
A Model-Based Approach for Distributed User Interfaces
Jérémie Melchior

1
, Jean Vanderdonckt

1
, and Peter Van Roy

2

Université catholique de Louvain
1
Louvain School of Management, Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

2
Computer Science Department, Place Sainte-Barbe, 2 – B-1348 Louvain-la-Neuve, Belgium

+32 10 47 {8379, 8525, 8374} - {jeremie.melchior, jean.vanderdonckt, peter.vanroy}@uclouvain.be

ABSTRACT

This paper describes a model-based approach for designing

distributed user interfaces (DUIs), i.e. graphical user

interfaces that are distributed along one or many of the

following dimensions: end user, display device, computing

platform, and physical environment. The three pillars of

this model-based approach are: (i) a Concrete User

Interface model for DUIs incorporating the distribution

dimensions and able to express in a XML-compliant format

any DUI element until the granularity of an individual DUI

element is reached, (ii) a specification language for DUI

distribution primitives that have been defined in a user

interface toolkit, and (iii), a step-wise method for modeling

a DUI based on the concepts of distribution graph

expressing a distribution scenario that can be played

namely based on the distribution primitives. A distribution

graph consists of a state-transition diagram whose states

represent significant distribution states of a DUI and whose

transitions are labeled by an even-condition-action

representation. The actions involved in this format may call

any distribution primitive of the DUI toolkit. In order to

exemplify this model-based approach, two simple DUIs are

first designed: a DUI for the Pictionary game and a DUI for

the Minesweeper game. They are then incorporated into a

larger DUI game of the goose where cells may trigger the

two other games.

Authors Keywords

Distribution graph, primitives, and scenario, Distributed

User Interface, Meta-user interface, Shared displays,

Ubiquitous computing, User Interface Toolkit.

General Terms

Design, Experimentation, Human Factors, Verification.

ACM Classification Keywords

C.2.4 [Computer-Communication Networks]:

Distributed systems – Distributed applications. D2.2

[Software Engineering]: Design Tools and Techniques –

Modules and interfaces; user interfaces. D2.m [Software

Engineering]: Miscellaneous – Rapid Prototyping;

reusable software. H5.2 [Information interfaces and

presentation]: User Interfaces

– graphical user interfaces,

user interface management system (UIMS).

INTRODUCTION

On the side of the demand, end users are more frequently

involved in a context of use where domain objects are

widespread, where roles and groups are configured in

dynamic fashions, thus increasing the need for User

Interfaces (UIs) that support them in these multiple

configurations. On the side of the offer, the market has

disseminated a large amount of computing platforms

ranging from smartphones to wall screen displays, thus

offering a wide spectrum of interaction surfaces to interact

with. End users are however puzzled by what type of

platform they should choose for a particular task, especially

when several tasks are distributed in time and space. For

instance, when an end user delegates a task to a colleague,

parts or whole of this task UI should be transferred as well

to the colleague. Even at run-time, an end user may want to

ask for advice for a remote colleague, thus requesting to

access to the currently running UI.

All these examples strive for a global approach for

designing a Distributed User Interface (DUI), which is

hereby defined as any application UI whose components

can be distributed across varying displays of varying

platforms that are used by varying users, whether they are

working at the same place (co-located) or not (remote

collaboration). DUIs have been successfully used in various

domains of human activity (e.g., ambient intelligence [],

clinical systems) and in computer science (e.g., migratory

systems [], service-oriented architecture [], ubiquitous

computing []). DUIs are fundamental and important

because several applications require the integration of

distributed interaction devices as functional wholes. There

are two main categories in which they can be important.

The user needs for DUI and addition to the limited UI

development. Many work situations need collaboration

between users, they share their computing tasks and so

phithey should be able to share their UIs [?]. Current

toolkits such as Java Swing, Microsoft Foundation Classes

do not support DUI or any kind of distribution [?].

