = 2) = 2

(31)

As a reminder, P [j] = 0 means the motion of the voices
getting to measure j is a contrary motion, P [j] = 1 means
it is oblique motion and P [j] = 2 means it is parallel
motion. It is important to note that Fux does not explicitly
make the distinction between oblique and parallel motion,
in fact this omission is one of the main criticisms of his
work. We decided to make such a distinction because it
is generally observed in other counterpoint treatises, and
because these costs are adjustable so the distinction can be
ignored if desired simply by giving oblique and parallel
motion the same cost.

Preference 4 The second and third harmonies of a mea-
sure are preferred to not be consonant with a one degree
melodic interval between them*.

cost(H[j, 2] ∈ Cons ∧H[j, 3] ∈ Cons

∧|M [4 ∗ (j − 1) + 2]| < 2) = 2 ∗m
(32)

Again, the cost is high to represent a “last resort”.

Preference 5 Each note and its two beats further peer
are preferred to be different*.

∀j ∈ [1, n− 2]

cost(Cp[j] = Cp[j + 2]) = 1
(33)

Preference 6 Melodic intervals are preferred to be
small. This preference is not clearly explained, so the way
we interpreted it was to give a lower cost to smaller in-
tervals (i.e. seconds and thirds) compared to the other in-
tervals. Table 2 gives the preference we assigned for each
interval based on the example that Fux provides.

4. IMPLEMENTATION AND EVALUATION

4.1. Implementation

The mathematical formalization detailed in section 3
as well as the other species for two voice counterpoint
were implemented using the Gecode constraint solver
[10] so that we could compare the results of our ma-
thematical model with the examples given by Fux in his
treatise. This implementation was done inside of Open-
Music [20] in the form of a library. The final version
of the software will support a simple user interface to
avoid the need to write Common Lisp code. This library
can be found here : github.com/sprockeelsd/
Melodizer. This code is available under the free license
GPL-3.0. At the moment, counterpoint can only be gene-
rated based on 4

4 time signature cantus firmi.

To use our implementation, one has to download
Gecode[10], GiL [11] and OpenMusic [20]. All details re-
garding installation are on the github page. To use the ma-
thematical functions representing Fux’s counterpoint, one
has to create a Voice object in OpenMusic to represent the
cantus firmus. Then, a fux-cp function must be called with
this cantus firmus as a first attribute and the number re-
presenting the species as a second optional attribute. The
default value will generate a counterpoint of the first spe-
cies. Evaluating the fux-cp function will only create the
problem, so in order to search for solution one has to use
the search-next-fux-cp function after locking the evalua-
tion (press b) of the fux-cp function.

Figure 7. Cantus firmus and corresponding counterpoint
as presented by Fux.

Figure 8. Measure 4 of the counterpoint from figure 7 res-
pecting preference 4.

4.2. Comparison with Fux

In this section we compare the results produced by our
tool to the counterpoints that Fux himself presents in his
treatise for the same cantus firmi. We only present the
counterpoints for one cantus firmus in this paper since
they all lead to the same conclusions. The cantus firmus
we chose is in the “mode of Fa” and is twelve measures
long. Figure 7 shows this cantus firmus together with the
counterpoint that Fux gives in his treatise. In order to make
sure our solver indeed considers this counterpoint as a so-
lution, a constraint saying that the solution must be equal
to Fux’s counterpoint was added to the set of constraints
detailed in section 3. For all cantus firmi we tested, the
solver could indeed find Fux’s solution.

However, the solution given by Fux is usually far from
the first solution suggested by our solver. Indeed, for the
cantus firmus in figure 7, the solver finds that this coun-
terpoint has a cost of 56 using the values described in sec-
tion 3. Figure 9 presents the first solution found by the

Figure 9. Cantus firmus from Fux’s treatise and corres-
ponding counterpoint generated by our solver.

solver 1 . It is the one with the lowest cost (though other
solutions might have an equivalent cost) and has a cost of
24. This can be explained by the fact that Fux establishes
preferences but does not seem to follow them closely. Pre-
ference 4 is a good example. In measure 4, the harmonic
interval goes from a third to a fifth to a sixth (highlight-
ed in red in figure 7), when according to his preference
the skip of a third should have been between the second
and third note of the measure, hence the harmonic interval
should have moved from a third to a fourth and then to a
sixth. Figure 8 shows this measure when the intervals re-
spect preference 4. In his treatise, Fux does not provide a
hierarchy between the different preferences that he men-
tions, and neither does he provide cost values for them as
his treatise does not aim to produce a mathematical forma-
lization. The costs we decided to assign to different rules
were therefore done in a best effort approach, resulting in
a high cost for this specific scenario.

