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Chapter 1

Introduction

With the rise of Internet and the explosion of data sources, more and more
companies are facing new challenges that were previously very rare. Those
problems concern the storage and the usability of set of data so big and
often growing so fast that the usual tools were no more adapted. Moreover
the multiplication of data sources and types lead to the problem of storing
data that should be considered as unstructured in fixed and structured data
models provided by Relational Database Management System. Those prob-
lematic lead companies and open source communities to build new tools to
face those new challenges. They are known as noSQL databases.

The world of noSQL databases is very interesting but also quite complex
due to several factors:

e [t is evolving rapidly, therefore critics and analysis can be obsolete very
fast

e There is a profusion of noSQL databases and each of them has its own
specificities

e The various noSQL databases have reached different level of maturity
and it is not always trivial to determine if a given database or a subset
of its functionalities is ready for production

A big data storage problem

Those new sets of data are commonly called “Big data” [42], their size and
growing rate make them very hard to work with if standard databases are
used. There are several things that become difficult to realize :

e The storage itself, sometimes the combined storage capacity of thou-
sands of servers is needed [48]

e The search across very large data set must be distributed to be effective



e Similarly, any kind of analytic on those data set must also be dis-
tributed to be completed in a human lifetime

The applications meeting those criteria can be found in social networks,
web crawler, scientific data produced by many sensors or large e-Commerce
websites.

The large amount of data is not the only reason for which new storage
systems are needed. Those new large data sets are also often made of un-
structured or semi-structured data, meaning that a fixed data schema is not
usable anymore. In a RDBMS the data model must be fixed before any-
thing is stored, typically tables are defined by specifying column names and
attributes like the type and the size of each column. Then each new subset
of data must be processed to take the form of a complete row in one of the
predefined tables. With RDBMS, each row should be complete, that is there
cannot be any column left empty in a given row to ensure optimal perfor-
mances and disk usage. Moreover the size of the data stored in each cell
of the row should also be bounded for the same reasons. Those properties
imply that every kind of needed data model must have been planned before
the data are collected. It also implies that each kind of data model lies into
its own table. If the data sources are very disparate, the amount of work
needed to predict all the forms that the data can take, as well as the big
number of tables needed, can be problematic.

The noSQL approach tries to solve those problems at once. Most of
them were designed from the beginning as distributed applications, giving
them the opportunity to scale horizontally! in opposition to RDBMS who
were first designed as stand alone systems that usually scaled vertically?. Of
course the RDBMSs did not sat idly and most of them support clustering in
one way or another but as they were not designed for this from the beginning
they suffer from some limitations. For example the size of a MySQL cluster
is limited to 255 nodes® and while this can be enough for a lot of cases, it
can be a problem to handle some “Big data” problems.

To solve the problems induced by the fixed data schema provided by
RDBMS, the noSQL databases have chosen different approaches :

e Simple key/value storage in which the value is totally unstructured
and whose size can vary a lot

e Key/value storage providing more functionalities like sets and links
between values

!To scale horizontally means to add more nodes in a system, such as adding new
computers to a distributed software application [43]

2To scale vertically means to add resources to a single node in a system, typically
involving the addition of CPUs or memory to a single computer [44]

3This include all SQL nodes, API nodes, data nodes and management servers [1]



e Hierarchical semi-structured* data storage, in which each field can be
structured but with the possibility to have a different structure for each
field. Those data stores also provides ways to hierarchize the data in
various levels depending on the approach taken. The main approaches
are the document oriented and the column oriented data stores.

Those approaches clearly solve the problem of sparse data. The systems
are designed to store rows whose shape can vary a lot. For the systems that
can use semi-structured data, each time a new row is inserted it can use tags
from previous entries or new tags indifferently. In pure key/value systems
the value can contain anything and it is up to the application to handle the
data stored into it.

Of course this approach has also its drawbacks. The main drawback is the
power and expressivity of the query language. With RDBMS the SQL query
language can be used to make complex computations like JOINS or COUNT
and a lot of combinations of all the functionalities provided. On the other
hand, the expressivity of the query language of the noSQL databases is often
limited and only implements a subset of the functionalities of SQL in the
best cases. This lack of expressivity implies that complex SQL requests are
replaced by a lot of simpler requests and that all the computation that took
place in the database is now done on the client side. The big advantage is
that all the requests to the database have now more predictable performances
because they are much simpler.

To address this lack of expressivity and solve the problem of the dis-
tribution of the computation across a cluster, a lot of noSQL systems have
implemented a MapReduce framework. The idea of a MapReduce framework
comes from Google. They presented it in a paper |55 where they explained
in details how this new way of programming works and how to implement
the framework.

Structure of the document

In this Master’s thesis, I first explain in details the various approaches used
to distribute the storage and the computation on clusters made of a big
number of servers. Then I make an analysis of a selection of databases to
show how they implemented in practice the theoretical concepts presented
previously.

The next chapter presents a proposition for a classification of the chosen
databases regarding several properties like the consistency levels provided,
the expressivity of the query language and the way the data is physically

4Semi-structured data is a form of structured data that does not conform with the
formal structure of tables and data models associated with relational databases but con-
tains nonetheless tags and other markers to separate semantic elements and hierarchies of
records and fields within the data [45]



stored. The second part of this chapter gives a precise definition of elasticity
and scalability as well as a theoretical analysis of the elastic potential of the
chosen databases regarding their technical choices.

The two next chapters present exhaustively the methodology and the
practical considerations of the measurements conducted to determine the
real elastic potential and the MapReduce performance for a subset of the
databases presented earlier. Then the results of the measurements are pre-
sented and analyzed.

Finally, the knowledge acquired by the theoretical analysis and the ex-
perimental measurements is used to propose a list of use cases and recom-
mendations.



Chapter 2

State of the art

2.1 Distribute the storage

The databases studied in this Master’s thesis use two different way of dis-
tributing the data among the nodes of the cluster. The first group is using
consistent hashing while the second is dividing the data into chunks and keep
track of their location in a centralized directory.

2.1.1 Consistent hashing based distributed storage

Consistent hashing [61] provides the basic functionalities of a distributed
hash table, but the main advantage compared to a simple hash table is that
the number of keys that must be moved from a slot to another when slots
are added or removed is only of k/n, with k& the number of keys and n the
number of slots.

With consistent hashing, the hash space, that is the range of all the
possible hash that can be produced by the hashing function, is represented
as a ring. That implies that every new key can be placed on that ring after
its hash has been computed. In the same way, the servers making the cluster
can be placed on that ring by assigning each of them a hash code as well.
Once the servers are placed on the ring, the range of hash codes they are
responsible for is defined as all the keys on the ring going from their current
position to the next server on the ring. The Figure 2.1 shows an example
with 3 servers and 4 items placed on the ring. In this example the server s1
is responsible for the keys k1 and k2, s2 is responsible for the key k3 and s3
is responsible for the key k4.

If the server s2 dies, the ownership of its part of the ring will be assigned
to the previous server on the ring, sI. Therefore there is only one key that
changes of server in this case instead of a complete new assignation of all the
keys to the remaining servers.

In practice there are two big approaches to ensure a good distribution
of the data among the nodes of the cluster. Indeed, as shown before, the

)



Figure 2.1: Consistent hashing illustration with 3 servers and 4 keys

number of keys a server is responsible for depends on its position on the ring
and badly chosen positions on the ring will lead to an unbalanced cluster.

First, the whole hash space can be divided into equal parts by assigning
n virtual servers to each of those equidistant positions. Those subdivisions of
the ring are often called partitions and to ensure that the cluster is well bal-
anced, each of the m real servers is assigned the ownership of n/m partitions.
This is the way distributed systems like Amazon’s Dynamo [56] and Riak [8]
ensure that a cluster stays automatically balanced. The advantages, given
that the number of virtual servers is big enough compared to the number of
real servers, of using virtual servers are :

e If a real server dies, the virtual servers it was responsible for can be
distributed evenly across the remaining nodes

e When a real server is added to the cluster, it can takes a fair share of
the load of all the other servers

e [t is possible to assign a different number of virtual servers to each of
the real servers, meaning that is possible to take into account the fact
that some servers are less powerful than others.

The second approach to this problem is to let the administrators of the
distributed storage decide where each server should be on the ring. That
implies that the administrators of the database have good understanding of
how the position of a server on the ring will influence its load. Cassandra [17]
is a system where it is possible to define the position! of each server on the
ring. The advantages of this method is that if a given part of the ring is a

!See the section 2.3.1 to learn more about the way data is distributed among nodes
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hot-spot that generate a lot of traffic, it is easy to add a new server that will
split in two the load of this exact server.

2.1.2 Centralized directory based distributed storage

One of the alternatives to the consistent hashing method is to use a central
authority in the cluster that monitor the servers storing the data chunks and
decide how the chunks are distributed among the cluster. This implies that a
client that wants to access a specific data must contact this central authority
at least one time before it can contact the server storing the right chunk. In
practice, this central authority can be distributed on more than one server
and there are several ways to avoid making it a bottleneck. The general
idea behind the distributed storage systems based on a centralized directory
is to divide the data into chunks of fixed size, each of them identified by a
unique ID. Then the mapping between the chunks and the servers, as well as
some meta information, is stored on the central authority. In practice there
are two big approaches regarding the architecture of the central authority,
the main difference between them being the number of levels on which this
information is stored.

The first approach is to make all the information stored by the central
authority available in one step, meaning that a client that wants to locate
a chunk on the cluster has only to ask for it to the central authority and
gets back its answer directly. Then it can open a connection to the server
that stores the chunk to get the data it was looking for. This is the approach
taken by the Google File System [57] where the central authority is called the
master and is a single process running on a single server. The fact that the
master is running on a single server simplifies the architecture of the whole
software and, as the master has a global knowledge of the cluster, enables
it to make sophisticated decisions about chunks placement and replication.
The drawback of this approach is of course the fact that the master is a single
point of failure but this can be lessened by the client’s cache that store all the
meta information that it previously received from the master. Nevertheless,
if the master is down, a new client with an empty cache would be unable to
find anything on the cluster and even long-running client would not be able
to find a block if its location has changed meanwhile. The architecture of an
Google File System cluster is shown on Figure 2.2.

The central authority can store directly all the meta information of the
cluster and still be distributed to be more resilient to failure. As the clients
rely on this central authority to find specific data into the cluster, the infor-
mation stored on it must always be consistent. To ensure that a consistent
view is always offered to the clients, a synchronous replication or another
protocol enforcing atomicity must be used. This is the approach taken by
mongoDB [32] where all the meta data of the cluster are stored on three
servers using two phase commit to ensure meta data consistency. The fact

7
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Figure 2.2: Architecture of a Google File System cluster, taken from [57]

chunk data

that two phase commit is used implies that no more writes or meta data
update will be possible as soon as one of the three servers is down, meaning
that no more chunk splitting or balancing will be possible. But on the other
hand, the advantage compared to the single process central authority, is that
the clients will still be able to read the meta data from the two remaining
servers and therefore most of the cluster operations will continue without
any perturbations.

The second approach consists in distributing the meta information on
several levels and therefore on several servers acting together as the central
authority but having different roles. Splitting the meta data on several
servers, without replicas and using a tree like structure allows to distribute
the load without having to use complex and costly replication protocols.
Note that the systems using this kind of architecture to store the meta
data can afford to avoid storing replicas because they are running on top of
other distributed file systems that handle the replication for them. Google’s
Bigtable [52] is an example of such a system with the root of its meta data
architecture stored in the distributed lock service Chubby [51] that stores the
location of the servers serving the Root tablet, itself containing the location
of the several METADATA tablets. To get a specific row stored in Bigtable,
a new client has to connect to all the levels of the tree, but the information
obtained on the upper levels are cached, meaning that further requests for
data stored in tablets already looked for, will directly be made to the last
level of the tree. The meta data architecture of Bigtable is shown on Figure
2.3.
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Figure 2.3: Architecture of the meta data in a Bigtable cluster, taken from
[52]

2.1.3 The CAP theorem

The CAP theorem was first stated by Eric Brewer as a conjecture [50] in 2000,
it has been demonstrated in 2002 by Seth Gilbert and Nancy Lynch [58].

The CAP theorem states that a distributed computer system can only
provide simultaneously two of the following guaranties :

e Strong Consistency : this property is often stated as the atomicity
of the objects stored in the database? and in practice it implies that
every read that happens after a write operation completes will return
the value written.

e Availability : it means that every requests sent to a working node in
the cluster must result in a response.

e Partition tolerance : the nodes continue to work (they answer to read
and write requests) even if the cluster is divided in subsets that cannot
communicate together.

This theorem is criticized [15] because it looks like it would be possible
to have every kind of combination, CP, AP and CA. But in practice, every
system wants to be tolerant to partition. In fact the only question of interest
regarding CAP is : what do we do when some nodes are unavailable? This
is why the CA choice does not really make sense, it would be a system that
does not tolerate network partition, but what would happen if a partition
occurs is that it would lose availability. Therefore, the choices provided by
the CAP theorem are CP and AP.

2 There must exist a total order on all operations such that each operation looks as if
they were completed at a single instant [58]



2.1.4 Examples of real world approaches of the CAP theorem

The trade-off chosen by Google to implement Bigtable [52] is partition tol-
erance and consistency. That implies that, if a node dies, some data will
be unavailable until the remaining nodes start serving those data. This is
due to the fact that there is no replication on the Bigtable level, rather the
replication takes place one level below, at the Google file system level which
stores all the data.

Amazon chooses availability and partition tolerance for Dynamo [56],
meaning that it is still highly available even under network partition. Of
course strong consistency is no more accessible and is replaced by eventual
consistency. Inside a Dynamo cluster, the data is replicated at the Dynamo
level itself. That implies that even if the network is partitioned, most of the
data are still available. As the system is only eventually consistent, every
reader is only guaranteed to get the last version of the data eventually.

2.2 Distribute the computation

Distributing the data across the cluster is a good start but it is still not
enough to make computations on large subsets of the data. Indeed a way
of using the computational power of all the servers and therefore a way of
distributing the computation across all the nodes is needed. Moreover, it is
relatively intuitive that moving the computation is cheaper than moving the
data itself to nodes that would do the computation.

A solution to this problem was provided by Google in its MapReduce
paper [55] and those concepts are now implemented in more and more dis-
tributed systems. It has the advantages of automatically distribute the com-
putation across the node while taking into account the locality of the data,
meaning that the work is done by the nodes that actually store the data.

2.2.1 MapReduce concepts

MapReduce is a programming model with its associated framework designed
to process and generate very large set of data. It is based on Map and Reduce
functions that the user must convert his computation into, generating a set
of key/value pairs from another set of key/value pairs taken as input.

The Map function takes as input a key/value pair and produces a set of
intermediary pairs. From those pairs, all the values associated to the same
key are grouped together by the framework and those new pairs are sent
as input of the Reduce function. The Reduce function takes as input an
intermediate key and its associated set of values to merge those values into
a possibly smaller set.

To explain how MapReduce works in practice, here is an example of how
to count the number of occurrences of each word in a set of documents with
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each document identified by a unique key and an associated value equal to
the content of the document :

e The Map function is called once for each document and emits the pair
(w,1) for each word w encountered

e The Reduce function sums up the all the values associated with each
key and return the sum

2.2.2 MapReduce implementations

The various implementations of MapReduce do not differ much from the orig-
inal regarding the basic concepts. Nevertheless, they differ in their purpose
from one another.

The original idea behind MapReduce was to create a framework that
would easily parallelize heavy batch computations on large data sets dis-
tributed over a lot of servers. Those batch computations often requires to
process lot of raw data to build things like inverted indexes, graphs or data
analytic. Those computations need to be fast but the result is not needed
immediately, therefore a high throughput is better than a low latency. This
is the approach taken by Google and Hadoop.

After the release of Google’s MapReduce paper, others decided to use
those concepts to build real time oriented query languages for distributed
databases. Indeed a lot of those databases previously lacked query languages
that could do more than the basic read and write operations. Therefore, they
have implemented the concepts of MapReduce in a very similar way, but they
are not meant to be used on big set of raw data, instead they should be used
on relatively small databases fields. This is the approach taken by Riak and
mongoDB.

