
Available at: http://hdl.handle.net/2078.1/thesis:40695 [Downloaded 2023/06/05 at 11:49:10]

"Melodizer Rock: A Constraint Programming Tool for Composing Rock Music"

Lepeltier, Félix ; Otlet, Sophie

ABSTRACT

This master's thesis presents Melodizer Rock, a tool which aims to assist composers in their rock music
creation process. It is important to specify that the aim isn't to replace the musician's creativity with this tool.
On the contrary, it is a tool that can and should be used to inspire composers. Melodizer Rock builds on top
of three previous theses. Firstly, Baptiste Lapière's work, which was a rhythm-oriented thesis [1], generated
scores which respect rhythm-specific rules given by the user. Soon thereafter, Damien Sprockeels' work
on Melodizer, a pitch-oriented thesis [2], generated melodies which respect constraints given by the user.
Lastly, Melodizer 2.0 aimed to combine both works, and created a tool allowing pitches and rhythms to
be played simultaneously [3]. This was the work of Clément Chardon, Amaury Diels, and Federico Gobbi.
Now, Melodizer Rock adds to the capabilities of Melodizer 2.0, by encoding the structure of a complete rock
song within the tool. Said structure was extracted from Drew Nobile's thesis "A Structural Approach to the
Analysis of Rock Music" [4], and is based on the hierarchical AABA, and srdc structure. The composer's
musical ideas are given to the tool, through an easy to use interface, and are then used to build a Constraint
Satisfaction Problem (CSP). Ideas are typically represented by easily quantifiable metrics, such as the
pitch range or note length of a piece. However, such ideas can very well be short melodies which the
composer is keen to expand on, or create a whole musical piece based off of. The aforementioned CSP
is defin...

CITE THIS VERSION

Lepeltier, Félix ; Otlet, Sophie. Melodizer Rock: A Constraint Programming Tool for Composing Rock
Music. Ecole polytechnique de Louvain, Université catholique de Louvain, 2023. Prom. : Van Roy, Peter.
http://hdl.handle.net/2078.1/thesis:40695

Le répertoire DIAL.mem est destiné à l'archivage
et à la diffusion des mémoires rédigés par les
étudiants de l'UCLouvain. Toute utilisation de ce
document à des fins lucratives ou commerciales
est strictement interdite. L'utilisateur s'engage à
respecter les droits d'auteur liés à ce document,
notamment le droit à l'intégrité de l'oeuvre et le
droit à la paternité. La politique complète de droit
d'auteur est disponible sur la page Copyright
policy

DIAL.mem is the institutional repository for the
Master theses of the UCLouvain. Usage of this
document for profit or commercial purposes
is stricly prohibited. User agrees to respect
copyright, in particular text integrity and credit
to the author. Full content of copyright policy is
available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

École polytechnique de Louvain

Melodizer Rock

A Constraint Programming Tool for Composing
Rock Music

Authors: Félix LEPELTIER, Sophie OTLET
Supervisor: Peter VAN ROY
Readers: Damien SPROCKEELS, Karim HADDAD, Vianney COPPÉ
Academic year 2022–2023
Master [120] in Computer Science and Engineering

Abstract

This master’s thesis presents Melodizer Rock, a tool which aims to assist composers
in their rock music creation process. It is important to specify that the aim isn’t
to replace the musician’s creativity with this tool. On the contrary, it is a tool
that can and should be used to inspire composers. Melodizer Rock builds on top of
three previous theses. Firstly, Baptiste Lapière’s work, which was a rhythm-oriented
thesis [1], generated scores which respect rhythm-specific rules given by the user.
Soon thereafter, Damien Sprockeels’ work on Melodizer, a pitch-oriented thesis [2],
generated melodies which respect constraints given by the user. Lastly, Melodizer 2.0
aimed to combine both works, and created a tool allowing pitches and rhythms to
be played simultaneously [3]. This was the work of Clément Chardon, Amaury Diels,
and Federico Gobbi. Now, Melodizer Rock adds to the capabilities of Melodizer 2.0,
by encoding the structure of a complete rock song within the tool. Said structure
was extracted from Drew Nobile’s thesis A Structural Approach to the Analysis of
Rock Music [4], and is based on the hierarchical AABA, and srdc structure.

The composer’s musical ideas are given to the tool, through an easy to use
interface, and are then used to build a Constraint Satisfaction Problem (CSP). Ideas
are typically represented by easily quantifiable metrics, such as the pitch range or
note length of a piece. However, such ideas can very well be short melodies which
the composer is keen to expand on, or create a whole musical piece based off of.
The aforementioned CSP is defined by the composer’s musical ideas, to which each
solution represents a potentially interesting and novel musical piece that might inspire
them. Melodizer Rock is built as a library supplementing OpenMusic, a musical
composition tool developed by IRCAM. GiL was used to connect OpenMusic to the
constraint programming library Gecode, as OpenMusic is written in Common Lisp
and Gecode in C++.

i

Acknowledgements

We would like to express our sincere gratitude to
Peter Van Roy,

Damien Sprockeels,
Karim Haddad from IRCAM,

Vianney Coppé,
Vanessa Maons and the INGI System Team

For the invaluable help they provided throughout our master’s thesis.

ii

Contents

1 Introduction 1
1.1 Context and Outline . 1
1.2 Road-map . 2

2 Theoretical Framework 4
2.1 Music Theory . 5

2.1.1 Music Terminology . 5
2.1.2 Rhythm . 7
2.1.3 Melody . 7
2.1.4 Harmony . 9

2.2 Rock Music Composition . 11
2.2.1 AABA and s r d c . 12
2.2.2 Cadence . 12

2.3 Constraint Programming . 14
2.3.1 Definitions . 15
2.3.2 Constraint Propagation . 16
2.3.3 Branching Heuristics . 17
2.3.4 Tree Traversal Strategies . 17

3 Software Background 20
3.1 Gecode . 20

3.1.1 Variables . 20
3.1.2 Constraints . 21
3.1.3 Reified Constraints . 24
3.1.4 Branching . 25
3.1.5 Search . 26

3.2 OpenMusic . 27
3.2.1 Patches . 27
3.2.2 Editors . 27
3.2.3 Voice and Poly Objects . 27

3.3 Melodizer 1.0 . 28
3.3.1 GiL . 29
3.3.2 Search . 30

3.4 Melodizer 2.0 . 30
3.4.1 Music Representation . 30

iii

3.4.2 Blocks . 31
3.4.3 Search & Solver . 31

4 Melodizer Rock : Implementation 32
4.1 Music Representation . 32

4.1.1 Melody Representation . 32
4.1.2 Accompaniment Representation 33

4.2 Structure . 34
4.2.1 Rock . 35
4.2.2 A and B . 36
4.2.3 s, r, d, and c . 37
4.2.4 Accompaniment . 38

4.3 General constraints . 38
4.3.1 Accompaniment Constraints 38
4.3.2 Melody Constraints . 40

4.4 Block-specific Constraints . 42
4.4.1 A and B-specific Constraints 43
4.4.2 s r d and c-specific Constraints 44

4.5 Solver . 46
4.5.1 Constraint Satisfaction Problem 46
4.5.2 Search Engine . 47
4.5.3 Search . 48

5 Melodizer Rock : User Interface 49
5.1 Rock Editor . 49
5.2 A and B Editors . 51
5.3 s, r, d, and c Editors . 52

5.3.1 s Editor . 52
5.3.2 r Editor . 53
5.3.3 d Editor . 53
5.3.4 c Editor . 54

6 Composing with Melodizer Rock 55
6.1 A Simple A Block . 55
6.2 An A Block and a B Block . 57
6.3 A Source Melody on Two A Blocks 60
6.4 A Full Song Form . 64
6.5 A Full Song Form with Two Source Melodies 68

7 Future Works 73
7.1 Diving Deeper Within Rock . 73

7.1.1 Other Structures than AABA 73
7.1.2 Alternative Take on srdc . 74
7.1.3 Improve the Melodic Line . 75
7.1.4 Improve the Musical Accompaniment 76

7.2 Explore Other Musical Genres . 77
7.3 GiL Overhead . 78

iv

8 Conclusion 79
8.1 An Interactive Interface . 79
8.2 A Specific CSP for Rock Music . 80
8.3 An Impressive Tool for Composing 80

Bibliography 82

A Installation and Setup 83
A.1 Download and Installation . 83
A.2 Setup . 83

B Tutorial for Melodizer Rock 85

C Constraints 89
C.1 General Constraints . 89

C.1.1 Accompaniment General Constraints 89
C.1.2 Melody General Constraints 92

C.2 Block Specific Constraints . 96
C.2.1 Melody Source Constraints . 96
C.2.2 Similarity Constraint Between IntVarArrays 97
C.2.3 Transposition of an IntVarArray 97
C.2.4 c-specific Constraints . 98

D Melodizer Rock Code 100
D.1 Package Setup . 100

D.1.1 Melodizer.lisp . 100
D.1.2 sources/package.lisp . 101

D.2 Objects . 102
D.2.1 sources/rock.lisp . 102
D.2.2 sources/rock-AB.lisp . 118
D.2.3 sources/rock-srdc.lisp . 142
D.2.4 sources/rock-accompaniment.lisp 161

D.3 CSP Files . 165
D.3.1 sources/rock-csp.lisp . 166
D.3.2 sources/rock-csts.lisp . 173

D.4 Utilities Functions . 191
D.4.1 sources/rock-utils.lisp . 192
D.4.2 sources/melodizer-utils.lisp . 206

D.5 GiL Example . 223

E Collection of Scores 226
E.1 Obtained Scores . 226

E.1.1 Example 6.1 . 226
E.1.2 Example 6.2 . 226
E.1.3 Example 6.3 . 226
E.1.4 Example 6.4 . 227
E.1.5 Example 6.5 . 227

v

E.2 External Scores . 228
E.2.1 I’ll Be There by The Jackson 5 228
E.2.2 Every Breath You Take by The Police 228

vi

Chapter 1

Introduction

Nowadays, more and more tasks are executable with the aid of computers. This
digital revolution has led to the creation of tools with incredible capabilities, notably
with the recent advances in the field of generative Artificial Intelligence. Any person
can now use a broadly available model such as ChatGPT-4, and submit this prompt:
"Generate the melody for a piece of Rock Music similar to the Beatles". However these
data-driven approaches generate answers based off of existing data. The problem
with this approach is that entirely novel solutions won’t ever be found.

The technical approach used in Melodizer Rock, Constraint Programming, repre-
sents music as a problem which it tries to solve. Such an approach allows these novel
solutions to be found when they exist, and gives seemingly creative results which the
composer might not have thought of.

Among all existing music genres, why rock? Rock was chosen for its broad
appeal and popularity, along with its strong rhythmic foundation, and dynamic
variations. All of which are key factors to conveying emotions to its listeners. Over
the past decade, works such as A Structural Approach to the Analysis of Rock
Music [4] showcased insightful and approachable structures of rock music, giving the
foundational knowledge needed to achieve Melodizer Rock’s goals.

Obviously, a tool such as Melodizer Rock won’t create the perfect song by itself.
It will still need the composer’s input, and might only serve as an inspiration. The
Rolling Stones said it best:

"You can’t always get what you want, but if you try,
sometimes, you might find, you get what you need."

The Rolling Stones (1969)

1.1 Context and Outline
This master’s thesis presents Melodizer Rock, a tool which aims to assist composers

in their rock music creation process. It is important to specify that the aim isn’t to

1

replace the musician’s creativity with this tool. On the contrary, it is a tool that
can and should be used to inspire composers. Melodizer Rock builds on top of three
previous theses.

Firstly, Baptiste Lapière’s work, which was a rhythm-oriented thesis [1], generated
scores which respect rhythm-specific rules given by the user. Soon thereafter, Damien
Sprockeels’ work on Melodizer, a pitch-oriented thesis [2], generated melodies which
respect constraints given by the user. Lastly, Melodizer 2.0 aimed to combine both
works, and created a tool allowing pitches and rhythms to be played simultaneously
[3]. This was the work of Clément Chardon, Amaury Diels, and Federico Gobbi.

Now, Melodizer Rock adds to the capabilities of Melodizer 2.0, by encoding the
structure of a complete rock song within the tool. Said structure was extracted from
Drew Nobile’s thesis A Structural Approach to the Analysis of Rock Music [4], and is
based on the hierarchical AABA, and srdc structure. Melodizer Rock was thought
of such that composers can give a high level representation of the type of music they
wish to compose, alongside some potential source melodies, and create music scores
which respect the given specifications.

In practice, the composer’s musical ideas are given to the tool, through an easy
to use interface, and are then used to build a Constraint Satisfaction Problem (CSP).
Ideas are typically represented by easily quantifiable metrics, such as the pitch range
or note length of a piece. However, such ideas can very well be short melodies
which the composer is keen to expand on, or create a whole musical piece based off
of. The aforementioned CSP is defined by the composer’s musical ideas, to which
each solution represents a potentially interesting and novel musical piece that might
inspire them.

The tools used to build Melodizer Rock are the same as those used for the
previous versions of Melodizer. Melodizer Rock is built as a library supplementing
OpenMusic, a musical composition tool developed by IRCAM. Modelling the CSP
was done through Gecode, and GiL was used to connect OpenMusic to this constraint
programming library, as OpenMusic is written in Common Lisp and Gecode in C++.

1.2 Road-map
It is important to note that some chapters are quite technically demanding,

and that as a composer chapters 5 and 6 will be the most relevant. The following
road-map gives a brief overview of what each chapter covers.

• Chapter 2 covers the theoretical background that is required to fully un-
derstand this thesis. It contains western tonal music theory concepts and
definitions used throughout the thesis, rock music composition concepts on
which Melodizer Rock is built, and an overview of what constraint programming
is.

• Chapter 3 goes over the tools which Melodizer Rock is built on. Covering

2

the use of the constraint programming library Gecode, IRCAM’s OpenMusic
software which Melodizer Rock serves as a library to, and the previous iterations
of Melodizer. The discussion on Melodizer 1.0 contains an explanation of the
GiL library used to interface Gecode and Common Lisp. Melodizer 2.0’s
discussion has detailed explanations on how various parts of it served as
inspiration to Melodizer Rock.

• Chapter 4 describes Melodizer Rock’s implementation. It discusses the chosen
musical representation, the implementation structure, general and block-specific
constraints defining Melodizer Rock’s Constraint Satisfaction Problem (CSP),
and the chosen solver used to solve this CSP.

• Chapter 5 gives a thorough description of the interface, and is primarily
destined for Melodizer Rock’s users, meaning composers. It aims to be very
comprehensive and uses musical rather than scientific terminology when possi-
ble.

• Chapter 6 is mostly destined to composers, and provides examples on how
Melodizer Rock can be used to compose rock music. These examples are
progressive and range from rather simple examples, to a full song using source
melodies from a rock hit. It aims to be very comprehensive and uses musical
rather than scientific terminology when possible.

• Chapter 7 suggests improvements for extending Melodizer Rock. These
improvements are split into various categories and can be thought of as either
deepening Melodizer Rock’s scope, broadening it, or improving Melodizer
Rock’s performance.

• Chapter 8 summarises Melodizer Rock’s contributions, and discusses the
importance of building such a tool.

3

Chapter 2

Theoretical Framework

What defines the music that people listen to? How does one write, or read it?
What makes it interesting to listen to? To answer these questions, the representation
of music must first be defined, then analysed.

Music is a very large domain, it includes several genres themselves divided into
different sub-genres, some of which are illustrated in Figure 2.1. The theory presented
in this thesis focuses on one specific subset of music: 1960’s to 1990’s Rock Music

Figure 2.1: Non exhaustive representation of the domains of music

This chapter will introduce the essentials needed to understand the discussions of
this thesis. Firstly by explaining the basics of music theory in section 2.1, including
the terms, symbols and notations that will be used throughout the following chapters.
Then section 2.2 will discuss the different notions inherent to rock music composition.
Finally, section 2.3 will describe the basics concepts of Constraint Programming used
in the implementation of Melodizer Rock.

4

2.1 Music Theory
Music theory is not, as its name might suggest, a set of rules that a musician

must follow in order to compose a piece, but an ensemble of regulations that can be
followed or broken. It is a tool used by musicians to communicate about music. It
defines the base on which any musical composition stands to allow other artists to
understand, play or adapt the piece.

It is therefore important for anyone that wants to study, compose, or play music,
to understand the terms and basics of music theory. The concepts used throughout
this thesis are heavily based on the following pieces of literature:

• The simple and clear explanations and definitions of the book Music Theory
for dummies by M. Pilhofer and H. Day [5],

• The work accomplished by our predecessors, C. Chardon, A. Diels and F. Gobbi
for their master thesis Melodizer 2.0: A Constraint Programming Tool For
Computer-aided Musical Composition [3],

• The more advanced theory defined by R. Gauldin in Harmonic Practice in
Tonal Music [6].

2.1.1 Music Terminology
This section’s aim is to define the musical terms used throughout this thesis,

which will be of great use to readers with little musical background, and might serve
as a reminder to others.

Accompaniment: "the use of additional voices to support a lead melodic line."[5]

Beat: "one of a series of repeating and consistent pulsations of time in music"
[5]. It is used as the basic unit of time to appropriately interpret the intended pace
of the song.

Cadence: "the ending of a musical phrase containing points of repose or release
of tension".[5]

Chord: "the simultaneous sounding of at least two pitches or notes".[5]

Clef: "the symbol at the beginning of the staff that indicates the pitches of the
notes on the staff. There are two predominant clefs, the treble clef for pitches higher
than the middle C and the bass clef for pitches lower than the middle C". [3]

Harmony: "the pitches heard simultaneously in ways that produce chords and
chord progressions."[5]

Interval: "the distance or difference between the pitches of two notes."[5]

Key note: "the principal and lowest note of the scale in which a piece of music
is set" [3]. With a given mode, it defines the scale itself.

5

Measure: "a segment of written music, contained within two vertical bars, that
includes as many beats as the top number of the key signature indicates. It can also
be called a bar".[5]

Melody: "a succession of musical tones, usually of varying pitches and rhythms,
that together have an identifiable shape and meaning".[5]

Mode: the series of notes into which the octave is divided. It defines the intervals
between the different notes of a scale.

Note: "a symbol used to represent the duration of a sound and, when placed on
a music staff, the pitch and the sound."[5]

Octave: "two tones that span an interval of twelve semitones. They have the
same pitch quality and the same pitch names in Western music."[5]

Pitch: the frequency of vibration of a note, in Western notation. This thesis will
use the English notation that uses the first alphabetical letters, from A to G.

Quality: "the number of half steps from one note to another."[5]

Rest: "a symbol used to to notate a period of silence in a musical score."[5]

Rhythm: "a pattern of regular or irregular pulses in music."[5]

Scale: "a series of notes in ascending or descending order that presents the
pitches of a tonality, beginning and ending on the tonic of that key."[5]

Score: "the printed representation of a piece of music"[5], composed of at least
one staff.

Semitone: "in Western music, it is the smallest interval between two pitches."[3]

Staff: "the five horizontal and parallel lines, containing four spaces between them,
on which notes and rests are written."[5]

Tempo: "the rate or speed of the beat in a music piece" [5], generally expressed
as beats per minute (bpm).

Time Signature: the notation comprised of two numbers (such as 3/4), which
is at the beginning of a piece of music. The top number indicates how many beats
are in one measure, and the bottom number indicates the fraction of a whole note
representing one beat.

Tonality: "the organisation of a musical piece based on a tonic note (or key
note) and a mode."[3]

Tone: a full, or whole, step between pitches. It corresponds to an interval of two
semitones.

6

2.1.2 Rhythm
Rhythm, melody and harmony are the three pillars of music. They form the

blueprint of musical composition and are tightly dependant on one another.

Rhythm is one of the basic music concepts that helps with distinguishing different
genres. For example, a rock song could be converted to a Waltz by changing only its
rhythm. But M. Pilhofer and H. Day [5] point out how important it is to differentiate
it from the surface rhythm and from the tempo. The surface rhythm is the one
the listener hears, for example the rhythmic pattern of the drums. Whereas the
tempo defines the speed, or frequency, of a piece’s rhythm. Meanwhile, the defined
rhythm of a piece creates the basic pulse of a song, using the time signature at the
beginning of a staff.

Figure 2.2 shows the relation between different note lengths used in this thesis.
The smallest one, at the leafs, is called a sixteenth note and the longest one, at
the root, is called a whole note. Each level of the tree has an equal beat duration.
The time signature defines the fraction of a whole note used as a beat, as well as the
number of beats the bar contains. For example, a time signature of 3

4 defines that a
measure contains 3 fourth-notes (3d level of the tree).

Figure 2.2: Relations between the note lengths from a whole note to sixteenth notes [5]

2.1.3 Melody
Melody is the pitch sequence of a piece of music. In rock music, it is most often

the singing line of the song. Two main principles are important to compose a melodic
line.

Intervals

A first principle inherent to melodic writing is the notion of intervals. An
interval is the distance, the frequency, between two pitches. R. Gauldin [7] explains
some of their basic principles, paraphrased hereafter:

7

• Stepwise motion is always preferable to leaps. Leaps over a perfect fifth should
be avoided.

• Leaps involving augmented intervals should be avoided, diminished intervals,
however, are acceptable.

• Consecutive leaps in the same direction should be avoided unless they outline
a triad.

Only a simplified version of the first principle is used in Melodizer Rock as some
examples seen in section 2.2 show augmented intervals.

Scales

Secondly, to compose a melody, it is important to understand the concept of
scales on which the notes are chosen. This thesis focuses on 4 modes, differing from
one another by the intervals between the different notes. In the following paragraphs,
W represents a whole step, thus a tone, and H a half step, thus a semitone, the sum
of both W+H represents three semitones.

Since the major mode is the common base for other modes, it is defined first.
The corresponding intervals are easy to remember, it is mostly one tone between each
pitch, except for two notes. As described by M. Pilhofer and H. Day [5], the major
scale follows the WWHWWWH pattern. Figure 2.3 displays the scale this pattern
gives for the C and D keys. The difference due to the placement of the intervals is
visible in the alterations on some of the notes. Each note is given a name, or degree,
according to its place on the obtained scale. This can be seen on those same Figures,
the three most important being:

• Tonic: "1st and 8th note on the scale that determine the name of the scale."[5]

• Sub-dominant: 4th note on the scale.

• Dominant: 5th note on the scale.

(a) C Major scale

(b) D Major scale

Figure 2.3: Major scales examples

The natural minor mode follows the WHWWHWW pattern. For a same
key, it can be constructed from the major scale by lowering the third, sixth, and

8

seventh degrees by one semitone. Figure 2.4 shows the minor scale for C and D.
There exists two other types of minor scales, called harmonic and melodic, but
they will not be further developed in this thesis.

(a) C Minor scale

(b) D Minor scale

Figure 2.4: Minor scales examples

The diminished mode follows the pattern WHWHWHW, that is, every other
interval is a whole tone. It can be constructed from the major scale of the same key
by using a diminished third, fifth and sixth. As shown in Figure 2.5, it has one more
note than a major or minor scale because of the smaller intervals.

(a) C diminished scale

(b) D diminished scale

Figure 2.5: Diminished scales examples

The augmented mode is a bit more peculiar as it results in a hexatonic
scale, that is, a scale of six notes. It follows a pattern with greater intervals:
(W+H)H(W+H)H(W+H)H. Every other interval is thus an augmented second,
or minor third. Examples are showed in Figure 2.6.

2.1.4 Harmony
Harmony complements the melody by filling out the musical ideas it expresses.

It builds chords, that is, the tones coming from melody’s scale. Then makes them
convey emotions, or a sense of beginning or ending to the song. This ordering is also
called a chord progression.

Chords are defined by the intervals separating their notes, but can also be built
based on the corresponding scale. With the four scales explained in section 2.1.3,

9

(a) C augmented scale

(b) D augmented scale

Figure 2.6: Augmented scales examples

four main type of chords can be built by taking each time the first (tonic), third
(mediant) and fifth (dominant) notes. Examples are shown in Figure 2.7 and their
integration in Melodizer Rock is explained in section 4.3.1. The chords, defined by
their intervals are as follow:

• Major chords are composed first, of the root note, then the major third, 4
semitones above the root, and the perfect fifth, 7 semitones above the root,
thus a minor third after the second note. See Figures 2.7a & 2.7e.

• Minor chords are composed of the root note, the minor third, 3 semitones
above the root, and the perfect fifth, or major third from the previous note.
See Figures 2.7b & 2.7f.

• Diminished chords are composed of the root note, the minor third and the
diminished fifth, 6 semitones above the root. It thus uses a minor third followed
by a minor third. See Figures 2.7c & 2.7g.

• Augmented chords are composed of the root note, the major third and the
augmented fifth, 8 semitones above the root. Therefore, it is composed of two
major thirds. See Figures 2.7d & 2.7h.

(a) C Major (b) C minor (c) C diminished (d) C augmented

(e) D Major (f) D minor (g) D diminished (h) D augmented

Figure 2.7: Chords examples

Variations of these chords exists, and some are explained in section 7.1.4. For

10

example, a chord could be more than a triad of notes and include a seventh, or could
be inverted, that is, include the same notes but with the root note transposed an
octave higher.

Chords can be arranged to form a chord progression. Using the scale of the
melody, if the chords are built with the notes of the scale, they are called diatonic
chords. If it contains notes outside of the scale, they are chromatic chords. Each
diatonic chord from a scale is named using roman numeral. Capitalised roman
numerals represent the major chords, while lower-case numerals represent minor
chords. Diminished chords are represented using the the symbol "°" and augmented
chords use the symbol "+". The obtained chords for C major and D major are shown
in Figure 2.8, while C and D minor chords are shown in Figure 2.9.

(a) C major diatonic chords

(b) D major diatonic chords

Figure 2.8: Diatonic major chords examples

(a) C minor diatonic chords

(b) D minor diatonic chords

Figure 2.9: Diatonic minor chords examples

2.2 Rock Music Composition
Structural understanding of rock music prior to Drew Nobile’s work was incom-

plete. His thesis A Structural Approach to the Analysis of Rock Music [4] proposes
three common full song forms used within the genre. The first one, which was used
throughout Melodizer Rock is the AABA and srdc structure. The second expands
this first form to a Verse-Prechorus-Chorus structure that is then developed into a
Verse-Chorus form.

11

2.2.1 AABA and s r d c
Rock songs consist of verses and bridges, which correspond respectively to A and

B sections. Each of those are themselves divided as 4 phrases: s, r, d and c. This
structure is represented in the Figure 2.10.

Figure 2.10: AABA and srdc structure of a rock song described by Drew Nobile in [4]

AABA and srdc forms, alongside their extended siblings (such as AABABA,
AABAABA, etc.), were particularly popular during the 50’s and 60’s and in some
way helped define the pre-psychedelic era of rock music. A straight-forward example
analysis of The Beatles’ From me to you given by D. Nobile [4] will help illustrate
just how this form presents itself (Figure 2.11).

The srdc structure can be explained as such, in the s section a musical phrase is
stated, then in r it is restated and might differ slightly, the third section is d and
it acts as a disruption which departs from s and r whilst leading to the conclusive
section that is c. The r phrase is similar to s, either by containing similar notes, by
having the same note progression but transposed a few semitones, or both at the
same time. The d phrase aims to disturb the emotions conveyed by the s phrase,
and must thus differ from it. A representative example from The Jackson 5 with
the song I’ll Be There is found in Figure 2.12.

Drew Nobile distinguished three models of srdc structures, which are described in
Figure 2.13. In these models, T refers to the tonic, as explained in section 2.1.3, D to
the dominant, PD to the pre-dominant and N refers to the off-tonic. Typically, each
of those sections spans over two measures, leading to an eight-bar verse though a
sixteen-bar verse is not uncommon. Using different models in a song allows to convey
different emotions to the listener, mainly due to the tension that the difference in
the d phrase communicates.

2.2.2 Cadence
Among the parts which form AABA and srdc models, the cadence is most well

defined. In Melodizer Rock, it was decided that within an srdc form the cadence will
be included in c. This means the first model 2.13a described by Drew Nobile will not
be suggested, but the composer might build it with constraints on the d phase. The
c phase is the conclusion of this form, and must attempt to convey the final emotion
that the composer wishes for. Different types of cadences are distinguishable from
the chord progressions they use. Each of these cadences induces a different emotion

12

Figure 2.11: The Beatles’ From me to you (1963): decomposition in AABAABA & srdc
form [4]

or feeling while listening to a song. Therefore, some are more appropriate for certain
uses. Below is a short description of various cadences’ chord progressions [8].

Perfect cadences are very conclusive and typically used to announce some
ending, although not necessarily the entire piece’s ending. They are built from a
succession of degrees V and I chords.

Plagal cadences are less conclusive and less frequently used. They are built
from a succession of degrees IV and I chords.

Half or semi cadences are used to create tension, as the harmony isn’t resolved
and stays on hold. They are built from a succession of a chord of any degree followed
by a chord of degree V.

Deceptive cadences create some sense of surprise, as usually it’s a degree I
chord that’s played following a degree V chord. However, in a deceptive cadence a
chord of degree V is either followed by a degree VI or III chord.

13

Figure 2.12: The Jackson 5, I’ll Be There (1970): first verse with simplified
accompaniment

s r d c
T PD D T

(a) Model 1
s r d c
T PD D T

(b) Model 2
s r d c
T N T (PD) D T

(c) Model 3

Figure 2.13: The 3 harmonic models for the srdc structure [4]

Many more types of cadences exist, and the theory behind the concept of cadences
can be expanded upon quite a bit. However, the knowledge brought by this section
largely suffices to understand any further use of cadences throughout the thesis.

2.3 Constraint Programming
The previous sections showed that music theory actually uses a lot of mathematics

to define its rules. For example, the time signature is a fraction, the pitches are
frequencies, intervals between notes are differences in frequencies ... That being said,
musical composition can be expressed as a Constraint Satisfaction Problem, where a
song’s notes might follow a given tonality or rhythm. Those constraints might differ
according to the mood or emotions the composer wants to convey. For instance, a
song with slower rhythm or longer notes gives a feeling of melancholy, while a faster
pace might transmit happiness. All this can be expressed and used in a program

14

using Constraint Programming to find scores corresponding to the criteria given by
the composer.

This section is mainly based on the explanations of the basics of Constraint
Programming by K. Apt [9] as well as the previous work done in Melodizer 2.0 [3].
As this thesis uses the Gecode library, explained is section 3.1, to implement the
solver behind the program, this section also refers to some descriptions made in the
Gecode modelling guide [10].

2.3.1 Definitions
Constraint Programming (CP) is defined by K. Apt [9] as an "alternative

approach to programming which relies on techniques that deal with reasoning and
computing". In this thesis, it will be used as a programming paradigm that solves
problems, by narrowing down variables’ domains using mathematical, logical and
combinatorial constraints [3].

A Constraint on a sequence of variables is a relation on their domains, a
requirement that states which combination of values from each variable domains
are acceptable. The domain of a variable is the set of acceptable values for that
variable.

A Constraint Satisfaction Problem (CSP) is an application of Constraint
Programming composed of a finite set of constraints, each posed on a set of variables.
It can be expressed as a tuple P = (X , D, C) where

• X = {i, j, ...} is a set of n variables

• D = {Di, Dj, ...} is a set of n domains for the variables

• C is a set of constraints imposing logical, arithmetic or combinatorial relations
on one or more variables of X .

A solution for P is a set of values {Ij} such that, ∀j ∈ X , Ij ∈ Dj satisfies all the
constraints in C.

Constraint Programming can also be used to solve a Constraint Optimisation
Problem. Those are CSPs where the quality of a solution is estimated with an
objective function on the variables. The solver thus tries to minimise or maximise
this function to obtain an optimal solution.

The Search Space is the set of all possible combinations for all variables of
the CSP, represented as a tree (an example is showed in Figure 2.15). The Search
explores this search space in an organised manner.

Backtracking Search is the simplest form of search, when it explores the space
by travelling down a Search Tree with Depth First Search. A common way to
organise this tree is to impose that each left branch is the assignation of one ore
more variables to a value, and the right branch is the removal of those same values

15

Figure 2.14: Example of propagation on a Sudoku line CSP

from the variables’ domains. When updating the variables’ domain by going down
a branch, the solver must update the domain of other variables in the problem so
that they still respect the constraints. This process is called propagation. When
reaching a state where a variable’s domain is empty, the search must backtrack to
the previous state because it means no solution can be found with those assignments.

2.3.2 Constraint Propagation
There exists different types of propagation, which update variables’ domains

differently. Each achieve a different form of local consistency, attempting to approx-
imate the notion of global consistency. A strong propagation prunes more values
from the domain of the variables, and often leads to a smaller search tree. Whereas
a weak propagation prunes less values, but is less computationally expensive. The
propagation levels proposed by Gecode [10] are:

• Value propagation: the solver waits for a variable to be bound, then prunes
the domain for other variables.

• Bound propagation: the solver achieves consistency by only considering
minimal and maximal values of the variables’ domains.

• Domain propagation: the solver propagates a constraint every time a
variable’s domain changes.

In the example of a Sudoku line where every square must contain a different
value between 1 and 9, it means a distinct constraint is used on the variables that
represent the squares. Given the line of Figure 2.14, as the values of x2, x4 and x7
are fixed respectively to 2, 1 and 3, the three propagation algorithms will prune
those same values from the domain of the other squares. For value propagation, only
those values will be pruned. The bound propagation algorithm will also see that the
values 4 and 5 can be pruned fron x1’s domain because of x3 and x5. The domain
propagation algorithm will see even further, and will also prune 7 and 9 from x6’s
domain because of x8 and x9.

It can be seen that domain propagation is the stronger algorithm, but it is also
really computationally costly. This is due to it evaluating the constraint for each
value in every variable’s domain.

16

2.3.3 Branching Heuristics
Branching is what defines the tree’s shape, based on the two-step decisions it

takes. It requires to decide which variable to branch on and what values to bind it
to at each branch.

Two different strategies could be to do a binary branching to bind a variable to a
precise value of its domain, or to split its domain in two parts. Other strategies are
possible on n-ary trees but will not be explored in this thesis. The heuristic chosen
will determine the size of the search tree. It is therefore important to choose wisely.

Two logical branching heuristics exist for variable and value selection that are
widely used in Constraint Programming:

• First-fail: when selecting a variable, if there is no solution under a node,
the aim is to discover it as soon as possible and not spend too much time on
impossible solutions.

• First-success: when selecting a value or a partition, if there is a solution
under a node, the aim is to find it as soon as possible. Therefore, this strategy
must determine the most promising value for the variable to branch on.

These branching heuristics are used together, first-fail for variable selection, and
first-success for value selection. Gecode proposes several variable selection strategies
from which one can chose from:

• Select the variable with the smallest domain

• Select the most constrained variable

• Select the variable that has failed the most

• Select the variable with highest ratio of degree of constraints over domain size

One must be careful when choosing a variable selection strategy as it could go
against the first-fail principle. As for the value selection, choosing a strategy that
follows the first-success principle is a more subtle task. Indeed, in the example
of a strictly descending melody, then the most promising choice of value for the
first variable would be the maximum value of its domain, which would respect the
constraints but would not make for an original melody.