For the solution generated by our solver, the main fac-
tor increasing the cost is due to preference 5 being “bro-
ken” multiple times. As we do not provide a hierarchy
between the different costs, since Fux himself doesn’t pro-
vide one, we do not have control on what rules are prio-
ritized over others. A solution to this problem we imple-
mented is that all costs are adjustable by the user. This is
in our opinion the best approach, as Fux himself changes
his preferences for each cantus firmus.

A final observation is that the last measure of the coun-
terpoint the solver generates is often very similar to the
one from Fux. That is because the penultimate measure
has strict rules, meaning that fewer possibilities remain.

4.3. Examples of new compositions using the default
costs inferred from Fux’s examples

Let us now use our solver to generate counterpoints
to a brand new cantus firmus that we create ourselves
using the costs inferred from the examples. In this sec-
tion, we present the first counterpoint generated by the
solver, hence the one with the smallest cost. Figure 10
starts with a cantus firmus in the mode of G to generate

1 . This example can be listened to here : https://www.
youtube.com/watch?v=nDt060Os3VI

Figure 10. Counterpoint generated based on a cantus fir-
mus in the mode of G (not from Fux’s treatise).

Figure 11. Counterpoint generated based on a cantus fir-
mus in the mode of C (not from Fux’s treatise).

a counterpoint 2 . This counterpoint has a cost of 20 using
the values presented in section 3. We can see that a lo-
wer cost tends to limit the originality in the counterpoint,
since it tries to respect the preference rules as closely as
possible. Indeed, all melodic intervals in figure 10 are se-
conds resulting in an exclusively stepwise melodic pro-
gression, which technically respects Fux’s preferences but
one could argue that the melody lacks character. Similarly,
the notes tend to stay in the typical mode of G and no acci-
dentals are used except for the penultimate measure where
the seventh of the scale of G major is present due to the
constraints on that specific measure.

Figure 11 shows another counterpoint generated based
on a cantus firmus we wrote ourselves 3 . The cost for this
one is even lower, and is equal to 14. We can see very
clearly how melodies respecting the preferences as much
as possible tend to have similar traits and can be seen as
unoriginal. Two solutions are offered to counter this pro-
blem : the first is that costs are adjustable by the user, mea-
ning that one can influence how important each customi-
zable aspect of the melody are. The second, which is still
a work in progress, is to use a branch-and-bound solver to
allow for adaptation for the search of solutions. A branch-
and-bound solver allows to add an additional rule every
time a solution is found. Thus, if the user is not satisfied
by the solution the solver offers, in the future they will be
able to select a degree of difference that the next solution
will have with respect to the previous solution.

2 . This example can be listened to here : https://www.
youtube.com/watch?v=zB69kJr6oA0

3 . This example can be listened to here : https://www.
youtube.com/watch?v=Jjya5IpCnTw

Parameter step-cost third-cost fifth-cost min-skip-percentage
Value 0 0 1 0.3

Table 3. Modified parameters used to generate the coun-
terpoint in figure 12.

Parameter step-cost third-cost fourth-cost fifth-cost min-skip-percentage
Value 0 0 0 1 0.2

Table 4. Modified parameters used to generate the coun-
terpoint in figure 13.

4.4. Experimenting with costs to generate more inter-
esting compositions

In order for our solver to generate more interesting me-
lodies, we implemented a couple of optional rules as well
as some computational optimizations. First, we added a
constraint to force a percentage of intervals to be skips, to
encourage the solver to find counterpoints that step away
from the original preferences. This already made the so-
lutions suggested by the solver more interesting to us be-
cause it was no longer just conjoint intervals. We also ad-
ded the rule that each disjoint interval must be followed
by a conjoint interval in the opposite direction. This rule
comes from Gallon and Bitsch [18] and not from Fux’s
treatise, but we thought it would make sense to add a rule
for skips since we were allowing for more of them. This
percentage can be adjusted by the user. Finally, we allo-
wed the user to select a cost for each interval to guide the
solver towards what they want. Adding those rules, es-
pecially the first one, increased the time for the solver to
find a solution since it was going against its heuristic. The
solver aims to minimize the costs as close as possible to
Fux’s preference, and using more skips increases the cost.