2.3 Study of a selection of databases

2.3.1 Cassandra

General presentation
Cassandra [62] is a fully distributed share nothing database. It is fault resis-
tant, persistent and it can be used with a Hadoop cluster to run MapReduce
jobs. Cassandra tries to take the best from both Bigtable and Dynamo to
build a new kind of distributed database. The features inspired by Dynamo
are:

e Every node in the cluster is equal
e The cluster management is based on Gossip

e The consistency level is variable

11



On the other hand, the features inspired by Bigtable are :
e The column oriented model, that allows efficient storage of sparse data
e The persistent storage format: SSTable [13]
e The in memory storage format: Memtable [13]

Data model
The Cassandra data model [12] is based on the following concepts :

e The Keyspace: a namespace for the ColumnFamilies

e The ColumnFamilies: are sets of Columns

o The SuperColumns: are Columns that can themselves contains Columns
e The Columns: are defined by a name, a value and a timestamp

Usually there is one Keyspace for each application that uses the Cassandra
cluster. The Keyspace configuration is very important as it is the one that
defines the replication factor as well as the replica placement strategy. The
ColumnFamilies can be seen as table in traditional RDBMSs, they are de-
fined in static configuration files and cannot be changed during execution of
the cluster.

New data is added in form of a row, like in a relational database, except
that the column of the row can be different for each row. FEach row is
identified by a unique Key and it contains one or more ColumnFamily that
themselves contains Columns. To help visualize, the Figure 2.4 represent
those concepts.

Keyspacel
Keyl

ColumnFamily1

Colll Col12 Col13

ColumnFamily?2

Col21 Col22 Col23

Figure 2.4: Cassandra data model : the two rows are identified by Key! and
Key2



Keyspacel
Keyl

ColumnFamily1

Figure 2.5: Cassandra data model : The ColumnFamily model extended to
SuperColumn,

In the example shown in Figure 2.4, two SuperColumn could have been
used to group the Columns of the twoColumnFamily into a single SuperCol-
umn but keeping a subdivision, adding therefore a level in the data structure.
This is illustrated in Figure 2.5.

Query model
The query model provided by Cassandra allows the user to access directly
(for both read and write operations) to a particular column in a particular
row as well as it is possible to get the whole line. It is also possible to
define SlicePredicate, similar to mathematical predicate, that is described as
a property that the elements of a set have in common. [10]

The SlicePredicate is useful when a subset of Columns is needed, it can
be defined in two way :

o With a list of columns names

e With a SliceRange describing how to range, order and/or limit the
slice.

Finally, if Cassandra has access to a fully functional Hadoop cluster,
Hadoop MapReduce jobs can be used to make complex computations on the
data stored into Cassandra.

CAP approach
Cassandra has chosen availability and partition tolerance over consistency [11].
But, because Cassandra has chosen to let each request decide what the con-
sistency level is, it is possible to achieve strong consistency by using a quorum
method. The drawback compared to a system that has chosen consistency
like Bigtable is that it is impossible to lock a row. Therefore one can be sure
that one will always read the last write in a single Column but one cannot do
the same for a whole row. On the other hand, the big advantage is that one
never loose availability and therefore writes and reads should always succeed,

13



depending on the consistency level chosen. For example with a replication
factor of 3, if one node dies, read and write are still working as there are still
a majority of node. However if a second node fails, quorum read and write
will not work anymore while read and write using eventual consistency will
be working.

With Cassandra, the developer can choose both the replication factor
N, the number of nodes that must respond for a read operation R and the
number of nodes that must respond for a write operation W. Cassandra
guarantees [11]| that strong consistency will be achieved on the impacted
Column if and only if W + R > N, but as explained in Appendix A.1, this
is not really strong consistency but time-line consistency.

Data replication and distribution
With Cassandra it is possible to choose how the data will be partitioned
and therefore change the way the data is distributed among the nodes. The
first parameter of interest is the Token that is assigned to each node [14]. It
will determine what the replicas that each node is responsible for are. The
Tokens can always be strictly ordered, that allows the system to know that
each node is responsible for the replicas falling in the range (PreviousToken,
NodeToken]?. The node assigned with the first Token is responsible for all
the replicas from the beginning to this Token. Similarly, the node assigned
with the last Token is responsible for all the replicas falling after this Token.
Those Tokens can be assigned automatically in a random way when the
cluster bootstrap or they can be assigned manually.

To make the link between data and the corresponding Token, Cassandra
uses partitioners. Out of the box, there are three partitioners available :

e The RandomPartitioner implies that the Tokens must be integers in
the range [0,2'27]. It uses MD5 hashing to compare Keys to the Tokens
and therefore convert them to the range. If this partitioner is used, the
Token selection is very important. Indeed, on average the Keys will
be spread evenly across the Token space but if the chosen Tokens do
not divide the range evenly, the cluster can be unbalanced?.

e The OrderPreservingPartitioner will use the Keys themselves to place
data on the ring, it is therefore the programmer duty to find good
Tokens that ensure that the data will be evenly distributed across the
nodes. If there is a “hot-spot in the ring, a new node can be added
to the specific range. The advantage of using this partitioner is that
range queries can be used. Note that this ordering is based on naive
byte ordering. The problem with this partitioner is that if the cluster
must store several ColumnFamilies and if the distribution of the Keys

3Note that “(” is exclusive and that ¢|” is inclusive.
4The simplest solution to this problem is to use a Token equal to i127/N for ¢ =
0...N —1 with N the number of nodes in the cluster
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is different, some nodes will end up storing much more Keys and the
associated data [35].

o The CollatingOrderPreservingPartitioner is similar to the OrderPre-
servingPartitioner except that the ordering is based on EN and US
rules to build a locale-aware ordering.

Cassandra also provides a way to customize the replicas placement strat-
egy to take into account the cluster’s physical (rack and data center) topol-
ogy. By default Cassandra stores the replicas on the next N — 1° replicas
along the ring in the same data center. If the RackAwareStrategy is used,
the second replicas will be stored along the ring but in another data center.
The N — 2 replicas left will be stored in the same ring but in the same rack
than the first replica.

2.3.2 HBase

General presentation
HBase is a clone of Google’s Bigtable, it provides a real-time, distributed,
versioned and structured database on top of the Hadoop distributed file
system. Exactly like Bigtable, the system is made of two layers. First the
distributed file system HDFS [63] stores all the data in a persistent way,
meaning that it is responsible for data replication, node failure and data
distribution across the nodes. The second layer is the one made of HBase
itself, where each region server is responsible for a list of regions meaning
that it has to record the updates and writes into memtables and it also acts
as a cache for the data stored in the HDF'S level.

It is interesting to describe the architecture of an HBase cluster because
it is much more complicated than a system where all the nodes are equal.
The architecture of a typical HBase cluster is shown in Figure 2.6

[

region server region server region server

‘Namenode ‘ Datanode ‘ Datanode ‘ Datanode

Figure 2.6: Typical architecture of an HBase cluster

An HBase cluster is in fact two distinct clusters working together, often
on the same servers but not necessarily. The HDFS cluster is composed of

SHere N is the replication factor
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one® namenode, that acts as the entry point of the cluster, meaning that this

particular node knows which are the datanodes that store any information
wanted by a client.

The HBase cluster is composed of one” master, a Zookeeper cluster® that
acts as the entry point of the cluster and finally the region servers that
serve the data. The masters and region servers are all registered into the
Zookeeper quorum and if one of them dies it is repaired and replaced [22]
by Zookeeper. The master is doing background administrative tasks such as
keeping the cluster balanced and moving regions from failing regions servers
to other region servers.

The fact that both levels have a single point of entry can look like a
bottleneck that would be overloaded very fast, but in fact it would not be
the case in the short term. The Figure 2.7 shows all the requests that must
be made when a client connects to a newly bootstrapped HBase cluster and
asks to read an entry in the database.

First, the client contacts one of the node of the Zookeeper quorum to
know what is the address of the region server that stores the -ROOT- table.
Then the client makes a lookup into the -ROOT- table to find which region
server is storing the . META. table to make a new lookup into this last table
and find which is the region server that serves the region that contains the
wanted entry. Note that in Figure 2.7 it is assumed that the region server
that stores the .META. table also stores the wanted region and therefore
those two requests have been merged for the sake of readability.

The region server contacted by the client has to do a similar work than
the client to locate the data into the HDFS cluster before it can answer
to the client, but with only one lookup. First it contacts the namenode to
know the address of one of the datanode that is currently storing the data it
is looking for and then contact directly the datanode to get the data.

Once a client is connected to Zookeeper, it can send as many requests
as it wants, the connection will still be valid as long as there is activity at
interval smaller than the configured timeout. That implies that, most of
the time, the client does not have to recontact the Zookeeper quorum once a
connection has been established. The client is also using cache mechanism to
avoid making new lookups in the -ROOT- and .META. table to find where is

SThere can be only one namenode running for the whole cluster. To ensure higher
availability, the data stored by the namenode can be written on a mounted NFS share [47],
this way if the current namenode dies, another server that also mounted the NFS share
can be started as the new namenode without having to reconfigure it. On the other side,
the new server must have the IP of the old namenode to avoid re-configuring all of the
other parts of the cluster

"Note that there can be multiple masters but only one of them would be visible by the
clients, the others just act as backups [24].

8The Zookeeper quorum can be made of a single server, but it is recommended to use
a bigger and even number of servers to ensure that a majority of nodes is still available in
case of node failure or network partition.
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Figure 2.7: Requests made into a newly bootstrapped HBase cluster to get
a database entry

a region that it already has asked for. A similar cache mechanism take place
when the region server acts like a client to the HDFS cluster and therefore,
if the data previously requested belongs to a block already seen, the client
will not have to contact the namenode anymore. Those cache mechanism
implies that after a while, most of the requests done into the cluster to get
a database entry will look like the ones shown in Figure 2.8. Therefore, the
centralized part of an HBase cluster would not be overloaded very fast and
the bottleneck is pushed back thanks to the cache mechanisms
Data model
The HBase data model [4] is based on the following concepts :

e The Tables : they are made of rows and columns
e Every Column belongs to a given column family
e Each row is identified by its key

o A Tuable cell is the intersection of the a row and a column and is
versioned

The Tables are created at the schema definition but new one can easily
be added during normal operations. The number of versions is defined at
the column family creation step. Note that HBase stores everything as un-
interpreted bytes, meaning that almost everything, even a serialized data
structure, can be used as name for a column family or as key for a row. The
overall data model is represented in Figure 2.9.
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Figure 2.8: Requests made into an HBase cluster running in production to
get a database entry
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Figure 2.9: HBase’s data model representation

In the same way Cassandra works, this data model is not static. New
columns can always be added to existing column families even if only a small
number of rows are actually using those new columns. This is due to the fact
that the data are physically stored on a per column family basis, meaning
that sparse data do not add any overhead into the stored file. However, as
the optimizations are done on the column family level, it is recommended to
store into the same column family columns that have similar access pattern
and size.

The versions are not mandatory and the number of versions can be set
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to one at the column family creation step. If multiple versions are used, the
client can either specify a given version or nothing to get the last version
available.

Query model
With HBase, the user of the database can read data using either Gets or
Scans. The Gets are used to retrieve all the columns or only a subset of
them for a given row. The Scans are used to get all or part of the rows in
a given Table. Like the Get operation, the subset of wanted columns can be
specified but unlike it, it is also possible to define a range of rows using rows
keys for the start and for the end of the range.

HBase Tables can be used as inputs and output for Hadoop MapReduce
jobs when more complex computation than simple value lookup or update is
needed. The computation will be distributed [5] according to the number of
regions available in the cluster, meaning that the number of Map jobs will
always be equal to the number of regions.

CAP approach
For HBase, the selected CAP approach is CP meaning that if one node dies,
the data that was served by this node will be unavailable for a moment.
This is due to the fact that the replication takes place at the HDFS level
and not at the HBase level. The advantage, when only the HBase cluster is
considered, is that if the server is up, all write and read operations served
by this particular server will succeed. Indeed, as there are no replication at
its level, a network partition between the region servers has no impact on
the operations and every entry is always consistent as it is always served by
a single server. But that implies that availability is sacrificed, indeed if a
region server dies, all the data served by this region server will be unavailable
until the Zookeeper quorum detects the failure and redistribute the existing
regions across the remaining region servers.

HBase is not an ACID compliant database and does not provide any
transactional support, but it provides certain number of guarantees [3] :

e Atomicity : Every mutation® is only atomic within a row even if the
impacted columns belong to several column families.

e Consistency : Every single row returned is a complete row that ex-
isted in the Table history. However Scans are not a consistent view of
a Table when all the rows returned are considered even if each of the
row taken alone is consistent.

e Isolation : When a full row is retrieved concurrently with n mutations,
it is guaranteed that the returned row will be a complete row that
existed between two of the concurrent mutations.

9HBase mutations are objects used to update or delete a column value
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e Durability : All data visible to the clients is stored durably. There-
fore each operation returning success had been made durable and each
operation returning failure has not.

Data replication and distribution
The replication takes place into the HDFS level but is configured inside
HBase configuration files'® and can be set to any value greater than one.

At both level of an HBase cluster, there is a single entry point that
knows what is the chunk of data (blocks for HDFS and regions for HBase)
that stores the wanted value and it also knows which is the node (datanode
for HDFS and region server for HBase) that serves this particular chunk
of data. The namenode and the master do not only know how the data is
distributed across the nodes, they also choose how to distribute it. Therefore,
the distribution of the data across the cluster is not a distributed process
but is entirely handled by the entry point of each level.

The HDFS’s namenode distribute, almost evenly, newly written data to
the existing datanodes in the cluster. But if new datanodes are added to
the cluster, the existing data will not be moved, leading to an unbalanced
cluster. However the situation will be resolved automatically if new data
keeps being written into the cluster as it will be preferably written to the
new and mostly empty datanodes. It is also possible to call the balancer!'!
to manually balance the cluster by moving blocks between overloaded and
underloaded datanodes.

On the other side, the HBase’s master will always try to allocate exactly
the same number of regions to each region server available in the cluster.
This process is entirely automatic and no human interaction is needed to
balance the HBase cluster.

2.3.3 mongoDB

General presentation
mongoDB [32] is a schema free, document oriented and scalable database. It
is fault tolerant, persistent and provides a complex query language as well
as an implementation of MapReduce.

The architecture of mongoDB can take several shapes depending on the
needs. The simplest case is the one where the database is not sharded'? but
provides replication using slaves. This architecture is shown in Figure 2.10
and also shows a typical request sequence when a client wants to read or
write a document. First the client directly asks to the master and gets its
answer back.

0T he entry dfs.replication needs to be specified.

See http://hadoop.apache.org/common/docs/current/commands_manual.html#
balancer

2 Database sharding is a method of horizontal partitioning in a database or search engine.
Each individual partition is referred to as a shard or database shard. [46]
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Figure 2.10: mongoDB not sharded with replication architecture

When the processing power or the storage space provided by a single
master is not enough, it is possible to switch to a distributed architecture
where the documents are divided between shards. Each shard can be a single
mongod process or a replica set, that is a set of servers running mongoDB.
The servers belonging to the same replica set elect a master and all the other
servers of the set are designated as slaves. The cluster also needs to know
which the shards that currently store each document are. This information
is stored into the configuration servers. Finally, the client is agnostic of the
sharding, it talks to a mongos process that offers exactly the same API than
an unsharded cluster. When a client wants a specific document, it asks for it
to the mongos process that contacts one of the configuration server to know
which is the shard storing the chunks that contains this documents and then
contact directly the right shard’s master to get the document and send it
back to the client.

//
Master Master
/ \‘ Slave ‘ l Slave }4/ \l Slave

Figure 2.11: mongoDB sharded cluster with replication
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Data model

The mongoDB data model [31] is based on databases, collections and doc-
uments. The databases are sets of collections and collections are sets of
documents. Each document is inserted as a JSON [26] dictionary with a
special field that can be provided at insert time or automatically generated
by mongoDB. This field is named _id and is the default primary key of the
document meaning that using the value of this field in a request allows for
direct access to the document. Any other field can be added at any time
during normal operations and no document is required to have other par-
ticular fields. This is why mongoDB is said to be schema less. The general
data model of mongoDB is represented in Figure 2.12.

Databasel
Collectionl
Documentl
[« ]
Document?2
[~ ]

Figure 2.12: mongoDB’s data model representation

Query model
The query model of mongoDB is rich compared to other noSQL databases.
In fact it is closest in its expressiveness, with the notable lack of JOINS, to
the SQL language.