2.3.4 Tree Traversal Strategies
Now that how the tree is formed has been established, the decision of how it’s

explored is left to be made. Gecode proposes several strategies in the form of search
engines, but only two were used for this thesis. The following explanations will discuss
the Constraint Programming aspects of each strategy, and some of the advantages
and disadvantages of each exploration method when applied to musical composition.

17

Depth-First Search (DFS)

Depth-First search is a well known strategy to explore a tree. Starting at the
root, the algorithm goes down every left child until reaching the left-most leaf of the
tree. It then goes up one node at a time and explores the right branch of this node.
Figure 2.15 shows the exploration path for a tree of eleven nodes.

Figure 2.15: Example of a Depth-First exploration path in a tree of eleven nodes

From a composer’s view point, this exploration strategy is not the most interesting.
Indeed, two successive solutions given by this algorithm in the context of Constraint
Programming will be successively explored leaves. As those two leaves are separated
by only a few variable assignations, the different musical pieces obtained will differ
by as many notes.

Furthermore, when the first left branch does not lead to any solution, a lot of
time might be wasted by the search engine on exploring the left-most side of the tree.
This is the reason why the branching strategy must be chosen wisely. A well chosen
heuristic might lead, in the situation explained before, to explore the right-most side
of the tree first, thus finding a solution faster.

Lastly, it is not possible to use a pure DFS search for a Constraint Optimisation
Problem (COP). Indeed, this algorithm will explore the tree and give all the solutions
found, regardless of any objective function.

Branch and Bound (BAB)

Branch and Bound is an interesting algorithm because it allows for more
varied uses. It follows the same exploration principle as Depth-First search, with the
subtlety that each time a solution is found, the solver adds new constraints. This
makes it possible to solve a Constraint Optimisation Problem by imposing, every
time a solution is found, that the next solution must give a better cost than the one
found. Therefore, the last solution found will be the best solution, the one minimising

18

or maximising the objective function. This strategy can be used in different cases,
for example:

• In the specific domain of musical composition, a composer might want to
minimise the dissonance between two instruments playing at different scales.
This requires a COP rather than a CSP. Another example would be when
working with chords. To avoid a chord progression to sound too disjointed, the
composer might try to minimise the span of the chord progression (that is,
the difference between highest and lowest pitch).

• Furthermore, it can be used in a case where there is no objective function to
optimise, to impose a difference between two successive solutions. This allows
for a larger variety of solutions. Indeed, by constraining a certain amount of
variables to be different from the current solution, the solver will be forced to
find another solution further in the tree.

• Lastly, BAB has a really important upside: relaxation. If the solver is not
able to find a solution, when the solution space is empty, the problem can
be relaxed. This is done by allowing some constraints to be violated. With
BAB, the number of violated constraints can be minimised by using reified
constraints (see section 3.1.3).

Figure 2.16: Example of Branch and Bound exploration path in a tree of eleven nodes

Figure 2.16 shows an example tree exploration using Branch and Bound. As can
be seen, BAB prunes some branches of the tree. This is done either by forbidding
the assignment of a variable to certain values, or by computing the objective function
and deciding that no better solution can be found on that branch.

19

Chapter 3

Software Background

This chapter aims to convey sufficient software and tool-specific knowledge, which
will prove necessary for the following chapters of this thesis. To this effect, section
3.1 goes over the Gecode constraint programming library, and the different parts that
are used in Melodizer Rock. Section 3.2 gives an overview of important concepts
within OpenMusic. Section 3.3 describes Damien Sprockeels’ work on Melodizer 1.0
and GiL, alongside how it was used as a base for the following Melodizer iterations.
Finally, section 3.4 describes Melodizer 2.0 concepts which Melodizer Rock built on.

3.1 Gecode
As described in its Modelling and Programming guide [10], Gecode is an "open,

free, portable, accessible and efficient environment for developing constraint-based
systems and application". It has been used since the start of Melodizer, in the
work of D. Sprockeels, to model the Constraint Satisfaction Problem that is musical
composition. This section aims to explain the concepts of Constraint Programming
offered by Gecode which are used in the implementation of Melodizer Rock (see
chapter 4).

3.1.1 Variables
Gecode offers different types of variables, each associated to its own set of

constraints and uses. Three types of variables were used in Melodizer Rock:

• IntVar: a variable that can be bound to one integer value, and its domain is
the set of integers it can possibly take.

• BoolVar: a variable that represents a boolean value. Its initialisation actually
takes a domain as an argument but any attempt to create a BoolVar with
values different from 0 and 1 will throw an exception.

• SetVar: a variable that can be bound to a set of integers. Its domain is also a
set of integers, but SetVar variables can take multiple values from this set. A

20

problem can post a constraint restraining the cardinality of a SetVar, that is,
the number of values it can or must be bound to at a time. An interesting set
that exists in Gecode is the empty set IntSet::empty.

These different variables are initialised as follow:

1 // Creates an integer variable x and sets its domain to {l, ..., h}
2 IntVar x(home, l, h);
3 // Creates a Boolean variable y and sets its domain to {0,1}
4 BoolVar y(home, 0, 1);
5 // Creates a Set variable z and sets its domain to {{}, ..., {n1, ...,

n2}} and its cardinality domain to [cl ... ch]↪→

6 SetVar z(home, IntSet::empty, IntSet(n1, n2), cl, ch);

It is important to note that a BoolVar is not an IntVar with a domain of {0, 1}.
The only possible way to get an Integer variable that is equal to a Boolean variable
is through a channel constraint. When building a problem, it might be useful to use
arrays of those variables. To that end, Gecode offers arrays of the aforementioned
variables, which can be used like variables. For example:

1 // Initialise an array x of n IntVar variables with domain {l, ..., h}
2 IntVarArray x(home, n, l, h);
3 // Initialise an array y of n BoolVar variables with domain {0,1}
4 BoolVarArray y(home, n, 0, 1);
5 // Initialise an array z of n SetVar variables with domain {l, ..., h}

and cardinality domain to [cl ... ch]↪→

6 SetVarArray z(home, n, l, h, cl, ch);

It is also possible to instantiate an IntVar or a BoolVar using an expression of
two other integer variables x and y:

1 IntVar z=expr(*this, a*x+b*y+c); // z = a * x + b * y +c
2 BoolVar bool=expr(*this, x <= s); // bool = (x <= y)

3.1.2 Constraints
Gecode offers a plethora of constraints for the aforementioned variable types.

The following section will explain the ones used throughout Melodizer Rock. It is
therefore not an exhaustive list of the constraints that Gecode proposes.

Domain Constraints

The domain constraints constrain the domain of a variable, or variable array,
to a given set of values. They are written as follows:

21

• For a IntVar variable x

1 dom(*this, x, l, h); // l is a lower bound, h a higher bound
2 dom(*this, x, d); // d is an IntArgs, a set of int

• For a BoolVar variable, the dom constraint cannot be used, a relation constraint
is used instead

• For a SetVar variable y, two domain constraints exists, dom modifies the values
the variable can take, and cardinality modifies the number of values it can
take, it uses relation types that are explained with the following constraints

1 dom(*this, y, REL_TYPE, l, h);// l and h are the domain bounds
2 dom(*this, y, REL_TYPE, s); // s is a set
3 dom(*this, y, d); // d is another variable set
4 cardinality(*this, x, l, h);// l is a lower bound, h a higher bound

• For an IntVarArray, BoolVarArray or a SetVarArray x

1 dom(*this, x, d);//d an array of integer, boolean or set variable

Relation Constraints

Relations constraints are the most used constraints, as they can express
many different logical and arithmetic relations between variables. They represent a
constraint that imposes a relation between two variables. For the different types of
variables, there exists different types of relations:

• For IntVars:
IRT_EQ equality (=) IRT_NQ inequality (̸=)
IRT_LE strictly less (<) IRT_LQ less or equal (≤)
IRT_GR Strictly greater (>) IRT_GQ greater or equal (≥)

• For BoolVars, they are more operation than relation types:
BOT_AND conjuction (∧) BOT_OR disjuction (∨)
BOT_IMP implication (⇒) BOT_EQV equivalence (⇔)
BOT_XOR exclusive or (̸⇔)

• For SetVars:
SRT_EQ equality (=) SRT_NQ inequality (̸=)
SRT_LE strictly less (<) SRT_LQ less or equal (≤)
SRT_GR Strictly greater (>) SRT_GQ greater or equal (≥)
SRT_SUB subset (⊆) SRT_SUP superset (⊇)
SRT_DISJ disjoint (||) SRT_CMLP complement (·)

22

Relation constraints can be used in different ways with those three types of
relations:

• With two variables x and y (that must be of the same type: integer, boolean,
set, or arrays of any of those types), a relation can be expressed as follows:

1 rel(*this, x, REL_TYPE, y);// x REL_TYPE y

• Three boolean variables x, y and z, can be constrained in a relation as follows:

1 rel(*this, x, REL_TYPE, y, z);// x REL_TYPE y = z

• With an array of integer variables x of size k − 1, a relation can be imposed
between x’s elements:

1 rel(*this, x, REL_TYPE);// x0 REL_TYPE x1 REL_TYPE ... REL_TYPE xk

• With a boolean variable x of size k − 1 and a boolean variable y, a relation
can be imposed as follows:

1 rel(*this, REL_TYPE, x, y);// (x0 REL_TYPE x1 ... REL_TYPE xk) = y

• With a set variable x and an integer variable y, a relation can be imposed
between all of the set’s values and the integer:

1 rel(*this, x, REL_TYPE, y);// all values in x REL_TYPE y

• With three set variables x, y and z and a boolean variable b, an if-then-else
constraint can be imposed:

1 ite(*this, b, x, y, z);// if b then z = x, else z = y

Arithmetic Constraints

Arithmetic constraints are only applicable to integer variables and their arrays.
Melodizer Rock actually only uses the minimum and absolute constraints for intervals
(as explained in section 4.3.2).

The minimum constraint imposes that, for an array of integer variables x and
an integer variable y, y is the minimal value of x’s variables:

23

1 min(*this, x, y); // y = min(x)

The absolute constraint imposes that, for two integer variables x and y, y is
the absolute value of x:

1 abs(*this, x, y); // y = |x|

Counting Constraints

Counting constraints are quite frequent in Melodizer Rock’s implementation.
They count how often values are taken by an array of integer variables. This thesis
used the simplest version of those constraints. Given and integer variable array x,
and two integer variables y and z, it can imposed that

z = |{xi ∈ x | xi REL_TY PE y}|

In other words, it counts the number of variables of x respecting the relation with y:

1 count(*this, x, y, REL_TYPE, z);

Set Operations

Set operations are relation constraints that perform operations on sets, according
to the type in the following table:

SOT_UNION union (∪) SOT_INTER intersection (∩)
SOT_DUNION disjoint union (⊎) SOT_MINUS set minus (\)

It can be used with set variables x, y and z or an array of set variables s of size
k − 1:

1 rel(*this, x, OP_TYPE, y, REL_TYPE, z);// z REL_TYPE (x OP_TYPE y)
2 rel(*this, OP_TYPE, s, y);// y = (s0 OP_TYPE s1 ... OP_TYPE sk)

3.1.3 Reified Constraints
Reified constraints are a variant of generic constraints whose validity is reflected

by a boolean control variable. There exists full and half reification. Full reification
corresponds to a two-sided implication, for b a boolean variable and x and y integer
variables:

b ⇔ x REL_TY PE y

Which leads to different cases:

1. If b is assigned to 1, the constraint x REL_TY PE y is propagated

24

2. If b is assigned to 0, the constraint ¬(x REL_TY PE y) is propagated

3. If the constraint x REL_TY PE y holds, then b = 1 is propagated

4. If the constraint ¬(x REL_TY PE y) holds, then b = 0 is propagated

A half reification can be of different types, each implying some of the different
cases above:

RM_IMP implication (b ⇒ x REL_TY PE y) cases 1 and 4
RM_PMI inverse implication (b ⇐ x REL_TY PE y) cases 2 and 3
RM_EQV equivalence, full reification all cases

As shown in this table, the full reification can be expressed with the type RM_EQV .
Therefore, to use reification with two integer variables x and y, a boolean variable b
and a reification variable r one can write:

1 Reify r(b, RM_TYPE);
2 rel(*this, x, REL_TYPE, y, r);

3.1.4 Branching
Gecode offers predefined variable-value branching by calling branch(*this, x,

var_selection, val_selection). This function’s third argument corresponds to
a variable selection strategy, while the fourth argument is for the value selection.
The different variable selection strategies available for Melodizer Rock are:

• INT_VAR_SIZE_MIN(): selects the variable with the smallest domain size

• INT_VAR_RND(): selects the variable at random

• INT_VAR_DEGREE_MAX(): selects the variable with the highest propagator de-
gree, the most constrained variable

• INT_VAR_NONE(): selects the first unassigned variable

For value selection, there are also several strategies available:

• INT_VAL_MIN: selects the smallest value of the domain

• INT_VAL_RND: selects a value of the domain at random

• INT_VAL_SPLIT_MAX: selects values not greater than (min + max)/2

• INT_VAL_SPLIT_MIN: selects values not smaller than (min + max)/2

• INT_VAL_MED: selects the greatest values not bigger than the median

These are non-exhaustive lists of the available strategies in Gecode, and are the
ones that were explored for Melodizer Rock.

25

3.1.5 Search
As explained in the discussion about Constraint Programming 2.3, Gecode offers

different search engines for different exploration methods. Those used in Melodizer
Rock are Depth-first and Branch-and-Bound search engines. These engines possess
some functions and attributes that can be used to optimise the search:

• next() is a function allowing to request the next solution the solver can find.
If there is no more solution in the search space, this function returns NULL.

• statistics() is a function that gives statistical information about the search,
such as the executed propagators, the number of failed or total nodes explored
and the depth of the explored tree.

• stopped() is a function that queries whether the search engine has been
stopped.

• A destructor deletes all resources used by the search engine.

A BAB search engine also has a constrain() function that allows to constrain the
next solutions based on a obtained solution, as explained in section 2.3.4.

Search Options

A search engine can take options that define how to proceed with the search. The
ones used in Melodizer Rock are the number of threads and the Stop objects.

Threads allow a program to run multiple computations in parallel. It allows for
a more efficient program, as the complete computation is thus done faster. Imagine
that the computer used has m threads, and that the value given in the options is n
threads, different cases arise:

• n = 0 then m threads are used

• n ≥ 1 then n threads are used

• n ≤ −1 then m + n threads are used

• 0 < n < 1 then n · m threads are used

• −1 < n < 0 then (1 + n) · m threads are used

Stop objects implement a single function stop() that takes two arguments, a
search statistic object and a search options object. This function returns true or
false. A search object acts as a condition to stop the search. When a stop object is
given to a search engine, the engine calls the stop() function before every exploration
step, with the current statistics as argument, and stops the execution if it returns
true. Once a search engine is stopped, its next() function will only return NULL as
a solution.

26

3.2 OpenMusic
OpenMusic [11] is a musical composition oriented software built for composers,

by researchers at IRCAM Paris. It uses a graphical data-flow approach to musical
composition and aims to assist the composer in the creation of their complex musical
idea.

3.2.1 Patches
When launching OpenMusic, the first window which a user is greeted by is the

Workspace. This workspace allows for the creation of patches (cf. Figure 3.1),
which correspond to the highest-level form of interactive element within OpenMusic.
This concept was inspired by music synthesizers. Within a patch, a user can create
their projects by utilising the capabilities of OpenMusic as well as the ones loaded
from (user-defined) libraries.

Figure 3.1: Logo of the OpenMusic patch

Some of these capabilities involve creating instances of OpenMusic-specific classes
such as voice and poly objects described in section 3.2.3. While others come from
libraries such as GiL, described in section 3.3.1.

3.2.2 Editors
Editors are used hand-in-hand with most objects in OpenMusic, and a box’s

internal editor opens with a double click on said box (within a patch). An editor
is typically composed of panels, buttons, check-boxes, sliders, drop-down menus.
Panels are essentially regions of an arbitrary size which can contain any of the
aforementioned elements, within an editor. Buttons, check-boxes, sliders and drop-
down menus are all elements which are fairly explicit and whose functionalities won’t
be further described.

3.2.3 Voice and Poly Objects
Voice and Poly objects are two essential building blocks in OpenMusic, they

are used to represent music in a conventional way, by displaying notes on staffs,
separated by bars.

Voice objects are used when only one staff is needed to represent the music, as
it is their limitation and how they are defined in OpenMusic. Poly objects however,
are used when multiple staffs are needed to represent the music. Figures 3.2 and 3.3
below showcase the difference between the editors of voice and poly objects. Both
of these objects allow the user to listen to the represented music, by connecting a
synthesizer to OpenMusic and clicking the play button in the menu bar.

27

Figure 3.2: Example of a Voice object editor in Open Music

Figure 3.3: Example of a Poly object editor in Open Music

Rhythm trees are a concept used hand in hand with voice and poly objects.
They correspond to a list describing the piece’s rhythm, by indicating the number
of measures, the time signature, and the rhythmic proportions for each measure.
Figure 3.4 gives an example of a rhythm tree. In this example, there are two
measures, each has a 4/4 time signature, and the second is comprised of 6 notes. The
rhythmic proportion list indicates the proportional length of each note according to
the total sum on the bar. The two-element sub-list in the second measure’s rhythmic
proportion list, represents a group of notes. The first element indicates the length
duration of the group, and the second element is the rhythmic proportion within the
group. Positive values represent notes, and negative values represent rest periods.

3.3 Melodizer 1.0
Melodizer 1.0 was built as an external library supplementing OpenMusic with ca-

pabilities beyond this software’s initial scope. This is done by introducing Constraint
Programming, to enforce musical rules through Constraint Satisfaction Problems,

28

Figure 3.4: Example of a rhythm tree used in Open Music

aiming to provide interesting "out-of-the-box" musical ideas for the composer [2].

3.3.1 GiL
GiL was built as a solution to express Gecode CSPs in Common Lisp. It was

initially developed by Baptiste Lapière in the context of his Master Thesis [1] and
then further extended by Damien Sprockeels in the same context. It has now become
a project with multiple contributors, and is used in every version of Melodizer
including Melodizer Rock.

The Gecode concepts described in section 3.1 have analogous implementations
in GiL, with almost identical nomenclature, and Melodizer Rock did not bring any
significant contribution to GiL. For these reasons, and because GiL will likely be
discontinued in future iterations of Melodizer, its implementation details won’t be
discussed. However, a general explanation of its structure is given below. An example
of use is available in Appendix D.

Overview and Explanation

To create this interface between Gecode and Common Lisp, two main parts are
needed. Since Gecode is a C++ library, and Common Lisp can only call foreign C
code, the Gecode functions used by GiL are first wrapped in C code which can then
be called by the Common Foreign Function Interface (cffi) library in Common
Lisp. This process is explicitly shown in figure 3.5. Each file in the pipeline has a
box associated to it, and when a function in file A calls a function from file B then
an arrow is drawn from file A to file B.

Figure 3.5: GiL function calls path through its various files

As this pipeline is best explained from Gecode to Common Lisp rather than
following the actual function calls, let’s discuss it in this order.

29

C Wrapper

The C wrapper is used to wrap the Gecode C++ code into C code, such that
Gecode functions could be called from C. It is decoupled into two files where
space_wrapper.cpp wraps Gecode’s space, and gecode_wrapper.cpp is the C li-
brary containing calls to the methods defined in the previous file.

Common Lisp Wrapper

This wrapper is defined by the two left-most boxes in figure 3.5 and is used to
wrap the C library defined in gecode_wrapper.cpp. The first part of the Common
Lisp wrapper happens in gecode-wrapper.lisp. It is where the C library is called
from, and this is done using cffi foreign function calls. The second part happens in
gecode-wrapper-ui.lisp, and is essentially used to clean up the signature of the
functions to facilitate GiL’s usage.

3.3.2 Search
The biggest novelty brought with Melodizer 1.0, which was a building block

towards Melodizer Rock, is the search mechanism contained within the Melodizer
object. It is this same mechanism which is used as base in Melodizer 2.0 and
Melodizer Rock’s search. This addition allowed users to create a CSP, start the
search and explore the CSP’s solutions, all through a user interface contained within
an OpenMusic editor.

3.4 Melodizer 2.0
Melodizer 2.0 [3] extends Damien Sprockeels’ Melodizer 1.0 with new capabilities.

Two instantiable classes (Blocks, Search) and a new representation of music are
the most notable additions. These additions were a great source of inspiration and
essential building blocks in the making of Melodizer Rock. A concise description of
the music representation, Blocks, and Search are provided in the following sections.

3.4.1 Music Representation
Along with Melodizer 2.0 came a new representation of music. This representation

aims to create the rhythm of the melody in an intuitive and simple fashion, by using
three different variables, push, pull and play. Each variable is an array containing
a fixed number of entries, this number corresponds to the number of times the
smallest possible note can be played in the musical piece. In their implementation,
the smallest note can be played 192 times per measure and if a piece contains only
one measure, then the push and playing arrays will contain 192 elements and pull
193. The one additional element in pull comes into play at the end of the piece,
where all playing notes are pulled.

As this representation is what is used for Melodizer Rock, a more thorough
explanation along with examples can be found in section 4.1. The addition of

30

SetVarArrays introduced in Melodizer 2.0, to represent multiple notes at the same
time, was also used in Melodizer Rock. Indeed, this data structure was a brilliant
way to represent chords being played in the accompaniment.

3.4.2 Blocks
Melodizer 2.0’s Blocks are a class that can be instantiated within an OpenMusic

patch, Blocks are used to represent a portion or totality of a musical piece with
constraints. Each of these instances represent a CSP that can be solved individually.
Blocks have multiple inputs and outputs, melodies under the form of voice objects
can be taken as input and their content will be added to the CSP. Blocks can also
be connected together to form one larger portion of the musical piece.

The addition of the Blocks class came with notable constraints and interface
changes, which are a source of inspiration in Melodizer Rock. Such constraints
covered different areas of the musical piece, general constraints relating to Blocks,
rhythm constraints, and pitch constraints. A thorough explanation of how these
constraints were implemented can be found in Melodizer 2.0’s master thesis [3].

Among these constraints, several were used in Melodizer Rock: bar length,
minimum/maximum pushed notes, minimum/maximum note length, chord key and
quality selection, and minimum/maximum pitch. All of these constraints alongside
their use within Melodizer Rock, is thoroughly explained in section 4.3. Additionally,
the interface used in Blocks bridged the gap between the user and the aforementioned
constraints, and is the base interface on which Melodizer Rock was built.

3.4.3 Search & Solver
The Search class contains the solver, and it is like Blocks in the sense that it can

be instantiated within an OpenMusic patch. A Search object has to be connected
to a Block instance, or some tree-like structure of interconnected Blocks instances,
in order to solve the CSP which they are represented by.

The solver defined in Melodizer 2.0’s Search object was used as inspiration for
Melodizer Rock’s own solver implementation. It follows the basic setup of a solver in
Gecode, while being written in GiL, and interacts with OpenMusic.

First of all, branching and solution variables are picked (a combination of push,
pull and playing), and search options are used to instantiate the search-engine.
Once this search engine is created for the CSP, the search for solutions is done by
interacting with GiL, and returning OpenMusic objects which represent the solution
melodies.

The search for solutions is executed in a seperate thread to that of OpenMusic,
so as to not hinder or block it during the search. It is an iterative process, where one
solution is returned at a time, and the user must interact with the Search interface
to obtain the next solution.

31

Chapter 4

Melodizer Rock : Implementation

This chapter describes Melodizer Rock’s implementation. Section 4.1 discusses
the chosen musical representation. Section 4.2 explains the implementation structure.
Sections 4.3 and 4.4 go over the general and block-specific constraints defining
Melodizer Rock’s constraint satisfaction problem. Finally, section 4.5 describes the
solver used to solve the aforementioned constraint satisfaction problem.

4.1 Music Representation
The approach chosen to represent music is to utilise three arrays: push, pull,

playing. Each of these arrays has a number of elements equivalent to the maximum
number of shortest notes per measure (16 here), multiplied by the number of total
measures in the musical piece. These arrays are, for the melodic line, Gecode
IntVarArrays as explained in section 3.1. For the accompaniment, as multiple notes
can be pushed, pulled or played simultaneously, they are Gecode SetVarArrays.

4.1.1 Melody Representation
Rock songs mostly use the melodic line as a singing line. As a human voice can

only produce one note at a time, variables allowing one note per quantification were
enough and the most practical to use. IntVarArrays are perfectly suited for the
construction of a melody in Melodizer Rock, as they allow for exactly one integer at
every ith quantification.

push[i] represents a note that is pushed at at the ith quantification in the piece,
playing[i] represents a note that is played at the ith quantification in the piece, and
pull[i] represents a note that stops being played (is pulled) at the ith quantification
in the piece. Since IntVarArrays are used, a pushed note is the only note playing,
until it is pulled, which translates to the following implication:

32

push[i] = note

pull[j] = note

⇐⇒
∀k ∈ [i, ..., j − 1] playing[k] = note

(4.1)

The figure 4.1a shows an example of a melody representation with 10 time slots.
It can be seen that, when the previous playing note is pulled and no note is pushed,
then no note is played at that time, leading to a −1 value in playing. Meanwhile, a
note can be pushed and pulled at the same time, leading to the same note playing
twice rather than this note linked to the other and playing once.

(a) Example of the melody representation with the three
arrays

(b) Equivalence of the melody on a
score

Figure 4.1: Melodic line representation used throughout Melodizer Rock and its
equivalence on a score

4.1.2 Accompaniment Representation
In rock music, accompaniments are typically guitar or piano chords. Therefore,

multiple notes need to play simultaneously. This is not possible with IntVarArrays,
as it only allows for one integer at the ith quantification, thus only allowing one note
to play at a time. This explains the need for these three arrays to be SetVarArrays.

The relation between those arrays is a bit more complicated due to the use of
SetVars. push[i] represents the set of notes that are pushed at the ith quantification,
playing[i] represents the set of notes playing at the ith quantification, and pull[i]
represents the set of notes being pulled at the ith quantification. This means that a
note pushed is not necessarily the only one playing until it is pulled. The relation
from equation 4.1 is thus translated as follows:

note ∈ push[i]
note ∈ pull[j]

⇐⇒
∀k ∈ [i, ..., j − 1] note ∈ playing[k]

(4.2)

33

Figure 4.2a shows an example of an accompaniment done using SetVars. As can
be seen, some simultaneously pushed notes aren’t necessarily pulled simultaneously.
Those which aren’t pulled keep playing.

(a) Example of the accompaniment representation with
the three arrays

(b) Equivalence of the accompaniment
on a score

Figure 4.2: Accompaniment representation used throughout Melodizer Rock and its
equivalence on a score

4.2 Structure
Melodizer Rock follows a tree-like structure based on the rock music genre

(explained in more details in section 2.1). The top level being the entire musical
piece, it is built from a sequence of blocks A and B. Such blocks are themselves
built from a sequence of blocks s, r, d and c, meaning that the structure of a typical
AABA sequence for the entire musical piece is represented as depicted in fig. 4.3

Figure 4.3: AABA tree-like structure representation

In order to implement this structure, a class had to be created for each type
of block which it is composed of. As can be expected many of these classes share
attributes, and by default these shared attributes inherit values from their parent
blocks (e.g. an s block will inherit values from its parent A block for the common
attributes). The entire musical piece is represented by the Rock block, and is the
root of the tree in fig. 4.3. It contains the values which will be inherited by the

34

common attributes of its children blocks’ (A and B). Blocks s, r, d and c also
inherit values for their common attributes, from their parent block. There also exists
some form of horizontal inheritance between A blocks, and between B blocks. This
horizontal inheritance implies that the change of an attribute in a block of a certain
type, will be propagated to other blocks of the same type. It is active when the
relative-to-same flag (present in A and B blocks) is set to 1.

Values of many of these attributes can also be changed through the interface,
which allows for overriding the vertically inherited values (further explained in section
5). The following sections will describe the aforementioned blocks, alongside their
attributes and intricacies.

4.2.1 Rock

The Rock block contains information pertaining to the entire musical piece.
Attributes in Rock such as min-note-length, max-note-length, chord-key, chord-
-quality, min-pitch and max-pitch contain values which will be used to constrain
the whole musical piece. Rock also has various other attributes such as flags (i.e. to
set values if a box in the interface is checked), block-list containing the blocks (A
and B) which the global musical structure is made of, solution and result used
to handle the current solution of the CSP, percent-diff containing the difference
percentage to be imposed between successive solutions when using Branch And
Bound.

Finally, Rock also has two attributes pertaining to the source melodies that can
be given to the problem, melody-source-A and melody-source-B. These attributes
are nil by default, and only have a value appointed to them when the composer
chooses to pass a voice object as input to Rock. If source melodies have been given,
melody-source-A will be used to set the structure’s first A block’s s phrase, and
melody-source-B will be used to set the structure’s first B block’s s phrase.

The source melody given as input mustn’t be longer than the default measure
quantification used in Melodizer Rock (16 sixteenth notes) times the amount of
measures used for the s phrase. If the source melody’s length is equal to this value,
then the aforementioned behaviour is applied. And if the source melody’s length is
less than this value, the first part of the s phrase is set to the source melody. After
which the remainder of s is constrained as it would be if no source melody was given.

Default values given to the Rock block’s attributes are typically nil, however
some exceptions are made so that the software functions as smooth as possible out
of the box. These default values are arbitrary and are listed in the following code
snippet.

1 (min-note-length :accessor min-note-length :initform 1 :type integer)
2 (max-note-length :accessor max-note-length :initform 16 :type integer)
3 (chord-key :accessor chord-key :initform "C" :type string)
4 (chord-quality :accessor chord-quality :initform "Major" :type string)

35

5 (min-pitch :accessor min-pitch :initform 1 :type integer)
6 (max-pitch :accessor max-pitch :initform 127 :type integer)
7 (percent-diff :accessor percent-diff :initform 1 :type integer)

4.2.2 A and B

Unless explicitly stated, A and B blocks inherit the attributes from Rock and may
add attributes onto this. Among the attributes which Rock has, A and B blocks don’t
share the following: block-list, percent-diff, solution, result. However, ad-
ditional attributes they do contain are: {s,r,d,c}-block, parent, block-position,
block-position-A, block-position-B, similarity-percent-{A, B}0, and finally
relative-to-{parent,same}.

{s,r,d,c}-block attributes contain instances of s, r, d and c blocks which the
current A or B block is composed of, parent is a reference to the current block’s
parent (a Rock block), block-position is used to keep track of the position of the
current block within the overall structure of the music. block-position-A and
block-position-B are used to keep track of the position of the current A or B block
in relation to blocks of the same type, which form the song’s overall structure. These
last attributes are mainly used to set the source melodies only for the first A and B
blocks. similarity-percent-{A,B}0 hold the similarity percent values which are
to be imposed on further A and B blocks, with respect to the first A and B blocks
of the structure.

Finally, relative-to-{parent,same} are flags which are used for vertical and
horizontal inheritance respectively. By default, vertical inheritance is active (relative-
-to-parent is set to 1) and horizontal inheritance isn’t. Vertical inheritance functions
in a straightforward manner, where Rock attribute values are propagated to its chil-
dren A and B blocks. However, when using horizontal inheritance, these attribute
values are propagated between A and B blocks of the same type.

As is the case for the Rock block’s attributes, these attributes are typically nil
by default, however there are some exceptions for some of the additional attributes,
which are listed in the following code snippet:

1 (relative-to-parent :accessor relative-to-parent :initarg
:relative-to-parent :initform 1 :type integer)↪→

2 (block-position :accessor block-position :initform -1 :type integer)
3 (similarity-percent-A0 :accessor similarity-percent-A0 :initform 50 :type

integer)↪→

4 (similarity-percent-B0 :accessor similarity-percent-B0 :initform 50 :type
integer)↪→

5 (block-position-A :accessor block-position-A :initform -1 :type integer)
6 (block-position-B :accessor block-position-B :initform -1 :type integer)

36

7 (s-block :accessor s-block :initarg :s-block :initform (make-instance
's))↪→

8 (r-block :accessor r-block :initarg :r-block :initform (make-instance
'r))↪→

9 (d-block :accessor d-block :initarg :d-block :initform (make-instance
'd))↪→

10 (c-block :accessor c-block :initarg :c-block :initform (make-instance
'c))↪→

4.2.3 s, r, d, and c

Unless explicitly stated, s, r, d and c blocks inherit the attributes from A and
B and add some new ones onto this. The attributes which they don’t share with
A and B are: {s,r,d,c}-block, block-position, similarity-percent-{A,B}0
and block-position-{A,B}. Additional attributes used in s, r, d and c blocks
include: accomp, similarity-percent-s, difference-percent-s, cadence-type,
and min-note-length-mult. Their default values aren’t nil and are listed in the
code snippets below.

The accomp attribute is one that all s, r, d and c blocks have, and points to an
instance of the Accompaniment block described in section 4.2.4.

1 (accomp :accessor accomp :initarg :accomp :initform (make-instance
'accompaniment))↪→

r Dependency with s

similarity-percent-s is an attribute of r blocks, and is a percent value de-
scribing the similarity that is to be imposed on the r block from it’s sibling s
block.

1 (similarity-percent-s :accessor similarity-percent-s :initform 50 :type
integer)↪→

d Dependency with s

difference-percent-s is an attribute of d blocks, and is a percent value de-
scribing the difference that is to be imposed on the d block from it’s sibling s
block.

1 (difference-percent-s :accessor difference-percent-s :initform 75 :type
integer)↪→

37

c Cadence-specific Attributes

cadence-type’s value represents the type of cadence that is used in the current
block and is an attribute of c.

min-note-length-mult’s value represents the value by which the cadence’s
melody’s minimum note length will be multiplied by. The aim is to improve the
cadence’s conclusive feeling and avoid abrupt endings.

1 (cadence-type :accessor cadence-type :initform "Perfect" :type string)
2 (min-note-length-mult :accessor min-note-length-mult :initform 2 :type

integer)↪→

4.2.4 Accompaniment

The Accompaniment block is a very bare-bones block and each s, r, d and c has
an attribute pointing to one. Each block is then used in the poly object alongside
the s, r, d and c blocks, in order to include the accompaniment in the music. By
default the accompaniment has a note length equal to the quantification of a measure
(16), and plays right at the beginning of each measure.

4.3 General constraints
Creating the constraint satisfaction problem as specified by the composer is done

recursively, following the arborescent structure pictured in figure 4.3. A function
aiming to constrain the Rock block, will call a function aiming to constrain each of
the A and B blocks of the given structure. Each of these function calls will then call
a function posting general and block-specific constraints, on each A or B block’s
children. This will be explained in more details in section 4.5.1.

As is implied in this short explanation, most constraints are set on the push,
pull, and playing variables of leaves in figure 4.3. Building the problem this way
rather than posting constraints on each level of the tree, aids in avoiding duplicate
constraints. Even if the solver has efficient ways to handle this, it is avoidable and
renders the implementation cleaner. The implementation of these constraints is quite
lengthy, and of little aid when trying to understand the different links. Therefore,
the C++ code corresponding to the following constraints is available in appendix D.