To remedy this problem, we decided to compute the mi-
nimal cost that the forced skips were inducing. This allows
the solver to avoid searching for solutions with a cost that
is lower than this minimal cost. As a result, the solver can
find solutions relatively quickly for a reasonable number
of skips (around 25% of skips). Figure 12 gives the so-
lution for the cantus firmus taken from Fux that figure 9
shows 4 . Table 3 gives the modified costs and parameters
we used to produce this counterpoint. It is clearly different
than the counterpoint generated without playing with the
costs, using a lot more skips than the previous solution.
Thirds are more present than other disjoint intervals be-
cause of the costs we assigned to each of them. Though it
can be said that it does not follow Fux’s preferences as clo-
sely, it is in our opinion more interesting and it still follows
Fux’s rules. Figure 13 shows another example of a coun-
terpoint in the mode of A with modified costs 5 . Table 4
shows the costs used for this example. The presence of
fourth intervals gives the melody yet another flavour.

4 . This example can be listened to here : https://www.
youtube.com/watch?v=SQkblMr4yNA

5 . This example can be listened to here : https://www.
youtube.com/watch?v=96NunBGW38I

Figure 12. Counterpoint generated by the solver using the
costs discussed in section 4.4 based on the cantus firmus
in figures 7 and 9.

Figure 13. Counterpoint generated by the solver using the
costs displayed in table 4.

5. FUTURE WORK

The ultimate goal of our project is to develop a prac-
tical tool for music composition based on constraint pro-
gramming. We consider that a practical tool needs to sa-
tisfy three properties : (1) it allows a composer to express
musical ideas without expertise in mathematics or pro-
gramming, (2) it embodies specific knowledge about a de-
sired musical style, and (3) it is computationally efficient
for the desired compositions. The formalization and sol-
ver presented in this paper are a step towards the efficient
embodiment of musical knowledge for one style. Our next
steps will extend the formalization to other musical styles
and will add an interface that requires only musical know-
ledge on the part of the composer. One concrete step that
we are currently working on is to formalize the rules appli-
cable to popular rock music in the period from the 1960s
to the 1990s, based partly on the analysis done in the Ph.D.
thesis of Drew Nobile [9].

6. CONCLUSION

This work presents a mathematical formalization of the
Fux theory of two-voice counterpoint and an implemen-
tation of this theory as a constraint satisfaction problem.
The implementation is done in the OpenMusic platform
by means of an interface with the Gecode constraint sol-
ver. We have chosen the Fux theory because of its sim-
plicity and relative importance. This work also provides
a critical analysis of this implementation, by comparing
its results to the counterpoints presented by Fux himself

in his treatise, and by looking at counterpoints generated
from brand new cantus firmi. This work is part of a long-
term project in computer-aided music composition with
constraint programming. The ultimate goal is to make a
practical tool that can be used by composers targeting one
or more important musical styles.

7. REFERENCES

[1] Andrea Agostinelli, Timo Denk, Zalán Borsos, Jesse
Engel, Mauro Verzetti, Antoine Caillon, Qingqing
Huang, Aren Jansen, Adam Roberts, Marco Taglia-
sacchi, Matt Sharifi, Neil Zeghidour, and Christian
Frank. “MusicLM : Generating Music From Text”,
arXiv, 2023.

[2] Baptiste Lapière. “Computer-Aided Musical Compo-
sition”. Master’s thesis. UCLouvain, June 2020.

[3] Chardon Clément, Diels Amaury, and Gobbi Fede-
rico. “Melodizer 2.0 : A Constraint Programming
Tool For Computer-aided Musical Composition”.
Master’s thesis. UCLouvain, June 2022.

[4] Charles Kœchlin. “Précis des règles du contrepoint”.
Heugel & Cie. Paris, 1926.