Given the important number of possible kinds of queries with mongoDB,
only an overview of its query environment is provided. The main function-
alities provided [29] by mongoDB are :

e selection of a subset of documents using :

— exact field(s) match
— <, <, >, > operators on single or multiple fields value

— the all operator, used to provide a list of items that must be
present in the returned set of document

— the in operator, used to provide a list of items of which at least
one item must be present in the documents returned

— the exists operator, used to select the documents that contain or
not the selected field



— regular expression applied on the content of a chosen field
e the cursor methods, used with other selection methods :

— count returns the number of document matching the query

— limit used to set the maximum number of results that can be
returned

— skip used to skip the first n results
— sort used to order the documents returned using a given field

— distinct used to be sure that all returned documents have a unique
value for the selected field

— group used in a similar way as the SQL statement

In addition to those features, mongoDB provide a MapReduce implemen-
tation [30]. The Map and Reduce functions must be written in Javascript
and are executed by a Javascript virtual machine on the server side. It is
interesting to note that currently this implementation of MapReduce is only
single threaded due to limitations in the Javascript engine. That implies
that the only way of getting MapReduce jobs done in parallel is to execute
them in a sharded environment!® where each shard will execute the Map
function on the documents it stores.

CAP approach
mongoDB can provide various levels of consistency [28]|, depending on the
architecture used and the configuration of the clients. By default mongoDB
is in the CP camp, meaning that all the requests are strongly consistent.

With mongoDB, there is always a single master for the whole database
or a single master for each shard in the cluster and by default all the read
and write requests are sent to master(s). This is why all the requests are
consistent by default.

To enable a weaker form of consistency, it is possible to read from slaves.
This will result in eventual consistency, meaning that if a request to read
a document that has just been updated on the master is sent to a slave, it
may read stale data.

Data replication and distribution
As already explained before, with mongoDB the replication depends on the
number of slaves running in each shard. It is therefore possible to have
various level of replication from shard to shard.

To distribute data across the shards in the cluster, mongoDB relies on
ranges [53] that split the data in chunks of configurable size!'4. The ranges are
based on a sharding key that can be any field or a combination of fields. For

13Gee the following Data replication and distribution to learn what are mongoDB’s
shards
1By default the size of a chunk is 200Mb
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a previously unsharded collection, mongoDB will create a single chunk whose
range would be (—oo, 00) with —oo and oo the smallest and biggest values
mongoDB can represent for the chosen sharding key. Then, until all the
chunks’sizes are at most equal to the configured chunk’s size, mongoDB will
split each chunk in half regarding to the sharding key. Existing chunks are
also split using the same mechanism when their size reaches the configured
chunk’s size. Note that once a collection is sharded, it is not possible anymore
to insert into it a document lacking the field(s) chosen as sharding key.
The sharding key has several important properties :

e There must exist a strict ordering between all the values used as shard-
g keys.

e Its cardinality will define the number of available chunks, therefore
a high cardinality sharding key is recommended. Indeed when the
number of chunks equals the number of available sharding key, it is not
possible anymore to split chunks and therefore distribute new data.

e The sharding key must be chosen related to the application using mon-
goDB to avoid hot-spots'®. For example an application in which the
newest content is the one generating the most traffic should not use an
increasing ID as sharding key. Indeed the newest content would always
be stored on a few chunks stored most of the time on the same shard.

The chunks are constantly and automatically balanced across the avail-
able shards by a process called the balancer. This process simply looks at
the number of chunks on each shard and start moving chunks when the clus-
ter is unbalanced. It is interesting to note that there is only one balancer
process cluster wide, that implies that there will never be more than one
chunk moved at a time.

As briefly explained before, the configuration servers are storing the clus-
ter metadata, they know which shard is storing each chunk as well as basic
information about each shard like the number of chunks they store. The
cluster formed by the, usually three, configuration servers uses its own repli-
cation model, with each server storing all the metadata. Every change in
those information is made using a two-phases commit to ensure that the data
stored by this cluster are always consistent. Finally, this cluster becomes un-
writable as soon as one of the configuration server is down, preventing any
other chunk split or move. This is not as bad as it may look because even if
the cluster of configuration servers is read-only, all the read and write oper-
ations done on documents can still be processed by the cluster of shards but
it will become unbalanced if writes are still sent to it.

5 A complete discussion of how to choose the right sharding key given the application
can be found in the book [53] at chapter 3

24



Finally, the last players of a mongoDB cluster are the mongos. They are
router processes that hide all the complexity of the cluster to the client who
simply talk to a mongos as if it was a non distributed mongoDB installation.
It is considered as a routing process because it finds where the client’s request
must be sent using information stored in the cluster of configuration servers.
Usually, there is one mongos process running on each application server. It
is not recommended to use a single or small number of mongos processes
because they act as proxies for the client and therefore could overload their
own bandwidth very fast.

2.3.4 Riak

General presentation
Riak [8] is a fully distributed shared nothing database, it is fault tolerant,
persistent and provides an implementation of MapReduce.

Data model
The data are stored in Riak as key/value pairs and each pair is stored into
a bucket. Each key in a bucket must be unique. The buckets can be seen as
collections of key/value pairs, they can be used to apply different settings
to sets of key/value pairs like different replication factors. Finally Riak also
provide links that enable key/value pairs to be linked to one another. Those
concepts are shown in Figure 2.13.

Bucket
Keyl Key3
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Key?2
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Figure 2.13: Riak’s data model representation

Query model
The query model of Riak provide the usual Put, Get and Delete operations
of the key/value stores to do standard read, write and update operations.
Every query that needs more complexity must be written as a MapReduce
job. A MapReduce job is made of a series of phases that can be of three
kind :

e Map phases : can operate on entire buckets or lists of bucket/key pairs
and must return a list of key/value pairs. Note that the keys returned
mustn’t be necessarily present in buckets.
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e Link phases : are specialized versions of map phases that fetch ob-
jects based on a link walk. They can be used to perform MapReduce
computations on related sets of objects.

e Reduce phases : can perform any kind of computation on results re-
turned by a map phase or another reduce phase. It does not have the
obligation to return a single answer.

On the technical side, communications with the Riak cluster can be done
using the following interfaces : HTPP, Erlang, Python, Java and Ruby. All
the MapReduce jobs must be written in JavaScript or in Erlang.

CAP approach
Riak is clearly inspired by Dynamo and choose A and P over C [7] in the
CAP theorem, meaning that if the network is partitioned or if there is a race
condition in which two client update the same value at the same time on
two different nodes, Riak will accept the write on both nodes. That implies
that there will be a conflict when the cluster is whole again or very fast if it
was due to the race condition. When a conflict appears, Riak let the client
choose between getting the last updated version or to resolve the conflict by
human-assisted or automated action.

It is possible to achieve time-line consistency with Riak using a quo-
rum mechanism. The replication factor (n_wvalue) can be specified for each
bucket and it is also possible to specify at each read or write request the
number of nodes on which the operations should be done (respectively r and
w). That implies that time-line consistency will be achieved if

r+w >n_value

This tunable consistency level allows the programmer to obtain greater
performances when a lower level of consistency is needed.

Data replication and distribution
Each Riak cluster has a 160-bit integer space that is divided into partitions
of equal size. The number of partitions must be fixed at cluster initialization.
Riak starts a virtual node for each partition in the cluster and then distribute
evenly those virtual nodes across the physical nodes that have joined the
cluster.

Riak uses consistent hashing to distribute data across the cluster. Each
replica of a given object is stored on a different partition and Riak will
automatically balance the cluster when new nodes are added or removed.

Finally, Riak is based on a share nothing architecture in which all the
nodes are equal. It allows each node to be fully capable of serving any kind
of request, the node can always find which are the nodes that store the
information by using the consistent hashing.
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2.3.5 Scalaris

General presentation
Scalaris is a distributed, transactional, non-persistent key/value store. It
has been designed to be a self-managing and scalable distributed data store,
meaning that it is possible to add or remove servers without any downtime.
Scalaris is a fully distributed data store with all nodes being equal, it takes
care of :

e The failure of node using fail-over

The distribution of the data across nodes

The replication of the data

The strong consistency of all the requests
e The transactions

To ensure that all those services are provided, Scalaris is made of three
layers [49] implemented in Erlang. Those layers can be seen on Figure 2.14

Web 2.0 Application Layer )
{e.g. Wikipedia Backend) <:I strong data consistency

atomicity, consistency,

Transaction Layer isolation, durability

Replication Layer ¢— availability

Peer-to-Peer Layer < scalability

Many standard Internet nodes for data storage
1 1L Il 1L Il JL

Figure 2.14: Scalaris architecture, taken from [49]

Going from bottom to top, the layers are :

1. The peer-to-peer layer is a distributed hash table with logarithmic
routing performances, it is the basis of the key/value store.

2. The second layer takes care of the replication of the data using sym-
metric replication.

3. The third layer implements the ACID properties and transactions using
an improved Paxos protocol.
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Data model
The data model provide by Scalaris [36] is quite simple as it is only a
key/value store without any other layer to structure the data. All the
key /value pairs are stored into the same set of entries.

Query model
Given the simplicity of the data model, the query model is also very simple
and is limited to the expected write, read and delete operations. Of course
the big advantage of Scalaris is the possibility to use transactions and, as
one could expect, they simply consist in grouping together normal operations
into one transaction.

CAP approach
As briefly mentioned before, Scalaris is strongly consistent and supports
transactions. Therefore, as the partition tolerance is something that is almost
always wanted, Scalaris is in the CP camp |[38].

Of course that implies that Scalaris is willing to loose availability to
make sure that the data will always be consistent. For example, in the case
of network partition with two partitions for a cluster using a replication
factor of 4, if there are 3 replicas in one partition and 1 replica in the other,
the read and writes will only be available in the partition containing the 3
replicas. While all the requests sent to the other partition will all result in
a timeout until the two partition are merged again.

Data replication and distribution
Scalaris uses consistent hashing to place each key on the ring [37] and then
the replicas are stored at 90° intervals after the first one. The use of consistent
hashing implies that the position of a given key on the ring is random, and
therefore so are the replicas.

The placement of the nodes on the ring is random but the developers
have added a passive load balancer that is now activated by default'6. This
balancer ensures that the address range is uniformly distributed during a
node join. For a cluster running for some time, meaning that the nodes have
been in contact for a while and have aggregated the average load of the whole
cluster, it will also split the actual load instead of the address space.

2.3.6 Voldemort

General presentation
Voldemort [41] is a distributed, persistent, fault tolerant key/value store. It
is fully distributed, meaning that each node is independent with no central
point of failure or coordination.

6This information is not available in the documentation but directly in
the mailing list of Scalaris in the thread named Scalaris performance prob-
lem at the url http://groups.google.com/group/scalaris/browse_thread/thread/
9232d£1d23206954/£38d1055b4325030
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Voldemort has been designed to be used as a simple storage that can
be fast enough to avoid using a caching layer on top of it. The software
architecture is made of several layers [40], each of them implementing the
put, get and delete operations. Each layer is responsible for a specific function
like TCP /TP communications, routing or conflict resolution. Those layers are
shown on Figure 2.15.

Logical Architecture
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Conflict Resolution

Serialization
Requests Responses J
22—,
RoutingiSe Rapair Network Client & Server
(HTTP/Sockets/NIO)
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Faiover (Hinted handoff) /

?

e

Storage Engine
v (BDB/MySQL/Memory)

Figure 2.15: Voldemort architecture, taken from [40]

This architecture allows those layers to be used in different combinations
to meet different needs and also ease the addition of a functionality that
would impact the whole system without any other modifications than the
addition of a new layer. For example, if a fast and effective compression is
needed, adding a compression layer just below the serialization one would
do the trick.

Data model
The data model provided by Voldemort is a basic key/value store with the
possibility to separate the keys in several stores that can be seen as tables.
Therefore there is only one level of subdivision of the data inside Voldemort.

However, as Voldemort supports various popular serialization frame-
work!”, it can be used to store complex objects like maps and lists and
therefore store relations between entries in the database. Of course that
implies that all the logic is implemented at the application level.

Query model
The query model offers the usual get, put and delete operations once a store

"Voldemort can easily supports Protocol Buffers, Thrift, Avro and Java Serialization
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has been selected as the subset of keys to use.

CAP approach
Voldemort allows temporary inconsistencies and resolve them at read time
to ensure the best availability possible. That implies that Voldemort is in
the AP camp.

Voldemort uses read-repair and versioning based on vector-clock, mean-
ing that is possible that some inconsistencies require additional application
logic to be resolved. This is why there is a layer called conflict resolution in
the architecture.

The replication factor N, as well as the number of required reads R
and the number of required writes W are specified on a per store basis. If
W+ R > N, Voldemort guarantees that a read issued just after a completed
write will return the updated value. However the put and delete operations
are neither immediately consistent nor isolated. Voldemort guarantees only
that if a put or delete operation succeeds without returning an exception, it
implies that at least W servers had carried the operation. If an exception is
returned, the state of the data is unspecified and the client must issue a new
write to ensure that the data will be in a consistent state.

Data replication and distribution
The key range is represented as a ring on which the keys are placed using
consistent hashing. The ring is divided in @) partitions following the chosen
value for this parameter and then each of the S servers is assigned @Q/S
partitions. Once the position of a key on the ring has been computed using
the hash function, the R replicas are stored on the first R unique servers
encountered moving clockwise over the partitions.

Currently all the routing is done on the client side, meaning that the
client has first to connect to a node in the cluster to learn the network
topology. Once it knows which nodes is storing each partition, it can use the
hash code that it computed itself with the wanted key to find which are the
nodes storing this key.

2.4 Existing benchmarks

24.1 TPC

The TPC benchmarks [39] are the most-used benchmarking tools in the
RDBMS world. They are proven and mature ways of assessing the per-
formance of transactional databases. The fact that those benchmarks test
transactional performance is appropriate for a standard RDBMS environ-
ment but is very problematic for the databases concerned in this study.
Indeed none of the chosen databases support transactions. At best HBase
supports row locking and the others only provide strong consistency on sin-
gle fields. It is therefore not possible to use this kind of benchmark on those
databases while enforcing the same consistency properties.

30



24.2 YCSB

The Yahoo! Cloud Servicing Benchmark [54] is the most well-known bench-
marking framework for NoSQL databases. It was created by Yahoo!. It
currently supports many different databases and it can be extended to use
various kind of workloads. The benchmark used for the measurements pre-
sented here, both concerning the storage and MapReduce, could have been
implemented on top of YCSB as a new workload but it has not been for vari-
ous reasons. The first reason is for simplicity: it seemed easier to implement
its functionalities directly instead of extending the big and far more complex
YCSB where it would not have been so easy to control all the parameters.
The second reason is that I wanted to explore the best methodology for
measuring elasticity without being tied to the assumptions of an existing
tool.
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Chapter 3

Analysis of the problem

3.1 noSQL storage classification proposition

The distributed storage studied in this Master’s thesis have made very differ-
ent technical choices regarding the level of consistency provided, the model
of data distribution, the logical data model, model of data storage and the
complexity of the query language available to the end user. Nevertheless,
if only one of those properties is considered, it is possible to highlight com-
mon approaches for some the databases, therefore creating groups of similar
approaches.

3.1.1 Level of consistency

The definitions of consistency used are the following :

e Eventual this is the level of consistency of systems like Dynamo [56]
and it is defined as : the storage system guarantees that if no new
updates are made to the object, eventually all accesses will return the
last updated value |64]

e Time-line consistency this level of consistency ensure that all the
updates will be applied in the same order but that all the replicas
are not necessarily always consistent with one another!. This implies
that a client could read out of order data. This level of consistency is
provided , among other, by distributed systems using a quorum like
mechanism to update the replicas?.