The remainder of this paper is structured as follows: the

next section reports on some related work. Then, a

specification language for UI distribution primitives is

motivated, defined, and exemplified, based on a model of a

Concrete UI. Then, a step-wise method for modeling a DUI

based on a distribution scenario represented as a

distribution graph involving the abode primitives is

presented. A progressive case study will then exemplify

how this method can be applied on games that are

intrinsically challenging and distributed by nature, first

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

EICS 2011, June 13–16, 2011, Pisa, Italy.

Copyright © 2011 ACM 978-1-60558-246-7/08/04…$5.00

individually, then composed. Finally, a conclusion delivers

the main points of this research and presents some future

avenues.

RELATED WORK
How to support DUIs?

Berglund have set requirements that DUI have to meet:

dynamic construction and distribution, make the best

possible use of the available resources, provide graceful

degradation of interaction, negotiate the interaction

resources needs to be handled dynamically and transparent

configuration and distribution of the UI. Tools supporting

Distributed User Interface has to be developed [4-

berglund]. The UI distribution granularity of existing

toolkits and frameworks is always at high level. For

example, in IMPROMPTU framework [6-bhiel], windows

can be distributed across several devices. There are several

possibilities for the granularity. The distribution can be at

applications, windows, widgets and pixels levels. Almost

every toolkit supporting distribution supports applications

and/or windows levels. Some problems exist for the high-

level granularity distributions. It raises security an d

privacy problems. When allowing the distribution of a

window or application, it allows all users to control or

observe all shared windows. But sometimes, users would

prefer to avoid users being able to get some windows or

applications.

Compared to distribution programming which only focuses

on the distribution of the core functionalities of an

application, DUI’s support is only at the beginning. To be

able to develop application with fully controllable

application, more research has to be done.

DUIs should be integrated in domains such as workflows,

collaborative tools and for user that would like ubiquitous

computing across several devices.

Consequently, DUIs allow for the UI to be spread out over

a set of displays/devices/platforms taking advantage of

their unique properties instead of residing on a single

display/device/platform with the interaction capabilities

that are constrained on this display/device/platform [??].

DUIs have been subject to several studies that investigate

further their specific characteristics that may lead to design

implications. This includes the use of multiple monitors on

the same computing platform by a single user, the use of

multiple platforms by a single user with synchronization

between, exchange of information between platforms

belonging to different users (e.g., by the Pick & Drop

interaction technique), moving information between

displays on a single platforms, partition of tasks across

displays for a single user, sharing common information on

a common display while keeping some information private

on a own platform. Beale and Edmondson conducted user

surveys in order to determine the user behavior induced by

using a DUI: they identified the importance of having

multiple carets and the complexity of multi-tasking and

they suggest design implications for using DUIs in order to

support distributed tasks. In particular, they stressed the

importance of a multi-tasking model that is partially built at

the local level of a single user and at the global level across

users when collaboration exists. The global scenario should

be also dissolved into local scenario in order to preserve the

consistency between common tasks and individual tasks.

This observation is fundamental for the work conducted

here. Tan & Czewinsky found that physical discontinuities

had no effect on performance, but found a detrimental

effect from separating information within the visual field,

when also separated by depth. Due to the multiplicity of

interaction techniques in DUIs, Nacenta et al. conducted a

study to compare the efficiency of six techniques for

moving objects from a platform to another in four different

distance ranges and with three movement directions. Their

study suggests that spatial manipulation of data was faster

than pressure-based techniques.

On the one hand, more user studies are available on

specific DUI setups that provide us with more knowledge

on design implications for such DUIs. Yet, in order to

allow for the user to get the best potential of interaction

capabilities offered by the various

devices/displays/platforms for the current task to be carried

out, we should enable designers as well as developers to

provide users with the best DUI possible for a given set of

devices/displays/platforms by described them in a formal

way. This will allow both designers and developers to

enable the underlying system to decide where different DUI

portions should be placed in locations that are significant

and usable for a distributed task to take place. For instance,

the game of Pictionary is a typical example of a distributed

task; one player selects a word from a dictionary, a second

player draws this word on a surface shared by other players

who have to guess what this word is as quick as possible,

but below a certain time threshold. The team to which the

winning player belongs to receives points.