4.3.1 Accompaniment Constraints
The accompaniment uses some of the constraints from the Blocks of Melodizer

2.0 explained in section 4.2. They allow to link the push, pull and playing arrays
through set constraints. Constraints are also posted to restrain the number of notes
that can play simultaneously. A last set of constraints is picked by the composer
through the interface, and posted for every s, r, d and c Accompaniment block. All

38

the implementation of the constraints explained hereafter are available in appendix
C.1.1.

Link push pull and playing

The first thing to do is to make sure the problem is correctly stated, so that
the variables of the problem are correctly linked to one another. Starting from
equation 4.2 to derive the constraints for arrays push, pull and playing of size k,
∀i ∈ [1, ..., k − 1]:

1. The notes playing at time i are the notes playing at time i − 1 that weren’t
pulled, to which are added the notes pushed at time i:

playing[i] = playing[i − 1] − pull[i] + push[i]

2. No note can be pulled at time i if it wasn’t playing at time i − 1:

pull[i] ⊆ playing[i − 1]

3. A note cannot be pushed at time i if it was already playing at time i − 1 and
not pulled at time i:

push[i] ∩ (playing[i − 1] − pull[i]) = ∅

For the first index of the arrays, the constraints must be adapted:

1. No note can be pulled at the start as no note was playing:

pull[0] = ∅

2. The notes that are pushed at time 0 must play at time 0:

push[0] = playing[0]

Simultaneous Notes

Melodizer Rock allows for only three notes to play simultaneously as it correspond
to the notes of a triad, as described in section 2.1.4. Those two constraints only modify
the cardinality of the variables of the playing array, in the current implementation
it is forced to 3. For all i ∈ [0, ..., k − 1] where k is the size of the array, min-sim
and max-sim being respectively the minimum and maximum number of notes that
can play simultaneously:

min − sim ≤ |playing[i]| ≤ max − sim

39

Constraints from the Interface

The interface allows the composer to personalise the accompaniment. Some of
these criteria are common for every part of the accompaniment:

1. Chord key and chord quality defines the chord, as described in section 2.1.4,
that will play in that part of the accompaniment. Melodizer Rock allows the
notes playing in the accompaniment to be in any octave of the basic chord. If
octaves(chord, quality) provides the set of triads corresponding to the octaves
of the chord, for an array playing of size k, ∀i ∈ [0, ..., k − 1]:

playing[i] ∈ octave(chord, quality)

2. Minimum and maximum note length constrain a pushed note to be pulled
after the minimum note length, and before the maximum note length. For
min-length, the equation can be written as follows, for arrays push and pull
of size k, ∀i ∈ [0, ..., k − 1]:

push[i] ⊈ pull[i + j] ∀j ∈ {1, ..., min_length − 1}

For max-note-length, the equation is for arrays push and pull of size k,
∀i ∈ [0, ..., k − 1]:

push[i] ∈
⋃

j∈{1,...,max_length−1}
pull[i + j]

3. Minimum and maximum pitch limits the values that the SetVars can
contain. It corresponds to limiting the domain of the variables in push, to
be contained between min-pitch and max-pitch for an array push of size k,
∀i ∈ [0, ..., k − 1]:

push[i] ⊆ {min_pitch, ..., max_pitch}

4.3.2 Melody Constraints
As the melody uses IntVar variables for all three arrays, the constraints of

Melodizer 2.0 [3] had to be adapted. Therefore, a new set of constraints are set to
link push, pull and playing, as well as another set for the constraints updated in
the interface. A last constraint posted on the melody corresponds to the requirement
on the intervals, explained in section 2.1.3. The implementation of the constraints
explained hereafter are available in appendix C.1.2.

Link push pull and playing

As for the accompaniment, the first step was making sure the initial problem
was correctly stated. This is done by linking the three arrays. From equation 4.1
the following constraints were derived for arrays push, pull and playing of size k,
∀i ∈ [1, ..., k − 1]:

40

1. The note playing at time i is either the same note playing at time i − 1 or a
note pushed at time i:

playing[i] = playing[i − 1] || playing[i] = push[i]

2. Either the note pushed at time i is played a time i, or no note is pushed:

push[i] = playing[i] || push[i] = −1

3. Either the note pulled at time i was playing at time i − 1 or no note is pulled:

pull[i] = playing[i − 1] || pull[i] = −1

4. If a note is pushed at time i, the note playing at time i − 1 must be pulled:

push[i] ̸= −1 ⇒ pull[i] = playing[i − 1]

5. If no note is playing at time i, no note can have been pushed at time i, and
the note playing at time i − 1 must have been pulled:

playing[i] = −1 ⇒ push[i] = −1 && pull[i] = playing[i − 1]

6. If the notes playing at time i and i − 1 are identical, then either the same note
has been pushed and pulled, or no note has been pushed and pulled:

playing[i] = playing[i − 1] ⇔ push[i] = pull[i]

In addition to that, since the previous constraints don’t constrain the first index
of the arrays, two other constraints are posted to do so:

1. No note can be pulled in the first index, as no note was playing before:

pull[0] = −1

2. A note that is pushed at time 0 must play at time 0:

push[i] = playing[i]

Constraints from the Interface

Similarly to what is done for the accompaniment, the melody has constraints on
each block based on values from the interface. They were inspired from the optional
constraints on Blocks from 3.4, but had to be adapted to IntVarArrays.

41

• Chord key and chord quality define the scale on which the notes are played.
Melodizer Rock forces every note to belong to the scale corresponding to the
chord and quality given in the interface. Considering scaleset(chord,quality) as
the set of notes of the scale, this can be written, for an array playing of size
k, ∀i ∈ [0, ..., k − 1]:

playing[i] ∈ scaleset(chord, quality) || playing[i] = −1

• Minimum and maximum note length like for the accompaniment, constrain
the distance between the moment a note is pushed and pulled, but also the
minimal length of a rest. For the minimum, it is imposed for arrays push and
pull of size k, ∀i ∈ [0, ..., k − 1]:

push[i] ̸= −1 ⇒ pull[i + j] = −1 ∀j ∈ {1, ..., min_length − 1}

For rests, ∀i ∈ [1, ..., k − 1], ∀j ∈ [1, ..., min_length − 1]:

playing[i − 1] ̸= −1 && playing[i] = −1 ⇒ playing[i + j] = −1

For the maximum note length, it is imposed for arrays push and pull of size
k, ∀i ∈ [0, ..., k − 1]:

push[i] ̸= −1 ⇒ push[i] ∈
⋃

j∈{1,...,max_length−1}
pull[i + j]

• Minimum and maximum pitch limits the values that the IntVars can
contain. As for the accompaniment, this can be translated to limiting the
domain of the variables in push, to be contained between min-pitch and
max-pitch or -1. For an array push of size k, ∀i ∈ [0, ..., k − 1], this is written
as:

push[i] ⊆ ({min_pitch, ..., max_pitch} ∪ {−1})

Intervals

The simplified principles that were defined in section 2.1.3 can be turned into
constraints. Melodizer Rock implements only the first: the interval between two notes
cannot be larger than a perfect fifth, so for a playing array of size k, ∀i ∈ [1, ..., k−1],
one can write:

|playing[i] − playing[i − 1]| ≤ 7 if playing[i] ̸= −1

4.4 Block-specific Constraints
Given what different blocks represent, it is expected that each block might

have some specific constraints posted on it. The following sections give in-depth
descriptions and explanations of these block-specific constraints.

42

Figure 4.4: AABABA structure, with A and B indexes

4.4.1 A and B-specific Constraints
Both A and B have one specific constraint that is posted on them. This constraint

aims to impose a similarity between blocks of the same type forming the musical
piece’s structure. For example in an AABABA structure (cf. Figure 4.4), where
the first A block’s melody is A0 and the first B block’s melody is B0, all following
A blocks’ melodies will be constrained to be similar to A0, and equivalently for B
and B0. By default these similarities are both set to 50%. This creates horizontal
relations between A and B blocks of the same type, by posting constraints on their
variables, and by having shared variables. Constraining these melodies to be similar
is done by imposing a similarity metric between different push arrays. Given two
arrays pushx and pushy with respectively i and j elements, their resemblance (in
percent) sim is computed as such:

k = min(i, j)

sim = | {pushx[l] : pushx[l] = pushy[l] | l ∈ [0, k − 1]} |/k

Constraining an A block to be at least similarity-percent-A0 similar to A0
is done with the use of the cst-common-vars function (cf. appendix C.2.2), and
analogously for B with similarity-percent-B0 and B0. Considering the previous
definition of k, pushx, pushy, and given a similarity minsim, this function posts
the following constraints:

count = | {pushx[l] : pushx[l] = pushy[l] | l ∈ [0, k − 1]} |

count >= ⌈minsim ∗ k⌉

This similarity constraint is then applied to all blocks Am for m > 0 within the struc-
ture, and analogously for Bm blocks within the structure (in this case, constraining
the similarity to B0).

This similarity can also be done on a transposed piece of music. As A and B
block don’t yet allow for a transposition of a certain amount of semitones, it is
imposed using the scale. It is done by constraining that a note on the scale of the
initial melody, the one coming from A0 or B0, is transposed to the note at the same
place on the scale of the block we want to constrain. Given the same x and i as
before, indexscale(chord, quality, note) is the index of a note on the scale defined by
chord and quality. Then chordx and qualityx are the chord and quality in which the

43

melody of x is set. Finally t is the transposed melody with same length as x, and
chordt and qualityt define the scale to transpose to, it can be written ∀j ∈ [0, ..., i]:

indexscale(chordx, qualityx, x[j]) = indexscale(chordt, qualityt, t[j])

The similarity defined above is then posted on t rather than on x directly.

4.4.2 s r d and c-specific Constraints
s-specific Constraints

Constraints that are applied specifically to s blocks only include those which
pertain to the source melody. The source melody or melodies can be given as voice
object inputs to the Rock block, and are consequently used as source to set the
notes in the intended s phrases. There are up to two potential s phrases in the Rock
musical structure which can be set to a source melody. Each one corresponds to the
s phrase of the first A or B block within the structure.

In order to set the push, pull and playing arrays of the s block to the notes
represented by a voice object, said voice object must first be converted to an equivalent
representation. That is done through the create-push-pull-int utility function
(cf. appendix D.4.1), which takes a voice object as input and returns it in a push,
pull and playing format.

Constraining s to these notes is fairly straightforward and is done as follows. Let
the source melody be represented by {push, pull, playing}source arrays of i elements,
and s by push, pull, playing arrays of j elements. The constraints can then be written
∀k ∈ [0, min(i, j) − 1] as:

push[k] = pushsource[k]
pull[k] = pullsource[k]

playing[k] = playingsource[k]
Which are written in Gecode in appendix C.2.1.

r-specific Constraints

The specificity of r lies in its similarity with s. The chosen similarity metric for
musical phrases is based on how close their push arrays are. The similarity between
two push arrays is computed in almost the exact same way as it is done for A and
B blocks’ push similarity (cf. section 4.4.1).

Constraining r to be at least similarity-percent-s similar to s is done with
the use of the cst-common-vars function (cf. appendix C.2.2). The difference with
the constraints defined in section 4.4.1 is posted on the transposition of the push
array of s. A r block can be transposed according to a number of semitones. Given
the x the melody to be transposed, and i its length, t the transposed melody of same
length as x, and s the number of semitones to transpose, the transposition constraint
becomes:

∀j ∈ [0, ..., i], t[j] = x[j] + s

44

d-specific Constraints

In a similar fashion as is done for r, d also relies on the notion of similarity (or
rather dissimilarity) with s. The dissimilarity metric between musical phrases is also
computed based on their push arrays, and uses the same function cst-common-vars
described in section 4.4.1. To impose a dissimilarity of dissim between two arrays,
it was chosen to impose a similarity of 1 − dissim.

c-specific Constraints

These are the constraints which are only applied to c blocks, also known as ca-
dences in the context of Melodizer Rock. A cadence is defined by a chord progression,
implying that such constraints are not only applied to the melody representing c, but
also to its accompaniment. Several important things come into play when setting
constraints for a cadence. The chord key, chord quality, and cadence choice (which
is made through the interface, and is discussed in section 5.3.4) are what is needed
to post constraints, in accordance with the musical definition of cadences.

Starting with the chord key, its importance is that it is the root note on which
a degree I chord is built. Since chords of any degree require this information to
be built, a succession of chords (as is done for cadences) evidently requires it too.
The chord quality’s necessity in posting cadence constraints comes into play when
considering how triads in each quality are built. A detailed explanation of this
construction can be found in section 2.1.4. As for cadence choice, its importance in
posting cadence constraints is rather straightforward. Indeed, different cadences are
defined by different successions of chord degrees. See section 2.2.2.

Now that the dependency between cadences and these three variables is clear,
the actual constraints which have been implemented can be discussed further. As
a generalisation, cadences in Melodizer Rock are only a succession of two chords.
Depending on the value contained in the cadence-type attribute of c, constrain-c
will impose the correct succession of chords on the accompaniment’s push array.

The constraints posted to impose this chord succession are described mathe-
matically below. Where the cadence is defined by a succession of chord degrees
succession (array of two distances from the root note, in semitones), pushacc is the
accompaniment’s push array of i elements, and chords is an array of two elements.
Each of these elements is a set of notes representing a chord to be played . Note that
i is a multiple of 16, therefore pushacc always has an even number of elements.

pushacc[0] = chords[0]

pushacc[i/2] = chords[1]

Which are written in Gecode in appendix C.2.4

The elements in chords are built by formalising the theory explained in section
2.1.4, defining the triads to be played based on the chord’s quality. These triads to

45

be played are then represented by a succession of distances (in semitones) from the
root note:

triadmajor = [0, 4, 7], triadminor = [0, 3, 7]
triadaugmented = [0, 4, 8], triaddiminished = [0, 3, 6]

Considering the root note’s midi value is root, defining chords is done as follows

chord0 = root + succession[0], chord1 = root + succession[1]

chords[0] = [chord0 + triadquality[0], chord0 + triadquality[1], chord0 + triadquality[2]]
chords[1] = [chord1 + triadquality[0], chord1 + triadquality[1], chord1 + triadquality[2]]

Other cadence-specific changes have been added to c’s melody to improve the
overall conclusive feeling of cadences. These changes consist in multiplying the
melody’s min-note-length by its min-note-length-mult attribute, as well as end-
ing the melody on the tonic. Given a playing array of i elements, and tonic. Given a
function octaves(tonic) which returns the tonic in all possible octaves, the constraint
can be expressed as follows:

playing[i − 1] ∈ octaves(tonic)

4.5 Solver
Melodizer Rock’s solver was developed following the ideas of Melodizer 2.0 [3].

Melodizer objects contain a specification of the constraint problem, from which a
Gecode CSP is created and used to create a melody. All of the constraints are then
posted, following the recursive structure explained in section 4.2. After which the
branching heuristic is defined, and finally, the search engine is built.

4.5.1 Constraint Satisfaction Problem
It was briefly explained in section 4.3 how the constraints are posted recursively.

To be more precise, the function constrain-rock is called when starting the solver.
It initialises the arrays push, pull and playing, as well as push-acc, pull-acc and
playing-acc for the accompaniment. It then posts the constraints linking them, as
explained in section 4.3.

This function then loops on the list of blocks forming the structure, and calls the
constrain-srdc-from-parent function with parts of the six arrays ({push,pull,-
playing}-acc, push, pull, playing) corresponding to the song’s block.

This next function then posts constraints on the A or B block it was given as
argument, then calls the functions constrain-{s,r,d,c}. These functions post the
constraints explained in section 4.4.2, on s, r, d, and c. Figure 4.5 illustrates the
followed path, when the solver is started.

46

Figure 4.5: Followed path to construct the Constraint Satisfaction Problem

4.5.2 Search Engine
After the Constraint Satisfaction Problem is constructed, the search engine has

to be built. The first step in building the search engine is to determine the branching
heuristic that will be used. Then, the search engine’s options have to be decided, as
described in section 3.1.5. Finally, in order to have more varied results, the Branch
and Bound algorithm explained in section 2.3.4 looked to be the most interesting
exploration algorithm.

Branching Heuristic

The best branching heuristic was chosen through exploratory testing of the
interface. As seen in section 2.3.3 and 3.1.4, different strategies are available and
each has its advantages and drawbacks. During this testing, the strategy that seemed
to come up with original solutions in least time functioned as follows:

1. Branch on the push array, as it is the most constrained of the three main variable
arrays, by choosing the variable with the smallest domain and branching on a
random value.

2. Using the same heuristics, branch on the pull array.

3. As now the push and pull arrays must be fixed, branch on the potential

47

remaining unfixed variables of playing with the same heuristics.

Branch and Bound

Now that the branching is decided, the used exploration method has to be
determined. As previously explained, BAB allows for more varied solutions, by
imposing a difference between two solutions. In order to achieve this, Melodizer
Rock’s solver receives a percent-diff parameter through the interface, representing
the percentage of difference to be imposed between successive solutions.

It then uses the constrain() function of BAB (in Gecode), to impose that
the number of variables with the same values as in the previous solution, has
to be lower than 100−percent-diff. This algorithm was inspired by the one
proposed in Melodizer 1.0 [3], by Damien Sprockeels, but adapted to Melodizer
Rock’s problem. This difference constraint is imposed on playing, as it regroups
(in a sense) constraints posted on both push and pull, and is therefore more
representative of the problem.

1 void WSpace::constrain(const Space& _b) {
2 const WSpace& b = static_cast<const WSpace&>(_b);
3 IntArgs bvars(b.var_sol_size);
4 for(int i = 0; i < b.var_sol_size; i++)
5 bvars[i]=(b.int_vars).at((b.solution_variable_indexes)[i]).val();
6 IntVarArgs vars(b.var_sol_size);
7 for(int i = 0; i < b.var_sol_size; i++)
8 vars[i] = (int_vars).at((solution_variable_indexes)[i]);
9 IntVar c(*this, 0, b.var_sol_size);

10 count(*this, vars, bvars, IRT_EQ, c);
11 rel(*this, c, IRT_LQ, b.var_sol_size * (100-b.percent_diff));
12 }

4.5.3 Search
After determining both the branching and exploration algorithm, the search

options are given to the search engine, as explained in 3.1.5. Melodizer Rock imposes
the search to use only one thread. Then, the composer can request a solution through
the interface. The search engine will then explore the tree in search of the next
existing solution. If it doesn’t find one, or if the search was stopped through the
interface, the search engine will return a NULL solution and the search won’t be able
to be continued. Otherwise, it will convert the obtained solutions for the six arrays
into two voice objects, which in turn are combined into a poly object, as described
in section 3.2.3.

48

Chapter 5

Melodizer Rock : User Interface

The user interface developed for Melodizer Rock is intended to be used by
composers with minimal IT knowledge, therefore it aims to be as straightforward
and intuitive as can be. In order to achieve this, the interface was built following a
structure that closely resembles the hierarchical structure of rock music.

Each window the user has access to represents the editor of the block they are
currently in. Editors are composed of various different panels, each serving a different
purpose, and with which the user can interact with. Typically these panels aim to
bundle actions related to each other, making navigating the interface intuitive.

In this chapter, panels will be referred to with Figure-specific regions containing
roman numerals. Whereas interactive elements on these same Figures will be referred
to with red numbers.

5.1 Rock Editor
The Rock editor (Figure 5.1) is composed of several different panels, firstly panel

I which contains three different buttons the user can interact with. These buttons
are used to define the structure of the music which the composer wishes to create.

Meaning that they can choose to build a structure based on blocks A and B such
as AABA or any extension of it. Adding an A block is done through button 1, and
B through button 2. Clearing the structure that has been built by the composer
can be done by interacting with button 3. This will allow the user to input a new
musical structure.

49

Figure 5.1: Rock editor, split into its various panels

Next panel contained within the Rock editor is panel II. This panel displays
the structure that has been created by the user through interaction with panel I
and buttons 1 through 3. Each block of the considered musical structure has an
associated interactive button. Interacting with any of these buttons in the panel will
open up their respective editor. Buttons 4, 5, 7 open their A editor, and button 6
opens the B editor. These opened editors are further described in the upcoming
section 5.2.

The remaining two panels contained in the Rock editor are panels III and IV.
In order to define the musical piece and define its constraint problem, there is some
initial information which has to be given by the composer. All this information is
what is managed in panel IV.

The composer has control over the information relating to the musical piece they
want to create. The information which has to be given by the composer, in order for
the solver to function as intended, is: the Chord key, Chord quality, Number of bars.
These can be set by interacting with elements 18, 19, 15. All the other information,
which can be modified through interaction with the various elements of the panel,
will be translated into additional constraints (e.g. interacting with elements 20, 21
will constrain the pitch range of the entire musical piece to fall within the specified

50

values). All of the values chosen by the composer within this panel will constrain
the entire musical piece.

Finally, panel III is the way the composer can interact with the solver. This
panel contains three buttons named after their actions, 8 creates the problem and
sets the constraints based on the information given in the panel IV, then starts the
search. Button 9 gives the search’s next solution, and 10 stops the search. Element
11 modifies the tempo of the solutions, meaning that the generated poly object will
have this tempo. And element 12 constrains the search’s next solution to differ from
the previous solution by at least the specified percentage.

5.2 A and B Editors
Both A and B editors have identical interfaces and functionalities, thus only one

figure (Figure 5.2) is provided as reference throughout this section.

Panel I serves as an interface to interact with the srdc defining the current block,
it is in a way similar to the Rock editor’s panel II. Where by interacting with buttons
1, 2, 3, 4 contained within the panel, the user can open the respective s, r, d, and c
editors.

Panel II is used to indicate whether changes done in the Rock editor, and in
other editors of the same block type, should change values in the current A or B
editor. Meaning that checking the check-box of element 5, any changes to Rock
(representing the whole music) will be propagated to the A or B block the composer
is currently in (representing this srdc portion of the music). Checking element 6
implies that if the composer is in an A block, then any change in other A blocks of
the structure, will be propagated to the current block. This is done analogously with
B, if the composer is in the editor of a B block.

Panel III is effectively the same panel as Rock’s panel IV. With the difference
being, any constraint set in this panel will by default only affect the current block
and it’s children from figure 4.3 (i.e. constraints in panel III of an A or B editor
will be propagated to the s, r, d, and c which it represents). This panel is slightly
different depending on the place of the block in the overall structure. If it isn’t the
first of its type, then the elements 7 through 11 are replaced by a slider, controlling
the resemblance with the first block of the same type in the structure.

51

Figure 5.2: A editor, split into its various panels

5.3 s, r, d, and c Editors
Editors s, r, d, and c (Figures 5.3, 5.4, 5.5, 5.6) are all quite different but have

one common panel. Each of the s, r, d, and c editors’ panel I is identical. Element
1 allows the composer to choose the number of measures which the current block
will be made of. Elements 2 and 3 are used to set the minimum note length for the
current block, whereas elements 4 and 5 are used to set its maximum note length.
Elements 6 and 7 are used to restrict the current block’s pitch range. All additional
panels contained in these editors are further described in the following sections.

5.3.1 s Editor
The s editor is shown in Figure 5.3, and gives the user control of the accompa-

niment in panel II. This panel allows the composer to modify s’s accompaniment
note length through elements 8, 9, 10, 11. It also allows for modifying chord key and
chord quality independently from s itself, through elements 12 and 13.

52

Figure 5.3: s editor, split into its various panels

5.3.2 r Editor
The r editor is shown in Figure 5.4, and contains the same panels as s, to which

it adds panel III. The value set by the "Similarity with s block" slider (element 14),
constrains r to resemble s. The value on the far right of the slider implies a 100%
similarity, meaning r will be the same as s, and the far left is 0%. As for element 15,
it allows the composer to choose r’s semitone transposition from s.

Figure 5.4: r editor, split into its various panels

5.3.3 d Editor
The d editor is shown in Figure 5.5. As can be seen, it is very similar to r’s editor

and only differs in panel III. The value set by the "Difference with s block" slider
(element 14), constrains d to be different from s. The value on the far right of the
slider implies a 100% difference, meaning d will be completely different to s, and the

53

far left is 0% meaning they are the same. As for element 15, it allows the composer
to choose d’s semitone transposition from s.

Figure 5.5: d editor, split into its various panels

5.3.4 c Editor
The c editor is rather bare-bones, as can be seen in Figure 5.6. Panel II contains a

"Cadence choice" (element 8) drop-down menu giving the composer a choice between
multiple cadence types.

Figure 5.6: c editor, split into its various panels

54

Chapter 6

Composing with Melodizer Rock

This chapter is first and foremost destined for composers, and aims to give
examples on how to use Melodizer rock to compose Rock music. To this effect the
terminology used will be musical rather than scientific when possible. Before reading
this chapter, one should have followed the steps to install all the necessary tools as
explained in appendix A, and familiarised themselves with the appendix B tutorial.

As a composer using Melodizer Rock, your creativity and decisions occur through
the interface described thoroughly in chapter 5. The first step is deciding on the
structure to be used for the musical piece that you wish to create, typically this
would be AABA but could be extended to some of its variations such as AABABA
(discussed in depth in section 2.2). Then by selecting the number of measures for
this musical piece. This two-step process is the strict minimum that must be done
in order to compose music with Melodizer Rock.

In the following sections, several progressive examples and use-cases of Melodizer
Rock will be presented and go over the composition process from a user’s standpoint.

6.1 A Simple A Block
The first example will explore the solutions found with a single and simple A

block. It doesn’t take a source melody as input, and will only have a few simple
constraints. On the Rock interface, the constraints will be:

• Number of bars: 4

• Min note length: not checked, allows the shortest note possible

• Max note length: also not checked, allows the longest note possible

• Chord key: default, C key

• Chord quality: default, Major

55

• Minimum pitch: increased to slightly below half of the slider

• Maximum pitch: lowered to slightly above half of the slider

After setting the search to a tempo of 100 and the slider of difference percentage to
the maximum (far right), the interface should look like this:

Figure 6.1: Rock interface of an example with a single A block

No other block is changed for this example. The solver can now be started. This
is done through the interface by pressing the start button, that builds the CSP, then
the next button, that searches for the next solution. Melodizer Rock then displays a
first solution, shown in figure 6.2. Another press of the next button gives another
solution shown in figure 6.3.

As can be seen, the solutions which were found use the shortest possible note
first, and use rests to allow large leaps in the song. Imposing more constraints might
help with rendering more harmonious results.

56

Figure 6.2: First solution to an example with a single A block

Figure 6.3: Second solution to an example with a single A block

6.2 An A Block and a B Block
What about a longer song using both A and B block types? The structure is

cleared and both an A and B blocks are added. The constraints in the Rock editor
are set to:

• Number of bars: 16

• Minimum note length: checked and set to 2, which corresponds to an eighth
note

57

• Maximum note length: not checked

• Chord key: E

• Chord quality: Minor

• Minimum pitch: as for the previous example, the slider is set slightly below
half

• Maximum pitch: as for the previous example, the slider is set slightly above
half

The search parameters from the previous example are maintained. The Rock editor
should now look like in figure 6.4.

Figure 6.4: Rock editor of an example with an A block and a B block

Let’s also set more constraints in the blocks. Starting with the A block, its r
block is changed such that its similarity with s is 100%, and its editor should now
look like figure 6.5

58

Figure 6.5: r editor of an example with an A block and a B block

The d block is also changed to impose more disruption in the song. The accom-
paniment’s minimum note length is set to 4, which corresponds to a quarter note,
and its chord will be set to a G Major. The editor is as shown in figure 6.6.

Figure 6.6: d editor of an example with an A block and a B block

For the B block, its d sub-block will also be updated to allow more disruption.
This time, the accompaniment is set to have a minimum note length of 8, which
corresponds to a half note, and its key is set to a D Major. Its slider of difference
with s is also lowered to around half way. B’s d editor now looks like figure 6.7.

The search can now be launched, the same way it was done in the first example.
Solutions can be obtained with 100% of difference, the first one being shown in figure
6.8.

59

Figure 6.7: d editor of an example with a block A and a block B

6.3 A Source Melody on Two A Blocks
It is clear given previous examples that, without input melodies, Melodizer Rock

does not always produce harmonious songs. But as was explained in section 4.4.2,
two source melodies can be taken by a Rock block, to set the s phrase of the first A
and B blocks. As other blocks of the same type have a similarity percentage with
this block, they also use this source melody.

Let’s try it out with two A blocks, and an input melody for the first A block.
The existing song in Figure 2.12 was reproduced as a voice object in OpenMusic,
and given as a source melody to the Rock block through its third input (starting on
the left). The result that should be observed in the corresponding patch is shown in
Figure 6.9.

The interface must now be modified to approach the score’s constraints. It has
to be noted that an exact reproduction of the song won’t be possible, as Melodizer
Rock only accommodates a subset of all possible constraints. And as only the s
block of the score is given in input. The Rock block is set up with the following
parameters. Its editor will not be shown, as it is similar to the previous examples.

• Number of bars: 16, as blocks s, r, d and c are each two measures long.

• Minimum note length: checked and set to two

• Maximum note length: not checked

• Chord key: F, as the key signature indicate the scale to be a F Major

60

Figure 6.8: First solution of an example with an A block and a B block

• Chord quality: Major

• Minimum pitch: the slider is set just below half way

• Maximum pitch: the slider is set just above half way

• Tempo: 96, as indicated on the score

• Difference percentage: around 50% as the use of a source melody prevents
the 100% difference between solutions.

The sub-blocks can now be set up. It is important to note that the chords
available for the accompaniment are quite limited, and that this song uses other
types that will be explained in section 7.1.4. In the first A block, the r sub-block is

61

Figure 6.9: Connection of A’s source melody to the Rock block

modified to have a similarity with the s block of 100%, which does not correspond
exactly to the score, but is approximated out of convenience. The score also has
some sort of transposition 4 semitones lower, which is set in the "semitones from s"
block parameter. Finally, the accompaniment has a minimum note length of 8. The
r editor should now look like Figure 6.10.

Figure 6.10: r block of the first A block, for an example with two A blocks and a source
melody

The d block of that same A block is also changed to respect the score. Its
accompaniment is set to have a minimum note length of 8, the other parameters stay
unchanged. The resulting editor is shown in Figure 6.11.

Lastly, the second A block is updated to have a similarity of around 65% with
the first A block, as shown in Figure 6.12.

After launching the search, two successive solutions can be obtained. The first

62

Figure 6.11: d block of the first A block, for an example with two A blocks and a source
melody

Figure 6.12: Second A block for an example with two A blocks and a source melody

one is showed in Figure 6.13.

63

Figure 6.13: First solution of an example with two A blocks and a source melody

6.4 A Full Song Form
Now that Melodizer Rock showed what it was capable of with rather simple song

structures, it can be tested to produce a full song on its own. As a full song implies
a lot more variables, the problem will be further constrained to obtain a solution in
order to obtain solution within a couple seconds.

The solver will be run on a classic AABA form, with one bar per s, r, d, and
c block which is low compared to a real rock song. But it implies less variables to
branch on. Therefore, the parameters of Rock’s editor are the following. Again, its
editor is not shown as it is similar to the previous examples.

• Number of bars: 16

64

• Minimum note length: checked and set to four, to simplify the search

• Maximum note length: not checked

• Chord key: G

• Chord quality: Major

• Minimum pitch: the slider is set above a third of the way

• Maximum pitch: the slider is set below two thirds of the way

• Tempo: 100

• Difference percentage: 100%

It is the perfect occasion to have a little fun with the constraints proposed by
Melodizer Rock. Starting with the first A’s r sub-block, the slider for its similarity
with the s block is set to 100%, and the transposition from s is set to two semitones.
The accompaniment’s minimum note length is also changed and set to 8. r’s editor
should now look like Figure 6.14.

Figure 6.14: First A block’s r editor, in an example with an AABA structure

In the same A block, its d sub-block is changed to sound more disruptive. The
accompaniment’s minimum note length is set to 4, and the slider for its difference
with the s phrase is set around 50%. Its editor is not shown.

As this is only the first block of the structure, a perfect cadence to end it might
sound too definitive. Therefore, the "cadence choice" in the c sub-block of the first
A block is set to Plagal. The c editor should now look like Figure 6.15.

Now that the first A block is set, the second can be changed based on the first.
To avoid too long of a search, and because a rock song usually repeat its first A

65

Figure 6.15: c editor of the first A block, in an example with an AABA structure

almost exactly, the slider of resemblance with the first A is set to 100%. The only
other thing that can be, and that is changed for that block, is the cadence choice. As
it is imposed on the accompaniment, and the resemblance is imposed on the melody,
it will not cause any conflicting constraints. This A block’s ending being the middle
of the piece, a semi cadence might be appropriate.

The B block can have different constraints, as it has no resemblance with another
block, and is thus at no risk of causing conflicting constraints. This part of the song
corresponds to a bridge, which is a part supposedly quite different from the rest of
the song. Therefore, it will be allowed to go faster by imposing a minimum note
length of 2. The resulting editor is shown in Figure 6.16.

Its r sub-block will not be changed, keeping a slider of around 50% of resemblance.
On the contrary, its d sub-block will be slightly more varied. First, it will impose a
transposition from the s sub-block of −2 semitones, that is, it imposes the difference
to be set with a melody two semitones lower. Then its accompaniment is set to have
a minimum note length of 8, and to be in D major. Its editor should now look like
Figure 6.17. The c sub-block will also be changed to impose a Plagal cadence, as the

66

Figure 6.16: Editor of the B block in an example with an AABA structure

song is not yet ended.

Figure 6.17: B’s d editor, in an example with an AABA structure

Finally, the last A block will be slightly modified. The only change from the

67

default parameters imposed on this block is on the r sub-block, where its resemblance
with the s sub-block is set to 100%.

After launching the search, two solutions can be obtained quite fast, the first one
appearing within 5 seconds after the press of the next button. The most interesting
solution for this example is the second, showed in Figure 6.18.

Figure 6.18: Second solution of an example with an AABA structure

6.5 A Full Song Form with Two Source Melodies
For this last example, Melodizer Rock is put to the test with a full song, with

two source melodies given as input. A song which suits the AABA structure nicely,

68

is Every Breath You Take by The Police [12]. The full score of that song is available
in appendix E. The source melodies are connected to the Rock block, through its
third and fourth input (from the left), as shown in figure 6.19.

Figure 6.19: Connection of the source melodies, for an example with an AABA structure

The Rock block is set to the following parameters, which leads to the editor
shown in figure 6.20.

• Number of bars: 16

• Minimum note length: checked and set to two, as it is the shortest note
seen in the score

• Maximum note length: not checked

• Chord key: G, as it corresponds to the key signature on the score

• Chord quality: Major

• Minimum pitch: the slider is set just below the half

• Maximum pitch: the slider is set just above the half

• Tempo: 118, because it corresponds to the tempo given by Drew Nobile [4]
for this same song

• Difference percentage: 50%, because of the source melodies

The first A block will also constrain the maximum note length to be 8. Then
its sub-blocks are changed, such that the r sub-block resembles the s sub-block
slightly less than 100%. And its accompaniment is set to be an E Minor chord. The
d sub-block is also changed so that the accompaniment is a C Major chord. The
two other A block are set to have a 100% resemblance with the first A, and the
accompaniment constraints for both r and d sub-blocks are the same as for the first
A.