!This definition comes from the excellent article on distributed consistency writ-
ten by Daniel Abadi and available at http://dbmsmusings.blogspot.com/2010/04/
problems-with-cap-and-yahoos-little.html

2In fact it is also possible to achieve this level of consistency using a par-
ticular architecture with mongoDB, see http://blog.mongodb.org/post/498145601/
on-distributed-consistency-part-2-some-eventual
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e Strong this level implies that every read operation that happens after
a completed write operation on a single entity return the updated value,
it can be defined as : the storage system guarantees that all read and
write operations on single entities are atomic

e Row locking this level of consistency implies that strong consistency
can be guaranteed on more than one entity but those entities must be
grouped together in a row.

e Transactional this is the usual level of consistency of RDBMSs;, it can
be defined as : the storage system guarantees that all read and write
operations on single or multiple entities are atomic

It is important to make the difference between strong consistency and
time-line consistency in an heavily concurrent environment because it implies
that a client can read out of order data in a very specific case. This case is
illustrated in the Appendix A.1 and shows that a client could read an old
value just after it had been reading a newer value. Therefore, distributed
systems using quorum mechanism cannot be considered as providing real
strong consistency.

The six databases presented in the State of the art chapter implements
various levels of consistency. In fact a few of them can also provide different
levels of consistency depending on the configuration of the cluster or on the
arguments of the request. Those levels of consistency are represented on
Figure 3.1.
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Figure 3.1: Consistency of studied noSQL databases
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There are clearly four kind of consistency set provided by those six noSQL
databases. The first group would be the one that provide consistency level
between eventual and time-line for object stored as single entities, it contains
Cassandra, Riak and Voldemort. The second group provides the levels of
consistency between and including eventual, time-line and strong. It contains
only mongoDB. The third group provide levels of consistency between strong
and row locking levels and contains only HBase. Finally, the last group is
the one that provide transactions and therefore strong consistency, it only
contains Scalaris. Note that providing transactions does not mean that it
is possible for the end user to use any form of locking, Scalaris is a good
example of this.

3.1.2 Model of data distribution

As explained in section 2.1, there are two main approaches to distribute the
data across all the servers of a cluster, the one based on consistent hashing
and the one using a centralized directory to store the meta data.

The databases using consistent hashing are Cassandra, Riak, Scalaris and
Voldemort while the ones using a centralized directory for the meta data are
HBase and mongoDB. The advantages and drawbacks of each method have
been discussed in section 2.1.

3.1.3 Logical data model

The way data can be structured into the database has several different level
of complexity depending on the data model chosen by the database. Using
the simplest level of complexity, the key/value storage, has the advantage
of being very predictable in terms of performances and latency because all
the requests are basically of only three types : read, write and delete. But
that also implies that most of the relations between the data have to be
computed and kept up to date by the client rather than by the database
itself. On the other side of the spectrum, RDBMS can store all the relations
in the database and rely on it to make complex computations as well as to
keep all the relations up to date.

The data models complexity levels of the databases studied here can be
divided in three groups :

e Key/Value : this is the simplest level of complexity that a database
can store, each entry is identified by a unique ID and all the data asso-
ciated to it are stored as one big blob. Of course the client application
can store any kind of structure in this blob but the database itself is
not aware of this. Those data stores are said to store unstructured
data.

e Key/Value augmented with links : this is the level of complexity of
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databases that store data as key/value pairs but also provide an inte-
grated way to establish one way relationship between pairs. Therefore
this is still an unstructured data store but with the ability to represent
oriented graphs out of the box.

e Hierarchical semi-structured : each entry is modeled as a row and
is identified by a unique identifier but its content can be structured like
a dictionary with a set of keys and associated values inside each row.
Moreover, each row can use its own set of internal keys, enforcing there-
fore the non-fixed data model at the row level. The hierarchization is
provided by the possibility to segment the data into several levels like
the logical equivalents of tables and databases.

The noSQL databases considered here can be grouped on different places
on the axis of data model complexity, it is shown on Figure 3.2.
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Figure 3.2: Databases grouped by their datamodel levels of complexity

This time there are three groups clearly visible on Figure 3.2 resulting
from the chosen kind of data model complexity. One could wonder why
there is clear separation between the simple key/value data model and the
key/value augmented with link and argue that the links could easily be
implemented by storing them next to the other data stored in the wvalue.
Indeed it would be possible to do so, but it would require additional code on
the client side. Moreover, most of the functionalities provided in databases
by a more complex datamodel can be implemented on the client side on
the top of a simple key /value storage. Therefore the databases classification
based on data models takes only into account the level of complexity available
to a client out of the box. Following this approach, the links provided by
Riak are a useful addition, enabling the clients to store directed graphs into
the database.

The column oriented databases like HBase and Cassandra are grouped
together with the document oriented database because, from a logical ap-
proach of the data model itself, they provide very similar functionalities even
if data is stored in a very different way. Indeed, rows into a column oriented
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database are made of an arbitrarily fixed subset of columns and data is hi-
erarchized in tables and column families. Documents can be seen as rows,
with each document structured internally with an arbitrarily fixed subset
of fields that can be seen as columns and the documents are hierarchized
in collections and databases. Therefore, from a logical point of view, the
content of each entry can be mapped from one another very easily. However,
the hierarchization is different and cannot be transposed directly from one to
another. Tables and collections can be seen as sets of rows but the databases
are sets of collections while column families are sets of columns. As a result
it is necessary to design the hierarchization differently for column oriented
databases than for document oriented databases but in the end it is possible
to achieve the storage of a given hierarchical data set into both data models.

3.1.4 Model of data storage

Several approaches can be followed to physically store the data on servers of
a cluster. Those approaches can be represented in a two dimensional space
where the first dimension is the level of persistence and the second dimension
is the kind of data aggregation into the physical storage.

The level persistence can take two values, persistent and non-persistent.
Non persistent storages keep all the data in memory and rely on replication
to ensure that no data is lost. Note that several levels of replications may
be needed if a whole data center outage has to be considered. The advan-
tages of this approach are the performance, the hard disks are a well-known
bottleneck of today’s computers, and the simplicity. Indeed there is no need
to implement complex algorithms to ensure that data are written to disk
without impacting too much the performance. Persistent storage ensures
that the data will not be lost if a server is powered off by syncing the data
kept in memory with the hard disks.

The way data is aggregated into the physical storage has a strong impact
on performance depending on the type of request made by the client. There
are two big approaches to aggregate the data stored, the first one is to store
all the data of a row into one sequential blob on disk. This implies that
the rows are fetched on disk at once and therefore it is very fast to access
the different columns of the row because they are all in memory once the
row has been fetched. On the other hand, if a client issues a request in
which it asks for all the fields of a given type in all the documents of a
table, the database will have to read the whole row each time. The second
approach is to aggregate all the data belonging to the same column as one
blob. The benefits are fast access to data belonging to the same columns in
multiple rows and optimal compression. Indeed, as the data stored in the
same columns are of the same type, it is possible to implement very efficient
compression algorithms for each column’s type.

The combinations of persistence level and data aggregation chosen by
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the studied databases are shown in Figure 3.3.
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Figure 3.3: Databases grouped by their model of data storage

Once again, the databases form three distinct groups. Note that as the
key/value storages store unstructured data, each pair is stored as a blob
on disk. Therefore, each access to a given pair loads the whole blob into
memory exactly like in a system where data is aggregated by row.

3.1.5 Query model

To characterize the expressivity of the query languages available in the stud-
ied noSQL databases, I have chosen to differentiate them on a three dimen-
sions basis. The first dimension concerns the availability of a MapReduce
implementation, regardless of its purpose?, the second dimension concerns
the expressivity of the query language not based on MapReduce and the
third dimension concerns the availability of transactions. The second axis is
cumulative, meaning that a point on the axis include also all the functionali-
ties provided by the points located on its left on the axis. The leftmost point
on this axis mongoDB subset of SQL is the subset of the SQL functionalities
described at the section 2.3.3 and is required as this subset is specific to
mongoDB. Finally, the third dimension is represented using bold fonts for
the name of the database to ensure a good readability. The Figure 3.4 shows
the databases placed in this three-dimensional space.

The databases can be divided into five groups. The first one provides only
the most basic functionalities and is only composed of Voldemort. The sec-
ond one provide those same functionalities but add the possibility to group

3As explained in the section 2.2.2, the MapReduce implementations can either be
designed as real time query language or as batch computing language.
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Figure 3.4: Databases grouped by their query model

them into a transaction, it contains Scalaris. The third one, only composed
of Riak, provide the most basic functionalities but provides also a MapRe-
duce implementation. The fourth one (Cassandra and HBase) provides, in
addition to the basic functionalities, the possibility to make range queries
and therefore get a subset of the stored data in a single request. Finally,
mongoDB provides the most expressive query language with a consequent
subset of the SQL language and a MapReduce implementation.

3.1.6 General approach to the classification problem

Unfortunately, the previous classifications based on a single property do not
highlight a general pattern to make a general classification of the noSQL
databases that would have taken all the properties into account. The alter-
native, to choose the right distributed database for a given use case, is to
select a list of minimum requirements for each property identified and to try
to maximize the number of requirements fulfilled.

3.2 Analysis of the theoretical elastic potential

3.2.1 Definitions

Three fundamental measures for distributed databases designed for “Bigdata”
problems are performance, scalability, and elasticity. First, here are the
definitions of these measures.
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Performance

I define the performance as the time needed to complete a given number of
requests with a given level of parallelization. The chosen levels of paralleliza-
tion and number of requests used during the measurements are explained in
the step by step methodology. In all the measurements presented, I perform
requests in batches called request sets. This allows us to decrease variability
and improve accuracy in measurement time.

Scalability

I define the scalability as the change in performance when nodes are added
and fully integrated in the cluster. In practice the size of the data set, the
level of parallelization, and the number of requests are all increased in the
same proportion as the number of nodes. Therefore, a system is perfectly
scalable if the time needed on average to execute a request set stays constant
when all the parameters of the cluster grow linearly. Of course this measure
is only valid for clusters that are stabilized, meaning that all new and existing
nodes have finished their partition transfers and are fully operational.

Elasticity

I define the elasticity as a characterization of how a cluster reacts when new
nodes are added or removed under load. It is defined by two properties.
First, the time needed for the cluster to stabilize and second the impact
on performance. To measure the time for stabilization, it is mandatory to
characterize the stability of a cluster, and therefore a measure of the variation
in performance is needed. I define the system as stable when the variations
between request set times are equivalent to the variations between request set
times for a system known to be stable?. These variations are characterized by
the delta time, which is the absolute value of the difference in time needed
to complete a request set and the time needed to complete the previous
request set. Concretely, for a given database, data set, request set, and
infrastructure, the variability is characterized by the median value of the
delta times and the system is said to be stable if the last X sets have a delta
time smaller than the previously observed value. I currently have fixed the
value of X to 5, which gives satisfactory results for the measurements done.

I make the hypothesis that just after the bootstrap of the new nodes, the
execution time will first increase and then decrease after an elapse of time.
This is illustrated graphically in Figure 3.5. In case the time needed for
stabilization is very short, the average value and therefore the shape of the
curve could be nearly unaffected by overhead related to elasticity, but at least

4A system is said to be stable when there are no data being moved across the nodes
and when all the nodes are up and serving requests.
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Figure 3.5: Expected average time needed to complete the same amount of
work when new nodes are added
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Figure 3.6: Surface areas used for the characterization of the elasticity

the standard deviation will increase due to the additional work needed to
move data to new nodes. It is important to take this standard deviation into
account because highly variable latency is not acceptable. (In the general
case, the relative importance of the execution time increase and the standard
deviation increase may depend on the application: some applications are
more tolerant of performance fluctuations than other®. As a start, I assume
that they have the same relative importance.) To characterize the elasticity
in the current work, I will take both the execution time and the standard
deviation into account.

To characterize the elasticity with a single dimensionless number, I there-
fore propose the following formula for the bootstrap of N new nodes into a
cluster of size M:

A+ B
(Rt1 + Rt2) x (Avl + Av2)

FElasticity =

Here A and B are the surface areas shown in Figure 3.6, where A is related
to the execution time increase and B is related to the standard deviation,
Rtl is the average response time of one request for a given load before the

5For example logs stored in a distributed file system that are being used for data
analytic are less dependent on performances fluctuations than a distributed search engine
that always need to be reactive
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bootstrapping of the new nodes, Rt2 is the average response time once the
cluster has stabilized with the same load applied, Avl the average time
needed to execute a request set before the bootstrapping and Av2 the average
time execute a request set after the stabilization. For example, for a request
set containing 10000 requests, Avl (Av2) is 10000/6 times Rt1 (Rt2) for the
transition starting from a cluster of 6 nodes (for the other transitions, see
Table 6.4).

The triangular area defined by the edges (Rt1,Rt2), (Bootstrap,Stable),
and (Rt1,Stable) is not counted because even for perfect elasticity this tri-
angle will exist as a performance ramp from level Rtl to Rt2. The area
A+ B is then purely due to elasticity and has a dimension of time squared.
The values Avl + Av2 and Rtl + Rt2 are both inversely proportional to
the average performance and have a dimension of time. The elasticity is
therefore the ratio of the elastic overhead A+ B to the absolute performance
(Rt1 + Rt2) * (Avl + Av2) and is a dimensionless number. The division by
Avl 4+ Av2 removes the scaling factor of the size of the request set (e.g., the
10000 mentioned above) and the division by Rt1+ Rt2 suppresses the second
time dimension.

The dimensionless number computed with this formula is independent of
the load applied and the number of nodes in the cluster. Indeed, changing
the load will move the curve vertically without changing its shape. For
example, a load increase will move upward the curve but this will increase
the value of the denominator and therefore, the final result should stay the
same. Similarly, changing the number of nodes in the cluster, for a given
load, will move the curve vertically and this change will be taken care of by
the denominator.

Following this definition, a distributed application with a perfect elas-
ticity would have a score, computed with the above formula, of zero. That
implies that a perfectly scalable system can take some times to stabilize at
a new and more performant level but in doing so it would not decrease the
performance (the A area would be null) and it would keep perfectly stable
performance (the B area would be null).

Restricted elasticity

The first definition of elasticity is only valid for databases that allows read
and update access to data that belongs to subset of the data set that are
currently being moved across nodes in the cluster. If the data currently being
moved is not accessible until it has settled on a new node, the database is
said to have a restricted elasticity. Therefore the only measure of interest is
the time needed for the system to be fully available again after new nodes
bootstrap.
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3.2.2 Theoretical ability to change the cluster’s size

The databases chosen can be divided into two groups depending on their
elasticity level. The first group contains all the databases that are truly
elastic, meaning that it is possible to add new nodes into a cluster under
load without any observable downtime for the clients. This group contains
Cassandra, HBase, mongoDB and Voldemort. Constant availability of the
data when nodes are added or removed from the cluster is made possible by
the fact that routing mechanisms and algorithms that take decisions to move
data chunks are working together. That implies that, when new nodes are
added for example, data that must be moved to new nodes is copied from its
existing location to the new one but during all the time of the copy, the data
are still served by the original location. Then, when the new node has an
up to date version of the data, the routing processes start to send requests
to this node.

The second group contains all the databases for which there is a sig-
nificant downtime when new nodes are added into the cluster. This group
contains Riak and Scalaris but they are in this group for very different rea-
sons. Riak should be able to provide constant availability when new nodes
are added to the cluster but experience has shown that it is not the case if
the load applied on the partition being moved is too important. This prob-
lem is well known by the developers of Riak and is considered as a bug® but
there is no sign of an available solution to this problem right now. Currently,
the clients will not be able to access data in partitions being moved as long
as the partition transfer is not finished”. Scalaris should also be capable of
constant availability under load when the size of the cluster changes but in
practice, the clients were unable to perform any request after the addition of
a new node into a cluster under load. Scalaris is under constant development
and this problem has been observed a few months ago, therefore it would be
interesting to make this test again to see if the problem has been corrected
since.

3.2.3 Theoretical impact of the addition of new nodes

To approximate the magnitude of the impact on global performances of a
cluster when new nodes are added, it is mandatory to understand what kind
of work needs to be done to integrate the new nodes.