Sjölund et al. implemented a DUI consisting of a remote

control GUI on a smartphone that controls Windows Media

Player displayed on a TV. Some controls of the Windows

Media Player (e.g., play, stop, volume up, volume down)

are moved to the smartphone and adapted to this platform

at the same time. The

In Mightweight

As define in [4-berglund], such DUI components are

treated as network-entities of self-configuring peer groups

that negotiate UI responsibilities.

Usability of DUIs. Grudin [18-grudin] enlights usability

issues with Multi-Display such as lack of support and

mobile device not used to display.

Shortcomings of related work. In most of the aforementioned

case studies, the distribution of UI elements is predefined

and opportunistic. For example, in Sjölund, there is no

other way to change the repartition of UI elements across

the smartphone and the TV. In addition, it is not replicable.

If another platform comes in, it is impossible to replicate or

migrate on this platform the part that has already been

transferred to the first smartphone. In Lightweight, this is

also the case, but it is more flexible in the distribution of

services: once a service is selected, it can be distributed to

any platform, existing or arriving, but a service can be

distributed only once. On the one hand, this does not create

any conflict, but on the other hand, it does not support

replication.

Lack of design/development support

Limited granularity

No high level approach

Examples of applications able to distribute UI components

without enough control. The key control is to strive for end

user control of the distribution.

UI, DUI, MetaUI, context

CONTRIBUTIONS

The first contribution introduced is the distribution graph. It

models some aspects of the distribution. Each node can be

either any kind of device or components able to interact

with the system or allowing the system to interact with.

Computers, displays, keyboards and mice are some

examples of possible nodes. They will be described by a

platform model to know the main features of the device.

Figure 1: Four examples of devices

Or they can be applications. Distributed applications will

be a graph with nodes being a part of the application

running on a device.

Figure 2: Two examples of application

Or nodes can also be UI elements such as elementary

widgets or complex widgets.

Figure 3: Three examples of graphical widgets

In order to have a clear view of the distribution, the

distribution graph will be separated in a two-layer structure.

The first, the global distribution graph, is the high-level

view on the distribution space. The second layer is the local

distribution graph.

For example, a global distribution graph of a common

scenario is represented in the Figure 4. In this schema, we

see a user having a Smartphone, a laptop and a display

(either if it is connected to the phone or the laptop).

In the Figure, two nodes are full circle that represents the

fact that no application and widget is in the node. The

dashed circle around the laptop means that the laptop

supports some applications and some widgets.

The second contribution is the platform meta-model. It

allows developer to describe the different features of the

devices through platform models. It is based on Delivery

Context Ontology [10]. The platform model for this

example is represented in Figure 5.

Devices/

Feature

Mobile

Phone

Laptop Monitor

Battery YES : 100% YES : 100% NO

Bluetooth YES : OFF YES : OFF NO

Camera YES : 5MP YES : 1MP NO

Cellular YES :

HSDPA

NO NO

CPU YES : 1Ghz YES : 2Ghz NO

Display YES :

WVGA

YES :

SXGA+

YES : HD

1080

Keyboard YES YES NO

Memory

Card

YES : 6Go NO NO

Microphone YES YES NO

Speaker YES YES NO

WiFi YES : OFF YES : ON NO

Memory 512 MB 2 GB NO

Figure 5: Platform model for the three devices of the example

in Figure 4

To see more information about what is currently used by

the laptop, we can see the local distribution graph of the

laptop as in Figure 6.

Figure 4: Example of global distribution graph

A meta-UI is dedicated to control the distribution of some

user interfaces components. An application needs at least

one meta-UI. It allows the distribution of graphic

components, widgets and container, from a platform to

another. A model is introduced in order to represent the

distribution mechanisms.

The model-based approach for designing DUI supports the

distribution at several granularity levels. It starts at the

widget level but also supports application and windows

levels by distributing containers. The contribution here is

the ability to merge UI from different applications, the

ability to share parts of windows avoiding privacy

problems and giving more control of the distribution to the

users.