The B block can now be changed. As is done in the A blocks, it will impose a

69

Figure 6.20: Rock editor, for an example with an AABA structure and two source
melodies

maximum note length of 8. The r sub-block is set to have a similarity with the s
sub-block of around 95%, and its accompaniment is constrained to be in A Minor.
The d sub-block is set to have a dissimilarity with the s phrase of around 50%, as
well as a transposition of two semitones, and an accompaniment in A Major.

Now that all blocks have been set to parameters resembling those of the song, the
search can be launched. It can obtain multiple solution, the first one being shown in
Figure 6.21 and 6.22.

70

Figure 6.21: First page of the first solution given by Melodizer Rock, with the inputs of
Every Breath You take [12] for an AABA structure

71

Figure 6.22: Second page of the first solution given by Melodizer Rock, with the inputs of
Every Breath You take [12] for an AABA structure

72

Chapter 7

Future Works

This chapter aims to discuss potential improvements which could be made to
Melodizer Rock. Several approaches are suggested, the first of which is diving deeper
within the rock genre, the second is to expand Melodizer Rock to new musical genres,
and finally, using Gecode without going through GiL.

7.1 Diving Deeper Within Rock
Diving deeper within this genre can be done in many different manors. One

could explore alternative structures to AABA and its extended forms, or constrain
and build s, r, d, and c blocks differently. Additionally, the overall melodic line and
accompaniment could both be improved.

7.1.1 Other Structures than AABA

Much of the discussion and insight given in this chapter stems from Drew Nobile’s
Thesis [4]. Three song structures are present in his thesis, AABA and srdc, Verse-
Prechorus-Chorus, and Verse-Chorus. AABA and srdc is present in Melodizer Rock,
and exploring other forms might be interesting leads.

Expansion of srdc into Verse-Prechorus-Chorus

Expanding the srdc phrase structure into Verse-Prechorus-Chorus was thought
of during the early 1960’s when the presence of a chorus grew ever so popular. A
general srdc structure typically spans over one verse, whereas the expanded Verse-
Prechorus-Chorus spans over three verses. By expanding srdc as such, the verse now
comprises s and r, the prechorus corresponds to d, and c is the chorus. It is also
typical for the verse, prechorus and chorus to have roughly equal lengths.

This model became even more popular in the 1980’s, and implementing the
Verse-Prechorus-Chorus structure within Melodizer Rock would enable the creation
of musical pieces following this style. Drew Nobile discusses this structure very

73

thoroughly in his thesis [4], and should be taken as reference if this improvement
suggestion is pursued.

Verse-Chorus

Verse-Chorus forms give rise to different harmonic-melodic layouts, and might be
an interesting area to explore. Drew Nobile discusses this structure very thoroughly
in his thesis [4], and should be taken as reference if this improvement suggestion is
pursued.

7.1.2 Alternative Take on srdc

As the way srdc was implemented in Melodizer Rock only represented one possible
vision, potentially richer and more interesting implementations exist for composers.
For example, one of the simplified assumptions made in this implementation is that
cadences only span over c. However, even though c contains the cadence, often times
this cadence starts in d. The following sections contain a short discussion over some
of the possibly interesting variants for each s, r, d, and c block.

Source Melody

A possibly interesting suggestion to explore could be to use source melodies as
inspiration rather than just copying them. Meaning that a source melody could
inspire an s phrase, and not set all of its notes to it, for example by setting half of
the notes to be from the source melody. Another suggestion would be to use source
melodies as rhythm or pitch-setting tools. A composer could give a source melody as
input, and choose for its rhythm or pitch sequence to be used instead of the whole
melody.

Resemblance

Some songs might use different variations on the s phrase of a block to obtain
the r or d blocks. Someone wanting to improve Melodizer Rock could study a larger
range of rock songs to propose more variations on the stated phrase.

Disruption

Improving the composer’s control over the disruption (d), and making this
disruption lead into the cadence better, could be worthwhile additions to Melodizer
Rock.

New and Improved Cadences

Melodizer Rock has a rather primitive range of cadences available to the composer,
which could be expanded. As mentioned in section 2.2.2, the cadence choices are:
Perfect, Plagal, and Half. This could be improved by adding cadences such as De-
ceptive, Evaded, Imperfect, Burgundian, Lydian, Inverted, etc. to Melodizer Rock’s

74

capabilities. Another improvement which can be made to cadences within Melodizer
Rock, is allowing progressions of more than two chords for the accompaniment.

Cadences in Melodizer Rock use the simplified assumption that they occur entirely
in c, however some models discussed in Figure 2.13 show that the cadence is sometimes
already present in d. Implementing these various models and therefore considering
that the cadence could be present over multiple blocks, could lead to interesting
results.

Another change that could be made to Melodizer Rock regarding cadences, is
to select default cadences which are appropriate for the position of the considered
block within the music. For example, a perfect cadence might not be suited to an
early portion of a song, but might be good to end the song.

7.1.3 Improve the Melodic Line
The melodic line obtained when using Melodizer Rock does not always sound

harmonious. This was thoroughly shown with the examples of Chapter 6. Different
improvements can be made on this melody.

Contour

Music theory for Dummies [5] describes contours often used in the composition
of the melody. This contour is the shape of the pitch’s travels, its upwards and
downwards flow. Different contours can make the song sound more tense or more
lively, more melancholic or happy.

• The arch: the melody’ pitch increases from a low point, to a high point, then
gradually goes back down. The pitch increase results in an increase in tension,
therefore when the pitch goes down the tension releases.

• The wave: it can be considered as small consecutive arches. The melody
repeatedly goes up and down.

• The inverted arch: as its name suggest, this contour starts by going from a high
point to a low point and then back up again. Therefore, it starts by sounding
relaxed and then increases the tension.

• The pivotal: a pivotal melody line mainly pivots around the central note of
the piece. It acts much like a wave, except that the movement is minimal and
returns to the central note.

Handling Rests

The examples of Chapter 6 made it clear that Melodizer Rock’s search engine
tends to favour rests, as small as possible, to allow for greater intervals. Singing
those intervals might not be a realistic expectation. Therefore, some constraints
could be added to smooth over those imperfections:

75

• One could try to limit the interval of notes surrounding the rest. The problem
with this idea is that it requires knowledge of start and end of a note, to be
able to point out which note precedes and succeeds a rest.

• Melodizer 2.0 [3] had introduced an interesting constraint to quantify the
number of rests in a block and their distribution. This could be reused and
adapted for the melodic line of Melodizer Rock, allowing the composer to have
more control over the amount of rests they want, as well as their location in
the song.

Scales

As explained in section 2.1.3, Melodizer Rock only offers four scales, the diminished
and augmented being quite uncommon in rock music. Other scales such as the
harmonic minor scale or the melodic minor scale could be added to allow for more
choices in Melodizer Rock. Many scales were actually implemented with Melodizer
2.0 and could easily be integrated in Melodizer Rock.

Further more, Melodizer Rock merged the notion of chord key and quality, with
the key and mode that form a scale. The melodic line should actually propose the
key and modes while the accompaniment should propose chord key and qualities.
But the a link between the two should be made, as most of the accompaniment is
often set in the I chord corresponding to the scale.

Other Constraints for Melodizer 2.0

When implementing Melodizer Rock, some constraints from the previous work
done in Melodizer 2.0 [3] had to be set aside. Many of those constraints could actually
be reintegrated and would allow the composer to have more control on the melodic
line. Some example of those constraints are:

• Minimum and maximum notes: limiting the number of pushed notes
throughout a phrase or a block of the song might allow for longer notes or rests
that will allow the listener to relax between parts of the song.

• Rhythm repetition: in the song Every Breath You Take, some measures
repeat themselves on a single phrase of the song. It might be interesting to
allow the composer to ask for a rhythm to be repeated throughout a block or
phrase.

• Note repetition: in rock songs, a note is often repeated. Very often this note
is the tonic of the song’s scale. Therefore, constraining the number of times
it is repeated throughout a part of the song might lead to more recognisable
melodies.

7.1.4 Improve the Musical Accompaniment
The accompaniment proposed by Melodizer Rock is quite simple, and does not

give that much control to the composer. It can be improved in several ways.

76

More Chord Qualities

Melodizer Rock currently proposes only four types of chords, as described in
section 2.1.4. But many variations of those chords exists, and existed in Melodizer
2.0:

• Seventh chords: they consist of a the classic triads with an added note which
is a seventh above the root. For a major chord, it is thus eleven semitones
above the root, and ten for a minor chord.

• Ninth chords: similarly as the previous chords, they add a ninth note to
the initial triad. This corresponds to a second after the next octave, thus 14
semitones above the root for a major chord, and 13 for a minor chord.

• Inverted chords: they are triads of chords where the root note is transposed
of an octave and thus end up higher than the two other notes.

Many variations of the classic chords used in Melodizer exist and would be
interesting to add, as they are common in rock music.

Chord per Measure

Currently, Melodizer Rock lets the composer choose the accompaniment’s chord
for a complete block. Thus the corresponding chord will often span two measure,
even if a different octave is played at each time. An interesting variation that could
be added would be to allow a change of chord per measure in a same block.

Non-simultaneous Notes of the Chord

The current offered accompaniments only allow for triads to be played simultane-
ously. However, a variation could be to play the root note from the start, then play
the other notes of the triads, along with their octaves, in a certain rhythm. This
would allow for more a varied accompaniment. Other plays on the note of a chord,
such as arpeggios, might be interesting to explore.

7.2 Explore Other Musical Genres
The constraints and structure concepts used throughout Melodizer Rock could be

easily adapted to other music genres. The following list suggests some non-exhaustive
genre examples that could be explored:

• Ragtime: a musical genre that originated from African-American communities,
close in genre to a march and using poly-rhythm.[13]

• Jazz: a musical genre rooted in Ragtime that is characterised by some particular
notes, chords and movement of the melody it uses.[14]

• Alternative Rock: founded on the rock genre explored by Melodizer Rock,
it is focused on the use of guitars, their chords and riffs.[15]

77

• Heavy Metal: another genre based on the rock music explored in this thesis,
that is characterised by the distorted sound of guitars, the guitar solos and its
loudness.[16]

• Country: a genre that originated from the American working class. It is
recognisable by its dance tunes of simple form, its harmonies and the used
instruments.[17]

• Reggae: a music genre coming from Jamaica, recognisable by the counterpoint
between its bass and drums downbeat, as well as the offbeat rhythm sections.[18]

7.3 GiL Overhead
GiL has many limitations and problems which could be solved by finding another

way to run Gecode code directly in Common Lisp. A few examples of these limitations
are listed below:

• GiL’s performance is significantly worse than Gecode’s standalone performance,
due to the way it is built

• GiL is built on a specific version of Gecode, which might become obsolete, or
have changes in method signatures.

• Each Gecode function must have its interface implemented manually in GiL,
which is very inconvenient as not all Gecode functions are present within GiL.

• Readability of GiL code might not be as good as Gecode (C++) code.

78

Chapter 8

Conclusion

Melodizer Rock is a tool whose goal is to provide rock music scores meant to
inspire the composer. This objective encompass many things, from allowing the
user to interact with the solver, to actually computing solutions. Melodizer Rock’s
mission can be split into two halves: the development of an intuitive user interface
and the process of constructing the corresponding problem.

8.1 An Interactive Interface
The visible part of Melodizer Rock is quite obviously its interface. It was built

with an intended user in mind, the composer. Therefore, this interface had to be
extremely straight forward and not require any technical knowledge much beyond
the basic use of a computer.

First of all, allowing to see the structure of the song in an editor rather than by
connecting blocks to one another was an important task. Melodizer Rock allows a
composer to build their own structure by clicking a few buttons, and shows each
change in a hierarchical representation.

Then, Melodizer Rock had to allow the composer to give specifications to the
music, depending on the location in the song. With this objective in mind, the
previously built structure had to be shown, and be editable. To this end, different
objects were created, one for each part of the AABA and srdc structure analysed by
Drew Nobile [4]. Then, an interface for each of those phrases was developed to allow
the modification of a specific part of the song, by going down into the hierarchy with
a few button clicks.

Finally, an improvement made by Melodizer Rock over the previous works is the
merging of the object representing the song, with the object representing the search.
The Rock editor now proposes the necessary tools to launch the search and obtain
the next solution by pressing a few buttons rather than connecting blocks in a patch.

79

8.2 A Specific CSP for Rock Music
Building a representation of the structure is important, but using it to develop a

rock specific problem is even more essential. What makes a song belong to the rock
genre will be the links between the different levels of the hierarchy, both vertical
and horizontal ones. Those links could be expressed mathematically, and thus as
constraints for a Constraint Satisfaction Problem.

The first step was to constrain the song in its entirety. Different variables for
the melodic line and the accompaniment were created, with their own type-specific
constraints. Then constraints are posted by going down in the hierarchy of the
structure, linking each block to the others. The final step posts the specifications
given by the composer through the different interfaces, on the smallest division of
the song, that is in s, r, d, and c blocks.

This development lead to a whole new CSP, inspired from the one proposed in
Melodizer 2.0 [3], but for songs with a hierarchical structure. It also added to the
previous works by combining multiple voices, a monophonic one for the melody,
and a polyphonic one for the accompaniment. Furthermore, it focused on creating
songs that are singable, whether that be by constraining the intervals, or the pitches
themselves.

8.3 An Impressive Tool for Composing
All this development is interesting, but what makes it important? This new tool

is a great basis to build CSPs for any music genre with a hierarchical structure. It
could easily be adapted to Jazz, Ragtime, Metal ... and is therefore a necessary step
towards a larger tool for the creation of music scores.

But one could still wonder what its benefit is when compared to the use of
generative Artificial Intelligence models such as ChatGPT-4. Both tools are important
and impressive, but have their difference and specific uses. The main difference is in
the obtained results, while generative models will generate answers to prompts based
on the data they’re trained on, Melodizer Rock will find a solution from scratch.
As a result, generative models might produce songs which are more enjoyable to
the listener, but they will sound similar to existing songs. On the other hand, a
song produced by Melodizer Rock might sound less harmonious, but won’t sound
as similar to existing songs and will give the composer more control and creativity.
Melodizer Rock can inspire composers through these original solutions in ways that
generative models can’t.

It is quite clear that Melodizer Rock is far from having reached its full potential.
Many improvements can be added to give even more control to the composer.
Improving the base melodic line, and allowing more variations to the accompaniment,
are great first leads towards improving Melodizer Rock. One could also specify the
CSP towards a more rock sounding problem by adding constraints on the blocks of
the structure.

80

Bibliography

[1] B. Lapière, “Computer-aided musical composition,” https : / / www . info .
ucl.ac.be/~pvr/LAPIERE_2020.pdf, M.S. thesis, Université Catholique de
Louvain, 2020.

[2] D. Sprockeels, “Melodizer : A constraint programming tool for computer-aided
musical composition,” https://www.info.ucl.ac.be/~pvr/SPROCKEELS_
68641400_2022.pdf, M.S. thesis, Université Catholique de Louvain, 2021-2022.

[3] C. Chardon, A. Diels, and F. Gobbi, “Melodizer 2.0 : A constraint programming
tool for computer-aided musical composition,” https://www.info.ucl.ac.
be/~pvr/Chardon_55411600_Diels_22601600_Gobbi_12201500.pdf, M.S.
thesis, Université Catholique de Louvain, 2021-2022.

[4] D. F. Nobile, “A structural approach to the analysis of rock music,” https://
academicworks.cuny.edu/cgi/viewcontent.cgi?article=1082&context=
gc_etds, Ph.D. dissertation, The City University of New York, 2014.

[5] M. Pilhofer and H. Day, Music Theory for dummies. John Wiley & Sons, Inc.,
2019.

[6] R. Gauldin, “Harmonic practice in tonal music,” in W.W. Norton & Company,
Inc., 2004, pp. 3–66.

[7] R. Gauldin, “Harmonic practice in tonal music,” in W.W. Norton & Company,
Inc., 2004, pp. 94–115.

[8] R. Gauldin, “Harmonic practice in tonal music,” in W.W. Norton & Company,
Inc., 2004, pp. 126–143.

[9] K. Apt, Principles of Constraint Programming. Cambridge University Press,
2003, https://books.google.be/books?id=HEta789MatkC&printsec=
frontcover&hl=fr#v=onepage&q&f=false.

[10] C. Schulte, G. Tack, and M. Z. Lagerkvist, Modeling and Programming with
Gecode. 2019, https://www.gecode.org/doc-latest/MPG.pdf.

81

https://www.info.ucl.ac.be/~pvr/LAPIERE_2020.pdf
https://www.info.ucl.ac.be/~pvr/LAPIERE_2020.pdf
https://www.info.ucl.ac.be/~pvr/SPROCKEELS_68641400_2022.pdf
https://www.info.ucl.ac.be/~pvr/SPROCKEELS_68641400_2022.pdf
https://www.info.ucl.ac.be/~pvr/Chardon_55411600_Diels_22601600_Gobbi_12201500.pdf
https://www.info.ucl.ac.be/~pvr/Chardon_55411600_Diels_22601600_Gobbi_12201500.pdf
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1082&context=gc_etds
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1082&context=gc_etds
https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1082&context=gc_etds
https://books.google.be/books?id=HEta789MatkC&printsec=frontcover&hl=fr#v=onepage&q&f=false
https://books.google.be/books?id=HEta789MatkC&printsec=frontcover&hl=fr#v=onepage&q&f=false
https://www.gecode.org/doc-latest/MPG.pdf

[11] OpenMusic Documentation, visited on 25-05-2021, Ircam - Centre Pompidou.

[12] G. M. Sumner, Every breath you take, produced by The Police, 1983.

[13] Wikipedia contributors, Ragtime — Wikipedia, the free encyclopedia, https:
//en.wikipedia.org/w/index.php?title=Ragtime&oldid=1156437541,
[Online; accessed 2-June-2023], 2023.

[14] Wikipedia contributors, Jazz — Wikipedia, the free encyclopedia, https://
en.wikipedia.org/w/index.php?title=Jazz&oldid=1145468925, [Online;
accessed 2-June-2023], 2023.

[15] Wikipedia contributors, Alternative rock — Wikipedia, the free encyclopedia,
https://en.wikipedia.org/w/index.php?title=Alternative_rock&
oldid=1155616759, [Online; accessed 2-June-2023], 2023.

[16] Wikipedia contributors, Heavy metal music — Wikipedia, the free encyclo-
pedia, [Online; accessed 2-June-2023], 2023. [Online]. Available: https://
en.wikipedia.org/w/index.php?title=Heavy_metal_music&oldid=
1157601281.

[17] Wikipedia contributors, Country music — Wikipedia, the free encyclopedia, [On-
line; accessed 2-June-2023], 2023. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Country_music&oldid=1157495684.

[18] Wikipedia contributors, Reggae — Wikipedia, the free encyclopedia, [Online;
accessed 2-June-2023], 2023. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=Reggae&oldid=1157601424.

82

https://en.wikipedia.org/w/index.php?title=Ragtime&oldid=1156437541
https://en.wikipedia.org/w/index.php?title=Ragtime&oldid=1156437541
https://en.wikipedia.org/w/index.php?title=Jazz&oldid=1145468925
https://en.wikipedia.org/w/index.php?title=Jazz&oldid=1145468925
https://en.wikipedia.org/w/index.php?title=Alternative_rock&oldid=1155616759
https://en.wikipedia.org/w/index.php?title=Alternative_rock&oldid=1155616759
https://en.wikipedia.org/w/index.php?title=Heavy_metal_music&oldid=1157601281
https://en.wikipedia.org/w/index.php?title=Heavy_metal_music&oldid=1157601281
https://en.wikipedia.org/w/index.php?title=Heavy_metal_music&oldid=1157601281
https://en.wikipedia.org/w/index.php?title=Country_music&oldid=1157495684
https://en.wikipedia.org/w/index.php?title=Country_music&oldid=1157495684
https://en.wikipedia.org/w/index.php?title=Reggae&oldid=1157601424
https://en.wikipedia.org/w/index.php?title=Reggae&oldid=1157601424

Appendix A

Installation and Setup

This appendix gives instructions on how to install Melodizer Rock. As a disclaimer,
Melodizer Rock can not be installed on Windows systems. GiL will not function
properly as the Lisp version used by OpenMusic is a 32bit version and the Windows
version of Gecode is 64bit.

A.1 Download and Installation
Melodizer Rock is dependant on the following tools, which have to be downloaded

and installed according to their respective instructions:

• Gecode: https://www.gecode.org/download.html

• OpenMusic: https://openmusic-project.github.io/openmusic/

As a reminder to the user, if any problem occurs during the installation, please
refer to these tools’ installation instructions and READMEs as they contain all the
necessary troubleshooting information.

Once these tools have been downloaded and installed properly, the following
GitHub repositories have to be cloned:

• GiL: https://github.com/sprockeelsd/GiL

• Melodizer Rock: https://github.com/felixlepeltier/Melodizer-Rock

After which, GiL’s branch has to be switched to melodizer-rock-bab, as this is
the version needed to use Melodizer Rock as intended.

A.2 Setup
Melodizer Rock and GiL are both libraries which are used inside OpenMusic.

Therefore, they must be imported within this software. The following steps explain

83

https://www.gecode.org/download.html
https://openmusic-project.github.io/openmusic/
https://github.com/sprockeelsd/GiL
https://github.com/felixlepeltier/Melodizer-Rock

how to load these libraries in OpenMusic:

1. Launch OpenMusic

2. Enter an existing workspace, or create a new workspace

3. In the taskbar, click on "Windows" and then "Library", or simply press
Shift+Ctrl+P

4. In the taskbar, click on "File" and then "Add Remote User Library"

5. Navigate to both GiL and Melodizer Rock’s folders and add them

Both GiL and Melodizer Rock are now loaded into OpenMusic.

If you wish to load these libraries by default into OpenMusic, to avoid this tedious
library loading process each time you launch OpenMusic, then follow these steps:

1. Launch OpenMusic

2. Enter an existing workspace, or create a new workspace

3. In the taskbar, click on "OM 7.1" and then "Preferences", or simply press
Ctrl+,

4. In the pop-up, click on the "Libraries" tab

5. Click on the folder icon

6. Navigate to both GiL and Melodizer Rock’s folders and add them

7. Click on "Apply"

8. Check the boxes next to both GiL and Melodizer in the "Auto Load" box

84

Appendix B

Tutorial for Melodizer Rock

Below is a basic step-by-step tutorial aiming to give explanations on how to
go from an empty OpenMusic workspace to composing with Melodizer Rock, from
which the user will have more than enough knowledge to reproduce the examples in
chapter 6.

1. Launch OpenMusic

2. Enter an existing workspace, or create a new workspace

3. Create a new patch by right clicking on your workspace, and then on "New
Patch", or just press Ctrl+1

4. Double click this patch

5. Then in the taskbar click "Classes" then "Libraries > Melodizer > ALL >
ROCK" and click your patch interface to add the Rock object

Melodizer Rock is now ready to be used if your patch looks like Figure B.1. By
double clicking on this Rock object and interacting with it, you can start creating
music scores.

Now to create a basic example with Melodizer Rock, follow these steps

1. Double click the Rock object

2. Click the "Add A" button

3. Set "Number of bars" to 4 via the drop-down menu

4. Set "Min note length" to 4 via the drop-down menu, and then check the
check-box on its left

5. Set "Minimum pitch" to slightly below half

6. Set "Maximum pitch" to slightly above half

85

Figure B.1: OpenMusic patch with a Rock object instance

7. Click Start

8. Click Next

The Rock object interface should look like Figure B.2, and a "current solution"
window should pop-up like Figure B.3. Now let’s start using more of Melodizer
Rock’s capabilities, and create an example that is based on a source melody. To do
so, follow these steps:

1. Go to the patch’s interface

2. Then in the taskbar click "Classes" then "Score > VOICE" and click your patch
interface to add the V oice object

3. Double click the V oice object

4. You can now modify this V oice object so that it contains your input melody,
which can be done by using the commands explained in the taskbar’s "Help >
Editor Command Keys..." menu (or just press Shift+Ctrl+H)

5. Close this V oice object interface, and press b to block it if it is not already
marked with a cross

6. Connect the V oice object to the Rock object, by linking the first output of
this V oice object to the third input of the Rock object, the patch should look
like Figure B.4

7. Click once on the Rock object and press V on your keyboard, this will run the
Rock object and will process the input voice object

86

Figure B.2: Rock object interface, with one A block

Figure B.3: Example solution that is obtained with one A block

8. Rock is now ready to create an example using this source melody, you can
follow the same steps as done previously and will obtain a solution using your
source melody and a single A block

If you wish to use a source melody for B, then the input in the Rock object that
will be able to process it is the fourth one from the left.

87

Figure B.4: Patch with a V oice object given as input to Rock’s first A block

88

Appendix C

Constraints

This chapter will recall the different constraints used through Melodizer Rock
and give their implementation in C++ using Gecode.

C.1 General Constraints
This section comport the constraints explained in section 4.3.

C.1.1 Accompaniment General Constraints
This section refers to the constraints explained in 4.3.1

Link push pull and playing

1. 1 playing[i] = playing[i − 1] − pull[i] + push[i]

2. 2 pull[i] ⊆ playing[i − 1]

3. 3 push[i] ∩ (playing[i − 1] − pull[i]) = ∅

1 for(int i = 1; i < playing.size(); i++){
2 SetVar temp(*this, 0, max_pitch, 0, max_simultaneous_notes);
3 rel(*this, playing[i-1], SOT_SUB, pull[i], temp);
4 //Constraint 1
5 rel(*this, temp, SOT_UNION, push[i], playing[i]);
6 //Constraint 2
7 rel(*this, pull[i], SRT_SUB, playing[i-1]);
8 //Constraint 3
9 rel(*this, playing[i-1], SOT_MINUS, pull[i], SRT_DISJ, push[i]);

10 }

89

And the constraints for the first index of the arrays:

1. 1 pull[0] = ∅

2. 2 push[0] = playing[0]

1 // Constraint 1
2 dom(*this, pull[0], SRT_EQ, IntSet::empty);
3 // Constraint 2
4 rel(*this, push[0], SRT_EQ, playing[0]);

Simultaneous Notes

For all i ∈ [0, ..., k − 1] where k is the size of the array, min-sim and max-sim
being respectively the minimum and maximum number of notes that can play
simultaneously:

min − sim ≤ |playing[i]| ≤ max − sim

1 for(int i = 0; i < k; i++){
2 cardinality(*this, playing[k], min_sim, max_sim);
3 }

Chord Key and Quality

This is the implementation of the constraint of 1. For a playing array of size k,
∀i ∈ [0, ..., k − 1]:

playing[i] ∈ octave(chord, quality)

1 for(int i = 0; i < k; i++){
2 // Octave is the list of octaves of the chord
3 BoolVarArray bool_array(*this, octaves.size(), 0, 1);
4 for(int j = 0; j < octaves.size(); j++){
5 // triad is the set of three notes corresponding to the chord and

quality↪→

6 Reify r(bool_array[j], RM_IMP);
7 rel(*this, playing[i], SRT_EQ, octaves[i], r);
8 }
9 rel(*this, BOT_XOR, bool_array); // One of the triads must be played

10 }

90

Minimum Note Length

This is the implementation of the first constraint of 2. For arrays push and pull
of size k, ∀i ∈ [0, ..., k − 1]:

push[i] ⊈ pull[i + j] ∀j ∈ {1, ..., min_length − 1}

1 for(int i = 0; i < k; i++){
2 for(int j = 0; j < min_note_length && i+j < k; j++){
3 rel(*this, pull[i+j], SRT_DISJ, push[i]);
4 }
5 }

Maximum Note Length

This is the implementation of the second constraint of 2. For max-note-length,
the equation is for arrays push and pull of size k, ∀i ∈ [0, ..., k − 1]:

push[i] ∈
⋃

j∈{1,...,max_length−1}
pull[i + j]

1 for(int i = 0; i < k; i++){
2 SetVarArray l_pull(*this, max_length, 0, 127, 0, 127);
3 SetVar l_pull_union(*this, 0, 127, 0, 127);
4 //union of all pulled notes during max_length
5

6 for(int k = 0; k < max_length; k++){
7 rel(*this, l_pull[k], SRT_EQ, pull[i+k+1]);
8 }
9 rel(*this, SOT_UNION, l_pull, l_pull_union);

10 // push[i] included in l-pull-union
11 rel(*this, push[i], SRT_SUB, l_pull_union);
12 }

Maximum and Minimum Pitch

This is the implementation of the constraint 3. For a push array of size k,
∀i ∈ [0, ..., k − 1]:

push[i] ⊆ {min_pitch, ..., max_pitch}

1 for(int i = 0; i < k; i++){
2 dom(*this, push[i], SRT_SUB, min_pitch, max_pitch);
3 }

91

C.1.2 Melody General Constraints
This section develops the implementation of the constraints explained in 4.3.2

Link push pull and playing

1. 1 playing[i] = playing[i − 1] || playing[i] = push[i]

2. 2 push[i] = playing[i] || push[i] = −1

3. 3 pull[i] = playing[i − 1] || pull[i] = −1

4. 4 push[i] ̸= −1 ⇒ pull[i] = playing[i − 1]

5. 5 playing[i] = −1 ⇒ push[i] = −1 && pull[i] = playing[i − 1]

6. 6 playing[i] = playing[i − 1] ⇔ push[i] = pull[i]

1 for(int i = 1; i < push.size(); i++){
2 BoolVar playing_i_playing_i_one = expr(*this, playing[i] ==

playing[i-1]);↪→

3 BoolVar push_i_playing_i = expr(*this, push[i] == playing[i]);
4 // Constraint 1
5 rel(*this, playing_i_playing_i_one, BOT_OR, push_i_playing_i, 1);
6

7 BoolVar push_i_one = expr(*this, push[i] == -1);
8 // Constraint 2
9 rel(*this, push_i_playing_i, BOT_OR, push_i_one, 1);

10

11 BoolVar pull_i_playing_i_one = expr(*this, pull[i] == playing[i-1]);
12 BoolVar pull_i_one = expr(*this, pull[i] == -1);
13 // Constraint 3
14 rel(*this, pull_i_playing_i_one, BOT_OR, pull_i_one, 1);
15

16 BoolVar push_i_nq_one = expr(*this, push[i] != -1);
17 // Constraint 4
18 rel(*this, push_i_nq_one, BOT_IMP, pull_i_playing_i_one, 1);
19

20 BoolVar playing_i_one = expr(*this, playing[i] = -1);
21 // Constraint 5
22 rel(*this, playing_i_one, BOT_IMP, push_i_one, 1);
23 rel(*this, playing_i_one, BOT_IMP, pull_i_playing_i_one, 1);
24

25 BoolVar push_i_pull_i = expr(*this, push[i] == pull[i]);
26 // Constraint 6

92

27 rel(*this, playing_i_playing_i_one, BOT_IMP, push_i_pull_i, 1);
28 rel(*this, push_i_pull_i, BOT_IMP, playing_i_playing_i_one, 1);
29 }

And the two constraints for the first index of the arrays are:

1. 1 pull[0] = −1

2. 2 push[i] = playing[i]

1 // Constraint 1
2 rel(*this, pull[0], IRT_EQ, -1);
3 // Constraint 2
4 rel(*this, push[0], IRT_EQ, playing[0]);

Chord Key and Quality

This section develops the implementation for the constraint of 4.3.2. For a
playing array of size k, ∀i ∈ [0, ..., k − 1]:

playing[i] ∈ scaleset(chord, quality) || playing[i] = −1

1 for(int i = 0; i < k; i++){
2 int * chordset = scaleset(chord, quality);
3 BoolVarArray boolArray(*this, chordset.size()+1, 0, 1);
4

5 for(int j = 0; j < chordset.size(); j++){
6 BoolVar isNote = expr(*this, playing[i] == chordset[j]);
7 rel(*this, boolArray[i], IRT_EQ, isNote);
8 }
9

10 BoolVar isMinusOne = expr(*this, playing[i] == -1);
11 rel(*this, boolArray[chordset.size()], IRT_EQ, isMinusOne);
12 // The note is one of the note of chordset or is equal to -1
13 rel(*this, BOT_OR, boolArray, 1);
14 }

93

Minimum Note Length

This section refers to the first constraint of 4.3.2. For arrays push and pull of
size k, ∀i ∈ [0, ..., k − 1]:

push[i] ̸= −1 ⇒ pull[i + j] = −1 ∀j ∈ {1, ..., min_length − 1}

∀i ∈ [1, ..., k − 1]:

playing[i − 1] ̸= −1 && playing[i] = −1 ⇒ playing[i + j] = −1

1 for(int j = 0; j < k; j++){
2 for(int n = 1; n < min_length; n++){
3 // If a note is pushed, can't be pulled before min_length
4 BoolVar pushed = expr(*this, push[j] != -1);
5 BoolVar pulled = expr(*this, pull[j+n] == -1);
6 rel(*this, pushed, BOT_IMP, pulled, 1);
7

8 //If no note is playing, no note can play before min_length
9 if(j > 0){

10 BoolVar playing_j = expr(*this, playing[j] == -1);
11 BoolVar playing_j_1 = expr(*this, playing[j-1] != -1);
12 BoolVar playing_j_n = expr(*this, playing[j+n] == -1);
13 BoolVar rest(*this, 0, 1);
14

15 rel(*this, playing_j, BOT_AND, playing_j_1, rest);
16 rel(*this, rest, BOT_IMP, playing_j_n, 1);
17 }else{
18 BoolVar playing_j = expr(*this, playing[j] == -1);
19 BoolVar playing_j_n = expr(*this, playing[j+n] == -1);
20 rel(*this, playing_j, BOT_IMP, playing_j_n, 1);
21 }
22 }
23 }

Maximum Note Length

This section refers to the second constraint of 4.3.2. For arrays push and pull of
size k, ∀i ∈ [0, ..., k − 1]:

push[i] ̸= −1 ⇒ push[i] ∈
⋃

j∈{1,...,max_length−1}
pull[i + j]

94

1 for(int j = 0; j < push.size() - max_length; j++){
2 IntVar count(*this, 0, max_length);
3 IntVarArray int_array(*this, max_length, 0, max_length);
4

5 for(int k = 0; k < max_length; k++){
6 int_array[k] = expr(*this, push[j] - pull[j+k+1]);
7 }
8 //The pushed note must have appeared at least once
9 count(*this, int_array, 0, IRT_EQ, count);

10 rel(*this, count, IRT_GQ, 1);
11 }

Maximum and Minimum Pitch

This section shows the implementation of the constraint 4.3.2. For an array push
of size k, ∀i ∈ [0, ..., k − 1], this is written as:

push[i] ⊆ ({min_pitch, ..., max_pitch} ∪ {−1})

1 for(int j = 0; j < k; j++){
2 BoolVar bool_one = expr(*this, push[j] == -1);
3 BoolVar bool_min = expr(*this, push[j] >= min_pitch);
4 BoolVar bool_max = expr(*this, push[j] <= max_mitch);
5 BoolVar temp(*this, 0, 1);
6

7 // Either the note is between the bounds, or it is equal to -1
8 rel(*this, bool_min, BOT_AND, bool_max, temp);
9 rel(*this, temp, BOT_OR, bool_one, 1);

10 }

Intervals

This section implements the last constraint of section 4.3.2. For an array playing
of size k, ∀i ∈ [1, ..., k − 1], one can write:

|playing[i] − playing[i − 1]| ≤ 7 if playing[i] ̸= −1

1 for(int i = 1; i < k; i++){
2 BoolVar playing_i = expr(*this, playing[i] == -1);
3 BoolVar playing_i_one = expr(*this, playing[i-1] == -1);

95

4

5 IntVar interval = expr(*this, playing[i] - playing[i-1]);
6 IntVar interval_abs(*this, 0, 127);
7 abs(*this, interval, interval_abs);
8

9 BoolVar interval_max = expr(*this, interval_abs <= max_interval);
10 BoolVar temp(*this, 0, 1);
11

12 //Either one of the note is a rest, or the interval is respected
13 rel(*this, playing_i, BOT_OR, playing_i_one, temp);
14 rel(*this, temp, BOT_OR, interval_max, 1);
15 }

C.2 Block Specific Constraints
This section refers to the constraints explained in section 4.4.