The first big difference between the various databases lies in the architec-
ture where two kind of approaches are used. The first and the most popular
one is to move existing data from old nodes to new ones and therefore dis-
tribute evenly the storage and the load. This is what Cassandra, mongoDB,

5The bug report filled by Sean Cribbs, one of the main Riak developer, can be seen at
https://issues.basho.com/show_bug.cgi?id=1024

"See the chapter 6 to see how long it takes for Riak to be fully available again after
new nodes bootstrapping
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Riak, Scalaris and Voldemort do and that implies potentially big transfers
across the nodes. The second approach, taken by HBase, is made possible by
the fact that an HBase cluster is actually made of two levels, the HDF'S level
that store durably the data and the HBase level itself that only acts like a
caching and computing layer for the databases entries. With this approach,
when a new region server is added at the HBase level, it will inherit from
a fair share of the set of regions but there is no big data transfer needed
immediately. Indeed, as the region servers act like cache servers, they will
only download the regions from the HDFS level when they are asked for.
Concretely, when a new region server is added, the master decides which re-
gions should now be served by this new node, send a message to the servers
currently serving those regions to tell them to durably store into HDFS the
current state of those regions and to close them. Once the regions are saved
and closed, the new region server opens them again and starts fetching the
data upon request. It is important to note that on the HDFS level, new
nodes will not store existing data but instead they will only start to store
data added after they were added into the cluster. The combination of the
behavior of the two levels of an HBase cluster implies that there is no big
data transfer needed and therefore the integration of new nodes should be
very fast.

In the first group, it is also important to note two different approaches
concerning the moment when a new node start serving requests. For Cassan-
dra, the new nodes only start serving requests when they have downloaded
an up to date copy of the whole data set they are assigned to. This is due to
the fact that there are no partitions or virtual servers to split the keyspace
ring into chunks that are assigned to physical servers, therefore there is no
way for a routing process to know which part of its assigned data set a
bootstrapping Cassandra node has already downloaded. On the other hand,
the other systems divide the whole keyspace into chunks and assign them
to physical servers. Therefore, as the routing processes are only concerned
about the localization of a chunk, once a chunk move has succeeded, they
can route requests to the node that stores it. In practice that implies that
the newly bootstrapped nodes will start to serve requests more quickly in
those systems and therefore should take less time to spread the load across
all the node available after the bootstrapping.

Still in the first group, there are two approaches concerning the distri-
bution’s parallelism of the data from old to new nodes. The first approach,
taken by Cassandra and Riak, consist in using the highest level of paral-
lelization possible. Meaning that the new and the old nodes know exactly
which data they should serve thanks to their assigned positions on the ring.
Therefore, the new and old nodes that need to exchange data can contact
each others directly to start the transfers. For a system that use a cen-
tral authority like mongoDB, only this central authority knows which data
should go from a node to another. Therefore, the simplest way to be sure
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that the central authority can handle the transfers is to do them one at a
time. In practice those two approaches should have a strong impact on the
time needed to finish all the transfers.

3.2.4 Theoretical impact of the removal of a node

There are two kind of node removal that should be considered. A node
can be gracefully removed meaning that the system is given enough time to
reorganize itself or a node can die instantly, leading to fail-over mechanisms
if needed. For the following, it is considered that the node removed is a fully
integrated node, meaning that it was running for a relatively long time of
normal cluster operations.

First, let consider the case of a gracefully removed node. This time
the amount of data transferred should be similar for each database if the
data set was evenly distributed across the nodes. Indeed, even a node in
an HBase cluster would have data stored because of its HDFS process and
therefore, keeping the replication factor constant implies moving the data
from the node to remove to the rest of the cluster. There should be a little
loss in performances for HBase during the time needed to close an re-open
the moved regions but that should be very similar to the one observed when
new nodes are added. Concerning HDF'S and the other databases, there will
not be any service interruption because it always will be NV — 1 other replica
available but the performances should be impacted by the heavy bandwidth
usage needed to move the data.

The case of mongoDB is a little particular because two different types
of removal should be considered. First it is possible to remove one node
from a replica set and in this case, nothing will happen. Indeed, mongoDB’s
replication factor is defined for each replica set by the number of nodes in this
replica set and therefore removing a node will only decrease the replication
factor of the data stored on this replica set. Second it is possible to remove
a whole shard and this time that implies moving all of the data stored on
this shard on other shards.
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Chapter 4

Experimental measures of the
storage

The goal of those measures is to see how a small selection of distributed
databases behaves when new nodes are added into a working cluster. This
chapter will therefore present the databases chosen and their specific config-
urations as well as the detailed methodology and definitions that were used
to characterize the observations.

4.1 Databases used

The three databases selected for this study are Cassandra [17], HBase [6]
and mongoDB [32]| because they are popular representatives of the current
NoSQL world. All three databases are horizontally scalable, do not have
fixed table schemas, and can provide high performance on very big data
sets. All three databases are mature products that are in production use
by many organizations '. Moreover, they have chosen different theoretical
approaches to the distributed model, which leads to interesting comparisons.
All three databases are parameterized with common replication factor and
consistency properties in order to ensure a comparable environment on both
the application and server side.

4.1.1 Replication factor

First, the replication factor has been fixed to three. For Cassandra it should?
be fixed at the keyspace creation step, for HBase replication takes place one
level below, at the HDFS level but it is specified in the HBase configuration

!Cassandra is known to be used by Twitter, Reddit, Rackspace and more [2]. HBase
is known to be used by Adobe, Facebook, Twitter and more [25]. mongoDB is known to
be used by Foursquare, Bit.ly, Sourceforge and more [33].

2The replication factor can also be changed on a live cluster, see : http://wiki.
apache.org/cassandra/Operations#Replication.
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file. With mongoDB, the replication takes another form and is defined by
the cluster architecture itself. A mongoDB cluster that provides replication
is made of several replica sets|34] that form the shards, meaning that all
the documents of a sharded collection will be split across those shards. The
replication factor is then defined by the number of nodes in each replica set.
That implies that mongoDB cluster is always made of groups of three nodes
that act as a single shard.

4.1.2 Consistency level

The second common property is the consistency of all the requests made
during the measurements. This is done using various tools provided by the
databases query model when needed and described in the following subsec-
tions. I have set all three databases to provide strong consistency or time-line
consistency when this is the strongest level of consistency available.

4.2 Methodology

The methodology is based on a simplification of a concrete use case: Wikipedia.
The web traffic is approximated by clients asking in parallel to read and up-
dates articles. Moreover, the data set used is based on a Wikipedia dump.
There are at least two advantages of using data coming from Wikipedia.
First each article has a different size, and this is exactly the kind of thing for
which NoSQL databases have been optimized. There is no need to specify
the length of each field to get optimal performance and disk space usage
thanks to their flexible data models. The second advantage is a more practi-
cal one. Wikipedia provides an easy way of downloading a big data set that
can be easily preprocessed for ulterior use.

The general idea of the methodology is to insert articles identified by a
unique ID into the databases, start a given number of requests in parallel that
both randomly read and update articles and measure how long it takes for
this given amount of work to complete. Note that the set of read and update
operations is done ten times and that only the average value is considered
in the following. Therefore, the measurements are not focused on average
response time but on total time needed to complete a number of requests.

4.2.1 Step by step methodology

Figure 4.1 illustrates the step by step methodology used during the tests.
It is based on the following parameters : N the number of nodes, R the
size of a request set and r the percentage of read requests. In practice, the
methodology is defined by the following steps:

3The entry dfs.replication needs to be specified.
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Size = N Measure the standard cluster
Insertion of the whole data set behavior for N, R and r

l

Double the data set size
N = 2N and R = 2R
Double the number of client thread

Bootstrap N new nodes and
measure until stabilization

\

Figure 4.1: Step by step methodology

. Start up with a cluster of N = 6 nodes and insert all the Wikipedia
articles.

. Start the elasticity test by performing request sets that each contain
R = 10000 requests with r = 80% read requests and as many threads
as there are nodes in the cluster when the elasticity test begins. The
time for performing each request set is measured. (Therefore the initial
request sets execute on 6 threads each serving about 1667 (x10000/6)
requests.) This measurement is repeated until the cluster is stable,
i.e., I have to do enough measurements to be representative of the
normal behavior of the cluster under the given load. Then I compute
the median of the delta times for the stable cluster. This gives the
variability for a stable cluster.

. Bootstrap new nodes to double the number of nodes in the cluster and
continue until the cluster is stable again. During this operation, the
time measurements continue. I assume the cluster is stable when the
last 5 request sets have delta times less than the one measured for the
stable cluster.

. Double the data set size by inserting the Wikipedia articles as many
times as needed but with unique IDs for each insert.

. To continue the test for the next transition, jump to step (2) with a
doubled number of requests and a doubled number of threads.

4.2.2 Justification of the methodology

One approach to characterize the variability is to use the standard deviation
of request set times and a statistical test to compare the standard deviations.
However, our experience shows that the standard deviation is too sensitive to
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normal cluster operations like compaction and disk pre-allocations. Figure
4.2 shows that the standard deviation can vary more than a factor of 4 on a
stable cluster made of six 4GB Rackspace instances.

Standard deviations
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Figure 4.2: Observed standard deviations for 10000 requests with 80% reads

This is why I use the delta time? characterization instead. Because it is
based only on the average values, it tends to smooth these transient vari-
ations. The median of all the observed delta times is used instead of the
average to be less sensitive to the magnitude of the fluctuations.

Remark that I still use the standard deviation as part of the characteri-
zation of the elasticity. This characterization captures all the important in-
formation about the elasticity (time needed to stabilize, loss of performance,
and variability) with the two surface areas (A and B) and normalizes it into
a dimensionless number that can be used for comparisons.

Finally, the number of observations needed to have an idea of the normal
behavior of a database cluster cannot be fixed in advance. Experience shows
that, from one system to another, high variability in performance can arise at
different moments. This variability is mainly due to the writes of big files on
the disk, like compactions, disk flushes, and disk pre-allocations, all of which
can happen at very different moments due to the randomness of the requests
and the technical choices made by each database. The variability has a
measurable result that will be discussed in the result section. In practice,
the observations were stopped when the performance and standard deviation
got back to the level observed before the compactions or disk pre-allocations
happened.

4As explained in section 3.2.1, the delta times are the absolute values of the difference
in time needed to complete a request set and the time needed to complete the previous
request set
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4.2.3 Properties of the methodology

All the parameters are updated linearly in respect to the number of nodes
that are bootstrapped in the elasticity test, but all those parameters are not
updated at the same time during the methodology. However, the measure-
ments obey several invariants which are given in italics below.

The size of the request sets is always increased at the same time as the
number of client threads, which implies that on the client side, the number
of requests done by each client thread is independent of cluster size. On the
database nodes, there are two different situations. When the elasticity test
begins and during the entire first phase of the test, as many threads as there
are nodes in the cluster are started, and therefore, the amount of work done
by each node in the cluster is independent of cluster size.

The second phase starts when new nodes are bootstrapped and lasts as
long as the cluster needs time to stabilize. During this time, the amount
of work done by the nodes already present in the cluster should decrease
progressively as newly bootstrapped nodes will start to serve part of the
data set. In a perfect system, all the nodes in the enlarged cluster should
eventually do an amount of work that has decreased linearly regarding to
the number of nodes added in the cluster. It is important to note that the
eventual increase in performance that would appear at this point is not a
measure of the scalability as defined earlier. This is due to the fact that, at
this point, neither the data set nor the number of client threads has been
increased linearly regarding to the number of nodes added. The goal of the
elasticity test is only to measure the impact of adding new nodes to a cluster
that serves a constant load.

Once the elasticity test ends, the size of the data set inserted into the
database is increased linearly according to the number of nodes just added.
As a consequence, during the next round of the elasticity test the amount
of data served by each node has not changed. Therefore, once the number
of threads is increased at the beginning of the next elasticity test, the total
amount of work (number of requests served and data set size) per database
node will not change. Because everything stays constant regardless of the
cluster size, the scalability can be measured as the difference in performance
between each cluster size. A perfectly scalable system would take the same
time to complete the amount of work associated to each cluster size.

4.3 Measurement conditions

4.3.1 Budget and infrastructure

I first explain our decisions regarding budget and infrastructure, since they
affect the whole measurement process. The budget allocated for all the tests
of this Master’s thesis is 800€ (euros). This budget allowed us to perform
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measurements at full load for up to 48 nodes with all three databases. The
primary goal of the measurements was to be as realistic as possible using
this budget, meaning that I had to make a trade-off between the kind of
servers and the maximal number of servers I could afford. Cloud instances
were used instead of dedicated servers because this is the only kind of server
that can be paid on a per hour basis instead of per month. It is also possible
to save server state as images and then shutdown the servers to only pay for
the storage. Those images can be used to get back the servers online or to
create clones using the same customized images. Moreover, cloud providers
often provide APIs that can be used to launch, save and modify multiple
instances using scripts. All of this enabled us to minimize cost while saving
time.

Once the choice of cloud instances had been made, I still needed to se-
lect a cloud provider. We decided to restrict our choices to Amazon’s FC2
and Rackspace’s Cloud Servers as both of them provide a mature and stable
service while offering competitive prices. Due to the minimal recommended
memory requirements of Cassandra® and HBase® in a cloud environment, I
could not consider less than 4GB of memory per node. The cheapest so-
lutions meeting these criteria were the Amazon Large instances providing
a 64-bit platform, 7.5GB of memory, 4 EC2 compute units and 850GB of
local storage, or the Rackspace 4GB instances providing a 64-bit platform,
4GB of memory, 4 CPU cores and 160GB of local storage. An Amazon
Large instance costs $0.34 (US dollars; around 0.229€ at the time of writ-
ing) per hour while a 4GB Rackspace instance costs £0.16 (pounds sterling;
around 0.180€) per hour. The EC2 Large instances provide nearly twice as
much memory as the Rackspace 4GB instances but they also cost more and
a study” shows that computing power as well as 1/O performance are bet-
ter on Rackspace Cloud Servers than on EC2 instances of comparable size.
Moreover, Cassandra recommends® to use Rackspace infrastructure because
it provides more computing power for a comparable instance size. Finally,
as | also preferred to use a bigger number of instances with less memory
than the opposite and regarding all the other advantages, I choose to use the
Rackspace infrastructure.

Using cloud instances instead of dedicated servers has consequences on
performance. First, on Rackspace infrastructure, the physical CPUs are
shared proportionally regarding the size of the instances running on the
server, meaning that a 4GB instance will get, at minimum, twice as much
computing power as a 2GB instance. However, on the Rackspace infrastruc-
ture, instances can get CPU bursts if the physical server they are running
on is idle. That implies that the minimal level of computing power is always

Shttp://wiki.apache.org/cassandra/CassandraHardware

Shttp://wiki.apache.org/hadoop/Hbase/Troubleshooting# A8

"http://www.thebitsource.com/featured-posts/rackspace-cloud-servers-versus-
amazon-ec2-performance-analysis/
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guaranteed but it can also be much bigger in some cases, adding variability
to the measurements. The instances running on the same physical server
are also sharing the same RAID 10 hard drive configuration but there is
no minimal performance guarantee for the hard drives. All the accesses are
scheduled by a fair scheduler®, meaning that the variability in performance
is even greater for I/O accesses. Indeed in the best case, the instance will
be the only one to make I/O at this time, therefore getting the best perfor-
mance. In the worst case, all the instances on the physical server? will try
to access the hard disk at the same time, leading to a fair share access by all
instances regardless of the instance size. Rackspace’s service, as currently
provided, gives no guarantee of having all nodes running on the same host.
Therefore, no rigorous conclusions can be made about the impact of node
scheduling on the measurements.

Finally, the data set per node has been chosen large enough to be sure
that the subset of the data stored on each node could not fit entirely in RAM.
This choice can seem non-optimal as many production databases tend to run
on servers with enough RAM to put the entire database in memory. It is
important to remind the reader that the databases studied here are made to
handle “Bigdata” problems where typically it would cost too much to fit all
the dataset into memory. Therefore, with a focus on “Bigdata”, it is natural
to consider databases that cannot fit into memory. This does not imply that
only the Rackspace I/O performance will be measured as the interesting
thing is the comparison between databases for the same load.

4.3.2 Data set

The data set is made of the first 10 million articles of the English version
of Wikipedia. They can be downloaded as a single archive provided!? by
Wikimedia itself. The dump was downloaded on March 7, 2011 and it takes
28GB of disk space. The dump was preprocessed!! to split the single XML
file into one file per article. This makes it easy to parallelize the insert
operations.

4.3.3 Database versions

We used the latest stable available version at the moment of the beginning
of the tests for each of the databases. The versions used were Cassandra
0.7.2 [9], HBase 0.90.0 [23] and mongoDB 1.8.0 [27].

8This information is not available in the Rackspace documentation but was confirmed
by a live operator.

9Rackspace official policy is to give no information on server specifications, for security
reasons. We will not comment further on this “security through obscurity” approach.