A third contribution is a distribution language to allow the

distribution to be controlled by distribution statements. The

language is very basic. A statement is defined as in Figure

7.

statement = operation , white_space , source , white_space , ”TO” ,
white_space , target ;

Figure 7: Definition of a statement in the distribution

language

The definitions of an operation, a source, a target, a selector

and some other ones are in Figure 8. The definitions could

be extended later to support more operations or features.

operation = "DISPLAY" | "COPY" | "MOVE" | "REPLACE" |
"UNDISPLAY" | "MERGE" | "SWITCH" | "SEPARATE" ;

source = selector ;

target = displays | selector , white_space , “ON” , white_space ,
displays ;

displays = display_platform , { “,” , display_platform}

display_plartform = display , [white_space , “OF” , white_space ,
paltform] ;

selector = identifier , { “,” , identifier } | universal ;

display = identifier ;

platform = identifier ;

Figure 8: Definition of main terms

The fourth contribution comes from these definitions; we

allow developers and users to distribute their UI through

distribution statements. For this, we first have to define the

concept of selector.

A selector consists of a definition of the types of Common

Information Model (CIM) elements to which the template

applies, and a series of property declarations that define the

template. Three major types of selector scope are

considered:

- universalSelector: applies the template to all elements

belonging to the CIM.

- elementTypeSelector: applies the template to all

elements belonging to the CIM which correspond to

the selector’s type (e.g., all containers, all list boxes).

- classSelector: applies the template to all elements

belonging to the CIM which correspond to the

selector’s type whose definition makes them part of the

class (e.g., all containers having an id greater or equal

to CC2, all list boxes having more than 10 items).

- idSelector: applies the template to only one element

belonging to the CIM: the one whose id attribute

matches the string contained in the parameter.

These selectors allow the user to specify the source and

destination of the operation.

In Figure 9, you can see the execution of the operation:

DISPLAY button(text:”B”).

Figure 9: Display button(text:"B") operation

But operations are more complex than this example. For

example, the operation COPY <Source > TO <Target> can

either be:

1. COPY button_1 TO shared_display: simple copy

of button_1 sent to shared_display without specifying

neither an identifier nor a container

2. COPY button_1 TO button_2 ON shared_display:

copy button_1 on shared_display and identify it as

button_2

3. COPY button_1 TO button_2 ON shared_display

of shared_platform: the same but we specify the

shared_platform to avoid searching through all the

platforms

4. COPY button_1, button_2 TO shared_display:

copy button_1 and button_2 to shared_display in a single

operation

5. COPY button_1 TO shared_display, my_display:

copy button_1 to shared_display and also to my_display

6. COPY button_1 TO shared_display OF

shared_platform AND my_display OF my_ipad: copy

button_1 to both shared_display and my_display,

specifying on which platform is each display

Figure 6: Local distribution graph of the laptop from Figure 4

7. COPY * TO shared_display: copy all the

graphical components from the current UI to

shared_display

8. COPY ALL buttons TO shared_display: copy all

buttons to shared_display

9. COPY individuals TO shared_display: copy any

individual concrete user interface object to

shared_display

The source UI associated to these examples can be found in

Figure 10.

Figure 10: Example of Source UI for the COPY examples

Figure 11: Result of examples 1, 2 & 3 (top left), 4, 8 (top

right), 5 & 6 (middle left), 7 (middle right), 9 (bottom)

Assumption, distribution state, distribution primitives,
distribution scenario, distribution graph, catalog of
distribution operations

IMPLEMENTATION

A toolkit has been developed upon the model-based

approach. It creates application with UI separated in two-

parts: the proxy and the rendering. In Figure 12, the proxy

is represented as a separate part of the application than the

rendering. The first keeps the state of the application and

ensures the core functionalities, while the second displays

the user interface. Application supporting DUI allows the

rendering to be distributed on other platforms while the

proxy stays where the application has been created.