C.2.1 Melody Source Constraints
This section describes the implementation of the constraints described in the first

part of section 4.4.2. Let the source melody be represented by {push, pull, playing}source

arrays of i elements, and s by push, pull, playing arrays of j elements. The constraints
can then be written ∀k ∈ [0, min(i, j) − 1] as:

push[k] = pushsource[k]

pull[k] = pullsource[k]

playing[k] = playingsource[k]

1 for(int j = 0; j < i; j++){
2 rel(*this, push[i], IRT_EQ, push-source[i]);
3 rel(*this, playing[i], IRT_EQ, playing-source[i]);
4 }
5 for(int j = 0; j < i - 1; j++){
6 rel(*this, pull[i], IRT_EQ, pull-source[i]);
7 }

1 rel(*this, push-acc[0], IRT_EQ, notes-to-play[0]);
2 rel(*this, push-acc[push-acc.size()/2], IRT_EQ, notes-to-play[1]);

96

C.2.2 Similarity Constraint Between IntVarArrays
This section describes the constraint explained in 4.4.1 for similarity between

arrays. Given two arrays x and y with respectively i and j elements, their resemblance
(in percent) sim is computed as such:

k = min(i, j)

sim = | {x[l] : x[l] = y[l] | l ∈ [0, k − 1]} |/k

Given minsim the minimal similarity in percent, the resemblance is computed as:

count = | {x[l] : x[l] = y[l] | l ∈ [0, k − 1]} |

count >= ⌈minsim ∗ k⌉

1 IntVar count(*this, 0, k);
2 IntVarArray int_array(*this, k, -127, 127);
3

4 for(int i = 0; i < k; i++){
5 int_array[i] = expr(*this, x[i] - y[i]);
6 }
7 // The number of similar note must be greater or equal
8 // to the minsim*k
9 count(*this, int_array, 0, IRT_EQ, count);

10 rel(*this, count, IRT_GQ, ceil(minsim*k));

C.2.3 Transposition of an IntVarArray
Two types of transpositions were explained in section 4.4. The first one defines

the transposition from one scale to another. Given the same x and i as before,
indexscale(chord, quality, note) is the index of a note on the scale defined by chord
and quality. Then chordx and qualityx are the chord and quality in which the melody
of x is set. Finally t is the transposed melody with same length as x, and chordt

and qualityt define the scale to transpose to, it can be written ∀j ∈ [0, ..., i]:

indexscale(chordx, qualityx, x[j]) = indexscale(chordt, qualityt, t[j])

In Gecode, given scaleset(chord,quality) a function providing the array of
notes of the scale in order, it is implemented as:

1 int notes[] = scaleset(chord_x, quality_x);
2 int new_notes[] = scaleset(chord_t, quality_y);
3

97

4 IntVarArray t(*this, i, -1, 127);
5

6 for(int j = 0; j < i; j++){
7 BoolVarArray bool_array(*this, notes.size(), 0, 1);
8

9 for(int k = 0; k < min(notes.size(), new_notes.size()) k++){
10 BoolVar x_n = expr(*this, x[j] == notes[k]);
11 BoolVar t_n = expr(*this, n[j] == new_notes[k]);
12 rel(*this, x_n, BOT_IMP, t_n, 1);
13 }
14 }

The second implementation is equivalent with just the line 2 replaced by:

1 new_notes[notes.size()];
2 for(int n = 0; n < notes.size(); n++){
3 new_notes[n] = notes[n] + s;
4 }

C.2.4 c-specific Constraints
This section describes the last part of the constraints explained in 4.4. The

cadence is defined by a succession of chord degrees succession (array of two distances
from the root note, in semitones), pushacc is the accompaniment’s push array of i
elements, and chords is an array of two elements. Each of these elements is a set of
notes representing a chord to be played . Note that i is a multiple of 16, therefore
pushacc always has an even number of elements.

pushacc[0] = chords[0]

pushacc[i/2] = chords[1]

1 rel(*this, push_acc[0], SRT_EQ, chords[0]);
2 rel(*this, push_acc[i/2], SRT_EQ, chords[1]);

octaves(tonic) is a function returning a list of notes corresponding to all the
possible octaves of the tonic. The last index of playing is forced to belong to this
list:

playing[i − 1] ∈ octave(tonic)

98

1 dom(*this, playing[i-1], octaves(tonic))

99

Appendix D

Melodizer Rock Code

This section shows the code that was explained and not shown in the main part of the thesis.
It can be divided into four main parts:

1. The package definition of Melodizer Rock that allows to import it into Open Music

2. The definition of the objects and interfaces that compose Melodizer Rock’s structure

3. The construction of the CSP specific to Melodizer Rock

4. The utility files that contain mostly useful functions used in the other three categories.

D.1 Package Setup
To be able to load the Melodizer Rock package into OpenMusic, two files are necessary:

• Melodizer.lisp: Contains the definitions of the files and objects to be loaded. It is
located outside of a sources folder in which all the source code is located.

• package.lisp: defines the code as a package for Open Music. Located in the source folder.

D.1.1 Melodizer.lisp

1 (in-package :om)
2

3 (defvar *melodizer-sources-dir* nil)
4 (setf *melodizer-sources-dir* (make-pathname :directory (append (pathname-directory

load-pathname) '("sources"))))↪→

5

6

7 (mapc 'compile&load (list
8 (make-pathname :directory (append (pathname-directory *load-pathname*)

(list "sources")) :name "package" :type "lisp")↪→

100

9 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "melodizer-utils" :type "lisp")↪→

10 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "melodizer-csp" :type "lisp")↪→

11 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "melodizer-csts" :type "lisp")↪→

12 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "block" :type "lisp")↪→

13 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "rock-utils" :type "lisp")↪→

14 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "rock" :type "lisp")↪→

15 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "rock-AB" :type "lisp")↪→

16 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "rock-srdc" :type "lisp")↪→

17 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "rock-accompaniment" :type "lisp")↪→

18 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "rock-csp" :type "lisp")↪→

19 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "rock-csts" :type "lisp")↪→

20 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "dummy-problem" :type "lisp")↪→

21 (make-pathname :directory (pathname-directory *melodizer-sources-dir*)
:name "golomb-ruler" :type "lisp")↪→

22))
23

24

25 ;; remplir à la fin
26 (fill-library '(("ALL" nil (mldz::melodizer mldz::block mldz::search mldz::rock) nil)
27 ("UTILS" Nil Nil (mldz::get-voice mldz::to-midicent) nil)
28))
29

30 (print "Melodizer Loaded")

D.1.2 sources/package.lisp

1 (in-package :om)
2

3 (defvar *MELODIZER-path* (make-pathname :directory (append (pathname-directory
load-pathname) (list "MELODIZER"))))↪→

4

101

5 (require-library "GIL")
6

7 (defpackage :mldz
8 (:use "COMMON-LISP" "OM" "CL-USER"))

D.2 Objects
Different objects and their interfaces, as explained in Chapter 4, were implemented into

Melodizer Rock. They are all located in the sources folder. Their implementation respects
Figure 2.10 where a greater block contains its sub-blocks.

D.2.1 sources/rock.lisp
This file contains the Rock object, describing the whole song.

1 (in-package :mldz)
2

3

4 ;;;
5 ;;;
6 ;; ROCK CLASS ;;
7 ;;;
8 ;;;
9

10 ;; Define a rock object containing the constraints
11 ;; and attributes necessary for the search
12 (om::defclass! rock ()
13 (
14 (block-list
15 :accessor block-list :initarg :block-list :initform nil
16 :documentation "Block list containing the global musical structure")
17 (melody-source-A
18 :accessor melody-source-A :initarg :melody-source-A :initform nil
19 :documentation "Source melody for s of the first A block")
20 (melody-source-B
21 :accessor melody-source-B :initarg :melody-source-B :initform nil
22 :documentation "Source melody for s of the first B block")
23 (bar-length
24 :accessor bar-length :initform 0 :type integer
25 :documentation "Number of bars contained in the block")
26 (nb-a
27 :accessor nb-a :initform 0 :type integer
28 :documentation "number of block A in the structure")

102

29 (nb-b
30 :accessor nb-b :initform 0 :type integer
31 :documentation "number of block B in the structure")
32 (idx-first-a
33 :accessor idx-first-a :initform 0 :type integer
34 :documentation "index of the first block A in the structure")
35 (idx-first-b
36 :accessor idx-first-b :initform 0 :type integer
37 :documentation "index of the first block B in the structure")
38 (min-note-length-flag
39 :accessor min-note-length-flag :initform nil :type integer
40 :documentation "Flag stating if the note-min-length constrain must be posted")
41 (min-note-length
42 :accessor min-note-length :initform 1 :type integer
43 :documentation "Minimum note length value")
44 (max-note-length-flag
45 :accessor max-note-length-flag :initform nil :type integer
46 :documentation "Flag stating if the note-max-length constrain must be posted")
47 (max-note-length
48 :accessor max-note-length :initform 16 :type integer
49 :documentation "Maximum note length value")
50 (chord-key
51 :accessor chord-key :initform "C" :type string
52 :documentation "Chord key to set the scale in")
53 (chord-quality
54 :accessor chord-quality :initform "Major" :type string
55 :documentation "Quality to set the scale in")
56 (min-pitch
57 :accessor min-pitch :initform 1 :type integer
58 :documentation "Minimum pitch value")
59 (max-pitch
60 :accessor max-pitch :initform 127 :type integer
61 :documentation "Maximum pitch value")
62 (solution
63 :accessor solution :initarg :solution :initform nil
64 :documentation "The current solution of the CSP in the form of a voice object.")
65 (result :accessor result
66 :result :initform (list)
67 :documentation "A list holder to store the result of the call to the CSPs")
68 (stop-search
69 :accessor stop-search :stop-search :initform nil
70 :documentation "booleanto tell if the user wishes to stop the search or not.")
71 (input-rhythm
72 :accessor input-rhythm :input-rhythm :initform (make-instance 'voice)
73 :documentation "The rhythm of the melody or a melody in the form of a voice

object. ")↪→

103

74 (tempo
75 :accessor tempo :initform 80 :type integer
76 :documentation "The tempo (BPM) of the project")
77 (branching
78 :accessor branching :initform "Top down" :type string
79 :documentation "The tempo (BPM) of the project")
80 (percent-diff
81 :accessor percent-diff :initform 1 :type integer
82 :documentation "The minimum difference percentage between solutions")
83)
84)
85

86

87 (defclass rock-editor (om::editorview) ())
88

89 (defmethod om::class-has-editor-p ((self rock)) t)
90 (defmethod om::get-editor-class ((self rock)) 'rock-editor)
91 (defmethod om::om-draw-contents ((view rock-editor))
92 (let* ((object (om::object view)))
93 (om::om-with-focused-view
94 view
95)
96)
97)
98

99 (defmethod initialize-instance ((self rock-editor) &rest args)
100 ;;; do what needs to be done by default
101 (call-next-method) ; start the search by default?
102 (make-my-interface self)
103)
104

105 (defmethod make-my-interface ((self rock-editor))
106

107 ; create the main view of the object
108 (make-main-view self)
109 (let*
110 (
111 ;;;
112 ;;; setting the different regions of the tool ;;;
113 ;;;
114

115 (rock-panel (om::om-make-view 'om::om-view
116 :size (om::om-make-point 130 200)
117 :position (om::om-make-point 5 5)
118 :bg-color om::*azulito*)
119)

104

120 (constraints-panel (om::om-make-view 'om::om-view
121 :size (om::om-make-point 510 200)
122 :position (om::om-make-point 5 210)
123 :bg-color om::*azulito*)
124)
125 (structure-panel (om::om-make-view 'om::om-view
126 :size (om::om-make-point 100 200)
127 :position (om::om-make-point 140 5)
128 :bg-color om::*azulito*)
129)
130 (search-panel (om::om-make-view 'om::om-view
131 :size (om::om-make-point 270 200)
132 :position (om::om-make-point 245 5)
133 :bg-color om::*azulito*)
134)
135)
136

137 (setf elements-rock-panel (make-rock-panel self rock-panel))
138 (setf elements-constraints-panel (make-constraints-panel self constraints-panel))
139 (setf elements-structure-panel (make-structure-panel self structure-panel))
140 (setf elements-search-panel (make-rock-search-panel self search-panel))
141

142 ; add the subviews for the different parts into the main view
143 (om::om-add-subviews
144 self
145 rock-panel
146 constraints-panel
147 structure-panel
148 search-panel
149)
150)
151 ; return the editor
152 self
153)
154

155

156 ;;;
157 ;;;
158 ;; INTERFACE CONSTRUCTION ;;
159 ;;;
160 ;;;
161

162 ;;;;;;;;;;;;;;;;;
163 ;;; main view ;;;
164 ;;;;;;;;;;;;;;;;;
165

105

166 ; this function creates the elements for the main panel
167 (defun make-main-view (editor)
168 ; background colour
169 (om::om-set-bg-color editor om::*om-light-gray-color*) ;pour changer le bg color. om

peut fabriquer sa propre couleur: (om-make-color r g b)↪→

170)
171

172

173 ;;;
174 ;;;
175 ;; ROCK PANEL ;;
176 ;;;
177 ;;;
178

179

180 (defun make-rock-panel (editor rock-panel)
181 (om::om-add-subviews
182 rock-panel
183

184 ;; Button to add a block A at the end of the current block-list
185 (om::om-make-dialog-item
186 'om::om-button
187 (om::om-make-point 5 10) ; position (horizontal, vertical)
188 (om::om-make-point 100 20) ; size (horizontal, vertical)
189 "Add A"
190 :di-action #'(lambda (b)
191 (print "Added A to structure")
192 ;;Create the block and set its values
193 (let ((bar-length 0) (new-block (make-instance 'A :parent (om::object editor)

(om::object editor))))↪→

194 (setf (block-position new-block) (length (block-list (om::object editor))))
195 (setf (block-position-A new-block) (count-A-block-list (block-list (parent

new-block))))↪→

196 (setf (block-list (om::object editor)) (append (block-list (om::object editor))
(list new-block)))↪→

197 (if (= (length (block-list (om::object editor))) 1)
198 (setq bar-length 0)
199 (setq bar-length (bar-length (first (block-list (om::object editor)))))
200)
201 (if (= (nb-a (om::object editor)) 0)
202 (setf (idx-first-a (om::object editor)) (block-position new-block))
203)
204 (setf (nb-a (om::object editor)) (+ (nb-a (om::object editor)) 1))
205 (setf (bar-length (om::object editor)) (+ bar-length (bar-length (om::object

editor))))↪→

206 ;; Update the constraints values based on the Rock block

106

207 (change-subblocks-values (om::object editor)
208 :bar-length (bar-length (om::object editor))
209 :chord-key (chord-key (om::object editor))
210 :min-pitch (min-pitch (om::object editor))
211 :max-pitch (max-pitch (om::object editor))
212 :min-note-length-flag (min-note-length-flag

(om::object editor))↪→

213 :min-note-length (min-note-length (om::object
editor))↪→

214 :max-note-length-flag (max-note-length-flag
(om::object editor))↪→

215 :max-note-length (max-note-length (om::object
editor))↪→

216 :chord-quality (chord-quality (om::object editor))
217)
218)
219 ;; (om::om-remove-subviews rock-panel)
220 (make-my-interface editor)
221)
222)
223

224

225 ;; Button to add a block B at the end of the current block-list
226 (om::om-make-dialog-item
227 'om::om-button
228 (om::om-make-point 5 50) ; position (horizontal, vertical)
229 (om::om-make-point 100 20) ; size (horizontal, vertical)
230 "Add B"
231 :di-action #'(lambda (b)
232 (print "Added B to structure")
233 ;;Create the block and set its values
234 (let ((bar-length 0) (new-block (make-instance 'B :parent (om::object editor)

(om::object editor))))↪→

235 (setf (block-position new-block) (length (block-list (om::object editor))))
236 (setf (block-position-B new-block) (count-B-block-list (block-list (parent

new-block))))↪→

237 (setf (block-list (om::object editor)) (append (block-list (om::object editor))
(list new-block)))↪→

238 (if (= (length (block-list (om::object editor))) 1)
239 (setq bar-length 0)
240 (setq bar-length (bar-length (first (block-list (om::object editor)))))
241)
242 (if (= (nb-b (om::object editor)) 0)
243 (setf (idx-first-b (om::object editor)) (block-position new-block))
244)
245 (setf (nb-b (om::object editor)) (+ (nb-b (om::object editor)) 1))

107

246 (setf (bar-length (om::object editor)) (+ bar-length (bar-length (om::object
editor))))↪→

247 ;; Update the constraints values based on the Rock block
248 (change-subblocks-values (om::object editor)
249 :bar-length (bar-length (om::object editor))
250 :chord-key (chord-key (om::object editor))
251 :min-pitch (min-pitch (om::object editor))
252 :max-pitch (max-pitch (om::object editor))
253 :min-note-length-flag (min-note-length-flag

(om::object editor))↪→

254 :min-note-length (min-note-length (om::object
editor))↪→

255 :max-note-length-flag (max-note-length-flag
(om::object editor))↪→

256 :max-note-length (max-note-length (om::object
editor))↪→

257 :chord-quality (chord-quality (om::object editor))
258)
259)
260 ;; (om::om-remove-subviews rock-panel)
261 (make-my-interface editor)
262)
263)
264

265 ;; Buton to erase every bit of the current structure
266 (om::om-make-dialog-item
267 'om::om-button
268 (om::om-make-point 5 90) ; position (horizontal, vertical)
269 (om::om-make-point 100 20) ; size (horizontal, vertical)
270 "Clear"
271 :di-action #'(lambda (b)
272 (print "Cleared structure")
273 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

274 "clear struct" ; name of the thread, not necessary but useful for debugging
275 nil ; process initialization keywords, not needed here
276 (lambda () ; function to call
277 (setf (bar-length (om::object editor)) 0)
278 (setf (block-list (om::object editor)) nil)
279 (setf (nb-a (om::object editor)) 0)
280 (setf (nb-b (om::object editor)) 0)
281 (om::om-remove-subviews rock-panel)
282 (make-my-interface editor)
283)
284)
285)

108

286)
287)
288)
289

290

291 ;;;
292 ;;;
293 ;; STRUCTURE PANEL ;;
294 ;;;
295 ;;;
296

297 (defun make-structure-panel (editor structure-panel)
298

299 (let ((loop-index 0) (subview-list '()))
300 ;; Loop on the block-list and create buttons for every block of the structure
301 ;; that open the corresponding editor
302 (loop for x in (block-list (om::object editor))
303 do
304 (if (typep x 'mldz::a)
305 (setf subview-list (append subview-list (list (om::om-make-dialog-item
306 'om::om-button
307 (om::om-make-point 5 (+ 5 (* 30 loop-index))) ; position (horizontal, vertical)
308 (om::om-make-point 75 20) ; size (horizontal, vertical)
309 "A"
310 :di-action #'(lambda (b)
311

312 (print "Selected A")
313 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

314 "next thread" ; name of the thread, not necessary but useful for debugging
315 nil ; process initialization keywords, not needed here
316 #'(lambda () ; function to call
317 (om::openeditorframe ; open a window displaying the editor of the A block
318 (om::omNG-make-new-instance (nth (position b subview-list)
319 (block-list (om::object editor)))
320 (concatenate 'string "Window A" (write-to-string (position b

subview-list))))↪→

321)
322)
323)
324)
325))))
326)
327

328 (if (typep x 'mldz::b)
329 (setf subview-list (append subview-list (list (om::om-make-dialog-item

109

330 'om::om-button
331 (om::om-make-point 5 (+ 5 (* 30 loop-index))) ; position (horizontal, vertical)
332 (om::om-make-point 75 20) ; size (horizontal, vertical)
333 "B"
334 :di-action #'(lambda (b)
335 (print "Selected B")
336 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

337 "next thread" ; name of the thread, not necessary but useful for debugging
338 nil ; process initialization keywords, not needed here
339 #'(lambda () ; function to call
340 (om::openeditorframe ; open a window displaying the editor of the B block
341 (om::omNG-make-new-instance (nth (position b subview-list)
342 (block-list (om::object editor)))
343 (concatenate 'string "Window B" (write-to-string (position b

subview-list))))↪→

344)
345)
346)
347)
348))))
349)
350 (setq loop-index (+ loop-index 1))
351)
352

353

354 (if (not subview-list)
355 (om::om-add-subviews
356 structure-panel
357)
358 (loop for x in subview-list
359 do
360 (om::om-add-subviews
361 structure-panel
362 x
363)
364)
365

366)
367)
368)
369

370 ;;;
371 ;;;
372 ;; CONSTRAINTS PANEL ;;
373 ;;;

110

374 ;;;
375

376 (defun make-constraints-panel (editor panel)
377 (om::om-add-subviews
378 panel
379 (om::om-make-dialog-item
380 'om::om-static-text
381 (om::om-make-point 15 5)
382 (om::om-make-point 120 20)
383 "Block constraints"
384 :font om::*om-default-font1b*
385)
386

387 (om::om-make-dialog-item
388 'om::om-static-text
389 (om::om-make-point 15 30)
390 (om::om-make-point 100 20)
391 "Number of bars"
392 :font om::*om-default-font1b*
393)
394

395 (om::om-make-dialog-item
396 'om::pop-up-menu
397 (om::om-make-point 150 30)
398 (om::om-make-point 80 20)
399 "Bar length"
400 :range (bar-length-range (om::object editor))
401 :value (number-to-string (bar-length (om::object editor)))
402 :di-action #'(lambda (m)
403 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
404 (setf (bar-length (om::object editor)) (string-to-number check))
405 (change-subblocks-values (om::object editor) :bar-length (bar-length (om::object

editor)))↪→

406 (if (not (typep (om::object editor) 'mldz::rock))
407 (progn
408 (propagate-bar-length-srdc (om::object editor))
409 (set-bar-length-up (om::object editor))
410)
411)
412)
413)
414

415 (om::om-make-dialog-item
416 'om::om-static-text
417 (om::om-make-point 15 60)
418 (om::om-make-point 100 20)

111

419 "Min note length"
420 :font om::*om-default-font1b*
421)
422

423 (om::om-make-dialog-item
424 'om::om-check-box
425 (om::om-make-point 120 60)
426 (om::om-make-point 20 20)
427 ""
428 :checked-p (min-note-length-flag (om::object editor))
429 :di-action #'(lambda (c)
430 (if (om::om-checked-p c)
431 (setf (min-note-length-flag (om::object editor)) 1)
432 (setf (min-note-length-flag (om::object editor)) nil)
433)
434 (change-subblocks-values (om::object editor)
435 :min-note-length-flag (min-note-length-flag (om::object

editor))↪→

436 :min-note-length (min-note-length (om::object editor)))
437)
438)
439

440 (om::om-make-dialog-item
441 'om::pop-up-menu
442 (om::om-make-point 150 60)
443 (om::om-make-point 80 20); size
444 "Minimum note length"
445 :range (loop :for n :from 0 :upto 4 :collect (number-to-string (expt 2 n)))
446 :value (number-to-string (min-note-length (om::object editor)))
447 :di-action #'(lambda (m)
448 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
449 (setf (min-note-length (om::object editor)) (string-to-number check))
450 (change-subblocks-values (om::object editor)
451 :min-note-length-flag (min-note-length-flag (om::object

editor))↪→

452 :min-note-length (min-note-length (om::object editor)))
453)
454)
455

456 (om::om-make-dialog-item
457 'om::om-static-text
458 (om::om-make-point 15 90)
459 (om::om-make-point 100 20)
460 "Max note length"
461 :font om::*om-default-font1b*
462)

112

463

464 (om::om-make-dialog-item
465 'om::om-check-box
466 (om::om-make-point 120 90)
467 (om::om-make-point 20 20)
468 ""
469 :checked-p (max-note-length-flag (om::object editor))
470 :di-action #'(lambda (c)
471 (if (om::om-checked-p c)
472 (setf (max-note-length-flag (om::object editor)) 1)
473 (setf (max-note-length-flag (om::object editor)) nil)
474)
475 (change-subblocks-values (om::object editor)
476 :max-note-length-flag (max-note-length-flag (om::object

editor))↪→

477 :max-note-length (max-note-length (om::object editor)))
478)
479)
480

481 (om::om-make-dialog-item
482 'om::pop-up-menu
483 (om::om-make-point 150 90)
484 (om::om-make-point 80 20); size
485 "Maximum note length"
486 :range (loop :for n :from 0 :upto 4 :collect (number-to-string (expt 2 n)))
487 :value (number-to-string (max-note-length (om::object editor)))
488 :di-action #'(lambda (m)
489 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
490 (setf (max-note-length (om::object editor)) (string-to-number check))
491 (change-subblocks-values (om::object editor)
492 :max-note-length-flag (max-note-length-flag (om::object

editor))↪→

493 :max-note-length (max-note-length (om::object editor)))
494)
495)
496

497 (om::om-make-dialog-item
498 'om::om-static-text
499 (om::om-make-point 250 5)
500 (om::om-make-point 200 20)
501 "Pitch constraints"
502 :font om::*om-default-font1b*
503)
504

505 (om::om-make-dialog-item
506 'om::om-static-text

113

507 (om::om-make-point 250 30)
508 (om::om-make-point 100 20)
509 "Chord key"
510 :font om::*om-default-font1b*
511)
512

513 (om::om-make-dialog-item
514 'om::pop-up-menu
515 (om::om-make-point 350 30)
516 (om::om-make-point 80 20)
517 "Chord key"
518 :range '("C" "C#" "D" "Eb" "E" "F" "F#" "G" "Ab" "A" "Bb" "B")
519 :value (chord-key (om::object editor))
520 :di-action #'(lambda (m)
521 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
522 (if (string= check "None")
523 (setf (chord-key (om::object editor)) nil)
524 (setf (chord-key (om::object editor)) check)
525)
526

527 (change-subblocks-values (om::object editor) :chord-key check)
528)
529)
530

531 (om::om-make-dialog-item
532 'om::om-static-text
533 (om::om-make-point 250 60)
534 (om::om-make-point 100 20)
535 "Chord quality"
536 :font om::*om-default-font1b*
537)
538

539 (om::om-make-dialog-item
540 'om::pop-up-menu
541 (om::om-make-point 350 60)
542 (om::om-make-point 80 20)
543 "Chord quality"
544 :value (chord-quality (om::object editor))
545 :range '("Major" "Minor" "Augmented" "Diminished")
546 :di-action #'(lambda (m)
547 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
548 (if (string= check "None")
549 (setf (chord-quality (om::object editor)) nil)
550 (setf (chord-quality (om::object editor)) check))
551 (change-subblocks-values (om::object editor) :chord-quality check)
552

114

553)
554)
555

556 (om::om-make-dialog-item
557 'om::om-static-text
558 (om::om-make-point 250 90)
559 (om::om-make-point 100 20)
560 "Minimum pitch"
561 :font om::*om-default-font1b*
562)
563

564

565 (om::om-make-dialog-item
566 'om::slider
567 (om::om-make-point 250 110)
568 (om::om-make-point 150 20)
569 "Minimum pitch"
570 :range '(1 127)
571 :increment 1
572 :value (min-pitch (om::object editor))
573 :di-action #'(lambda (s)
574 (setf (min-pitch (om::object editor)) (om::om-slider-value s))
575 (change-subblocks-values (om::object editor)
576 :min-pitch (min-pitch (om::object editor)))
577)
578)
579

580 (om::om-make-dialog-item
581 'om::om-static-text
582 (om::om-make-point 250 140)
583 (om::om-make-point 100 20)
584 "Maximum pitch"
585 :font om::*om-default-font1b*
586)
587

588 (om::om-make-dialog-item
589 'om::slider
590 (om::om-make-point 250 160)
591 (om::om-make-point 150 20)
592 "Maximum pitch"
593 :range '(1 127)
594 :increment 1
595 :value (max-pitch (om::object editor))
596 :di-action #'(lambda (s)
597 (setf (max-pitch (om::object editor)) (om::om-slider-value s))
598 (change-subblocks-values (om::object editor)

115

599 :max-pitch (max-pitch (om::object editor)))
600)
601)
602)
603

604)
605

606

607

608 ;;;
609 ;;;
610 ;; SEARCH PANEL ;;
611 ;;;
612 ;;;
613

614 (defun make-rock-search-panel (editor search-panel)
615 (om::om-add-subviews
616 search-panel
617 (om::om-make-dialog-item
618 'om::om-static-text
619 (om::om-make-point 75 5)
620 (om::om-make-point 120 20)
621 "Search Parameters"
622 :font om::*om-default-font1b*
623)
624

625 (om::om-make-dialog-item
626 'om::om-button
627 (om::om-make-point 5 30) ; position (horizontal, vertical)
628 (om::om-make-point 80 20) ; size (horizontal, vertical)
629 "Start"
630 :di-action #'(lambda (b)
631 (setf (result (om::object editor))
632 (rock-solver (om::object editor)
633 (percent-diff (om::object editor))
634 (branching (om::object editor))))
635)
636)
637

638 (om::om-make-dialog-item
639 'om::om-button
640 (om::om-make-point 90 30) ; position
641 (om::om-make-point 80 20) ; size
642 "Next"
643 :di-action #'(lambda (b)
644 (if (typep (result (om::object editor)) 'null); if the problem is not initialized

116

645 (error "The problem has not been initialized. Please set the input and press
Start.")↪→

646)
647 (print "Searching for the next solution")
648 ;reset the boolean because we want to continue the search
649 (setf (stop-search (om::object editor)) nil)
650 ;get the next solution
651 (mp:process-run-function ; start a new thread for the execution of the next method
652 "next thread" ; name of the thread, not necessary but useful for debugging
653 nil ; process initialization keywords, not needed here
654 (lambda () ; function to call
655 (let ((res (new-rock-next (result (om::object editor)) (om::object editor))))
656 (setf (solution (om::object editor)) (first res) (result (om::object editor))

(cdr res))↪→

657 (om::openeditorframe ; open a voice window displaying the solution
658 (om::omNG-make-new-instance (solution (om::object editor)) "current

solution")↪→

659)
660)
661)
662)
663)
664)
665

666 (om::om-make-dialog-item
667 'om::om-button
668 (om::om-make-point 175 30) ; position (horizontal, vertical)
669 (om::om-make-point 80 20) ; size (horizontal, vertical)
670 "Stop"
671 :di-action #'(lambda (b)
672 (setf (stop-search (om::object editor)) t)
673)
674)
675

676 (om::om-make-dialog-item
677 'om::om-static-text
678 (om::om-make-point 15 75)
679 (om::om-make-point 100 20)
680 "Tempo (BPM)"
681 :font om::*om-default-font1b*
682)
683

684 (om::om-make-dialog-item
685 'om::pop-up-menu
686 (om::om-make-point 170 75)
687 (om::om-make-point 80 20)

117

688 "Tempo"
689 :range (loop :for n :from 30 :upto 200 :collect (number-to-string n))
690 :value (number-to-string (tempo (om::object editor)))
691 :di-action #'(lambda (m)
692 (setf (tempo (om::object editor)) (string-to-number (nth

(om::om-get-selected-item-index m) (om::om-get-item-list m))))↪→

693)
694)
695

696

697 (om::om-make-dialog-item
698 'om::om-static-text
699 (om::om-make-point 15 105)
700 (om::om-make-point 200 20)
701 "Difference Percentage"
702 :font om::*om-default-font1b*
703)
704

705 (om::om-make-dialog-item
706 'om::slider
707 (om::om-make-point 15 130)
708 (om::om-make-point 230 20)
709 "Difference Percentage"
710 :range '(0 100)
711 :increment 1
712 :value (percent-diff (om::object editor))
713 :di-action #'(lambda (s)
714 (setf (percent-diff (om::object editor)) (om::om-slider-value s))
715)
716)
717)
718

719)

D.2.2 sources/rock-AB.lisp
This file contains the A and B objects. First by defining the objects and their attributes.