[5] Charlotte Truchet. “Contraintes, Recherche Locale et
Composition Assistée par Ordinateur”. PhD thesis.
Université Pierre et Marie Curie, 2004.

[6] Damien Sprockeels. “Melodizer : A Constraint Pro-
gramming Tool For Computer-aided Musical Compo-
sition”. Master’s thesis. UCLouvain, Jan. 2022.

[7] David Cope. “A Musical Learning Algorithm”. Com-
puter Music Journal 28(3), 2004, pages 12-27.

[8] Dorien Herremans and Kenneth Sörensen. “Compo-
sing fifth species counterpoint music with a variable
neighbourhood search algorithm”. Expert Systems
with Applications 40(16), 2013.

[9] Drew Nobile. “A Structural Approach to the Analy-
sis of Rock Music”. PhD thesis. Graduate Faculty in
Music, City University of New York, 2014.

[10] Gecode : Generic Constraint Development Envi-
ronment. https://www.gecode.org. Visité le
19/02/2023.

[11] GiL = Gecode interface Lisp. https://github.
com/sprockeelsd/GiL

[12] Johann Joseph Fux. “Gradus ad Parnassum”. Johann
Joseph Fux. French. Ed. by Gabriel Foucou. Trans.
Latin by Simone Chevalier, 2019.

[13] Johann Joseph Fux. “Gradus ad Parnassum”. Latin.
Ed. by Johann Peter van Ghelen. 1966 New York
Broude Bros reprint. Vienna, 1725.

[14] Johann Joseph Fux. “The study of counterpoint :
from Johann Joseph Fux’s Gradus ad Parnassum”. En-
glish Trans. by Alfred Mann. Norton & Company.
New York - London, 1965.

[15] Knud Jeppesen. “Counterpoint : The polyphonic
style of the sixteenth century”. Dover Publications,
Inc. New York, 1992.

[16] LogicPro - Apple, https://www.apple.com/
fr/logic-pro/. Visité le 19/02/2023.

[17] François Pachet and Pierre Roy. “Musical Harmoni-
zation with Constraints : A Survey”. Constraints Jour-
nal, Kluwer Publisher, 6(1) :7-19, 2001.

[18] Noël Gallon and Marcel Bitsch. “Traité de contre-
point”. Durand & Cie, 1964.

[19] Mikael Laurson. “PatchWork PWConstraints”. IR-
CAM Documentation, Oct. 1996.

[20] OpenMusic - IRCAM, http://repmus.
ircam.fr/openmusic/home. Visité le
19/02/2023.

[21] Örjan Sandred. “Constraint-Solving Systems in Mu-
sic Creation”, Chapter 12, Handbook of Artificial In-
telligence for Music, 2021, pages 327-344.

[22] Russell Ovans and Rod Davison. “An Interactive
Constraint-Based Expert Assistant for Music Compo-
sition”, Ninth Canadian Conference on Artificial In-
telligence, 1992.

[23] Camilo Rueda. Magnus Lindberg, Mikael Laurson,
Georges Bloch, and Gérard Assayag. “Integrating
Constraint Programming in Visual Musical Composi-
tion Languages”. ECAI 98 Workshop on Constraints
for Artistic Applications, Brighton, 1998.

[24] Bill Schottstaedt. “Automatic species counterpoint”.
Report No. STAN-M-19, Center for Computer Re-
search in Music and Acoustics, May 1984.

[25] Sibelius - Avid, https://www.avid.com/fr/
sibelius. Visité le 19/02/2023.

[26] Théodore Dubois. “Traité de contrepoint et de fu-
gue”. Heugel & Cie. Paris, 1901.

[27] Thibault Wafflard. “Formalizing Fux’s Theory of
Musical Counterpoint Using Constraint Program-
ming”. Master’s thesis. UCLouvain, June 2023 (to ap-
pear).

[28] Torsten Anders. “Composing Music by Compo-
sing Rules : Design and Usage of a Generic Music
Constraint System”. PhD thesis. School of Music &
Sonic Arts, Queen’s University Belfast, 2007.

[29] Torsten Anders and Eduardo Miranda. “Constraint
Programming Systems for Modeling Music Theo-
ries and Composition”. ACM Computing Surveys 43
(Oct. 2011), 30 :1–30 :38.