Ohttp://download.wikimedia.org/enwiki/latest /enwiki-latest-pages-articles.xml.bz2

"The script used can be downloaded at: https://github.com /toflames/Wikipedia-
noSQL-Benchmark/blob /master/src/utils /parse.py
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4.3.4 Specific configuration settings

Each database needs some specific configuration settings, especially concern-
ing the memory and the way data is sharded across nodes. This section also
explains how data is structured in each database. Each article is identified
by a unique integer ID, which is incremented for each new data item.

Cassandra

For Cassandra, only one Keyspace with one ColumnFamily was created.
Each article was then stored as a new row whose key is the associated unique
ID. The row contains only one Column that contains itself the article stored
as a sequence of bytes. 2GB of memory is allocated as heap space.

Cassandra shards data across nodes following two parameters, the node’s
Token and the selected Partitioner. The Tokens will determine what the
replicas that each node is responsible for are. The Tokens can always be
strictly ordered, which allows the system to know that each node is respon-
sible for the replicas falling in the range (PreviousToken, NodeToken]. The
node assigned with the first Token is responsible for all the replicas from the
beginning to this Token. Similarly, the node assigned with the last Token is
responsible for all the replicas falling after this Token. Those Tokens can be
assigned automatically in a random way when the cluster bootstrap or they
can be assigned manually.

To make the link between data and the corresponding Token, Cassandra
uses partitioners. Out of the box, there are three partitioners available.
We chose the RandomPartitioner. This implies that the Tokens must be
integers in the range [0,2'27 — 1]. It uses MD5 hashing to compare Keys to
the Tokens and therefore convert them to the range. If this partitioner is
used, the Token selection is very important. Indeed, on average the Keys
will be spread evenly across the Token space but if the chosen Tokens do
not divide the range evenly, the cluster can be unbalanced. To solve this
problem I generated the Tokens with:

Token; =i x 2'*T/N

for¢ =0...N — 1 with N the maximal number of nodes in the cluster. In
our case, with the given budget, I generated tokens for 96 nodes, which was
the most nodes that I projected to use. Once the tokens are generated, the
first 6 nodes had for Token the tokens that divided 96 in 6 equal parts. Then
each time the cluster’s size is doubled, the node tokens are the ones falling
exactly in the middle of the token already used. This way, at each point, the
percentage of data stored on each node is exactly the same.
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HBase

For HBase only one table was created that contains one ColumnFamily and
that stores only one version of each value inserted. Each article is inserted
as a row whose key is the unique ID corresponding to the article, the row
contains only one Column that contains itself the value of the articles stored
as bytes. HBase splits data into regions'? which are automatically and evenly
distributed across the available region servers meaning that the programmer
has nothing special to do to have all the regions distributed evenly. The
memory configuration was the following: 2 GB of memory was allocated to
each set of HBase processes on each node and 1GB of memory was allocated
to each set of Hadoop processes on each node.

It is interesting to mention the architecture used for the HBase cluster
as it is more complicated than a system where all the nodes are equal. One
node was selected as the master for both HBase and HDF'S levels, meaning
that one node was running the HBase’s master, a Zookeeper [60] server as
well as the Hadoop’s namenode. Finally, each node including the master,
also runs an HBase’s region server and an Hadoop’s datanode.

mongoDB

For mongoDB, I used only one database that contains one collection. All the
documents of this collection are identified using the mandatory field “ id”
set to the unique ID of the corresponding article, allowing direct access to the
documents. One more field “value” is added to the document to contain the
article itself stored as text. The memory management was left to mongoDB
as it does not need to be set by hand. This is because mongoDB use memory-
mapped files for all disk I/O, therefore the caching management is left to
the operating system!.

With mongoDB, the data is distributed across the nodes following the
chosen shard key as well as the size of the chunks. The shard key is the field
of the document chosen as the one that will be used to split the range of all
documents into chunks. The values in the chosen field must be unique and
there must be a strict ordering between those values. Then all the chunks
will be automatically distributed evenly across the available shards in the
cluster.

The architecture used for the mongoDB cluster was the following: the
nodes were grouped by three into replica sets, each of them acting as a shard
and each node also runs a mongos process that can receive and route requests
to the corresponding shards. Each of the three first nodes of the cluster also
runs a configuration server. It is important to note that in this configuration,
only a third of the cluster’s nodes will serve both the read and write requests.

12The default region size of 256MB was kept.
Bhttp: //www.mongodb.org/display/DOCS/Caching
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The two thirds left act only as backup if strong consistency is desired.

4.3.5 Benchmark implementation

The benchmark is written in Java and the code source is available as a
GitHub repository under a GPL license!4. The benchmark framework is
used to automate the parts of the methodology that concerns the insertion of
articles as well as applying the load and computing the results. The insertion
of the articles can be easily parallelized using command line parameters to

divide the insertion work in several parts. The load applied is defined by:

e The total number of operations for each request set. These operations
will be executed ten times to compute an average value of the time
needed to complete each operation.

e The percentage of requests that are reads. The others will update the
articles by appending the string “1” at the end of the article.

e The total number of documents already inserted in the database.

e A list of IPs to connect to. As many threads as IPs will be started
and each thread will do a fair share of the total number of operations
provided. Note that each thread does its requests sequentially and will
wait for each request to end before making the next one.

To approximate the behavior of Wikipedia users, the requests are fully ran-
dom. Meaning that for each request done, a uniform distribution'® is used to
generate a integer in the range [1,Total number of documents inserted| and
this integer is then used as the unique ID to query the database for the cor-
responding article. Then, after the article has been received by the client, a
second integer is generated using a uniform distribution on the range [0,100]
to decide if the client thread should update this article or not. If the integer
falls in the range |0, read percentage| the thread will not update the docu-
ment, otherwise it will append the string “1” at the end of the article and
update it in the database. This implies that the number of articles updated
will not be exactly equal to the read percentage but very close on average if
the total number of operations is big enough.

Elasticity measurement and human supervision

The part of the elasticity test that applies the load until the cluster has stabi-
lized is implemented as described by the methodology. It takes as arguments
the maximal value for the delta times, the time that the client should wait

Mhttps://github.com/toflames/Wikipedia-noSQL-Benchmark /
15Ty generate the uniform distribution, the Java class java.util. Random is initialized
without seed, meaning that every thread starting up will ask for a different list of IDs.
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between request set runs, and a maximum number of request set runs. In
practice, the time between runs was set to zero and the benchmark could not
be left alone to decide when the cluster had stabilized. This is due to the fact
that some databases can have very stable performance even if they did not
already stabilized. To handle this problem, human supervision was needed
to ensure that the elasticity test did not end before the real stabilization
of the cluster. This human supervision consisted in using the various tools
provided by the databases to see if there was still some data that needed to
be moved across the cluster.

o7
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Chapter 5

Experimental measures of
MapReduce

MapReduce has become a popular way to give to the user of distributed
databases a convenient way of efficiently and automatically distributing the
computation on large clusters. However the approaches taken by the databases,
as explained in section 2.2, are different and therefore it is interesting to
compare their raw performances as well as the way they scale. This chap-
ter presents the databases, the methodology and the infrastructure used to
realize the measurements of MapReduce performances.

5.1 Databases used

The databases used for the MapReduce measurements are Cassandra, HBase,
mongoDB and Riak because they are the only one of the databases studied
here that provide a MapReduce implementation. It is worth noting that
Cassandra is a particular case compared to the three other databases as
it does not provide a MapReduce implementation out of the box. To use
MapReduce with Cassandra it is mandatory to set up an hybrid cluster with
both Cassandra and Hadoop running on the servers. In fact Cassandra is
only used as a data source and sink while all the computational work is done
by a fully functional Hadoop cluster.

In practice, the Hadoop cluster adds little overhead to the servers al-
ready running Cassandra. To be functional, the Hadoop cluster needs to
store a few volatile information about the MapReduce jobs into HDFS and
therefore at least one server running a namenode and a datanode is needed.
To efficiently run the MapReduce jobs themselves, one of the server must
run a JobTracker' and each server running a Cassandra node should also

YThe JobTracker [20] gets the jobs from the clients, finds the where the corresponding
data is and then divide the job into tasks to be executed by TaskTrackers [21] near the
data.
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run a TaskTracker [21] process to run the computation locally. Therefore,
the only overhead added to most of the servers already running a Cassan-
dra node is a TaskTracker process that will only consume resources when
running a MapReduce job.

5.2 Methodology

The methodology used to measure the MapReduce performances is based
on a computation that can easily be distributed and ensure that all of the
data set must be processed to obtain the final result. The step by step
methodology consists in executing this same computation while increasing
the size of the cluster.

5.2.1 Computational work

MapReduce is used in all databases to generate a reverse index for a given
keyword, that is a list of pairs (ID,n) with ID the unique identifier of
an article and n the number of occurrences of the chosen keyword in the
corresponding article. Note that only the pairs for which n # 0 are kept in
the list.

In practice, this computation is divided into two MapReduce jobs, mean-
ing that the first job output its results into the database and this result is
used as a data source for the second MapReduce job. This is called MapRe-
duce chaining and is mandatory to realize complex computations, this is why
the measures are taking it into account. The MapReduce jobs are defined
by :

e The first Map phase split each article using the spaces as separator and
then it compares each of the strings of this list with the given keyword
in a case insensitive way. If those two string are equal, it output the
pair (string,ID) with ID the corresponding integer of the article.

e The first Reduce phase simply collect those results and store themselves

e The second Map phase emits the pair (ID, 1) for each occurrence of
1D in the previously saved output of the first Reduce phase.

e The second Reduce phase sums up all the 1 for each /D and outputs
pairs (ID, sum,)

5.2.2 Step by step methodology

The goal of those measurements is to measure both the raw performances
and the gain in performances when the computational power is increased.
The whole procedure is given by :
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1. Insert the data set into a cluster of 3 nodes

2. Launch the MapReduce computation X times? and compute the aver-
age time needed to complete the computation

3. Add a new node into the cluster and re-balance the data evenly across
all the nodes

4. Jump in 2. while there are unused servers.

5.3 Measurements conditions

The infrastructure used for the MapReduce measurements was very differ-
ent from the one used for the storage performances measurements because
of budget constraints. This impacts the measurements in several ways ex-
plained in this section.

5.3.1 Infrastructure used

The infrastructure used for the measurements was kindly provided by Eura-
nova [16]. It consists in 8 dual core servers with 8 Gb of RAM each. They
are connected with gigabit links and the hard disks are simple SATA drives.
This configuration is close to real server-class computers except for the hard
disks that are much slower due to the SATA drives?.

5.3.2 Degree of parallelism

Cassandra, HBase and Riak will at least start one Map phase for each set
of replicas. That implies that on average, all the servers in the cluster will
contribute to the MapReduce computations if the data is evenly distributed.
On the other hand, a mongoDB sharded environment that provides replica-
tion is made of replica sets and only one Map phase will be launched on the
master of each replica set*. For a cluster with a replication factor of three,
that means that only a third of all the servers in the cluster will participate
in the MapReduce computations.

Knowing that, I have chosen to ensure that all the servers would be used
for MapReduce computations. It is done in practice by enforcing the fact
that the data is evenly distributed across the nodes and that mongoDB uses
only one node per shard.

2In practice, X has been arbitrarily fixed to 5 because the time needed to complete
the MapReduce computations tends to be very stable

3 Server-class machines are using RAID or SCSI hard disk drives to ensure better 1/O.
In practice, even without the virtualization layer, the Euranova’s servers were much slower
than Rackspace instances regarding to I/O performances.

4This information is not available in the documentation of mongoDB but it appears
clearly during the tests and is implicit regarding to the mongoDB architecture.
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5.3.3 Data set

The data set used consist in 19580 articles coming from Wikipedia, they
sum up to 620Mb on disk. Note that this data set is much smaller than
the one used for the storage measurements but it is important to keep in
mind that the interesting thing to measure here is the time needed for the
computation rather than the I/O performances. Therefore, all the data can
stay in memory and the only point of concern is to ensure that the data is
evenly distributed across all the nodes in the cluster, regardless of its small
size.

5.3.4 Specific configuration

The specific configurations mostly concern the size of biggest data chunks,
to ensure an even distribution, and the memory allocated to the databases.
The specific configurations for each databases are :

e Cassandra : the Cassandra process itself can use up to 3Gb of RAM
and the Hadoop MapReduce processes can use up to 2Gb of RAM.
The distribution of the data is kept even using equally distant tokens
on the ring.

e HBase : the HBase process can use up to 3Gb of RAM and the Hadoop
MapReduce processes can use up 2Gb of RAM. The data chunks are
left to the default 64Mb size for HDFS to ensure that it is possible
to distribute them evenly. The balancing is done using the Hadoop’s
balancer script.

¢ mongoDB : mongoDB manages itself the memory and the data chunks
size has been fixed to 15Mb°. The distribution of the data is ensured
by the cluster wide balancer process, provided that enough time is
granted to let it finish its balancing.

e Riak : Riak manages itself the memory of the database but not the
one allocated to the MapReduce jobs that has been fixed to 256 MbS.
Riak automatically distribute the data evenly across the nodes.

5.3.5 Implementation

The various implementations are done using the MapReduce query language
available for each database. Each of the implementations does the same 4

5Note that this is a much smaller chunk size than for HBase but mongoDB will use a
replication factor of 1 in this configuration, meaning that there will be 3 times less chunks
in the database

SRiak gets the data from the store in small batches, therefore it is not mandatory to
allocate big amounts of memory for the MapReduce jobs. By default, Riak allocates only
8Mb of memory to the MapReduce jobs
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phases in the most similar way :

e The Cassandra and HBase implementations use both Hadoop to ex-
ecute the MapReduce jobs and are therefore very close in terms of
logic and code”. They are written in Java and output the results, both
intermediate and final, directly in the database.

e The mongoDB implementation is done in Javascript® and output the
results, both final and intermediate, as temporary collections into the
database.

e The Riak implementation is also done in Javascript? but does not out-
put the results to Riak as this is currently not supported. Therefore
the MapReduce chaining part has been emulated by the use of Re-
duce functions that have the advantage of taking any list of key/value
pairs as input instead of only existing keys in the database for Map
functions.

"The Cassandra and HBase MapReduce implementations can be seen re-
spectively here https://github.com/toflames/Wikipedia-noSQL-Benchmark/
blob/master/src/cassandra_mapreduce/MapReduceCassandraDB. java and here
https://github.com/toflames/Wikipedia-noSQL-Benchmark/blob/master/src/
hbase_mapreduce/MapReduceHbaseDB. java

8The mongoDB MapReduce implementation can be seen here https://github. com/
toflames/Wikipedia-noSQL-Benchmark/blob/master/src/implementations/mongoDB.
java in the searchDB function

°The Riak MapReduce implementation can be seen here https://github.com/
toflames/Wikipedia-noSQL-Benchmark/blob/master/src/implementations/riakDB.
java in the searchDB function
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Chapter 6

Benchmark results

6.1 Storage benchmark results

The results for the storage benchmark, executed following the methodol-
ogy presented in Chapter 4, are divided into elasticity results using graphs
for visual inspection and tables for numerical characterization. Then, the
scalability and performance results are given as tables.

6.1.1 Elasticity

Figures 6.1 to 6.6 give graphs showing the elastic behavior of all databases
at all transition sizes. These graphs represent the measured average time
in seconds needed to complete a request set versus the total execution time
in minutes. Standard deviations are indicated using symmetric (red) error
bars, but it is clear that this does not imply improved performance during
stabilization (downward swing)! The first part of each graph shows the
normal behavior of the cluster under load. The first arrow indicates when
the new nodes are bootstrapped and the second arrow indicates when all
the nodes report that they have finished their data transfers. The graphs
also show the standard deviations and the two thin (red) lines show the
acceptable margins for the delta time that are computed from the first part
of the graph.

Table 6.1 shows the stabilization times (in minutes), which consists of the
times for all the nodes to finish their data transfers as well as the additional
times needed for the whole cluster to achieve stabilization once all the data
transfers are done. The time needed to finish all the data transfers is mea-
sured using tools provided by the databases to monitor data transfers across
the cluster. The additional time to achieve stabilization is the time when
the cluster reaches a stable level minus the time when the cluster reported
that all the data transfers were done.