Figure 12: Structure of a DUI application

The toolkit works in an environment supported by

Microsoft Windows operating systems (XP and newer),

Apple Mac OS X, Linux and Android. And we are

currently working on the full support for Apple iOS. The

applications created with this toolkit are multi-platform.

We also based the toolkit on FormsVBT and a User

Interface Description Language (UIDL).

Each graphical component is described as a record

containing several keys and values. It ensures compatibility

with XML because the keys/values become the name/value

pairs of the XML markup.

The DUI can be controlled by a command line interface, a

meta-UI or even by the applications themselves.

In Figure 13, there is the DUI command line interface

which allows creating example and executing operations. It

also works as a tutorial to understand how to use the DUI

operations.

Application

Proxy Rendering

Figure 13: DUI Command Line Interface

EVALUATION AND CASE STUDY

A Pictionary game exemplified the mechanisms and

evaluates the difference between a local Pictionary and a

distributed Pictionary.

Figure 14: State-machine diagram of the Pictionary

In Figure 14, the STM shows that to start a game, the

Pictionary needs several steps. The players will each have

to assign or be assigned to a role. There are three roles: the

player, the guessers and the observers. Two players are at

least needed because the game needs one drawer and at

least one guesser.

The distribution does not appear in the states of the

Pictionary. The transition can be of two types: with and

without distribution. As in any STM, the transitions may

have some guarding conditions. For readability issue, we

put it apart from the STM. Also, the final state is not

display on the diagram. In order to clearly state the

transitions, they are all numbered from 1 to 8 and here are

the transitions in the form IF condition THEN action:

1. IF new_player_event

THEN DISPLAY pictionary_UI TO new_player

2. IF nb_player > 1

THEN DISPLAY assign_UI TO Pictionary_UI

OF players

3. IF drawer != null && guesser != null

THEN UNDISPLAY assign_UI

DISPLAY draw_UI TO Pictionary_UI OF drawer

AND guesser_UI TO Pictionary_UI OF guessers

UPDATE observe_UI TO observers

4. UPDATE draw_UI

5. IF timer <= 0 & !found

THEN UPDATE draw_UI, guesser_UI

6. UNDISPLAY draw_UI, guesser_UI, observer_UI

DISPLAY assign_UI TO players

7. IF timer > 0 & found

THEN UPDATE draw_UI, guesser_UI

8. UNDISPLAY draw_UI, guesser_UI,observer_UI

DISPLAY assign_UI TO players

The drawer UI, in Figure 15, enables the drawing area. The

guessers and observers are able to watch the drawing area

but are unable to draw on it. The guessers can try words. A

timer runs down until the word is found or until it reaches

00:00.

Figure 15: draw_UI enabling drawing area

This UI can be translated into a local distribution graph for

the device on which the Pictionary is started. For example,

a user with a computer and a mobile phone will have the

following distribution graphs as in Figure 16 and 17.

 Figure 16: Example of a global distribution graph for the

Pictionary

We also present an idea of a game that will be a

combination of several games as the Game of the Goose.

A basic example would be to use the Pictionary, a

Minesweeper and a Snake as games to combine. See Figure

18 for the Minesweeper examples of UI.

Figure 18: Example of a Minesweeper game

Figure 19: Example of UI for the combination game

The DUI combination game increases the use of

distribution. When a player reaches a case on the board, the

game of the case will be loaded and automatically display

to its platforms. He may also redistribute the UI through its

platforms at his own ease of use. There is a bridge between

the Minesweeper and Pictionary games. A win in the

Minesweeper game will allow the player to go to the

Pictionary while a loss on the Pictionary will send the

player back to the Minesweeper.

The example shown here is a simple 3-cases game, but the

number should be higher for a real game. In the Game of

the Goose, there are 63 cases.

CONCLUSIONS AND FUTURE WORK

In this paper we show how to design applications with

Distributed User Interfaces enabling the control of the

distribution of the UI components. We show that the

support of multiple platforms is complex and needs

adjustments. Operations supported by this model-based

approach is not only basics such as display and hide

components but as complex merging or dividing

components. We have introduced concepts for better

understanding the distribution. A language describes the

statements that will allow the distribution of the UI. These

statements are used in distribution scenarios for automatic

distribution as well as in a command line interface to

manually control the DUIs. Finally, the distribution graphs

help modeling the distribution of the UI and describing the

virtual distributed environment of the application.