1 (in-package :mldz)
2

3 ;;;
4 ;;;
5 ;; A CLASS ;;
6 ;;;

118

7 ;;;
8

9

10 (om::defclass! A ()
11 (
12 (s-block
13 :accessor s-block :initarg :s-block :initform (make-instance 's)
14 :documentation "s sub-block, first few bars of the block")
15 (r-block
16 :accessor r-block :initarg :r-block :initform (make-instance 'r)
17 :documentation "r sub-block, bars after s")
18 (d-block
19 :accessor d-block :initarg :d-block :initform (make-instance 'd)
20 :documentation "d sub-blocks, bars after r")
21 (c-block
22 :accessor c-block :initarg :c-block :initform (make-instance 'c)
23 :documentation "c sub-block, last few bars")
24 (parent
25 :accessor parent :initarg :parent :initform nil
26 :documentation "parent block containing the instance of this block")
27 (relative-to-parent
28 :accessor relative-to-parent :initarg :relative-to-parent :initform 1 :type

integer↪→

29 :documentation "Flag to now if the block attributes are reltive to its
parent's")↪→

30 (relative-to-same
31 :accessor relative-to-same :initarg :relative-to-same :initform nil :type

integer↪→

32 :documentation "Flag to now if the block attributes are reltive to similar
blocks")↪→

33 (bar-length
34 :accessor bar-length :initform 0 :type integer
35 :documentation "Number of bars of the block")
36 (min-note-length-flag
37 :accessor min-note-length-flag :initform nil :type integer
38 :documentation "Flag stating if the note-min-length constrain must be posted")
39 (min-note-length
40 :accessor min-note-length :initform 1 :type integer
41 :documentation "Minimum note length value")
42 (diff-min-length
43 :accessor diff-min-length :initform 0 :type integer
44 :documentation "Difference for relative changes")
45 (max-note-length-flag
46 :accessor max-note-length-flag :initform nil :type integer
47 :documentation "Flag stating if the note-max-length constrain must be posted")
48 (max-note-length

119

49 :accessor max-note-length :initform 16 :type integer
50 :documentation "Maximum note length value")
51 (diff-max-length
52 :accessor diff-max-length :initform 0 :type integer
53 :documentation "Difference for relative changes")
54 (chord-key
55 :accessor chord-key :initform "C" :type string
56 :documentation "Chord key to set the scale in")
57 (diff-chord-key
58 :accessor diff-chord-key :initform 0 :type integer
59 :documentation "Difference for relative changes")
60 (chord-quality
61 :accessor chord-quality :initform "Major" :type string
62 :documentation "Quality to set the scale in")
63 (diff-chord-quality
64 :accessor diff-chord-quality :initform 0 :type integer
65 :documentation "Difference for relative changes")
66 (min-pitch
67 :accessor min-pitch :initform 1 :type integer
68 :documentation "Minimum pitch value")
69 (diff-min-pitch
70 :accessor diff-min-pitch :initform 0 :type integer
71 :documentation "Difference for relative changes")
72 (max-pitch
73 :accessor max-pitch :initform 127 :type integer
74 :documentation "Maximum pitch value")
75 (diff-max-pitch
76 :accessor diff-max-pitch :initform 0 :type integer
77 :documentation "Difference for relative changes")
78 (block-position
79 :accessor block-position :initform -1 :type integer
80 :documentation "Index of the A or B block within the global structure")
81 (similarity-percent-A0
82 :accessor similarity-percent-A0 :initform 50 :type integer
83 :documentation "Percentage of resemblance with first A")
84 (block-position-A
85 :accessor block-position-A :initform -1 :type integer
86 :documentation "Index of this block relative to other A blocks within the global

structure")↪→

87 (block-position-B
88 :accessor block-position-B :initform -1 :type integer
89 :documentation "Index of this block relative to other B blocks within the

global structure")↪→

90 (semitones
91 :accessor semitones :initform 0 :type integer
92 :documentation "Semitones of transposition from key")

120

93)
94)
95

96 (defclass A-editor (om::editorview) ())
97

98 (defmethod om::class-has-editor-p ((self A)) t)
99 (defmethod om::get-editor-class ((self A)) 'A-editor)

100

101 (defmethod om::om-draw-contents ((view A-editor))
102 (let* ((object (om::object view)))
103 (om::om-with-focused-view
104 view
105)
106)
107)
108

109 (defmethod initialize-instance ((self A-editor) &rest args)
110 ;;; do what needs to be done by default
111 (call-next-method) ; start the search by default?
112 (make-my-interface self)
113)
114

115

116

117 (defmethod make-my-interface ((self A-editor))
118

119 ; create the main view of the object
120 (make-main-view self)
121

122 (let*
123 (
124 ;;;
125 ;;; setting the different regions of the tool ;;;
126 ;;;
127

128 (A-panel (om::om-make-view 'om::om-view
129 :size (om::om-make-point 500 50)
130 :position (om::om-make-point 5 5)
131 :bg-color om::*azulito*)
132)
133 (changes-panel (om::om-make-view 'om::om-view
134 :size (om::om-make-point 500 100)
135 :position (om::om-make-point 5 60)
136 :bg-color om::*azulito*)
137)
138 (constraints-panel (om::om-make-view 'om::om-view

121

139 :size (om::om-make-point 500 300)
140 :position (om::om-make-point 5 165)
141 :bg-color om::*azulito*)
142)
143

144)
145

146 (setf elements-A-panel (make-A-panel self A-panel))
147 (if (= (block-position-A (om::object self)) (idx-first-a (parent (om::object self))))
148 (setf elements-constraints-panel (make-constraints-AB-panel self constraints-panel))
149 (setf elements-constraints-panel (make-constraints-not-first-panel self

constraints-panel))↪→

150)
151

152 (setf elements-changes-panel (make-changes-panel self changes-panel))
153

154 ; add the subviews for the different parts into the main view
155 (om::om-add-subviews
156 self
157 A-panel
158 changes-panel
159 constraints-panel
160)
161)
162 ; return the editor
163 self
164)
165

166

167 ;;;
168 ;;;
169 ;; B CLASS ;;
170 ;;;
171 ;;;
172

173

174 (om::defclass! B ()
175 (
176 (s-block
177 :accessor s-block :initarg :s-block :initform (make-instance 's)
178 :documentation "s sub-block, first few bars of the block")
179 (r-block
180 :accessor r-block :initarg :r-block :initform (make-instance 'r)
181 :documentation "r sub-block, bars after s")
182 (d-block
183 :accessor d-block :initarg :d-block :initform (make-instance 'd)

122

184 :documentation "d sub-blocks, bars after r")
185 (c-block
186 :accessor c-block :initarg :c-block :initform (make-instance 'c)
187 :documentation "c sub-block, last few bars")
188 (parent
189 :accessor parent :initarg :parent :initform nil
190 :documentation "parent block containing the instance of this block")
191 (relative-to-parent
192 :accessor relative-to-parent :initarg :relative-to-parent :initform 1 :type

integer↪→

193 :documentation "Flag to now if the block attributes are reltive to its
parent's")↪→

194 (relative-to-same
195 :accessor relative-to-same :initarg :relative-to-same :initform nil :type

integer↪→

196 :documentation "Flag to now if the block attributes are reltive to similar
blocks")↪→

197 (bar-length
198 :accessor bar-length :initform 0 :type integer
199 :documentation "Number of bars of the block")
200 (min-note-length-flag
201 :accessor min-note-length-flag :initform nil :type integer
202 :documentation "Flag stating if the note-min-length constrain must be posted")
203 (min-note-length
204 :accessor min-note-length :initform 1 :type integer
205 :documentation "Minimum note length value")
206 (diff-min-length
207 :accessor diff-min-length :initform 0 :type integer
208 :documentation "Difference for relative changes")
209 (max-note-length-flag
210 :accessor max-note-length-flag :initform nil :type integer
211 :documentation "Flag stating if the note-max-length constrain must be posted")
212 (max-note-length
213 :accessor max-note-length :initform 16 :type integer
214 :documentation "Maximum note length value")
215 (diff-max-length
216 :accessor diff-max-length :initform 0 :type integer
217 :documentation "Difference for relative changes")
218 (chord-key
219 :accessor chord-key :initform "C" :type string
220 :documentation "Chord key to set the scale in")
221 (diff-chord-key
222 :accessor diff-chord-key :initform 0 :type integer
223 :documentation "Difference for relative changes")
224 (chord-quality
225 :accessor chord-quality :initform "Major" :type string

123

226 :documentation "Quality to set the scale in")
227 (diff-chord-quality
228 :accessor diff-chord-quality :initform 0 :type integer
229 :documentation "Difference for relative changes")
230 (min-pitch
231 :accessor min-pitch :initform 1 :type integer
232 :documentation "Minimum pitch value")
233 (diff-min-pitch
234 :accessor diff-min-pitch :initform 0 :type integer
235 :documentation "Difference for relative changes")
236 (max-pitch
237 :accessor max-pitch :initform 127 :type integer
238 :documentation "Maximum pitch value")
239 (diff-max-pitch
240 :accessor diff-max-pitch :initform 0 :type integer
241 :documentation "Difference for relative changes")
242 (block-position
243 :accessor block-position :initform -1 :type integer
244 :documentation "Index of the A or B block within the global structure")
245 (similarity-percent-A0
246 :accessor similarity-percent-B0 :initform 50 :type integer
247 :documentation "Percentage of resemblance with first A")
248 (block-position-A
249 :accessor block-position-A :initform -1 :type integer
250 :documentation "Index of this block relative to other A blocks within the global

structure")↪→

251 (block-position-B
252 :accessor block-position-B :initform -1 :type integer
253 :documentation "Index of this block relative to other B blocks within the

global structure")↪→

254 (semitones
255 :accessor semitones :initform 0 :type integer
256 :documentation "Semitones of transposition from key")
257)
258)
259

260 (defclass B-editor (om::editorview) ())
261

262 (defmethod om::class-has-editor-p ((self B)) t)
263 (defmethod om::get-editor-class ((self B)) 'B-editor)
264

265 (defmethod om::om-draw-contents ((view B-editor))
266 (let* ((object (om::object view)))
267 (om::om-with-focused-view
268 view
269)

124

270)
271)
272

273 (defmethod initialize-instance ((self B-editor) &rest args)
274 ;;; do what needs to be done by default
275 (call-next-method) ; start the search by default?
276 (make-my-interface self)
277)
278

279

280 (defmethod make-my-interface ((self B-editor))
281

282 ; create the main view of the object
283 (make-main-view self)
284

285 (let*
286 (
287 ;;;
288 ;;; setting the different regions of the tool ;;;
289 ;;;
290

291 (B-panel (om::om-make-view 'om::om-view
292 :size (om::om-make-point 500 50)
293 :position (om::om-make-point 5 5)
294 :bg-color om::*azulito*)
295)
296 (changes-panel (om::om-make-view 'om::om-view
297 :size (om::om-make-point 500 100)
298 :position (om::om-make-point 5 60)
299 :bg-color om::*azulito*)
300)
301 (constraints-panel (om::om-make-view 'om::om-view
302 :size (om::om-make-point 500 300)
303 :position (om::om-make-point 5 170)
304 :bg-color om::*azulito*)
305)
306

307)
308

309 (setf elements-B-panel (make-B-panel self B-panel))
310 (if (= (block-position (om::object self)) (idx-first-b (parent (om::object self))))
311 (setf elements-constraints-panel (make-constraints-AB-panel self constraints-panel))
312 (setf elements-constraints-panel (make-constraints-not-first-panel self

constraints-panel))↪→

313)
314 (setf elements-changes-panel (make-changes-panel self changes-panel))

125

315

316 ; add the subviews for the different parts into the main view
317 (om::om-add-subviews
318 self
319 B-panel
320 changes-panel
321 constraints-panel
322)
323)
324 ; return the editor
325 self
326)
327

Then by defining the interfaces.

328 ;;;
329 ;;;
330 ;; A PANEL ;;
331 ;;;
332 ;;;
333

334

335

336 (defun make-A-panel (editor A-panel)
337

338 (om::om-add-subviews
339 A-panel
340 (om::om-make-dialog-item
341 'om::om-button
342 (om::om-make-point 5 10) ; position (horizontal, vertical)
343 (om::om-make-point 80 25) ; size (horizontal, vertical)
344 "s"
345 :di-action #'(lambda (b)
346 (print "Selected s")
347 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

348 "next thread" ; name of the thread, not necessary but useful for debugging
349 nil ; process initialization keywords, not needed here
350 (lambda () ; function to call
351 (setf (parent (s-block (om::object editor))) (om::object editor))
352 ;; (setf (s-block (om::object editor)) (make-instance 's :parent (om::object

editor) (om::object editor)))↪→

353 (om::openeditorframe ; open a window displaying the editor of the first A
block↪→

126

354 (om::omNG-make-new-instance (s-block (om::object editor)) "Window s")
355)
356)
357)
358)
359)
360 (om::om-make-dialog-item
361 'om::om-button
362 (om::om-make-point 115 10) ; position (horizontal, vertical)
363 (om::om-make-point 80 25) ; size (horizontal, vertical)
364 "r"
365 :di-action #'(lambda (b)
366 (print "Selected r")
367 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

368 "next thread" ; name of the thread, not necessary but useful for debugging
369 nil ; process initialization keywords, not needed here
370 (lambda () ; function to call
371 (setf (parent (r-block (om::object editor))) (om::object editor))
372 ;; (setf (r-block (om::object editor)) (make-instance 'r :parent (om::object

editor) (om::object editor)))↪→

373 (om::openeditorframe ; open a window displaying the editor of the first A
block↪→

374 (om::omNG-make-new-instance (r-block (om::object editor)) "Window r")
375)
376)
377)
378)
379)
380 (om::om-make-dialog-item
381 'om::om-button
382 (om::om-make-point 225 10) ; position (horizontal, vertical)
383 (om::om-make-point 80 25) ; size (horizontal, vertical)
384 "d"
385 :di-action #'(lambda (b)
386 (print "Selected d")
387 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

388 "next thread" ; name of the thread, not necessary but useful for debugging
389 nil ; process initialization keywords, not needed here
390 (lambda () ; function to call
391 (setf (parent (d-block (om::object editor))) (om::object editor))
392 ;; (setf (d-block (om::object editor)) (make-instance 'd :parent (om::object

editor) (om::object editor)))↪→

393 (om::openeditorframe ; open a window displaying the editor of the first A
block↪→

127

394 (om::omNG-make-new-instance (d-block (om::object editor)) "Window d")
395)
396)
397)
398)
399)
400 (om::om-make-dialog-item
401 'om::om-button
402 (om::om-make-point 335 10) ; position (horizontal, vertical)
403 (om::om-make-point 80 25) ; size (horizontal, vertical)
404 "c"
405 :di-action #'(lambda (b)
406 (print "Selected c")
407 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

408 "next thread" ; name of the thread, not necessary but useful for debugging
409 nil ; process initialization keywords, not needed here
410 (lambda () ; function to call
411 (setf (parent (c-block (om::object editor))) (om::object editor))
412 ;; (setf (c-block (om::object editor)) (make-instance 'c :parent (om::object

editor) (om::object editor)))↪→

413 (om::openeditorframe ; open a window displaying the editor of the first A
block↪→

414 (om::omNG-make-new-instance (c-block (om::object editor)) "Window c")
415)
416)
417)
418)
419)
420)
421)
422

423 ;;;
424 ;;;
425 ;; B PANEL ;;
426 ;;;
427 ;;;
428

429

430

431 (defun make-B-panel (editor B-panel)
432 ;; (print "Block-position")
433 ;; (print (block-position (om::object editor)))
434 (om::om-add-subviews
435 B-panel
436 (om::om-make-dialog-item

128

437 'om::om-button
438 (om::om-make-point 5 10) ; position (horizontal, vertical)
439 (om::om-make-point 80 25) ; size (horizontal, vertical)
440 "s"
441 :di-action #'(lambda (b)
442 (print "Selected s")
443 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

444 "next thread" ; name of the thread, not necessary but useful for debugging
445 nil ; process initialization keywords, not needed here
446 (lambda () ; function to call
447 ;; (setf (s-block (om::object editor)) (make-instance 's :parent (om::object

editor) (om::object editor)))↪→

448 (om::openeditorframe ; open a window displaying the editor of the first A
block↪→

449 (om::omNG-make-new-instance (s-block (om::object editor)) "Window s")
450)
451)
452)
453)
454)
455 (om::om-make-dialog-item
456 'om::om-button
457 (om::om-make-point 115 10) ; position (horizontal, vertical)
458 (om::om-make-point 80 25) ; size (horizontal, vertical)
459 "r"
460 :di-action #'(lambda (b)
461 (print "Selected r")
462 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

463 "next thread" ; name of the thread, not necessary but useful for debugging
464 nil ; process initialization keywords, not needed here
465 (lambda () ; function to call
466 ;; (setf (r-block (om::object editor)) (make-instance 'r :parent (om::object

editor) (om::object editor)))↪→

467 (om::openeditorframe ; open a window displaying the editor of the first A
block↪→

468 (om::omNG-make-new-instance (r-block (om::object editor)) "Window r")
469)
470)
471)
472)
473)
474 (om::om-make-dialog-item
475 'om::om-button
476 (om::om-make-point 225 10) ; position (horizontal, vertical)

129

477 (om::om-make-point 80 25) ; size (horizontal, vertical)
478 "d"
479 :di-action #'(lambda (b)
480 (print "Selected d")
481 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

482 "next thread" ; name of the thread, not necessary but useful for debugging
483 nil ; process initialization keywords, not needed here
484 (lambda () ; function to call
485 ;; (setf (d-block (om::object editor)) (make-instance 'd :parent (om::object

editor) (om::object editor)))↪→

486 (om::openeditorframe ; open a window displaying the editor of the first A
block↪→

487 (om::omNG-make-new-instance (d-block (om::object editor)) "Window d")
488)
489)
490)
491)
492)
493 (om::om-make-dialog-item
494 'om::om-button
495 (om::om-make-point 335 10) ; position (horizontal, vertical)
496 (om::om-make-point 80 25) ; size (horizontal, vertical)
497 "c"
498 :di-action #'(lambda (b)
499 (print "Selected c")
500 (mp:process-run-function ; start a new thread for the execution of the next

method↪→

501 "next thread" ; name of the thread, not necessary but useful for debugging
502 nil ; process initialization keywords, not needed here
503 (lambda () ; function to call
504 ;; (setf (c-block (om::object editor)) (make-instance 'c :parent (om::object

editor) (om::object editor)))↪→

505 (om::openeditorframe ; open a window displaying the editor of the first A
block↪→

506 (om::omNG-make-new-instance (c-block (om::object editor)) "Window c")
507)
508)
509)
510)
511)
512)
513)
514

515 ;;;
516 ;;;

130

517 ;; CHANGES PANEL ;;
518 ;;;
519 ;;;
520

521 (defun make-changes-panel (editor panel)
522 (om::om-add-subviews
523 panel
524 (om::om-make-dialog-item
525 'om::om-static-text
526 (om::om-make-point 10 10)
527 (om::om-make-point 300 20)
528 "Types of changes"
529 :font om::*om-default-font1b*
530)
531

532 (om::om-make-dialog-item
533 'om::om-check-box
534 (om::om-make-point 10 30)
535 (om::om-make-point 300 20)
536 "Relative to rock"
537 :checked-p (relative-to-parent (om::object editor))
538 :di-action #'(lambda (c)
539 (if (om::om-checked-p c)
540 (setf (relative-to-parent (om::object editor)) 1)
541 (setf (relative-to-parent (om::object editor)) nil)
542)
543)
544)
545

546 (om::om-make-dialog-item
547 'om::om-check-box
548 (om::om-make-point 10 50)
549 (om::om-make-point 300 20)
550 "Relative to same type blocks"
551 :checked-p (relative-to-same (om::object editor))
552 :di-action #'(lambda (c)
553 (if (om::om-checked-p c)
554 (setf (relative-to-same (om::object editor)) 1)
555 (setf (relative-to-same (om::object editor)) nil)
556)
557)
558)
559

560)
561)
562

131

563 ;;;
564 ;;;
565 ;; CONSTRAINTS PANELS ;;
566 ;;;
567 ;;;
568

569 ;; If first block of its type
570 (defun make-constraints-AB-panel (editor panel)
571 (om::om-add-subviews
572 panel
573 (om::om-make-dialog-item
574 'om::om-static-text
575 (om::om-make-point 15 2)
576 (om::om-make-point 120 20)
577 "Block constraints"
578 :font om::*om-default-font1b*
579)
580

581 (om::om-make-dialog-item
582 'om::om-static-text
583 (om::om-make-point 15 50)
584 (om::om-make-point 200 20)
585 "Number of bars"
586 :font om::*om-default-font1b*
587)
588

589 (om::om-make-dialog-item
590 'om::pop-up-menu
591 (om::om-make-point 170 50)
592 (om::om-make-point 80 20)
593 "Bar length"
594 :range (bar-length-range (om::object editor))
595 :value (number-to-string (bar-length (om::object editor)))
596 :di-action #'(lambda (m)
597 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
598 (setf (bar-length (om::object editor)) (string-to-number check))
599 (change-subblocks-values (om::object editor) :bar-length (bar-length (om::object

editor)))↪→

600 (propagate-bar-length-srdc (om::object editor))
601 (set-bar-length-up (om::object editor))
602)
603)
604

605 (om::om-make-dialog-item
606 'om::om-static-text
607 (om::om-make-point 15 100)

132

608 (om::om-make-point 200 20)
609 "Min note length"
610 :font om::*om-default-font1b*
611)
612

613 (om::om-make-dialog-item
614 'om::om-check-box
615 (om::om-make-point 120 100)
616 (om::om-make-point 20 20)
617 ""
618 :checked-p (min-note-length-flag (om::object editor))
619 :di-action #'(lambda (c)
620 (if (om::om-checked-p c)
621 (setf (min-note-length-flag (om::object editor)) 1)
622 (setf (min-note-length-flag (om::object editor)) nil)
623)
624 (change-subblocks-values (om::object editor)
625 :min-note-length-flag (min-note-length-flag (om::object

editor))↪→

626 :min-note-length (min-note-length (om::object editor)))
627)
628)
629

630 (om::om-make-dialog-item
631 'om::pop-up-menu
632 (om::om-make-point 170 100)
633 (om::om-make-point 80 20); size
634 "Minimum note length"
635 :range (loop :for n :from 0 :upto 4 :collect (number-to-string (expt 2 n)))
636 :value (number-to-string (min-note-length (om::object editor)))
637 :di-action #'(lambda (m)
638 (let ((old-diff 0))
639 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
640 (if (relative-to-same (om::object editor))
641 (setq old-diff (diff-min-length (om::object editor)))
642)
643 (setf (min-note-length (om::object editor)) (string-to-number check))
644 (change-subblocks-values (om::object editor)
645 :min-note-length-flag (min-note-length-flag (om::object

editor))↪→

646 :min-note-length (min-note-length (om::object editor)))
647 (if (relative-to-same (om::object editor))
648 (propagate-AB (om::object editor) :diff-min-length (- old-diff

(diff-min-length (om::object editor))))↪→

649)
650)

133

651)
652)
653

654 (om::om-make-dialog-item
655 'om::om-static-text
656 (om::om-make-point 15 150)
657 (om::om-make-point 200 20)
658 "Max note length"
659 :font om::*om-default-font1b*
660)
661

662 (om::om-make-dialog-item
663 'om::om-check-box
664 (om::om-make-point 120 150)
665 (om::om-make-point 20 20)
666 ""
667 :checked-p (max-note-length-flag (om::object editor))
668 :di-action #'(lambda (c)
669 (if (om::om-checked-p c)
670 (setf (max-note-length-flag (om::object editor)) 1)
671 (setf (max-note-length-flag (om::object editor)) nil)
672)
673 (change-subblocks-values (om::object editor)
674 :max-note-length-flag (max-note-length-flag (om::object

editor))↪→

675 :max-note-length (max-note-length (om::object editor)))
676)
677)
678

679 (om::om-make-dialog-item
680 'om::pop-up-menu
681 (om::om-make-point 170 150)
682 (om::om-make-point 80 20); size
683 "Maximum note length"
684 :range (loop :for n :from 0 :upto 4 :collect (number-to-string (expt 2 n)))
685 :value (number-to-string (max-note-length (om::object editor)))
686 :di-action #'(lambda (m)
687 (let ((old-diff 0))
688 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
689 (if (relative-to-same (om::object editor))
690 (setq old-diff (diff-max-length (om::object editor)))
691)
692 (setf (max-note-length (om::object editor)) (string-to-number check))
693 (change-subblocks-values (om::object editor)
694 :max-note-length-flag (max-note-length-flag (om::object

editor))↪→

134

695 :max-note-length (max-note-length (om::object editor)))
696 (if (relative-to-same (om::object editor))
697 (propagate-AB (om::object editor) :diff-max-length (- old-diff

(diff-max-length (om::object editor))))↪→

698)
699)
700)
701)
702

703 (om::om-make-dialog-item
704 'om::om-static-text
705 (om::om-make-point 300 10)
706 (om::om-make-point 200 20)
707 "Pitch constraints"
708 :font om::*om-default-font1b*
709)
710

711 ; Key
712

713 (om::om-make-dialog-item
714 'om::om-static-text
715 (om::om-make-point 300 50)
716 (om::om-make-point 200 20)
717 "Chord key"
718 :font om::*om-default-font1b*
719)
720

721 (om::om-make-dialog-item
722 'om::pop-up-menu
723 (om::om-make-point 400 50)
724 (om::om-make-point 80 20)
725 "Chord key"
726 :range '("C" "C#" "D" "Eb" "E" "F" "F#" "G" "Ab" "A" "Bb" "B")
727 :value (chord-key (om::object editor))
728 :di-action #'(lambda (m)
729 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
730 (if (string= check "None")
731 (setf (chord-key (om::object editor)) nil)
732 (setf (chord-key (om::object editor)) check)
733)
734 (let ((old-diff 0))
735 (if (relative-to-same (om::object editor))
736 (setq old-diff (diff-chord-key (om::object editor)))
737)
738 (change-subblocks-values (om::object editor) :chord-key check)
739 (if (relative-to-same (om::object editor))

135

740 (propagate-AB (om::object editor) :diff-chord-key (- old-diff (diff-chord-key
(om::object editor))))↪→

741)
742)
743)
744)
745

746 (om::om-make-dialog-item
747 'om::om-static-text
748 (om::om-make-point 300 100)
749 (om::om-make-point 200 20)
750 "Chord quality"
751 :font om::*om-default-font1b*
752)
753

754 (om::om-make-dialog-item
755 'om::pop-up-menu
756 (om::om-make-point 400 100)
757 (om::om-make-point 80 20)
758 "Chord quality"
759 :value (chord-quality (om::object editor))
760 :range '("Major" "Minor" "Augmented" "Diminished")
761 :di-action #'(lambda (m)
762 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
763 (if (string= check "None")
764 (setf (chord-quality (om::object editor)) nil)
765 (setf (chord-quality (om::object editor)) check))
766 (change-subblocks-values (om::object editor) :chord-quality check)
767

768)
769)
770

771 (om::om-make-dialog-item
772 'om::om-static-text
773 (om::om-make-point 300 150)
774 (om::om-make-point 200 20)
775 "Minimum pitch"
776 :font om::*om-default-font1b*
777)
778

779

780 (om::om-make-dialog-item
781 'om::slider
782 (om::om-make-point 300 170)
783 (om::om-make-point 150 20)
784 "Minimum pitch"

136

785 :range '(1 127)
786 :increment 1
787 :value (min-pitch (om::object editor))
788 :di-action #'(lambda (s)
789 (setf (min-pitch (om::object editor)) (om::om-slider-value s))
790 (let ((old-diff 0))
791 (if (relative-to-same (om::object editor))
792 (setq old-diff (diff-min-pitch (om::object editor)))
793)
794 (change-subblocks-values (om::object editor)
795 :min-pitch (min-pitch (om::object editor)))
796 (if (relative-to-same (om::object editor))
797 (propagate-AB (om::object editor) :diff-min-pitch (- old-diff

(diff-min-pitch (om::object editor))))↪→

798)
799)
800)
801)
802

803 (om::om-make-dialog-item
804 'om::om-static-text
805 (om::om-make-point 300 220)
806 (om::om-make-point 200 20)
807 "Maximum pitch"
808 :font om::*om-default-font1b*
809)
810

811 (om::om-make-dialog-item
812 'om::slider
813 (om::om-make-point 300 240)
814 (om::om-make-point 150 20)
815 "Maximum pitch"
816 :range '(1 127)
817 :increment 1
818 :value (max-pitch (om::object editor))
819 :di-action #'(lambda (s)
820 (setf (max-pitch (om::object editor)) (om::om-slider-value s))
821 (let ((old-diff 0))
822 (if (relative-to-same (om::object editor))
823 (setq old-diff (diff-max-pitch (om::object editor)))
824)
825 (change-subblocks-values (om::object editor)
826 :max-pitch (max-pitch (om::object editor)))
827 (if (relative-to-same (om::object editor))
828 (propagate-AB (om::object editor) :diff-max-pitch (- old-diff

(diff-max-pitch (om::object editor))))↪→

137

829)
830)
831)
832)
833)
834

835)
836

837 ;; If not first block of its type
838 (defun make-constraints-not-first-panel (editor panel)
839 (let ((subviews '()))
840 (setf subviews (append subviews (list
841 (om::om-make-dialog-item
842 'om::om-static-text
843 (om::om-make-point 250 10)
844 (om::om-make-point 200 20)
845 "Pitch constraints"
846 :font om::*om-default-font1b*
847)
848

849 (om::om-make-dialog-item
850 'om::om-static-text
851 (om::om-make-point 250 50)
852 (om::om-make-point 200 20)
853 "Chord key"
854 :font om::*om-default-font1b*
855)
856

857 (om::om-make-dialog-item
858 'om::pop-up-menu
859 (om::om-make-point 350 50)
860 (om::om-make-point 80 20)
861 "Chord key"
862 :range '("C" "C#" "D" "Eb" "E" "F" "F#" "G" "Ab" "A" "Bb" "B")
863 :value (chord-key (om::object editor))
864 :di-action #'(lambda (m)
865 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
866 (if (string= check "None")
867 (setf (chord-key (om::object editor)) nil)
868 (setf (chord-key (om::object editor)) check)
869)
870 (let ((old-diff 0))
871 (if (relative-to-same (om::object editor))
872 (setq old-diff (diff-chord-key (om::object editor)))
873)
874 (change-subblocks-values (om::object editor) :chord-key check)

138

875 (if (relative-to-same (om::object editor))
876 (propagate-AB (om::object editor) :diff-chord-key (- old-diff (diff-chord-key

(om::object editor))))↪→

877)
878)
879)
880)
881

882 (om::om-make-dialog-item
883 'om::om-static-text
884 (om::om-make-point 250 100)
885 (om::om-make-point 200 20)
886 "Chord quality"
887 :font om::*om-default-font1b*
888)
889

890 (om::om-make-dialog-item
891 'om::pop-up-menu
892 (om::om-make-point 350 100)
893 (om::om-make-point 80 20)
894 "Chord quality"
895 :value (chord-quality (om::object editor))
896 :range '("Major" "Minor" "Augmented" "Diminished")
897 :di-action #'(lambda (m)
898 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
899 (if (string= check "None")
900 (setf (chord-quality (om::object editor)) nil)
901 (setf (chord-quality (om::object editor)) check))
902 (change-subblocks-values (om::object editor) :chord-quality check)
903

904)
905)
906

907 (om::om-make-dialog-item
908 'om::om-static-text
909 (om::om-make-point 250 150)
910 (om::om-make-point 200 20)
911 "Minimum pitch"
912 :font om::*om-default-font1b*
913)
914

915 (om::om-make-dialog-item
916 'om::slider
917 (om::om-make-point 250 170)
918 (om::om-make-point 150 20)
919 "Minimum pitch"

139

920 :range '(1 127)
921 :increment 1
922 :value (min-pitch (om::object editor))
923 :di-action #'(lambda (s)
924 (setf (min-pitch (om::object editor)) (om::om-slider-value s))
925 (let ((old-diff 0))
926 (if (relative-to-same (om::object editor))
927 (setq old-diff (diff-min-pitch (om::object editor)))
928)
929 (change-subblocks-values (om::object editor)
930 :min-pitch (min-pitch (om::object editor)))
931 (if (relative-to-same (om::object editor))
932 (propagate-AB (om::object editor) :diff-min-pitch (- old-diff

(diff-min-pitch (om::object editor))))↪→

933)
934)
935)
936)
937

938 (om::om-make-dialog-item
939 'om::om-static-text
940 (om::om-make-point 250 220)
941 (om::om-make-point 200 20)
942 "Maximum pitch"
943 :font om::*om-default-font1b*
944)
945

946 (om::om-make-dialog-item
947 'om::slider
948 (om::om-make-point 250 240)
949 (om::om-make-point 150 20)
950 "Maximum pitch"
951 :range '(1 127)
952 :increment 1
953 :value (max-pitch (om::object editor))
954 :di-action #'(lambda (s)
955 (setf (max-pitch (om::object editor)) (om::om-slider-value s))
956 (let ((old-diff 0))
957 (if (relative-to-same (om::object editor))
958 (setq old-diff (diff-max-pitch (om::object editor)))
959)
960 (change-subblocks-values (om::object editor)
961 :max-pitch (max-pitch (om::object editor)))
962 (if (relative-to-same (om::object editor))
963 (propagate-AB (om::object editor) :diff-max-pitch (- old-diff

(diff-max-pitch (om::object editor))))↪→

140

964)
965)
966)
967)
968

969)
970))
971

972 (if (typep (om::object editor) 'mldz::a)
973 (setf subviews (append subviews (list
974 (om::om-make-dialog-item
975 'om::om-static-text
976 (om::om-make-point 10 10)
977 (om::om-make-point 200 20)
978 "Similarity with first A block"
979 :font om::*om-default-font1b*
980)
981 (om::om-make-dialog-item
982 'om::slider
983 (om::om-make-point 10 40)
984 (om::om-make-point 150 20)
985 "Similarity with first A block"
986 :range '(1 100)
987 :increment 1
988 :value (similarity-percent-A0 (om::object editor))
989 :di-action #'(lambda (s)
990 (setf (similarity-percent-A0 (om::object editor)) (om::om-slider-value s))
991 (print "similarity-percent-A0: ")
992 (print (similarity-percent-A0 (om::object editor)))
993)
994)
995)))
996 (setf subviews (append subviews (list
997 (om::om-make-dialog-item
998 'om::om-static-text
999 (om::om-make-point 10 10)

1000 (om::om-make-point 200 20)
1001 "Similarity with first B block"
1002 :font om::*om-default-font1b*
1003)
1004 (om::om-make-dialog-item
1005 'om::slider
1006 (om::om-make-point 10 40)
1007 (om::om-make-point 150 20)
1008 "Similarity with first B block"
1009 :range '(1 100)

141

1010 :increment 1
1011 :value (similarity-percent-B0 (om::object editor))
1012 :di-action #'(lambda (s)
1013 (setf (similarity-percent-B0 (om::object editor)) (om::om-slider-value s))
1014 (print "similarity-percent-B0: ")
1015 (print (similarity-percent-B0 (om::object editor)))
1016)
1017)
1018)))
1019)
1020

1021 (loop :for x :in subviews :do
1022 (om::om-add-subviews
1023 panel
1024 x
1025)
1026)
1027)
1028)

D.2.3 sources/rock-srdc.lisp
This file contains the s, r, d and B objects. First by defining the objects and their attributes.