Table 6.2 shows the dimensionless elasticity scores according to the def-
inition in Section 3.2.1. In practice, the curves have been approximated
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Table 6.1: Stabilization time (in minutes, lower is better)

Database \ Cluster old and new size \ Data transfer time \ Additional time \ Total time

Cassandra, 6 to 12 nodes 113 28 141
HBase 6 to 12 nodes 3.3 9 12.3
mongoDB 6 to 12 nodes 172 11 183
Riak 6 to 12 nodes 28 0 0

Cassandra 12 to 24 nodes 175 26 201
HBase 12 to 24 nodes 3.2 14 17.2
mongoDB 12 to 24 nodes 330 22 352
Cassandra, 24 to 48 nodes 86 2 88
HBase 24 to 48 nodes 8 37 45

by cubic splines interpolating the given point and those splines have been
integrated using a recursive adaptive Simpson quadrature. The lower the
elasticity score, the better the elasticity.

Table 6.2: Elasticity (lower is better)
Database | Cluster old and new size ‘ Score ‘

Cassandra 6 to 12 nodes 1735.
HBase 6 to 12 nodes 646.
mongoDB 6 to 12 nodes 4626.
Cassandra 12 to 24 nodes 1044.
HBase 12 to 24 nodes 70.
mongoDB 12 to 24 nodes 4009.
Cassandra 24 to 48 nodes 3757.
HBase 24 to 48 nodes 73.

6.1.2 Restricted elasticity results

The restricted elasticity results concern only Riak! as it is the only dis-
tributed data store tested here that do not provide true elasticity following
the definition given in section 3.2.1.

Due to time and budget constraints, the only available results are for
a cluster going from 6 to 12 nodes. Indeed I have chosen to measure in
priority the databases that are truly elastic. The time needed for the cluster
to stabilize is given in Table 6.1. Note that no requests were done during
the stabilization as most of them would result in an error. Therefore Riak
had the advantage of being able to use all the available resources to move

'Look at the section 3.2.2 for the details
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Table 6.3: Scalability (lower is better)
’ Database ‘ Cluster old and new size ‘ Score ‘

Cassandra 6 to 12 nodes -0.06
HBase 6 to 12 nodes 0.05
mongoDB 6 to 12 nodes 0.78
Cassandra 12 to 24 nodes -0.28
HBase 12 to 24 nodes 1.68

the partitions to the new nodes without having to serve requests during
this time. It is also important to note that the only way of knowing if the
partitions transfers are done is to do constant polling of one of the node?.
The chart showing the restricted elasticity of Riak is the Figure 6.9 on which
the flat chunk of curve between 123 and 151 minutes is the time needed for
the stabilization without applying a load.

6.1.3 Scalability

Table 6.3 shows dimensionless scalability scores, according to the following
measure. To characterize the scalability of a database going from N to 2N
nodes, I use the value:

Averagesn — Averagen

Scalabilityy = 1
veragen

where Averagey is the statistical mean of all the average times measured for
the database normal behavior on a cluster of size N. This characterization
allows us to obtain a normalized number that does not penalize databases
whose performance results are slower but only takes into account the propor-
tional loss of performance. A perfectly scalable system would have a score

of 0.

6.1.4 Performance

Table 6.4 shows the performance results for all three databases (in seconds).
The table gives the average of the measured average values for executing
the request sets (80% read and 20% write) for each cluster size, as well as
the standard deviations. Of course, only the values measured before the
bootstrap of the new nodes are taken into account.

2The best way to monitor transfers in the cluster is to use the command riak-admin
transfers
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Table 6.4: Performance (in seconds, lower is better)

’ Database ‘ Cluster size | Number of operations ‘ Ave. of ave. time ‘ St. dev. ‘
Cassandra 6 10000 99.33 23.97
HBase 6 10000 43.30 9.92
mongoDB 6 10000 50.46 7.63
Riak 6 10000 66.86 8.53
Cassandra 12 20000 93.48 26.67
HBase 12 20000 44.30 1.06
mongoDB 12 20000 90.05 17.26
Cassandra 24 40000 67.54 9.67
HBase 24 40000 118.75 20.14

6.2 Analysis of the results

Analysis of the measurement results is made more difficult by the variability
of the cluster performance under load before new nodes are bootstrapped.
Those variabilities are very clear for Cassandra on Figure 6.1 and 6.4, for
HBase on Figure 6.2, for mongoDB on Figure 6.6 and for Riak on Figure
6.9. These big variabilities in performance have different origins but I have
made the assumption that all of them have the same immediate cause: the
writing of at least one big file on the disk. This assumption is based on my
observation of the logs and the fact that big writes are consuming a lot of
I/O while they are always needed by the databases®. Those big writes are
triggered by various events depending on the database:

e Cassandra: big writes are triggered when compactions or disk flushes
occur. By default, a compaction process is started each time 4 SSTables
of the same size are present on disk. An SSTable is written on disk each
time a memtable, which stores all the data written into Cassandra, is
full* and therefore triggers a flush to disk. A load constantly updating
data will, sooner or later, trigger compactions and disk flushes.

e HBase: big writes are also triggered when compactions or disk flushes
occur. The flushes occur when the memtable is full. The algorithm
that triggers compactions is a little bit more complex and will not be
explained in detail here®. A load constantly updating data will, sooner
or later, trigger compactions and disk flushes.

SRemember that my data set has been chosen big enough to be sure that it cannot
entirely fit in memory and that my requests are fully random, meaning that the databases
will always need to access the hard drive for some requests.

“Read http://wiki.apache.org/cassandra/MemtableSSTable to learn the details of Cas-
sandra compactions.

®Read http://www.outerthought.be/blog/465-ot.html for an excellent explanation of
HBase compactions.
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e mongoDB: big writes are only triggered when disk pre-allocations oc-
cur. mongoDB uses the mmap function provided by the operating sys-
tem instead of implementing the caching layer itself, meaning that it is
the OS itself that decides when to flush. By default, the flushes occur
every 60 seconds, but this can be configured. mongoDB pre-allocates
big files (2GB when the database is already filled with several giga-
bytes) when it needs new storage space instead of increasing the size of
existing files. In practice, disk pre-allocation occurs when a lot of data
is written to a given node like during the insertion of the articles or
when a new node bootstraps and starts receiving a lot of chunks. This
implies that mongoDB should not write big files often during stan-
dard operations, but will as soon as new nodes are bootstrapped or big
inserts are done.

e Riak : big writes are only triggered when Riak merges the data on disk.
The flushes of the cache are decided by the operating system like for
mongoDB. The merges are mandatory because data is written using
an append-only approach, meaning that it is necessary to do merge the
content of the files written to disk with the last version of the data to
avoid wasting space. The merging process is similar to the compactions
of Cassandra and HBase and is triggered by several parameters®.

Note that compaction is part of normal database operation that is needed
both when handling client requests and when handling bootstrapped nodes
during elastic growth. So I make no effort to remove the compaction cost
from our measurement of elasticity. It is important to note that the only
requests that will be slowed down by the writing of big files will be the ones
sent to nodes currently writing those big files. Therefore, when the number of
nodes increases, the probability to send requests to a node currently doing a
lot of I/O decreases. Indeed, looking at Figure 6.7 for Cassandra and Figure
6.8 for HBase, I observe the overall performance is more stable for bigger
clusters.

On this infrastructure, the technical choice taken by mongoDB to make
small but frequent disk flushes leads to less variability in performance than
Cassandra. One could wonder what is the cause of the variability observed at
the beginning of the chart on Figure 6.6 for mongoDB as no new nodes were
bootstrapped at this time. The cause of this big variation in performance is
also due to big files being written to disk, triggered by the fact that during
the insertion, some nodes stored more chunks than the other and only started
to distribute them across the cluster during the start of the test. Except for
this exception, mongoDB’s performance is more stable on this infrastructure
than Cassandra.

SRead http://wiki.basho.com/Bitcask-Configuration.html to learn how to config-
ure the behavior of the merges for the default storage backend
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The variability of HBase performance is quite different from Cassandra
even if their technical choices are close. By default the memtable’s size of
Cassandra is 64MB and HBase is 256MB, leading to more frequent flushes
and compactions for Cassandra but on the other hand, the compactions are
also made on smaller files for Cassandra. The effect of compactions is only
visible on Figure 6.2 and not on Figure 6.5 nor on Figure 6.8. This could
be because the number of nodes is bigger and the effect of the compaction
impacted a smaller number of requests.

Finally, there are no results for mongoDB going from 24 to 48 nodes. This
is due to several problems encountered with mongoDB during the insertion
of the articles. Starting with a cluster of size 12, mongod processes started to
crash because of segmentation faults that caused data corruption, even with
the journaling enabled. This problem was temporarily fixed by increasing the
maximum number of files that can be opened by the mongod processes”. But
for 24 nodes, the segmentation faults were back with another problem. Eight
threads were used to insert the articles, each of them making its requests to
a different mongos router process, but all the writes were done on the same
replica set. The elected master of this replica set was moving the chunks
to other replica sets but not as fast as it was creating them, leading to a
disk full on the master and at this point all the inserts stopped instead of
starting to write chunks on other replica sets. Further research and discussion
on the mailing list of mongoDB® have led to the conclusion that all those
problems came from the fact that integers were used as primary keys instead
of hash. Note that this information is nowhere to be found in the official
documentation or in the dedicated book [53]. On the contrary, the existing
documentation advice to use this kind of sharding key because it provide
very efficient sharding. It is therefore important to know that it can lead
to this kind of problems when big sequential writes are done from multiple
clients whose cumulated bandwidth is bigger than the replica set’s master
handling the writes.

6.2.1 Elasticity

As explained is section 3.2.3, the technical choices taken by the databases
have a strong impact on the measured elasticity.

The fact that HBase does not have to move all the data appears very
clearly on the charts. HBase only needs a few minutes to stabilize while
Cassandra and mongoDB take hours. It is very clear that the technical
choices taken by HBase are a big advantage in terms of elasticity for this
methodology. In Figures 6.5 and 6.8, HBase moves new regions to the region
servers quickly, but the new region servers still need to load data. This is

"This information was obtained on IRC channel #mongodb.
8The whole discussion can be seen here : http://groups.google.com/group/
mongodb-user/browse_thread/thread/d6dd7e1520bac183/e9013511b433893c¢
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why the peaks happen after the new nodes are integrated.

For Cassandra, the impact of bootstrapping new nodes can be minimized
by the fact that it is less important than the compaction impact on the
performance for clusters smaller than 24 nodes. But Figure 6.7 clearly shows
that beyond 24 nodes, the impact of the bootstrapping of new nodes is much
more important than the usual variability of the cluster’s normal operations.
It is interesting to note that the performance only becomes better than before
the bootstrap after all the new nodes have been integrated. This is due to
the fact that new Cassandra nodes only start to serve requests when they
have downloaded all the data they should store. It is also worth noting that
the time needed for the cluster to stabilize increased by 54% between the
tests of 6 to 12 nodes and 12 to 24 nodes, while it decreased by an impressive
50% between the tests of 12 to 24 nodes and 24 to 48 nodes. The nonlinear
increase is due to the fact that new nodes know which are the old nodes that
should send them data thanks to the nodes Tokens, leading to simultaneous
data transfers between nodes across the cluster. On the other hand, the 50%
decrease is still to be explained.

With mongoDB, the variability in performance added by the bootstrap
of new nodes is much bigger than the usual variability of the cluster. Unlike
Cassandra, newly bootstrapped mongoDB nodes start serving data as soon
as complete chunks have been transferred. The default size for the chunks
is 200MB, meaning that new nodes start to serve data very quickly. The
problem with this approach is that newly bootstrapped nodes that serve
the few chunks already received will pre-allocate files to make room for the
next chunks received leading to a lot of requests potentially served by nodes
writing big files to disk and therefore degrading the performance. The time
needed for the cluster to stabilize increased by 92% between the tests of 6
to 12 nodes and 12 to 24 nodes. This almost linear increase is due to the
fact that there is only one process cluster wide, the balancer, that moves the
chunks one by one.

The elasticity scores give an accurate idea of the elasticity performance
of the databases. For Cassandra, the scores vary 70% between the first
and the second test, reflecting the smaller peaks in the second test. The
score for the third test is much bigger, reflecting the huge temporary loss
in performance induced by the bootstrapping of the new nodes. mongoDB
shows little improvement from the first to the second test, despite the nearly
linear increase of time needed to stabilize, which is due to the fact that
the higher peak is more than three times the average level for the first test
while it is only two times more than the average level for the second test.
For HBase, the decreasing score is due to relatively smaller peaks as the
cluster grows and the last one can also be explained by the fact that the
performance is less, so the elasticity is relatively better with respect to this
worse performance. Globally, the elasticity score also shows the advantage
of HBase for clusters of all sizes.
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6.2.2 Scalability

The scalability performance given in Table 6.3 as well as the performance
results shown in Table 6.4 show that, for cluster sizes 6 and 12, both Cassan-
dra and HBase manage to keep nearly constant performance after the linear
increase of all the parameters, with Cassandra even increasing performance
a little. On the other hand, mongoDB suffers a 78% decrease in perfor-
mance after the linear increase of all the parameters and therefore shows
poor scalability.

For clusters of size 24, the results are surprising. Cassandra shows a
super-linear speedup while HBase performance is down. The Cassandra
super-linear speedup could partially be due to measurement uncertainty but
most of it is still to be explained. It is almost as if Cassandra uses better
algorithms for large cluster sizes. The HBase performance loss is due to
the fact that most requests are served by a single region server as shown in
Figure 6.10. In this figure, client3 is just one of 24 region servers and yet it
serves most of the requests itself (1417 out of 1906).

The fact that a single region server serves almost all HBase requests
during the tests was very surprising because each time a thread is started,
it will generate a new sequence of IDs. Note that the part of the framework
that handles the generation of random IDs is independent of the database
implementations and that the other databases do not show this behavior
under load. The Cassandra scalability performance clearly shows that it
distributes requests among its nodes. Further research lead to a possible
answer to this problem. This huge amount of request always sent to the
same region server could be linked to the time the clients are running before
being killed. Indeed, as explained in section 2.3.2, the clients need to do
a three level lookup to get the localization of the data they want and then
they store the answer into their cache. The two first levels will only be
used once in the lifetime of the client, but the last level will be accessed as
many time as it asks for data belonging to a region that has not already been
located. Therefore, as the number of regions increase linearly with the size of
the cluster while the number of random requests done by each client during
its whole lifetime is constant, the clients have more chance to make lookup
for a bigger number of regions. During the measurements, the clients were
restarted after each set of requests, meaning that they always did exactly
1667 requests when the total number of regions was increasing.

6.2.3 Performance

For cluster sizes 6 and 12, HBase manages to be the fastest competitor
with a very stable performance most of the time. mongoDB shows good
performance, very close to HBase, at the first cluster size but is nearly at
the same level as Cassandra for the second cluster size. For cluster size 24,
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Figure 6.10: Screenshot of the HBase master web interface under load

Cassandra takes the lead thanks to a surprising super-linear speedup and
HBase comes second only due to a bad partitioning of the requests among
the nodes.

6.3 MapReduce benchmark results

The results of the MapReduce measurements are provided as a chart for the
Raw performances and as a table for the scalability.

6.3.1 Raw performances

The raw performances of the four databases, that are the average time on 5
executions needed to complete the build of the inverse search index following
the methodology presented in section 5 are shown on Figure 6.11.

Before starting the analysis of the results, it is important to note that
the systems that rely on Hadoop to run the MapReduce computations can
be heavily customized and optimized for a given workload. In this set of
measures, the configuration was mostly left to default except for the mem-
ory configuration part. Therefore, there may be room left to improve the
performances of Cassandra and HBase concerning this specific workload. It
is also important to note that the data set used is small compared to the
original idea behind MapReduce and that this will impact the results de-
pending on the kind of implementation of MapReduce. The systems based
on Hadoop are designed as batch computation tools and therefore do not try
to optimize much the time needed to set up a job and actually start it. Each
TaskTracker download the MapReduce code as a Jar from the JobTracker,
or multiple Jar if there are dependencies for the MapReduce job. In practice,
it is recommended [19] to have Map phases that last at least one minute to
avoid losing too much time with the set up compared to the real computa-
tion. In this case the data set is very small and therefore, the systems with
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a real-time approach of MapReduce should be advantaged compared to the
ones based on Hadoop.