No tool is developed in order to support the distribution

graph representation. A toolkit supporting the creation of

DUIs and the distribution operations is currently in

development and will be introduced in the future.

REFERENCES
1. Ayatsuka, Y., Matsushita, N., and Rekimoto, J. HyperPalette:

a hybrid computing environment for small computing devices.

In: Proc. of ACM Conf. on Human Factors in Computing

Systems-Extended Abstracts CHI'00 (The Hague, April 1-6,

2000). ACM Press, New York (2000), pp. 133–134.

2. Bandelloni, R. and Paternò, F. Migratory user interfaces able

to adapt to various interaction platforms. Int. Journal of

Human-Computer Studies 60, 5-6 (2004), pp. 621–639.

3. Beale, R. and Edmondson, W. Multiple carets, multiple

screens and multi-tasking: new behaviours with multiple

computers. In: Proc. of the 21st British HCI Group Annual

Conf. on People and Computers HCI’07 (Lancaster,

September 3-7, 2007). British Computer Society, Swinton

(2007), pp. 55–64.

4. Berglund, E. and Bång, M. Requirements for distributed user

interface in ubiquitous computing network. In: Proc. of ACM

Conf. on Mobile and Ubiquitous MultiMedia MUM’02 (Oulu,

December 11-13, 2002). ACM Press, New York (2002).

5. Bharat, K. A. and Cardelli, L. Migratory applications. In:

Proc. of the 8th ACM Symposium on User interface and

Software Technology UIST’95 (Pittsburgh, November 15-17,

1995). ACM Press, New York, 1995, pp. 132–142.

6. Biehl, J. T., Baker, W. T., Bailey, B. P., Tan, D. S., Inkpen, K.

M., and Czerwinski, M. IMPROMPTU: a new interaction

framework for supporting collaboration in multiple display

environments and its field evaluation for co-located software

development. In: Proc. of the 26th ACM Conf. on Human

Figure 17: Example of a local distribution graph for the

Pictionary

Factors in Computing Systems CHI’08 (Florence, April 5-10,

2008). ACM Press, New York (2008), pp. 939–948.

7. Chung, G. and Dewan, P. Towards dynamic collaboration

architectures. In: Proc. of the ACM Conf. on Computer

Supported Cooperative Work CSCW’04 (Chicago, November

6-10, 2004). ACM Press, New York (2004), pp. 1–10.

8. Coutaz, J. Meta-User Interfaces for Ambient Spaces. In: Proc.

of 5th Int. Workshop on Task models and Diagrams for User

Interface Design TAMODIA’2006 (Hasselt, October 23-24,

2006). LNCS, Vol. 4385. Springer, Berlin (2006), pp. 1–15.

9. Delivery Context Ontology (DCO), W3C, Geneva, 2010.

http://www.w3.org/TR/2009/WD-dcontology-20090616/.

10. Demeure, A., Sottet, J.S., Calvary, G., Coutaz, J., Ganneau,

V., and Vanderdonckt, J. The 4C Reference Model for

Distributed User Interfaces. In: Proc. of 4th Int. Conf. on

Autonomic and Autonomous Systems ICAS’2008 (Gosier,

March 16-21, 2008), IEEE Comp. Soc. Press (2008), pp. 61-

69.

11. Dewan, P. and Shen, H. Controlling access in multiuser

interfaces. ACM Trans. Comp.-Hum. Interact. 5, 1 (1998), 34-

62.

12. Distributed Programming in Mozart–A Tutorial Introduction,

chapter 3: Basic Operations and Examples, accessible at

http://www.mozart-oz.org/documentation/dstutorial/node3.

html#chapter.examples

13. Econometric Modeling & Computing Corporation (EMCC).

2010. Accessible at: http://www.speakeasy.com

14. Eisenstein, J., Vanderdonckt, J., and Puerta, A. Applying

model-based techniques to the development of UIs for mobile

computers. In: Proc. of the 6th Int. Conf. on Intelligent User

Interfaces IUI’01 (Santa Fe, January 14-17, 2001). ACM

Press, New York (2001), pp. 69–76.