Then by defining the interfaces

1 (in-package :mldz)
2

3 ;;;
4 ;;;
5 ;; s CLASS ;;
6 ;;;
7 ;;;
8

9

10 (om::defclass! s ()
11 (
12 (parent
13 :accessor parent :initarg :parent :initform nil
14 :documentation "parent block from which the block comes from")
15 (accomp
16 :accessor accomp :initarg :accomp :initform (make-instance 'accompaniment)
17 :documentation "acompaniment block for this part of the song")
18 (relative-to-parent

142

19 :accessor relative-to-parent :initarg :relative-to-parent :initform 1 :type
integer↪→

20 :documentation "Flag to no if the cnahges in the attributes are relative to the
parent block")↪→

21 (bar-length
22 :accessor bar-length :initform 0 :type integer
23 :documentation "Number of bars of this block")
24 (min-note-length-flag
25 :accessor min-note-length-flag :initform nil :type integer
26 :documentation "Flag to post the minimum note length constraint")
27 (min-note-length
28 :accessor min-note-length :initform 1 :type integer
29 :documentation "Minimum note length value")
30 (diff-min-length
31 :accessor diff-min-length :initform 0 :type integer
32 :documentation "Difference for relative changes")
33 (max-note-length-flag
34 :accessor max-note-length-flag :initform nil :type integer
35 :documentation "Flag to post the maximum note length constraint")
36 (max-note-length
37 :accessor max-note-length :initform 16 :type integer
38 :documentation "Maximum note length value")
39 (diff-max-length
40 :accessor diff-max-length :initform 0 :type integer
41 :documentation "Difference for relative changes")
42 (chord-key
43 :accessor chord-key :initform "C" :type string
44 :documentation "key to set the scale in")
45 (diff-chord-key
46 :accessor diff-chord-key :initform 0 :type integer
47 :documentation "Difference for relative changes")
48 (chord-quality
49 :accessor chord-quality :initform "Major" :type string
50 :documentation "quality to set the scale in")
51 (diff-chord-quality
52 :accessor diff-chord-quality :initform 0 :type integer
53 :documentation "Difference for relative changes")
54 (min-pitch
55 :accessor min-pitch :initform 1 :type integer
56 :documentation "Minimum pitch value")
57 (diff-min-pitch
58 :accessor diff-min-pitch :initform 0 :type integer
59 :documentation "Difference for relative changes")
60 (max-pitch
61 :accessor max-pitch :initform 127 :type integer
62 :documentation "Maximum pitch value")

143

63 (diff-max-pitch
64 :accessor diff-max-pitch :initform 0 :type integer
65 :documentation "Difference for relative changes")
66)
67)
68

69 (defclass s-editor (om::editorview) ())
70

71 (defmethod om::class-has-editor-p ((self s)) t)
72 (defmethod om::get-editor-class ((self s)) 's-editor)
73

74 (defmethod om::om-draw-contents ((view s-editor))
75 (let* ((object (om::object view)))
76 (om::om-with-focused-view
77 view
78)
79)
80)
81

82 (defmethod initialize-instance ((self s-editor) &rest args)
83 ;;; do what needs to be done by default
84 (call-next-method)
85 (make-my-interface self)
86)
87

88

89 (defmethod make-my-interface ((self s-editor))
90

91 ; create the main view of the object
92 (make-main-view self)
93

94 (let*
95 (
96 ;;;
97 ;;; setting the different regions of the tool ;;;
98 ;;;
99 (constraints-panel (om::om-make-view 'om::om-view

100 :size (om::om-make-point 500 300)
101 :position (om::om-make-point 5 5)
102 :bg-color om::*azulito*)
103)
104 (accompaniment-panel (om::om-make-view 'om::om-view
105 :size (om::om-make-point 300 300)
106 :position (om::om-make-point 510 5)
107 :bg-color om::*azulito*)
108)

144

109)
110

111 (setf elements-constraints-panel (make-constraints-srdc-panel self constraints-panel))
112 (setf elements-accompaniment-panel (make-accompaniment-panel self

accompaniment-panel))↪→

113

114 ; add the subviews for the different parts into the main view
115 (om::om-add-subviews
116 self
117 constraints-panel
118 accompaniment-panel
119)
120)
121 ; return the editor
122 self
123)
124

125 ;;;
126 ;;;
127 ;; r CLASS ;;
128 ;;;
129 ;;;
130

131

132 (om::defclass! r ()
133 (
134 (parent
135 :accessor parent :initarg :parent :initform nil
136 :documentation "parent block from which the block comes from")
137 (accomp
138 :accessor accomp :initarg :accomp :initform (make-instance 'accompaniment)
139 :documentation "acompaniment block for this part of the song")
140 (relative-to-parent
141 :accessor relative-to-parent :initarg :relative-to-parent :initform 1 :type

integer↪→

142 :documentation "Flag to no if the cnahges in the attributes are relative to the
parent block")↪→

143 (bar-length
144 :accessor bar-length :initform 0 :type integer
145 :documentation "Number of bars of this block")
146 (min-note-length-flag
147 :accessor min-note-length-flag :initform nil :type integer
148 :documentation "Flag to post the minimum note length constraint")
149 (min-note-length
150 :accessor min-note-length :initform 1 :type integer
151 :documentation "Minimum note length value")

145

152 (diff-min-length
153 :accessor diff-min-length :initform 0 :type integer
154 :documentation "Difference for relative changes")
155 (max-note-length-flag
156 :accessor max-note-length-flag :initform nil :type integer
157 :documentation "Flag to post the maximum note length constraint")
158 (max-note-length
159 :accessor max-note-length :initform 16 :type integer
160 :documentation "Maximum note length value")
161 (diff-max-length
162 :accessor diff-max-length :initform 0 :type integer
163 :documentation "Difference for relative changes")
164 (chord-key
165 :accessor chord-key :initform "C" :type string
166 :documentation "key to set the scale in")
167 (diff-chord-key
168 :accessor diff-chord-key :initform 0 :type integer
169 :documentation "Difference for relative changes")
170 (chord-quality
171 :accessor chord-quality :initform "Major" :type string
172 :documentation "quality to set the scale in")
173 (diff-chord-quality
174 :accessor diff-chord-quality :initform 0 :type integer
175 :documentation "Difference for relative changes")
176 (min-pitch
177 :accessor min-pitch :initform 1 :type integer
178 :documentation "Minimum pitch value")
179 (diff-min-pitch
180 :accessor diff-min-pitch :initform 0 :type integer
181 :documentation "Difference for relative changes")
182 (max-pitch
183 :accessor max-pitch :initform 127 :type integer
184 :documentation "Maximum pitch value")
185 (diff-max-pitch
186 :accessor diff-max-pitch :initform 0 :type integer
187 :documentation "Difference for relative changes")
188 (similarity-percent-s
189 :accessor similarity-percent-s :initform 50 :type integer
190 :documentation "percentage of ressemblance with the s block of with the same

parent")↪→

191 (semitones
192 :accessor semitones :initform 0 :type integer
193 :documentation "Semitones of transposition from the s-block of the same parent")
194)
195)
196

146

197 (defclass r-editor (om::editorview) ())
198

199 (defmethod om::class-has-editor-p ((self r)) t)
200 (defmethod om::get-editor-class ((self r)) 'r-editor)
201

202 (defmethod om::om-draw-contents ((view r-editor))
203 (let* ((object (om::object view)))
204 (om::om-with-focused-view
205 view
206)
207)
208)
209

210 (defmethod initialize-instance ((self r-editor) &rest args)
211 ;;; do what needs to be done by default
212 (call-next-method) ; start the search by default?
213 (make-my-interface self)
214)
215

216

217 (defmethod make-my-interface ((self r-editor))
218

219 ; create the main view of the object
220 (make-main-view self)
221

222 (let*
223 (
224 ;;;
225 ;;; setting the different regions of the tool ;;;
226 ;;;
227 (constraints-panel (om::om-make-view 'om::om-view
228 :size (om::om-make-point 500 195)
229 :position (om::om-make-point 5 5)
230 :bg-color om::*azulito*)
231)
232 (r-constraints-panel (om::om-make-view 'om::om-view
233 :size (om::om-make-point 500 100)
234 :position (om::om-make-point 5 205)
235 :bg-color om::*azulito*)
236)
237 (accompaniment-panel (om::om-make-view 'om::om-view
238 :size (om::om-make-point 300 300)
239 :position (om::om-make-point 510 5)
240 :bg-color om::*azulito*)
241)
242)

147

243

244 (setf elements-constraints-panel (make-constraints-srdc-panel self constraints-panel))
245 (setf elements-accompaniment-panel (make-accompaniment-panel self

accompaniment-panel))↪→

246 (setf elements-r-constraints-panel (make-r-constraints-panel self
r-constraints-panel))↪→

247

248 ; add the subviews for the different parts into the main view
249 (om::om-add-subviews
250 self
251 constraints-panel
252 accompaniment-panel
253 r-constraints-panel
254)
255)
256 ; return the editor
257 self
258)
259

260 ;;;
261 ;;;
262 ;; d CLASS ;;
263 ;;;
264 ;;;
265

266

267 (om::defclass! d ()
268 (
269 (parent
270 :accessor parent :initarg :parent :initform nil
271 :documentation "parent block from which the block comes from")
272 (accomp
273 :accessor accomp :initarg :accomp :initform (make-instance 'accompaniment)
274 :documentation "acompaniment block for this part of the song")
275 (relative-to-parent
276 :accessor relative-to-parent :initarg :relative-to-parent :initform 1 :type

integer↪→

277 :documentation "Flag to no if the cnahges in the attributes are relative to the
parent block")↪→

278 (bar-length
279 :accessor bar-length :initform 0 :type integer
280 :documentation "Number of bars of this block")
281 (min-note-length-flag
282 :accessor min-note-length-flag :initform nil :type integer
283 :documentation "Flag to post the minimum note length constraint")
284 (min-note-length

148

285 :accessor min-note-length :initform 1 :type integer
286 :documentation "Minimum note length value")
287 (diff-min-length
288 :accessor diff-min-length :initform 0 :type integer
289 :documentation "Difference for relative changes")
290 (max-note-length-flag
291 :accessor max-note-length-flag :initform nil :type integer
292 :documentation "Flag to post the maximum note length constraint")
293 (max-note-length
294 :accessor max-note-length :initform 16 :type integer
295 :documentation "Maximum note length value")
296 (diff-max-length
297 :accessor diff-max-length :initform 0 :type integer
298 :documentation "Difference for relative changes")
299 (chord-key
300 :accessor chord-key :initform "C" :type string
301 :documentation "key to set the scale in")
302 (diff-chord-key
303 :accessor diff-chord-key :initform 0 :type integer
304 :documentation "Difference for relative changes")
305 (chord-quality
306 :accessor chord-quality :initform "Major" :type string
307 :documentation "quality to set the scale in")
308 (diff-chord-quality
309 :accessor diff-chord-quality :initform 0 :type integer
310 :documentation "Difference for relative changes")
311 (min-pitch
312 :accessor min-pitch :initform 1 :type integer
313 :documentation "Minimum pitch value")
314 (diff-min-pitch
315 :accessor diff-min-pitch :initform 0 :type integer
316 :documentation "Difference for relative changes")
317 (max-pitch
318 :accessor max-pitch :initform 127 :type integer
319 :documentation "Maximum pitch value")
320 (diff-max-pitch
321 :accessor diff-max-pitch :initform 0 :type integer
322 :documentation "Difference for relative changes")
323 (difference-percent-s
324 :accessor difference-percent-s :initform 75 :type integer
325 :documentation "percentage of difference with the s block of with the same

parent")↪→

326 (semitones
327 :accessor semitones :initform 0 :type integer
328 :documentation "Semitones of transposition from the s-block of the same parent")
329)

149

330)
331

332 (defclass d-editor (om::editorview) ())
333

334 (defmethod om::class-has-editor-p ((self d)) t)
335 (defmethod om::get-editor-class ((self d)) 'd-editor)
336

337 (defmethod om::om-draw-contents ((view d-editor))
338 (let* ((object (om::object view)))
339 (om::om-with-focused-view
340 view
341)
342)
343)
344

345 (defmethod initialize-instance ((self d-editor) &rest args)
346 ;;; do what needs to be done by default
347 (call-next-method)
348 (make-my-interface self)
349)
350

351 (defmethod make-my-interface ((self d-editor))
352

353 ; create the main view of the object
354 (make-main-view self)
355

356 (let*
357 (
358 ;;;
359 ;;; setting the different regions of the tool ;;;
360 ;;;
361 (constraints-panel (om::om-make-view 'om::om-view
362 :size (om::om-make-point 500 195)
363 :position (om::om-make-point 5 5)
364 :bg-color om::*azulito*)
365)
366 (accompaniment-panel (om::om-make-view 'om::om-view
367 :size (om::om-make-point 300 300)
368 :position (om::om-make-point 510 5)
369 :bg-color om::*azulito*)
370)
371 (d-constraints-panel (om::om-make-view 'om::om-view
372 :size (om::om-make-point 500 100)
373 :position (om::om-make-point 5 205)
374 :bg-color om::*azulito*)
375)

150

376)
377

378 (setf elements-d-constraints-panel (make-d-constraints-panel self
d-constraints-panel))↪→

379

380 ; add the subviews for the different parts into the main view
381 (setf elements-constraints-panel (make-constraints-srdc-panel self constraints-panel))
382 (setf elements-accompaniment-panel (make-accompaniment-panel self

accompaniment-panel))↪→

383

384 ; add the subviews for the different parts into the main view
385 (om::om-add-subviews
386 self
387 constraints-panel
388 accompaniment-panel
389 d-constraints-panel
390)
391)
392 ; return the editor
393 self
394)
395

396 ;;;
397 ;;;
398 ;; c CLASS ;;
399 ;;;
400 ;;;
401

402

403 (om::defclass! c ()
404 (
405 (parent
406 :accessor parent :initarg :parent :initform nil
407 :documentation "parent block from which the block comes from")
408 (accomp
409 :accessor accomp :initarg :accomp :initform (make-instance 'accompaniment)
410 :documentation "acompaniment block for this part of the song")
411 (relative-to-parent
412 :accessor relative-to-parent :initarg :relative-to-parent :initform 1 :type

integer↪→

413 :documentation "Flag to no if the cnahges in the attributes are relative to the
parent block")↪→

414 (bar-length
415 :accessor bar-length :initform 0 :type integer
416 :documentation "Number of bars of this block")
417 (min-note-length-flag

151

418 :accessor min-note-length-flag :initform nil :type integer
419 :documentation "Flag to post the minimum note length constraint")
420 (min-note-length
421 :accessor min-note-length :initform 1 :type integer
422 :documentation "Minimum note length value")
423 (diff-min-length
424 :accessor diff-min-length :initform 0 :type integer
425 :documentation "Difference for relative changes")
426 (max-note-length-flag
427 :accessor max-note-length-flag :initform nil :type integer
428 :documentation "Flag to post the maximum note length constraint")
429 (max-note-length
430 :accessor max-note-length :initform 16 :type integer
431 :documentation "Maximum note length value")
432 (diff-max-length
433 :accessor diff-max-length :initform 0 :type integer
434 :documentation "Difference for relative changes")
435 (chord-key
436 :accessor chord-key :initform "C" :type string
437 :documentation "key to set the scale in")
438 (diff-chord-key
439 :accessor diff-chord-key :initform 0 :type integer
440 :documentation "Difference for relative changes")
441 (chord-quality
442 :accessor chord-quality :initform "Major" :type string
443 :documentation "quality to set the scale in")
444 (diff-chord-quality
445 :accessor diff-chord-quality :initform 0 :type integer
446 :documentation "Difference for relative changes")
447 (min-pitch
448 :accessor min-pitch :initform 1 :type integer
449 :documentation "Minimum pitch value")
450 (diff-min-pitch
451 :accessor diff-min-pitch :initform 0 :type integer
452 :documentation "Difference for relative changes")
453 (max-pitch
454 :accessor max-pitch :initform 127 :type integer
455 :documentation "Maximum pitch value")
456 (diff-max-pitch
457 :accessor diff-max-pitch :initform 0 :type integer
458 :documentation "Difference for relative changes")
459 (cadence-type
460 :accessor cadence-type :initform "Perfect" :type string
461 :documentation "Type of cadence used in the current block")
462 (min-note-length-mult
463 :accessor min-note-length-mult :initform 2 :type integer

152

464 :documentation "Multiplicator to slow down the song")
465)
466)
467

468 (defclass c-editor (om::editorview) ())
469

470 (defmethod om::class-has-editor-p ((self c)) t)
471 (defmethod om::get-editor-class ((self c)) 'c-editor)
472

473 (defmethod om::om-draw-contents ((view c-editor))
474 (let* ((object (om::object view)))
475 (om::om-with-focused-view
476 view
477)
478)
479)
480

481 (defmethod initialize-instance ((self c-editor) &rest args)
482 ;;; do what needs to be done by default
483 (call-next-method) ; start the search by default?
484 (make-my-interface self)
485)
486

487 (defmethod make-my-interface ((self c-editor))
488

489 ; create the main view of the object
490 (make-main-view self)
491

492 (let*
493 (
494 ;;;
495 ;;; setting the different regions of the tool ;;;
496 ;;;
497

498 (constraints-panel (om::om-make-view 'om::om-view
499 :size (om::om-make-point 500 300)
500 :position (om::om-make-point 5 5)
501 :bg-color om::*azulito*)
502)
503 (c-constraints-panel (om::om-make-view 'om::om-view
504 :size (om::om-make-point 500 100)
505 :position (om::om-make-point 5 310)
506 :bg-color om::*azulito*)
507)
508)
509

153

510

511 (setf elements-c-constraints-panel (make-c-constraints-panel self
c-constraints-panel))↪→

512

513 ; add the subviews for the different parts into the main view
514 (setf elements-constraints-panel (make-constraints-srdc-panel self constraints-panel))
515

516 ; add the subviews for the different parts into the main view
517 (om::om-add-subviews
518 self
519 constraints-panel
520 c-constraints-panel
521)
522)
523 ; return the editor
524 self
525)
526

527 ;;;
528 ;;;
529 ;; r CONSTRAINTS PANEL ;;
530 ;;;
531 ;;;
532

533 (defun make-r-constraints-panel (editor panel)
534 (om::om-add-subviews
535 panel
536 (om::om-make-dialog-item
537 'om::om-static-text
538 (om::om-make-point 10 10)
539 (om::om-make-point 200 20)
540 "Similarity with s block"
541 :font om::*om-default-font1b*
542)
543 (om::om-make-dialog-item
544 'om::slider
545 (om::om-make-point 10 40)
546 (om::om-make-point 150 20)
547 "Similarity with s block"
548 :range '(1 100)
549 :increment 1
550 :value (similarity-percent-s (om::object editor))

154

551 :di-action #'(lambda (s)
552 (setf (similarity-percent-s (om::object editor)) (om::om-slider-value s))
553 (print "similarity-percent-s: ")
554 (print (similarity-percent-s (om::object editor)))
555)
556)
557

558 (om::om-make-dialog-item
559 'om::om-static-text
560 (om::om-make-point 200 10)
561 (om::om-make-point 100 50)
562 "Semitones from s block"
563 :font om::*om-default-font1b*
564)
565

566 (om::om-make-dialog-item
567 'om::pop-up-menu
568 (om::om-make-point 300 10)
569 (om::om-make-point 80 20)
570 "semitones from s block"
571 :range (loop :for i :from -12 :below 12 :collect (number-to-string i))
572 :value (number-to-string (semitones (om::object editor)))
573 :di-action #'(lambda (m)
574 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
575 (setf (semitones (om::object editor)) (string-to-number check))
576)
577)
578)
579)
580

581 ;;;
582 ;;;
583 ;; c CONSTRAINTS PANEL ;;
584 ;;;
585 ;;;
586

587 (defun make-c-constraints-panel (editor panel)
588 (om::om-add-subviews
589 panel
590 (om::om-make-dialog-item
591 'om::om-static-text
592 (om::om-make-point 10 10)
593 (om::om-make-point 200 20)
594 "Cadence choice"
595 :font om::*om-default-font1b*
596)

155

597 (om::om-make-dialog-item
598 'om::pop-up-menu
599 (om::om-make-point 10 40)
600 (om::om-make-point 150 20)
601 "Cadence choice"
602 :range '("Perfect" "Plagal" "Semi" "None")
603 :value (cadence-type (om::object editor))
604 :di-action #'(lambda (m)
605 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
606 (if (string= check "None")
607 (setf (cadence-type (om::object editor)) "None")
608 (setf (cadence-type (om::object editor)) check)
609)
610)
611)
612)
613)
614

615 ;;;
616 ;;;
617 ;; d CONSTRAINTS PANEL ;;
618 ;;;
619 ;;;
620 (defun make-d-constraints-panel (editor panel)
621 (om::om-add-subviews
622 panel
623 (om::om-make-dialog-item
624 'om::om-static-text
625 (om::om-make-point 10 10)
626 (om::om-make-point 200 20)
627 "Difference with s block"
628 :font om::*om-default-font1b*
629)
630 (om::om-make-dialog-item
631 'om::slider
632 (om::om-make-point 10 40)
633 (om::om-make-point 150 20)
634 "Difference with s block"
635 :range '(1 100)
636 :increment 1
637 :value (difference-percent-s (om::object editor))
638 :di-action #'(lambda (s)
639 (setf (difference-percent-s (om::object editor)) (om::om-slider-value s))
640 (print "difference-percent-s: ")
641 (print (difference-percent-s (om::object editor)))
642)

156

643)
644 (om::om-make-dialog-item
645 'om::om-static-text
646 (om::om-make-point 200 10)
647 (om::om-make-point 100 50)
648 "Semitones from s block"
649 :font om::*om-default-font1b*
650)
651

652 (om::om-make-dialog-item
653 'om::pop-up-menu
654 (om::om-make-point 300 10)
655 (om::om-make-point 80 20)
656 "semitones from s block"
657 :range (loop :for i :from -12 :below 12 :collect (number-to-string i))
658 :value (number-to-string (semitones (om::object editor)))
659 :di-action #'(lambda (m)
660 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
661 (setf (semitones (om::object editor)) (string-to-number check))
662)
663)
664)
665)
666

667 ;;;
668 ;;;
669 ;; srdc CONSTRAINTS PANEL ;;
670 ;;;
671 ;;;
672

673 (defun make-constraints-srdc-panel (editor panel)
674 (om::om-add-subviews
675 panel
676 (om::om-make-dialog-item
677 'om::om-static-text
678 (om::om-make-point 15 10)
679 (om::om-make-point 120 20)
680 "Block constraints"
681 :font om::*om-default-font1b*
682)
683

684 (om::om-make-dialog-item
685 'om::om-static-text
686 (om::om-make-point 15 50)
687 (om::om-make-point 200 20)
688 "Number of bars"

157

689 :font om::*om-default-font1b*
690)
691

692 (om::om-make-dialog-item
693 'om::pop-up-menu
694 (om::om-make-point 170 50)
695 (om::om-make-point 80 20)
696 "Bar length"
697 :range (bar-length-range (om::object editor))
698 :value (number-to-string (bar-length (om::object editor)))
699 :di-action #'(lambda (m)
700 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
701 (setf (bar-length (om::object editor)) (string-to-number check))
702 (set-bar-length-up (om::object editor))
703)
704)
705

706 (om::om-make-dialog-item
707 'om::om-static-text
708 (om::om-make-point 15 100)
709 (om::om-make-point 200 20)
710 "Min note length"
711 :font om::*om-default-font1b*
712)
713

714 (om::om-make-dialog-item
715 'om::om-check-box
716 (om::om-make-point 120 100)
717 (om::om-make-point 20 20)
718 ""
719 :checked-p (min-note-length-flag (om::object editor))
720 :di-action #'(lambda (c)
721 (if (om::om-checked-p c)
722 (setf (min-note-length-flag (om::object editor)) 1)
723 (setf (min-note-length-flag (om::object editor)) nil)
724)
725)
726)
727

728 (om::om-make-dialog-item
729 'om::pop-up-menu
730 (om::om-make-point 170 100)
731 (om::om-make-point 80 20); size
732 "Minimum note length"
733 :range (loop :for n :from 0 :upto 4 :collect (number-to-string (expt 2 n)))
734 :value (number-to-string (min-note-length (om::object editor)))

158

735 :di-action #'(lambda (m)
736 (let ((old-diff 0))
737 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
738 (setf (min-note-length (om::object editor)) (string-to-number check))
739)
740)
741)
742

743 (om::om-make-dialog-item
744 'om::om-static-text
745 (om::om-make-point 15 150)
746 (om::om-make-point 200 20)
747 "Max note length"
748 :font om::*om-default-font1b*
749)
750

751 (om::om-make-dialog-item
752 'om::om-check-box
753 (om::om-make-point 120 150)
754 (om::om-make-point 20 20)
755 ""
756 :checked-p (max-note-length-flag (om::object editor))
757 :di-action #'(lambda (c)
758 (if (om::om-checked-p c)
759 (setf (max-note-length-flag (om::object editor)) 1)
760 (setf (max-note-length-flag (om::object editor)) nil)
761)
762)
763)
764

765 (om::om-make-dialog-item
766 'om::pop-up-menu
767 (om::om-make-point 170 150)
768 (om::om-make-point 80 20); size
769 "Maximum note length"
770 :range (loop :for n :from 0 :upto 4 :collect (number-to-string (expt 2 n)))
771 :value (number-to-string (max-note-length (om::object editor)))
772 :di-action #'(lambda (m)
773 (let ((old-diff 0))
774 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
775 (setf (max-note-length (om::object editor)) (string-to-number check)))
776)
777)
778

779 (om::om-make-dialog-item
780 'om::om-static-text

159

781 (om::om-make-point 300 10)
782 (om::om-make-point 200 20)
783 "Pitch constraints"
784 :font om::*om-default-font1b*
785)
786

787 (om::om-make-dialog-item
788 'om::om-static-text
789 (om::om-make-point 300 50)
790 (om::om-make-point 200 20)
791 "Minimum pitch"
792 :font om::*om-default-font1b*
793)
794

795

796 (om::om-make-dialog-item
797 'om::slider
798 (om::om-make-point 300 70)
799 (om::om-make-point 150 20)
800 "Minimum pitch"
801 :range '(1 127)
802 :increment 1
803 :value (min-pitch (om::object editor))
804 :di-action #'(lambda (s)
805 (setf (min-pitch (om::object editor)) (om::om-slider-value s))
806)
807)
808

809 (om::om-make-dialog-item
810 'om::om-static-text
811 (om::om-make-point 300 120)
812 (om::om-make-point 200 20)
813 "Maximum pitch"
814 :font om::*om-default-font1b*
815)
816

817

818 (om::om-make-dialog-item
819 'om::slider
820 (om::om-make-point 300 140)
821 (om::om-make-point 150 20)
822 "Maximum pitch"
823 :range '(1 127)
824 :increment 1
825 :value (max-pitch (om::object editor))
826 :di-action #'(lambda (s)

160

827 (setf (max-pitch (om::object editor)) (om::om-slider-value s))
828)
829)
830)
831

832)

D.2.4 sources/rock-accompaniment.lisp
This file contains the object describing the accompaniment.

1 (in-package :mldz)
2

3 ;;;
4 ;;;
5 ;; ACCOMPANIMENT CLASS ;;
6 ;;;
7 ;;;
8

9

10 (om::defclass! accompaniment ()
11 (
12 (parent
13 :accessor parent :initarg :parent :initform nil
14 :documentation "parent block containing the instance of this block")
15 (relative-to-parent
16 :accessor relative-to-parent :initarg :relative-to-parent :initform 1 :type

integer↪→

17 :documentation "Flag to now if the block attributes are reltive to its
parent's")↪→

18 (bar-length
19 :accessor bar-length :initform 0 :type integer
20 :documentation "Number of bars of the block")
21 (min-simultaneous-notes
22 :accessor min-simultaneous-notes :initform 3 :type integer
23 :documentation "Minimum notes played simultaneously")
24 (diff-max-sim
25 :accessor diff-max-sim :initform 0 :type integer
26 :documentation "Difference for relative changes")
27 (max-simultaneous-notes
28 :accessor max-simultaneous-notes :initform 3 :type integer
29 :documentation "Maximum notes played simultaneously")
30 (diff-min-sim
31 :accessor diff-min-sim :initform 0 :type integer

161

32 :documentation "Difference for relative changes")
33 (min-note-length-flag
34 :accessor min-note-length-flag :initform 1 :type integer
35 :documentation "Flag stating if the note-min-length constrain must be posted")
36 (min-note-length
37 :accessor min-note-length :initform 16 :type integer
38 :documentation "Minimum note length value")
39 (diff-min-length
40 :accessor diff-min-length :initform 0 :type integer
41 :documentation "Difference for relative changes")
42 (max-note-length-flag
43 :accessor max-note-length-flag :initform 1 :type integer
44 :documentation "Flag stating if the note-max-length constrain must be posted")
45 (max-note-length
46 :accessor max-note-length :initform 16 :type integer
47 :documentation "Maximum note length value")
48 (diff-max-length
49 :accessor diff-max-length :initform 0 :type integer
50 :documentation "Difference for relative changes")
51 (chord-key
52 :accessor chord-key :initform "C" :type string
53 :documentation "Chord key to set the scale in")
54 (diff-chord-key
55 :accessor diff-chord-key :initform 0 :type integer
56 :documentation "Difference for relative changes")
57 (chord-quality
58 :accessor chord-quality :initform "Major" :type string
59 :documentation "Quality to set the scale in")
60 (diff-chord-quality
61 :accessor diff-chord-quality :initform 0 :type integer
62 :documentation "Difference for relative changes")
63 (min-pitch
64 :accessor min-pitch :initform 1 :type integer
65 :documentation "Minimum pitch value")
66 (diff-min-pitch
67 :accessor diff-min-pitch :initform 0 :type integer
68 :documentation "Difference for relative changes")
69 (max-pitch
70 :accessor max-pitch :initform 127 :type integer
71 :documentation "Maximum pitch value")
72 (diff-max-pitch
73 :accessor diff-max-pitch :initform 0 :type integer
74 :documentation "Difference for relative changes")
75)
76)
77

162

78 (defun make-accompaniment-panel (editor panel)
79 (om::om-add-subviews
80 panel
81 (om::om-make-dialog-item
82 'om::om-static-text
83 (om::om-make-point 15 10)
84 (om::om-make-point 200 20)
85 "Accompaniment constraints"
86 :font om::*om-default-font1b*
87)
88

89 (om::om-make-dialog-item
90 'om::om-static-text
91 (om::om-make-point 15 50)
92 (om::om-make-point 200 20)
93 "Min note length"
94 :font om::*om-default-font1b*
95)
96

97 (om::om-make-dialog-item
98 'om::om-check-box
99 (om::om-make-point 145 50)

100 (om::om-make-point 20 20)
101 ""
102 :checked-p (min-note-length-flag (accomp (om::object editor)))
103 :di-action #'(lambda (c)
104 (if (om::om-checked-p c)
105 (setf (min-note-length-flag (accomp (om::object editor))) 1)
106 (setf (min-note-length-flag (accomp (om::object editor))) nil)
107)
108)
109)
110

111 (om::om-make-dialog-item
112 'om::pop-up-menu
113 (om::om-make-point 165 50)
114 (om::om-make-point 80 20); size
115 "Min note length"
116 :range (loop :for n :from 0 :upto 4 :collect (number-to-string (expt 2 n)))
117 :value (number-to-string (min-note-length (accomp (om::object editor))))
118 :di-action #'(lambda (m)
119 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
120 (setf (min-note-length (accomp (om::object editor))) (string-to-number check))
121)
122)
123

163

124 (om::om-make-dialog-item
125 'om::om-static-text
126 (om::om-make-point 15 100)
127 (om::om-make-point 200 20)
128 "Max note length"
129 :font om::*om-default-font1b*
130)
131

132 (om::om-make-dialog-item
133 'om::om-check-box
134 (om::om-make-point 145 100)
135 (om::om-make-point 20 20)
136 ""
137 :checked-p (max-note-length-flag (accomp (om::object editor)))
138 :di-action #'(lambda (c)
139 (if (om::om-checked-p c)
140 (setf (max-note-length-flag (accomp (om::object editor))) 1)
141 (setf (max-note-length-flag (accomp (om::object editor))) nil)
142)
143)
144)
145

146 (om::om-make-dialog-item
147 'om::pop-up-menu
148 (om::om-make-point 165 100)
149 (om::om-make-point 80 20); size
150 "Max note length"
151 :range (loop :for n :from 0 :upto 4 :collect (number-to-string (expt 2 n)))
152 :value (number-to-string (max-note-length (accomp (om::object editor))))
153 :di-action #'(lambda (m)
154 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
155 (setf (max-note-length (accomp (om::object editor))) (string-to-number check))
156)
157)
158

159 ; Key
160

161 (om::om-make-dialog-item
162 'om::om-static-text
163 (om::om-make-point 15 150)
164 (om::om-make-point 200 20)
165 "Chord key"
166 :font om::*om-default-font1b*
167)
168

169 (om::om-make-dialog-item

164

170 'om::pop-up-menu
171 (om::om-make-point 165 150)
172 (om::om-make-point 80 20)
173 "Chord key"
174 :range '("C" "C#" "D" "Eb" "E" "F" "F#" "G" "Ab" "A" "Bb" "B")
175 :value (chord-key (accomp (om::object editor)))
176 :di-action #'(lambda (m)
177 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
178 (if (string= check "None")
179 (setf (chord-key (accomp (om::object editor))) nil)
180 (setf (chord-key (accomp (om::object editor))) check)
181)
182)
183)
184

185 (om::om-make-dialog-item
186 'om::om-static-text
187 (om::om-make-point 15 200)
188 (om::om-make-point 200 20)
189 "Chord quality"
190 :font om::*om-default-font1b*
191)
192

193 (om::om-make-dialog-item
194 'om::pop-up-menu
195 (om::om-make-point 165 200)
196 (om::om-make-point 80 20)
197 "Chord quality"
198 :value (chord-quality (accomp (om::object editor)))
199 :range '("Major" "Minor" "Augmented" "Diminished")
200 :di-action #'(lambda (m)
201 (setq check (nth (om::om-get-selected-item-index m) (om::om-get-item-list m)))
202 (if (string= check "None")
203 (setf (chord-quality (accomp (om::object editor))) nil)
204 (setf (chord-quality (accomp (om::object editor))) check))
205)
206)
207)
208)

D.3 CSP Files
This section will contain the code for the Constraint Satisfaction problem described in

chapter 4. It is distributed over two files:

165

• rock-csp.lisp contains the function to create the search space and its variables, the
function to post the constraints given in the constraints panels from the interface, and the
functions to get the next solution or stop the search.

• rock-csts.lisp contains the constraints implementation as described in appendix C, but
in Lisp this time.

D.3.1 sources/rock-csp.lisp
This file is the first file creating the search and handling the solutions.