Build of the inversed index with MapReduce
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Figure 6.11: MapReduce Raw performances

The analysis of the raw performances reveals a great disparity with more
than a factor two between the slowest and fastest databases for the smallest
cluster size but closest results for cluster of 8 nodes. The slowest system is
mongoDB and these poor performances can be explained by the fact that
the current mongoDB MapReduce implementation is only single threaded
while the three other are taking full advantage of the dual core servers.
It is interesting to notice that even in a configuration where the real-time
oriented MapReduce implementations should be at their best, the fastest
despite its high set up times is still the hybrid Cassandra/Hadoop. However,
the advantage of Cassandra in terms of raw performances is decreasing very
fast compared to the others as the time needed to complete a Map phase
on each server is decreasing. It is worth noticing the performances of Riak
whose results are very close to Cassandra’s results starting at 5 nodes.

6.3.2 Scalability

To characterize the observed scalability of the MapReduce implementation
for this infrastructure, configuration and data set, I have chosen to compute
the global increase in performance between the smallest and the biggest
cluster size. Going from 2 to 8 nodes is a 300% increase in computational
power and this value can be seen as the upper theoretical bound of the
increase in performance. The observed increases in performance going from
3 to 8 nodes are shown in Table 6.5.
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Table 6.5: Observed increase in performance for MapReduce going from 3
to 8 nodes

Database | Total increase percentage

Cassandra 129
HBase 220
mongoDB 211
Riak 189

Those numbers are not enough to learn all the available information
from those measurements, the shape of the curve is also very important
and highlight the impact of the batch processing oriented MapReduce im-
plementation. This impact is visible on both Cassandra and HBase curves.
For Cassandra the nearly constant performance is due to the fact that the
increase in computing power is counter balanced by the higher number of
nodes that need to set up the MapReduce jobs. For HBase, there is first a
big increase in performances with the addition of the fourth and the fifth
nodes, highlighting the fact that it was still advantageous to add new nodes
for this data set while the cluster was smaller than 5. Then the curve is
almost parallel to the Cassandra one, showing the same counter effect of the
set up time. The difference between Cassandra and HBase for the cluster
size smaller than 6 can be explained by the fact that they split the data into
chunks of different sizes, each of these chunk being processed by a new Map
invocation.

On the other hand, the real-time oriented implementations of MapRe-
duce, namely Riak and mongoDB, have a much more constant increase in
performance when new nodes are added to the cluster. This behavior was
expected as these implementations try to minimize the time needed for any
kind of set up before starting the computation and therefore should not be
impacted by the fact that the data set per node is decreasing. It is worth not-
ing the very good performance of mongoDB in terms of scalability compared
to Riak whose curve is much more flat.

78



Chapter 7

Use cases and
recommendations

The theoretical study, the practical considerations and the measurements
conducted for this study lead me to a better understanding of the impli-
cations of the choices and approaches taken by the databases. Using this
knowledge, I define a few use cases, that are specific kind of problems and
the best associated technical choices. I also list a few recommendations to
get the most of the databases.

7.1 Use cases

The use cases are defined following the kind and the amount of data to store
as well as the kind of load and its outlooks. Those information are summa-
rized into concrete applications and associated audiences. Note that only
the databases considered as stable have been taken into account, therefore
Scalaris is not considered here.

7.1.1 Website with medium to high traffic

Currently, the best noSQL tool to run a website that does not need to store
real “Bigdata” would be mongoDB. Indeed, as it has been shown in the
results, it can be problematic to use large clusters with mongoDB and the
scalability of the storage performance is not the best one.

In practice, a lot of highly frequented website! do not need to store vast
amounts of data and in this case, mongoDB has several advantages. First,
its document oriented data model can ease the design of the database by
having the possibility to store every web page as a single document even if
each page has its own specifications. Meaning that every content appearing

'With the notable exception of social networks that, most of the time, needs to store
a lot of content uploaded by its users.
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on a web page can be stored into the same document. That avoids using
JOIN operations over multiple tables and that ensures optimal performances.
Indeed, only one random seek on the hard disk would be mandatory to fetch
the whole page. Second, it can provide directly the performances of a caching
layer, without having to use another software or to do complex tuning, thanks
to the fact that mongoDB is directly using the caching layer of the operating
system.

Note that the two previous arguments are also valid for Riak and Volde-
mort if the application building the web pages structures itself the content
stored inside those databases. But it is important to retain that this work
can be non trivial and directly leads to the next big advantage of mongoDB
for this kind of application: its powerful query language. With mongoDB,
developers used to the SQL language will find that most of the computa-
tion can still be done into the database itself instead of having to compute
everything by hand on the client side like with key/value stores.

Finally it is important to mention that mongoDB is one of the database
that is the most easy to configure and to use. There is not much tuning
that can be done to achieve the best performance and even if that could
looks like a drawback to some system administrators. This is a huge time
saver and that simplify the management of the database. If the database
gets slow, use more powerful hardware or add more nodes and mongoDB
will take advantage of it on its own. The APIs bindings are available in a
wide variety of languages and the concepts easy to learn for anyone with a
little experience with databases.

7.1.2 Cloud file storage

Nowadays more and more services® provide end users with the possibility to
store a subset of their personal files on distant servers. The biggest advan-
tages are the availability of the files from almost any device connected to the
internet and the assurance that those files will never be lost.

Any database that could be used to solve this storage problem must meet
the following criteria:

1. A really scalable storage able to store “Bigdata” growing almost con-
tinuously

2. The possibility to store big binary files
3. Good latency but not necessarily excellent

4. A convenient way of structuring users’ data as well as segmenting the
whole data set into users data set

5. The certainty that the users’ data will never be lost

2The most well known are Dropbox, Box.net or Ubuntu One
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The point 4 dismisses immediately the key/value stores as they cannot pro-
vide enough structure. The results of the measurements have shown that
mongoDB?3 do not provide a good scalability and therefore do not meet the
first criteria.

It is not recommended? to use HBase as a storage for big binary blobs
but this is exactly the kind of work HDF'S has been designed for. It is also
possible to use Cassandra to solve this problem, but it would require a little
bit more work on the client side. Indeed it is not recommended® to store
files bigger than 64Mb into a single column but there are no limitations to
the number of column a row can count, therefore it would suffice to split
the big files into 64 chunks and store each of them in a separate column
inside the same row. Note that it is possible to use Cassandra for this kind
of application because the level of concurrency will always be small. The
advantage with the Cassandra solution over the HDFS one is the fact that
the cluster is fully distributed with no single point of failure but in practice
both would be usable. It is also interesting to note that there is new work
in progress on HDFS to avoid having this single point of failure®.

7.1.3 'Traffic analytic store

A traffic analytic store is an example of database that needs to handle a write
heavy load. It is used to implement features like counting the number of visit
on a profile for a social network or monitor the traffic on a lot of websites
from a single application. If the social network counts a lot of members or if
the tool for monitoring traffic is very popular among websites, the load will
require a distributed architecture that can scale writes and is also always
available for writes.

The constant write availability dismisses HBase that has chosen to sac-
rifice availability for strong consistency. Given the scalability problems en-
countered with mongoDB, it would not be the best choice either. The re-
maining choices are Cassandra, Riak and Voldemort that can be used to
implement a solution for those write heavy problems. Note that those three
databases would require different levels of complexity on the client side. In-
deed, Cassandra can structure the data internally while the two others cannot
achieve the same data model complexity without additional implementation

3Note that mongoDB also provide a distributed file system implementation called
GridFS that do not have been measured here, see http://www.mongodb.org/display/
DOCS/GridFS+Specification for the details

4There are a lot feedback about bad scalability of users
who tried this, see http://blog.rapleaf.com/dev/2008/03/11/
matching-impedance-when-to-use-hbase/, http://reavely.blogspot.com/2011/

05/hbase-scalability-for-binary-data-i.html and http://www.quora.com/
Apache-Hadoop/Is-HBase-appropriate-for-indexed-blob-storage-in-HDFS

®See http://wiki.apache.org/cassandra/FAQ#large_file_and_blob_storage

See http://www.slideshare.net/huguk/hdfs-federation-hadoop-summit2011
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on the client side. Another advantage of Cassandra for this specific problem
is the integration with Hadoop that provides a MapReduce implementation.
Indeed, the Hadoop MapReduce implementation has exactly been designed
for this kind of use case, where a lot of data distributed on a lot of nodes
must be processed for analytic computations like summary of users’ traffic
for example.

7.2 Recommendations

The recommendations are focused on getting the best performance and are
based on my observations during the measurements as well as my under-
standing of the in-depth behaviors of the databases.

7.2.1 Infrastructure

One of the main conclusion that can be drawn from the results of the mea-
surements is that the I/O are a crucial parameter in the performances of the
databases. The first recommendation would therefore be to maximize this
parameter or to minimize its impact by choosing hardware corresponding to
the data set.

Concretely, the first thing to do is to try to maximize the part of the
data set that can fit into memory. The best case is when everything can
fit into memory because even big writes on the disks would not affect much
the performances of the clients that would anyway do all their reads and
writes into memory. Of course this is not always possible due to budget
constraint regarding to the size of some data sets but in those cases too,
the more memory the better.Finally, when the data set is too big to fit into
memory, it is still possible to maximize the I/O by using server-class hard
drives based on RAID technology for example.

Another good practice is to use different disks for storage and logs because
most the databases are using write-ahead logging and therefore, even if all
the operations are done into memory, the logs still needs to be written to
disk first. As the logs are independent of the data storage, it is easy to split
the I/O requirements of the storage and the logs on two disks.

7.2.2 Detect and avoid hot-spots

Hot-spots arises when a set of consecutive values, regarding to the distri-
bution mechanism implemented by the database, are much more popular
than others. The fact that a subset of the data is more popular happens
all the time, for example new content generate often more traffic than old
one. The best way to avoid having an important subset of the popular data
placed consecutively would be to send each new entry on a different server
on the cluster. But in practice, as explained in section 2.1, there are two
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big approaches to distribute the data that ensure an efficient way of locating
them.

With the consistent hashing method the data will be, on average, dis-
tributed evenly over the available nodes. This is close to the optimal solution
but it is still statistically possible to have an important subset of the popular
data on the same node. The alternative to consistent hashing is to shard
data using ranges on keys. In this case, the distribution will be function of
the chosen keys. The data will be divided in chunks with an associated range
containing all the keys that are consecutive following the total ordering on
those keys. That implies that the keys used for sharding must be chosen
wisely. For example choosing the current date as the shard key will ensure
that all the newest content is in the same chunk and therefore most of the
load will be applied on a single server.

Even with a good shard key or with consistent hashing it is important to
monitor the servers to see if some of them are not overloaded with requests.
If some servers are overloaded, there are different solutions depending on the
database. The first and the most popular one is to simply add new nodes
that will take responsibility for a fair share of the total data set. The problem
with this solution is that it will only remove a small part of the load on the
overloaded nodes and therefore it may be necessary to add a lot of nodes.
This is what will happen with HBase, mongoDB and Riak.

On the other hand, Cassandra and Voldemort propose a non-symmetric
approach, meaning that it is possible to choose which are the nodes whose
load should be reduced. With Cassandra this is done by choosing the position
on the ring of the new nodes to make them responsible for part of the data
that is generating the most load. With Voldemort it is possible to choose [18§]
which are the partitions to move to which node.
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Chapter 8

Conclusions

The measurements of the storage elasticity are enlightening of the true elas-
ticity for the selected databases. The theoretical analysis of the expected
elasticity has been proved correct regarding to the advantage of the systems
that don’t need to move all the data like HBase. For the systems that need
to move the data, the impact on the time needed to finish all the transfers
has also been observed. As expected this impact grows bigger with the size of
the cluster, but the big decrease of the time needed by Cassandra to stabilize
going from 24 to 48 nodes has still to be explained.

On the other hand, the measurements have also highlighted a few un-
foreseen consequences of the technical choices. The fact that new mongoDB
nodes start faster to serve requests seemed like an advantage because it
would spread the load faster on a bigger number of nodes. But in practice,
the fact that those new nodes start serving requests as soon as they have
downloaded a complete chunk, implies that they will also be serving requests
while they pre-allocate big files on the disk to make room for the next chunks
to come. The pre-allocations will consume a lot of I/O and therefore degrade
the performances of the node.

That leads to another important conclusion of this work. If the data set
is too big to fit entirely into memory, the I/O are very important and events
like compactions, merging and pre-allocations can have a strong impact on
performance, even bigger than the impact of new nodes addition for small
clusters. Therefore, it is really important to choose the right infrastructure
regarding to the data set to handle.

The goal of those measurements is to observe in practice what is the
real elasticity and scalability of those databases because it is very likely to
observe unforeseen behaviors compared to the polished version given by the
databases themselves. In practice the measurements have shown surprising
behaviors for Cassandra, with an observed super linear scalability gain be-
tween 12 and 24 nodes and a big decrease in time needed to stabilize for the
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24 to 48 nodes test. Despite my researches!, those behaviors have still to be
explained. The measurements have also highlighted the importance of the
clients’ lifetime for HBase. The apparent bad distribution of the requests
could be explained by this hypothesis but it would require more research to
be certain. Concerning mongoDB, the surprises come from the bad scalabil-
ity and the stability problems. The bad scalability is surprising because the
requests were correctly distributed among the shards that were serving a fair
share of the data set. Again, more research would be necessary to discover
what the cause of this loss of performance is. The overloading of a single
shard at insert time was even more surprising because there are absolutely
no indication in the documentation that choosing an integer as sharding key
could result in this kind of behavior.

Finally, as the classification proposal has shown, the noSQL databases
selected for this study have made very different technical choices. Therefore
it would be simplistic to say that one of the database is the best in every
situation. Those databases rather tend to be solutions to different and very
specific problems. Choosing one of them for a given problem implies to
understand well what would be the requirements in terms of consistency,
queries, data model and data distribution.

T have searched in the Cassandra documentation to see if they are using other algo-
rithms when the cluster reach a given size. I also have contacted the Cassandra community
via the mailing list but I'm still waiting for answers.
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Chapter 9

Future work

This Master’s thesis has only been scratching the surface of what is possible
to learn about the real elasticity and scalability of distributed databases.
There are still numerous unexplained behaviors that would require a lot
more time and budget to be fully understood. It is also important to note
that the practical orientation of this work has only been focused on scaling
up elasticity and scalability. In real applications it is also very important to
know what the consequences of an eventual scale down of the infrastructure
are. Indeed, more and more organizations are using cloud instances instead
of real servers because of the cost, the short availability of new instances
and the fact that those instances are paid on a per hour basis. Therefore, it
would be very interesting to be able to scale up and down the infrastructure
to follow the real load applied by the users. But this optimal scenario is only
feasible if the scaling up and scaling down properties of the selected software
components are known.

It would also be interesting to extend the current work in two directions.
First, increasing the number of nodes to try to reach new and currently hid-
den bottlenecks and second extend those measurements to other databases
coming from both the noSQL world and the RDBMS world. The compari-
son with the old solutions that are the RDBMS like MySQL cluster could be
very interesting as this solution is currently used by some big players! with
strong requirements both in term of performances and storage capacity.

Finally, the infrastructure used for the measurements has big advantages
in terms of price and availability but it is a shared infrastructure, meaning
that there are additional sources of variability. It would be interesting to
observe the eventual impact on performance of the activity of other users
regarding to the time of the day and the period of the year.

'Both Twitter and Facebook are still using MySQL cluster as central parts of their
infrastructure
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Appendix A

Appendix

A.1 Time-line consistency and out of order read

The example shown on Figure A.1 comes from the chapter on Shared Reg-
isters from the book [59].
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Figure A.1: Example of out of order read with quorum mechanism coming

from [59]

In this example, there are three replicas, namely P1, P2 and P3 storing
only one key. First, the node P3 writes the value 5 on a majority of nodes,
in this case the nodes that write the value are P1 and P2. Then the same
node updates the value to 6, but during the update, P2 reads the value from
a majority of node, that is P3 and P1. As the value coming from P3 is newer
than the one coming from P1, P2 reads the value 6. Then P1 reads the value
from a majority of nodes, that is himself and P2. At this moment, neither
P1 nor P2 has been contacted to update the value to 6 and therefore P1

reads the value 5.
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