15. Grolaux, D., Van Roy, P., and Vanderdonckt, J. Migratable

User Interfaces: Beyond Migratory User Interfaces. In: Proc.

of 1st IEEE-ACM Annual Int. Conf. on Mobile and Ubiquitous

Systems: Networking and Services MOBIQUITOUS'04

(Cambridge, August 22-26, 2004). ACM Press (2004), pp.

422–430.

16. Grolaux, D., Vanderdonckt, J., and Van Roy, P. Attach me,

Detach me, Assemble me like You Work. In: Proc. of the 10th

IFIP TC13 Int. Conf. on Human-Computer Interaction

INTERACT'05 (Rome, September 12-16, 2005). LNCS, Vol.

3585, Springer-Verlag, Berlin (2005), pp. 198–212.

17. Grudin, J. Partitioning digital worlds: focal and peripheral

awareness in multiple monitor use. In: Proc. of the ACM Conf.

on Human Factors in Computing Systems CHI’01 (Seattle,

2001). ACM Press, New York (2001), pp. 458–465.

18. Han, R., Perret, V., and Naghshineh, M. WebSplitter: a

unified XML framework for multi-device collaborative Web

browsing. In: Proc. of the ACM Conf. on Computer Supported

Cooperative Work CSCW’00 (Philadelphia, December 2-6,

2000). ACM Press, New York (2000), pp. 221–230.

19. Hutchings, D. R., Smith, G., Meyers, B., Czerwinski, M., and

Robertson, G. Display space usage and window management

operation comparisons between single monitor and multiple

monitor users. In: Proc. of the Working Conference on

Advanced Visual Interfaces AVI’04 (Gallipoli, May 25-28,

2004). ACM Press, New York (2004), pp. 32–39.

20. Hutchings, H.M. and Pierce, J. S. Understanding the whethers,

hows, and whys of divisible interfaces. In: Proc. of the

Working Conf. on Advanced Visual Interfaces AVI’06

(Venezia, May 23-26, 2006). ACM Press, New Y. (2006), pp.

274–277.

21. Loeser, C., Mueller, W., Berger, F., and Eikerling, H.J. Peer-

to-Peer Networks for Virtual Home Environments. In: Proc. of

the 36th Annual Hawaii international Conference on System

Sciences HICSS'03 (Big Island, January 6-9, 2003). IEEE

Computer Society, Los Alamitos (2003), p. 282.

22. Lorenz, A. Research directions for the application of MVC in

ambient computing environments. In: Proc. of the 1st Int.

Workshop on Pattern-Driven Engineering of interactive

Computing Systems PEICS'10 (Berlin, July 20, 2010). ACM

Press, New York (2010), pp. 28–31.

23. Luyten, K. and Coninx, K. Distributed User Interface

Elements to support Smart Interaction Spaces. In: Proc. of the

7th IEEE Int. Symposium on Multimedia ISM’2005 (December

12-14, 2005). IEEE Computer Society (2005), pp. 277–286.

24. Luyten, K., Vandervelpen, C., and Coninx, K. Migratable

User Interface Descriptions in Component-Based

Development. In: Proc. of the 9th Int. Workshop on Design,

Specification, and Verification of Interactive Systems DSV-

IS’2002 (Rostock, June 12-14, 2002). Lecture Notes in

Computer Science, Vol. 2545. Springer-Verlag, London

(2002), pp. 44–58.

25. Luyten, K., Van den Bergh, J., Vandervelpen, Ch., and

Coninx, K. Designing distributed user interfaces for ambient

intelligent environments using models and simulations.

Computers & Graphics 30, 5 (2006), pp. 702–713.

26. Melchior, J., Grolaux, D., Vanderdonckt, J., and Van Roy, P.

A toolkit for peer-to-peer distributed user interfaces: concepts,

implementation, and applications. In: Proc. of the 1st ACM

Symposium on Engineering interactive Computing Systems

EICS'09 (Pittsburgh, July 15-17, 2009). ACM, pp. 69–78.

27. Molina, J.P., Vanderdonckt, J., González, P., Fernández-

Caballero, A., and Lozano, M.D. Rapid Prototyping of

Distributed User Interfaces. In: Proc. of 6th Int. Conf. on

Computer-Aided Design of User Interfaces CADUI’2006

(Bucharest, 6-8 June 2006). Springer-Verlag, Berlin (2006),

pp. 151–166.

28. Myers, B. A. 2001. Using handhelds and PCs together.

Commun. ACM 44, 11 (November 2001), pp. 34–41.

29. Newman, M. W., Izadi, S., Edwards, W. K., Sedivy, J. Z., and

Smith, T.F. User interfaces when and where they are needed:

an infrastructure for recombinant computing. In: Proc. of the

15th ACM Symposium on User interface Software and

Technology UIST’02 (Paris, October 27-30, 2002). ACM

Press, New York (2002), pp. 171–180.

30. Qiu, X. F. and Graham, T.N. Flexible and efficient platform

modeling for distributed interactive systems. In: Proc. of the

1st ACM Symposium on Engineering interactive Computing

Systems EICS'09 (Pittsburgh, July 15 - 17, 2009). ACM Press,

New York (2009), pp. 29–34.

31. Sjölund, M., Larsson, A., and Berglund, E. Smartphone

Views: Building Multi-Device Distributed User Interfaces In:

Proc. of MobileHCI’2004 (Glasgow, 13-16 September 2004).

LNCS, Vol. 3160. Springer, Berlin (2004), pp. 507–511.

32. Tan, D.S. and Czerwinski, M. Effects of Visual Separation

and Physical Discontinuities when Distributing Information

across Multiple Displays. In: Proc. of IFIP TC13 Int. Conf. on

Human-Computer Interaction INTERACT'03 (Zurich,

September 1-5, 2003). IOS Press (2003), pp. 252–260.

33. Tan, D.S., Myers, B. and Czerwinski, M. 2004 WinCuts:

Manipulating Arbitrary Window Regions for More Effective

User of Screen Space. In: Proc. of ACM Conf. on Human

Factors in Computing Systems CHI’2004 (Vienna, April 24-

29, 2004). ACM Press, New York (2004), pp. 1525–1528.

http://www.speakeasy.com/

34. Vanderdonckt, J. Distributed User Interfaces: How to

Distribute User Interface Elements across Users, Platforms,

and Environments. In: Proc. of XIth Congreso Internacional de

Interacción Persona-Ordenador Interacción’2010 (Valencia,

7-10 September 2010). AIPO, Valencia, 2010, pp. 3-14.

35. Vandervelpen, Ch., Vanderhulst, G., Luyten, K., and Coninx,

K. 2005. Light-Weight Distributed Web Interfaces: Preparing

the Web for Heterogeneous Environments. In: Proc. of the 5th

Int. Conf. on Web Engineering ICWE’2005 (Sydney, July 27-

29, 2005). Springer, Berlin (2005), pp. 197–202.

36. Roy, P. V. and Haridi, S. 2004 Concepts, Techniques, and

Models of Computer Programming. MIT Press.

37. Xiaojun, B. and Balakrishnan, R. Comparing usage of a large

high-resolution display to single or dual desktop displays for

daily work. In: Proc. of the 27th Int. Conf. on Human factors

in Computing Systems CHI'09 (Boston, April 4-9, 2009).

ACM Press, New York (2004), pp. 1005–1014.

38. Yanagida, T. and Nonaka, H. 2008. Architecture for

Migratory Adaptive User Interfaces. In: Proc. of the 8th IEEE

Int. Conf. on Computer and Information Technology CIT'2008

(Sidney, July 8-11, 2008). IEEE (2008), pp. 450–455.