1 (in-package :mldz)
2

3 ;;;;;;;;;;;;;;;;;
4 ; NEW-MELODIZER ;
5 ;;;;;;;;;;;;;;;;;
6

7 ; <rock-csp> the rock object defining the constraints
8 ; <percent-diff> percentage of difference wanted for the solutions
9 ; This function creates the CSP by creating the space and the variables, posting the

constraints and the branching, specifying↪→

10 ; the search options and creating the search engine.
11 (defmethod rock-solver (rock-csp percent-diff branching)
12 (let ((sp (gil::new-space)); create the space;
13 push pull playing push-acc pull-acc playing-acc
14 tstop sopts temp
15 pos
16

17 (max-pitch 127)
18 (bars (bar-length rock-csp))
19 (quant 16)
20)
21

22 ;Setting constraint for this block and child blocks
23 (setq temp (constrain-rock sp rock-csp))
24 (setq push (nth 0 temp))
25 (setq pull (nth 1 temp))
26 (setq playing (nth 2 temp))
27 (setq push-acc (nth 3 temp))
28 (setq pull-acc (nth 4 temp))
29 (setq playing-acc (nth 5 temp))
30

31 ;; Define branching for BAB
32 (gil::g-branch sp push gil::INT_VAR_SIZE_MIN gil::INT_VAL_RND)
33 (gil::g-branch sp pull gil::INT_VAR_SIZE_MIN gil::INT_VAL_RND)
34 (gil::g-branch sp playing gil::INT_VAR_SIZE_MIN gil::INT_VAL_RND)
35 (gil::g-branch sp push-acc gil::SET_VAR_SIZE_MIN gil::SET_VAL_RND_INC)

166

36 (gil::g-branch sp pull-acc gil::SET_VAR_SIZE_MIN gil::SET_VAL_RND_INC)
37 (gil::g-branch sp playing-acc gil::SET_VAR_SIZE_MIN gil::SET_VAL_RND_INC)
38

39 (gil::g-specify-sol-variables sp playing)
40 (gil::g-specify-percent-diff sp percent-diff)
41

42 ;time stop
43 (setq tstop (gil::t-stop)); create the time stop object
44 (gil::time-stop-init tstop 5000); initialize it (time is expressed in ms)
45

46 ;search options
47 (setq sopts (gil::search-opts)); create the search options object
48 (gil::init-search-opts sopts); initialize it
49 (gil::set-n-threads sopts 1); set the number of threads to be used during the

search (default is 1, 0 means as many as available)↪→

50 (gil::set-time-stop sopts tstop); set the timestop object to stop the search if it
takes too long↪→

51

52 ; search engine
53 (setq se (gil::search-engine sp (gil::opts sopts) gil::BAB))
54

55 (print "new-melodizer basic CSP constructed")
56

57 ; return
58 (list se push pull playing push-acc pull-acc playing-acc tstop sopts bars quant

sp)↪→

59)
60)
61

62 ;recursive function to set the constraint on all the blocks in the tree structure
63 ; TODO : adapt function for A A B A and launch functions for s r d c
64 (defun constrain-rock (sp rock-csp)
65 (print "At the start of constrain-rock")
66

67 ; return pull push playing
68 (let (pull push playing pull-acc push-acc playing-acc block-list positions
69 sub-push sub-pull pitches-notes lengths-notes
70

71 (bars (bar-length rock-csp))
72 (quant 16)
73 (max-pitch 127)
74 (max-simultaneous-notes 10)
75 (min-simultaneous-notes 0)
76 (no-note -1)
77 (startidx 0)
78 nb-notes push-A0 push-B0

167

79)
80

81 (setq nb-notes (+ (* bars quant) 1))
82

83 ;; initialize the variables
84 (setq push (gil::add-int-var-array sp nb-notes no-note max-pitch))
85 (setq pull (gil::add-int-var-array sp nb-notes no-note max-pitch))
86 (setq playing (gil::add-int-var-array sp nb-notes no-note max-pitch))
87

88 (setq push-acc (gil::add-set-var-array sp nb-notes 0 max-pitch 0
max-simultaneous-notes))↪→

89 (setq pull-acc (gil::add-set-var-array sp nb-notes 0 max-pitch 0
max-simultaneous-notes))↪→

90 (setq playing-acc (gil::add-set-var-array sp nb-notes 0 max-pitch
min-simultaneous-notes max-simultaneous-notes))↪→

91

92 ;; connects push pull and playing with constraints
93 (link-push-pull-playing-int sp push pull playing max-pitch)
94 ;; Limit intervals between consecutive notes
95 (limit-intervals-cst sp playing)
96 (link-push-pull-playing-set sp push-acc pull-acc playing-acc max-pitch

max-simultaneous-notes)↪→

97

98

99

100 ;; set constraints on push pull and playing from all blocks in the structure
101 (setq block-list (block-list rock-csp))
102

103 ;; iterate over all blocks A and B in block-list
104 (loop :for i :from 0 :below (length block-list) :by 1 :do
105 ;; for every A/B block, post constraints from s,r,d,c
106 ;; cut the push pull playing array into (length block-list) parts and feed the

adequate part↪→

107 ;; to (constrain-ppp-from-srdc)
108 (let (temp-push temp-pull temp-playing temp-push-acc temp-pull-acc

temp-playing-acc↪→

109 srdc-parent notes-per-block)
110 (setq srdc-parent (nth i block-list))
111 (setq notes-per-block (* (bar-length srdc-parent) quant))
112 (setq temp-push (sublst push startidx notes-per-block))
113 (setq temp-pull (sublst pull startidx notes-per-block))
114 (setq temp-playing (sublst playing startidx notes-per-block))
115 (setq temp-push-acc (sublst push-acc startidx notes-per-block))
116 (setq temp-pull-acc (sublst pull-acc startidx notes-per-block))
117 (setq temp-playing-acc (sublst playing-acc startidx notes-per-block))
118 (if (= i (idx-first-a rock-csp))

168

119 (setq push-A0 temp-push)
120)
121 (if (= i (idx-first-b rock-csp))
122 (setq push-B0 temp-push)
123)
124 (if (> startidx 0)
125 (progn
126 ;; Last played note of the previous block must be pulled
127 (gil::g-rel sp (first temp-pull) gil::IRT_EQ (nth (- startidx 1)

playing))↪→

128)
129)
130

131 (constrain-srdc-from-parent srdc-parent temp-push temp-pull temp-playing
132 temp-push-acc temp-pull-acc temp-playing-acc

push-A0 push-B0 quant max-pitch sp)↪→

133 (setq startidx (+ startidx notes-per-block))
134)
135)
136

137 ;; return
138 (list push pull playing push-acc pull-acc playing-acc)
139)
140)
141

142 ;posts the constraints specified in the block
143 (defun post-rock-constraints (sp rock push pull playing is-cadence post-chord)
144 (print "posting rock constraints")
145 (if (typep rock 'mldz::accompaniment);; Only accompaniment is polymorphique
146 (progn
147 (if (and (min-simultaneous-notes rock) (typep (nth 0 push) 'gil::set-var))
148 (gil::g-card sp playing (min-simultaneous-notes rock)

(max-simultaneous-notes rock))↪→

149)
150 (if (and (max-simultaneous-notes rock) (typep (nth 0 push) 'gil::set-var))
151 (gil::g-card sp playing (min-simultaneous-notes rock)

(max-simultaneous-notes rock))↪→

152)
153)
154)
155

156 (cond
157 ((not (typep rock 'mldz::accompaniment))
158 (progn
159 ; Pitch constraints
160 (if (and post-chord (chord-key rock))

169

161 (if (typep (nth 0 push) 'gil::set-var)
162 (chord-key-cst sp push rock)
163 (chord-key-cst-int sp push playing rock)
164)
165)
166

167 (if (min-note-length-flag rock)
168 (if is-cadence
169 (note-min-length-rock sp push pull playing (smallest 16 (*

(min-note-length-mult rock) (min-note-length rock))))↪→

170 (note-min-length-rock sp push pull playing (min-note-length rock))
171)
172 (if is-cadence
173 (note-min-length-rock sp push pull playing (min-note-length-mult

rock))↪→

174 (note-min-length-rock sp push pull playing 1)
175)
176)
177

178 (if (max-note-length-flag rock)
179 (if is-cadence
180 (note-max-length-rock sp push pull (biggest (max-note-length rock)

(* (min-note-length-mult rock) (min-note-length rock))))↪→

181 (note-max-length-rock sp push pull (max-note-length rock))
182)
183 (if is-cadence
184 (note-max-length-rock sp push pull 16)
185 (note-max-length-rock sp push pull 16)
186)
187)
188

189)
190)
191

192

193 ((and is-cadence
194 (typep rock 'mldz::accompaniment))
195 (progn
196 ; Time constraints
197 (if (min-note-length-flag rock)
198 (note-min-length-rock sp push pull playing (* (/ (min-note-length rock)

2) (bar-length rock)))↪→

199)
200

201 (if (max-note-length-flag rock)
202 (note-max-length-rock sp push pull (* (/ (max-note-length rock) 2)

(bar-length rock)))↪→

170

203)
204)
205)
206

207 ((and (not is-cadence)
208 (typep rock 'mldz::accompaniment))
209

210 (progn
211 ; Pitch constraints
212 (if (and post-chord (chord-key rock))
213 (if (typep (nth 0 push) 'gil::set-var)
214 (chord-key-cst sp playing rock)
215 (chord-key-cst-int sp push playing rock)
216)
217)
218 ; Time constraints
219 (if (min-note-length-flag rock)
220 (note-min-length-rock sp push pull playing (min-note-length rock))
221)
222

223 (if (max-note-length-flag rock)
224 (note-max-length-rock sp push pull (max-note-length rock))
225)
226)
227)
228

229)
230

231 (pitch-range sp push (min-pitch rock) (max-pitch rock))
232

233)
234 ;;;;;;;;;;;;;;;
235 ; SEARCH-NEXT ;
236 ;;;;;;;;;;;;;;;
237

238 ; <l> is a list containing the search engine for the problem and the variables
239 ; <rock-object> is a rock object
240 ; this function finds the next solution of the CSP using the search engine given as an

argument↪→

241 (defmethod new-rock-next (l rock-object)
242 (let ((se (nth 0 l))
243 (push (nth 1 l))
244 (pull (nth 2 l))
245 (playing (nth 3 l))
246 (push-acc (nth 4 l))
247 (pull-acc (nth 5 l))

171

248 (playing-acc (nth 6 l))
249 (tstop (nth 7 l))
250 (sopts (nth 8 l))
251 (bars (nth 9 l))
252 (quant (nth 10 l))
253 (sp (nth 11 l))
254 (check t); for the while loop
255 sol score-voice score-acc)
256

257 (print "in search rock")
258 (gil::time-stop-reset tstop);reset the tstop timer before launching the search
259

260 (om::while check :do
261

262 (setq sol (gil::search-next se)); search the next solution
263 (if (null sol)
264 (stopped-or-ended (gil::stopped se) (stop-search rock-object) tstop);

check if there are solutions left and if the user wishes to continue
searching

↪→

↪→

265 (setf check nil); we have found a solution so break the loop
266)
267)
268

269 ;créer score qui retourne la liste de pitch et la rhythm tree
270 (setq score-voice (build-voice-int sol push pull playing bars quant (tempo

rock-object)))↪→

271 (setq score-acc (build-voice sol push-acc pull-acc bars quant (tempo
rock-object)))↪→

272

273 (list
274 (make-instance 'om::poly
275 :voices (list
276 (make-instance 'om::voice
277 :chords (first score-voice)
278 :tree (second score-voice)
279 :tempo (tempo rock-object)
280)
281 (make-instance 'om::voice
282 :chords (first score-acc)
283 :tree (second score-acc)
284 :tempo (tempo rock-object)
285)
286)
287)
288

289 se push pull playing push-acc pull-acc playing-acc tstop sopts bars quant sp)

172

290

291)
292)
293

294 ; determines if the search has been stopped by the solver because there are no more
solutions or if the user has stopped the search↪→

295 (defun stopped-or-ended (stopped-se stop-user tstop)
296 (if (= stopped-se 0); if the search has not been stopped by the TimeStop object, there

is no more solutions↪→

297 (error "There are no more solutions.")
298)
299 ;otherwise, check if the user wants to keep searching or not
300 (if stop-user
301 (error "The search has been stopped. Press next to continue the search.")
302)
303)

D.3.2 sources/rock-csts.lisp
This file contains the implementation of the constraints in Common Lisp.

1 (in-package :mldz)
2

3 ;;;
4 ;; Link arrays of music representation ;;
5 ;;;
6

7 ;; Post the constraints to link the three arrays of the representation when using SetVar
8 (defun link-push-pull-playing-set (sp push pull playing max-pitch max-simultaneous-notes)
9 ;initial constraint on pull, push, playing and durations

10 (gil::g-empty sp (first pull)) ; pull[0] == empty
11 (gil::g-rel sp (first push) gil::SRT_EQ (first playing)) ; push[0] == playing [0]
12

13 ;connect push, pull and playing
14 (loop :for j :from 1 :below (length push) :do ;for each interval
15 (let (temp z c)
16 (setq temp (gil::add-set-var sp 0 max-pitch 0 max-simultaneous-notes));

temporary variables↪→

17 (gil::g-op sp (nth (- j 1) playing) gil::SOT_MINUS (nth j pull) temp); temp[0]
= playing[j-1] - pull[j]↪→

18 (gil::g-op sp temp gil::SOT_UNION (nth j push) (nth j playing)); playing[j] ==
playing[j-1] - pull[j] + push[j] Playing note↪→

19 (gil::g-rel sp (nth j pull) gil::SRT_SUB (nth (- j 1) playing)) ; pull[j] <=
playing[j-1] cannot pull a note not playing↪→

173

20 (gil::g-set-op sp (nth (- j 1) playing) gil::SOT_MINUS (nth j pull)
gil::SRT_DISJ (nth j push)); push[j] || playing[j-1] - pull[j] Cannot push
a note still playing

↪→

↪→

21)
22)
23)
24

25 ;; Post the constraints to link the three arrays of the representation when using IntVar
26 (defun link-push-pull-playing-int (sp push pull playing max-pitch)
27 ;initial constraint on pull, push, playing and durations
28 (gil::g-rel sp (first pull) gil::IRT_EQ -1) ; pull[0] == empty
29 (gil::g-rel sp (first push) gil::IRT_EQ (first playing)) ; push[0] == playing [0]
30

31 (loop :for j :from 16 :below (length push) :by 16 :do
32 (gil::g-rel sp (nth j pull) gil::IRT_EQ (nth (- j 1) playing))
33)
34

35 ;connect push, pull and playing
36 (loop :for j :from 1 :below (length push) :do ;for each interval
37 (let (
38 playing-j-playing-j-one
39 push-j-pull-j
40 push-j-playing-j
41 pull-j-playing-j-one
42 pull-j-one
43 push-j-one
44 push-j-nq-one
45 playing-j-one
46)
47 (setq
48 playing-j-playing-j-one (gil::add-bool-var-expr sp (nth j playing)

gil::IRT_EQ (nth (- j 1) playing))↪→

49 push-j-pull-j (gil::add-bool-var-expr sp (nth j push) gil::IRT_EQ (nth j
pull))↪→

50 push-j-playing-j (gil::add-bool-var-expr sp (nth j push) gil::IRT_EQ (nth
j playing))↪→

51 pull-j-playing-j-one (gil::add-bool-var-expr sp (nth j pull) gil::IRT_EQ
(nth (- j 1) playing))↪→

52 pull-j-one (gil::add-bool-var-expr sp (nth j pull) gil::IRT_EQ -1)
53 push-j-one (gil::add-bool-var-expr sp (nth j push) gil::IRT_EQ -1)
54 push-j-nq-one (gil::add-bool-var-expr sp (nth j push) gil::IRT_NQ -1)
55 playing-j-one (gil::add-bool-var-expr sp (nth j playing) gil::IRT_EQ -1)
56)
57

58 ;; playing[j] can only be equal to the preceding played note or a new pushed
note↪→

174

59 ;; playing[j] = playing[j-1] || playing[j] = push[j]
60 (gil::g-op sp playing-j-playing-j-one gil::BOT_OR push-j-playing-j 1)
61 ;; push[j] can only equal the current note playing or -1
62 ;; push[j] = playing[j] || push[j] = -1
63 (gil::g-op sp push-j-playing-j gil::BOT_OR push-j-one 1)
64 ;; A note can be pulled only if it was previously playing
65 ;; pull[j] = playing[j-1] || pull[j] = -1
66 (gil::g-op sp pull-j-playing-j-one gil::BOT_OR pull-j-one 1)
67 ;; A note can be pushed only if the previous playing note was pulled
68 ;; push[j] /= -1 => pull[j] = playing[j-1]
69 (gil::g-op sp push-j-nq-one gil::BOT_IMP pull-j-playing-j-one 1)
70 ;; No note playing implies no note pushed and previous note pulled
71 ;; playing[j] = -1 => push[j] = -1 && pull[j] = playing[j-1]
72 (gil::g-op sp playing-j-one gil::BOT_IMP push-j-one 1)
73 (gil::g-op sp playing-j-one gil::BOT_IMP pull-j-playing-j-one 1)
74 ;; Same note playing implies the note to either have been pushed and pulled
75 ;; at the same time, or neither pushed or pulled
76 ;; push[j] = pull[j] <=> playing[j] = playing[j-1]
77 (gil::g-op sp playing-j-playing-j-one gil::BOT_IMP push-j-pull-j 1)
78 (gil::g-op sp push-j-pull-j gil::BOT_IMP playing-j-playing-j-one 1)
79)
80)
81)
82

83 ;;;
84 ;; Constrain Blocks and their sub-blocks ;;
85 ;;;
86

87 ;; Call the right function to constrain the block by their type
88 (defun constrain-srdc-from-parent (srdc-parent push pull playing push-acc pull-acc

playing-acc push-A0 push-B0 quant max-pitch sp)↪→

89 (if (typep srdc-parent 'mldz::a)
90 ;; The block is of type A, constrain it as such
91 (constrain-srdc-from-A srdc-parent push pull playing push-acc pull-acc playing-acc

push-A0 quant max-pitch sp)↪→

92 ;; The block is of type B, constrain it as such
93 (constrain-srdc-from-B srdc-parent push pull playing push-acc pull-acc playing-acc

push-B0 quant max-pitch sp)↪→

94)
95)
96

97

98 ;; Split the three arrays for the sub-blocks then call the block-specific constraints
99 (defun constrain-srdc-from-AB (A-block push pull playing push-acc pull-acc playing-acc

post-constraints quant max-pitch sp)↪→

100 (print "constrain-srdc-from-AB")

175

101

102 (if (> (bar-length (s-block A-block)) 0)
103 ;; bars*quant elements in each subblock and starts at startidx
104 ;; for the sub arrays of push pull playing
105 (let ((bars (bar-length (s-block A-block)))
106 (s-block (s-block A-block))
107 (r-block (r-block A-block))
108 (d-block (d-block A-block))
109 (c-block (c-block A-block))
110 notes-in-subblock
111 startidx-s startidx-r startidx-d startidx-c
112 temp-push-s temp-pull-s temp-playing-s
113 temp-push-s-acc temp-pull-s-acc temp-playing-s-acc
114 temp-push-r temp-pull-r temp-playing-r
115 temp-push-r-acc temp-pull-r-acc temp-playing-r-acc
116 temp-push-d temp-pull-d temp-playing-d
117 temp-push-d-acc temp-pull-d-acc temp-playing-d-acc
118 temp-push-c temp-pull-c temp-playing-c
119 temp-push-c-acc temp-pull-c-acc temp-playing-c-acc
120)
121

122

123 ;; notes in each sub block (s/r/d/c)
124 (setq notes-in-subblock (* bars quant))
125 ;; sectioning the array into the respective parts for s r d c
126

127 ;; access push pull playing arrays for the section related to s
128 ;; (sublst x y z) creates a list based on list x from index y and of z

sequential elements↪→

129 (setq startidx-s 0)
130 (setq temp-push-s (sublst push startidx-s notes-in-subblock))
131 (setq temp-pull-s (sublst pull startidx-s notes-in-subblock))
132 (setq temp-playing-s (sublst playing startidx-s notes-in-subblock))
133 (setq temp-push-s-acc (sublst push-acc startidx-s notes-in-subblock))
134 (setq temp-pull-s-acc (sublst pull-acc startidx-s notes-in-subblock))
135 (setq temp-playing-s-acc (sublst playing-acc startidx-s notes-in-subblock))
136

137 ;; access push pull playing arrays for the section related to r
138 (setq startidx-r notes-in-subblock)
139 (setq temp-push-r (sublst push startidx-r notes-in-subblock))
140 (setq temp-pull-r (sublst pull startidx-r notes-in-subblock))
141 (setq temp-playing-r (sublst playing startidx-r notes-in-subblock))
142 (setq temp-push-r-acc (sublst push-acc startidx-r notes-in-subblock))
143 (setq temp-pull-r-acc (sublst pull-acc startidx-r notes-in-subblock))
144 (setq temp-playing-r-acc (sublst playing-acc startidx-r notes-in-subblock))
145

176

146 ;; access push pull playing arrays for the section related to d
147 (setq startidx-d (+ startidx-r notes-in-subblock))
148 (setq temp-push-d (sublst push startidx-d notes-in-subblock))
149 (setq temp-pull-d (sublst pull startidx-d notes-in-subblock))
150 (setq temp-playing-d (sublst playing startidx-d notes-in-subblock))
151 (setq temp-push-d-acc (sublst push-acc startidx-d notes-in-subblock))
152 (setq temp-pull-d-acc (sublst pull-acc startidx-d notes-in-subblock))
153 (setq temp-playing-d-acc (sublst playing-acc startidx-d notes-in-subblock))
154 (gil::g-rel sp (nth 0 temp-pull-d) gil::IRT_EQ (nth (- startidx-d 1) playing))

; pull[0]=playing[previous]↪→

155

156 ;; access push pull playing arrays for the section related to c
157 (setq startidx-c (+ startidx-d notes-in-subblock))
158 (setq temp-push-c (sublst push startidx-c notes-in-subblock))
159 (setq temp-pull-c (sublst pull startidx-c notes-in-subblock))
160 (setq temp-playing-c (sublst playing startidx-c notes-in-subblock))
161 (setq temp-push-c-acc (sublst push-acc startidx-c notes-in-subblock))
162 (setq temp-pull-c-acc (sublst pull-acc startidx-c notes-in-subblock))
163 (setq temp-playing-c-acc (sublst playing-acc startidx-c notes-in-subblock))
164 (gil::g-rel sp (nth startidx-c pull) gil::IRT_EQ (nth (- startidx-c 1)

playing)) ; pull[0]=playing[previous]↪→

165

166 ;; set constraints on these arrays from the values saved in the slots of
s-block↪→

167 ;; s
168 (print "constraining s")
169 (constrain-s sp s-block A-block temp-push-s temp-pull-s temp-playing-s
170 temp-push-s-acc temp-pull-s-acc

temp-playing-s-acc↪→

171 max-pitch post-constraints)
172

173 ;; r
174 (print "constraining r")
175 (constrain-r sp r-block A-block temp-push-r temp-pull-r temp-playing-r
176 temp-push-r-acc temp-pull-r-acc

temp-playing-r-acc↪→

177 temp-push-s temp-pull-s temp-playing-s
178 max-pitch post-constraints)
179

180 ;; d
181 (print "constraining d")
182 (constrain-d sp d-block A-block temp-push-d temp-pull-d temp-playing-d
183 temp-push-d-acc temp-pull-d-acc

temp-playing-d-acc↪→

184 temp-push-s temp-pull-s temp-playing-s
185 max-pitch post-constraints)

177

186

187 ;; c
188 (print "constraining c")
189 (constrain-c sp c-block A-block temp-push-c temp-pull-c temp-playing-c
190 temp-push-c-acc temp-pull-c-acc

temp-playing-c-acc↪→

191 max-pitch post-constraints)
192

193)
194)
195

196)
197

198 ;; Constrain the A blocks with the resemblance if they are not the first A
199 (defun constrain-srdc-from-A (A-block push pull playing push-acc pull-acc playing-acc

push-A0 quant max-pitch sp)↪→

200 (print "constrain-srdc-from-A")
201 (let ((post-constraints t) (sim (similarity-percent-A0 A-block)))
202

203 ;; If the block is not the first one of its type, the resemblance must be set with the
first↪→

204 (if (not (= (block-position-A A-block) 0))
205 (let (temp-push)
206 (setq temp-push (transpose-chords-key sp (chord-key (nth (idx-first-a (parent

A-block)) (block-list (parent A-block))))↪→

207 (chord-quality (nth (idx-first-a (parent
A-block)) (block-list (parent
A-block))))

↪→

↪→

208 (chord-key A-block) (chord-quality A-block)
push-A0))↪→

209 (cst-common-vars sp temp-push push sim)
210 ;; if it has 100% resemblance with the first A, posting constraints on melody

might create conflicts↪→

211 (if (= sim 100)
212 (setq post-constraints nil)
213 (setq post-constraints t)
214)
215)
216)
217

218 ;; A and B behave the same way, the only distinction is done
219 ;; with the resemblance beween blocks of the same type
220 ;; so the same function can be called for the sub-blocks
221 (constrain-srdc-from-AB A-block push pull playing push-acc pull-acc playing-acc

post-constraints quant max-pitch sp)↪→

222)

178

223)
224

225 ;; Constrain the B blocks with the resemblance if they are not the first B
226 (defun constrain-srdc-from-B (B-block push pull playing push-acc pull-acc playing-acc

push-B0 quant max-pitch sp)↪→

227 (print "constrain-srdc-from-B")
228 (let ((post-constraints t) (sim (similarity-percent-B0 B-block)))
229

230 (if (not (= (block-position-B B-block) 0))
231 (let (temp-push)
232 (setq temp-push (transpose-chords-key sp (chord-key (nth (idx-first-b (parent

B-block)) (block-list (parent B-block))))↪→

233 (chord-quality (nth (idx-first-b (parent
B-block)) (block-list (parent
B-block))))

↪→

↪→

234 (chord-key B-block) (chord-quality B-block)
push-B0))↪→

235 (cst-common-vars sp temp-push push sim)
236 ;; if it has 100% resemblance with the first A, posting constraints on melody

might create conflicts↪→

237 (if (= sim 100)
238 (setq post-constraints nil)
239 (setq post-constraints t)
240)
241)
242)
243

244 ;; A and B behave the same way, the only distinction is done
245 ;; with the resemblance beween blocks of the same type
246 ;; so the same function can be called for the sub-blocks
247 (constrain-srdc-from-AB B-block push pull playing push-acc pull-acc playing-acc

post-constraints quant max-pitch sp)↪→

248)
249)
250

251 ;; for now these constrain-srdc functions take the parent block as argument in case it
comes in handy↪→

252 ;; when we implement more constraints which could be specified through slots of the parent
block↪→

253 (defun constrain-s (sp s-block s-parent push pull playing push-acc pull-acc playing-acc
max-pitch post-constraints)↪→

254

255 ;; if (/= melody-source nil) and (block-position-A == 0)
256 (let ((melody-A (melody-source-A (parent s-parent)))
257 (melody-B (melody-source-B (parent s-parent)))
258 (first-A (= (block-position-A s-parent) 0))

179

259 (first-B (= (block-position-B s-parent) 0))
260 set-A set-B
261)
262 (setq set-A (and first-A melody-A))
263 (setq set-B (and first-B melody-B))
264

265 (if (or set-A set-B)
266 ;; if in a block that needs to have it's melody set to a source
267 (if set-A
268 ;; set-A
269 (let (push-source pull-source playing-source ppp-source)
270 (setq ppp-source (create-push-pull-int (melody-source-A (parent

s-parent)) 16))↪→

271

272 (setq push-source (first ppp-source))
273 (setq pull-source (second ppp-source))
274 (setq playing-source (third ppp-source))
275

276 (loop :for i :from 0 :below (length push-source) :by 1 :do
277 (gil::g-rel sp (nth i push) gil::IRT_EQ (nth i push-source))
278)
279 (loop :for i :from 1 :below (- (length pull-source) 1) :by 1 :do
280 (gil::g-rel sp (nth i pull) gil::IRT_EQ (nth i pull-source))
281)
282 (loop :for i :from 0 :below (length playing-source) :by 1 :do
283 (gil::g-rel sp (nth i playing) gil::IRT_EQ (nth i playing-source))
284)
285

286 (print "First A block's s has been set to the source melody")
287 (if (< (length push-source) (length push))
288 (post-rock-constraints sp s-block (sublst push (length

push-source) (- (length push) (length push-source)))↪→

289 (sublst pull (length
push-source) (- (length
push) (length
push-source)))

↪→

↪→

↪→

290 (sublst playing (length
push-source) (- (length
push) (length
push-source)))

↪→

↪→

↪→

291 nil t)
292)
293)
294 ;; set-B
295 (let (push-source pull-source playing-source ppp-source)
296 (setq ppp-source (create-push-pull-int (melody-source-B (parent

s-parent)) 16))↪→

180

297

298 (setq push-source (first ppp-source))
299 (setq pull-source (second ppp-source))
300 (setq playing-source (third ppp-source))
301

302 (loop :for i :from 0 :below (length push-source) :by 1 :do
303 (gil::g-rel sp (nth i push) gil::IRT_EQ (nth i push-source))
304)
305 (loop :for i :from 1 :below (- (length pull-source) 1) :by 1 :do
306 (gil::g-rel sp (nth i pull) gil::IRT_EQ (nth i pull-source))
307)
308 (loop :for i :from 0 :below (length playing-source) :by 1 :do
309 (gil::g-rel sp (nth i playing) gil::IRT_EQ (nth i playing-source))
310)
311 (if (< (length push-source) (length push))
312 (post-rock-constraints sp s-block (sublst push (length

push-source) (- (length push) (length push-source)))↪→

313 (sublst pull (length
push-source) (- (length
push) (length
push-source)))

↪→

↪→

↪→

314 (sublst playing (length
push-source) (- (length
push) (length
push-source)))

↪→

↪→

↪→

315 nil t)
316)
317 (print "First B block's s has been set to the source melody")
318)
319)
320 ;; neither set-A nor set-B =>
321 ;; don't need to set a source melody, constrain as it should normally do
322 (post-rock-constraints sp s-block push pull playing nil post-constraints)
323)
324 ;; ;; accompaniment should always be constrained
325 (post-rock-constraints sp (accomp s-block) push-acc pull-acc playing-acc nil t)
326)
327

328)
329

330

331 ;; Constrain the r block based on its resemblance with the s-block
332 (defun constrain-r (sp r-block r-parent push pull playing push-acc pull-acc playing-acc
333 push-s pull-s playing-s max-pitch

post-constraints)↪→

334

181

335 (gil::g-rel sp (first pull) gil::IRT_EQ (nth (- (length playing-s) 1) playing-s)) ;
pull[0]=playing-s[quant-1]↪→

336

337 ;; post optional constraints defined in the rock csp
338 ;; dont constrain if source melody is given or the similarity with the s block is 100%
339 (let (melody)
340 (if (typep r-parent 'mldz::a)
341 (setq melody (melody-source-A (parent r-parent)))
342 (setq melody (melody-source-B (parent r-parent)))
343)
344 (post-rock-constraints sp r-block push pull playing nil (and post-constraints (or

(not melody) (< (similarity-percent-s r-block) 100))))↪→

345)
346

347

348 (post-rock-constraints sp (accomp r-block) push-acc pull-acc playing-acc nil t)
349

350 ;; constrain r such that it has a similarity of (similarity-percent-s r-block) with
notes played in s-block↪→

351 ;; transposed the number of semitones asked of the r-block
352 (let ((sim (similarity-percent-s r-block))
353 temp-push temp-playing
354)
355 (setq temp-push (transpose-chords-semitones sp (chord-key (s-block r-parent))

(chord-quality (s-block r-parent))↪→

356 (semitones r-block) push-s))
357 (cst-common-vars sp temp-push push sim)
358)
359)
360

361 ; Constrain the d-block based on its resemblance with the s-bloc
362 (defun constrain-d (sp d-block d-parent push pull playing push-acc pull-acc playing-acc
363 push-s pull-s playing-s max-pitch

post-constraints)↪→

364 (post-rock-constraints sp d-block push pull playing nil post-constraints)
365 (post-rock-constraints sp (accomp d-block) push-acc pull-acc playing-acc nil t)
366

367 ;; constrain d such that it has a difference of (difference-percent-s d-block) with
notes played in s-block↪→

368 ;; transposed the number of semitones asked of the d-block
369 (let ((diff (difference-percent-s d-block))
370 temp-push temp-playing
371)
372 (setq temp-push (transpose-chords-semitones sp (chord-key (s-block d-parent))

(chord-quality (s-block d-parent))↪→

373 (semitones d-block) push-s))

182

374

375 (cst-common-vars sp temp-push push (- 100 diff))
376)
377)
378

379 ;; constrain c such that is respects the cadence specific rules
380 (defun constrain-c (sp c-block c-parent push pull playing push-acc pull-acc playing-acc

max-pitch post-constraints)↪→

381

382 (let ((block-list-len (length (block-list (parent c-parent)))) ;; how many blocks are
in the global structure↪→

383 (position (block-position c-parent)) ;; position of the current block in the
global structure (start index is 0)↪→

384 (c-type (cadence-type c-block))
385 (key (chord-key c-block))
386 (quality (chord-quality c-block))
387 (chord-midi-value (name-to-note-value (chord-key c-block)))
388 (triad-to-play (list)) ;; intervals depending on quality
389 (chords-to-play (list)) ;; root key(s) on which the triad(s) is(are) played
390 (notes-to-play (list)) ;; notes to be pushed, list of lists
391 (mnl (min-note-length (accomp c-block)))
392)
393 (cond ((string= quality "Major") (setq triad-to-play (list 0 4 7)))
394 ((string= quality "Minor") (setq triad-to-play (list 0 3 7)))
395 ((string= quality "Augmented") (setq triad-to-play (list 0 4 8)))
396 ((string= quality "Diminished") (setq triad-to-play (list 0 3 6)))
397)
398 (cond
399 ((string= c-type "None")
400 (print "cadence-type")
401 (print "No cadence")
402 ;; TODO: Check if None functions properly
403)
404 ((string= c-type "Perfect")
405 (print "cadence-type")
406 (print "Perfect")
407

408 ;; Perfect V -> I
409 (setq chords-to-play (list 7 0))
410 (setq notes-to-play (append notes-to-play (list (+ (+ chord-midi-value

(nth 0 chords-to-play)) (nth 0 triad-to-play)) (+ (+ chord-midi-value
(nth 0 chords-to-play)) (nth 1 triad-to-play)) (+ (+ chord-midi-value
(nth 0 chords-to-play)) (nth 2 triad-to-play)))))

↪→

↪→

↪→

411

412 (setq notes-to-play (append (list notes-to-play) (list (list (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 0 triad-to-play)) (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 1 triad-to-play)) (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 2 triad-to-play))))))

↪→

↪→

↪→
183

413

414 (gil::g-rel sp (nth 0 push-acc) gil::SRT_EQ (nth 0 notes-to-play))
415 (gil::g-rel sp (nth (* (/ mnl 2) (bar-length (accomp c-block))) push-acc)

gil::SRT_EQ (nth 1 notes-to-play))↪→

416)
417 ((string= c-type "Plagal")
418 (print "cadence-type")
419 (print "Plagal")
420

421 ;; Plagal IV -> I
422 (setq chords-to-play (list 5 0))
423 (setq notes-to-play (append notes-to-play (list (+ (+ chord-midi-value

(nth 0 chords-to-play)) (nth 0 triad-to-play)) (+ (+ chord-midi-value
(nth 0 chords-to-play)) (nth 1 triad-to-play)) (+ (+ chord-midi-value
(nth 0 chords-to-play)) (nth 2 triad-to-play)))))

↪→

↪→

↪→

424

425 (setq notes-to-play (append (list notes-to-play) (list (list (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 0 triad-to-play)) (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 1 triad-to-play)) (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 2 triad-to-play))))))

↪→

↪→

↪→

426

427 (gil::g-rel sp (nth 0 push-acc) gil::SRT_EQ (nth 0 notes-to-play))
428 (gil::g-rel sp (nth (* (/ mnl 2) (bar-length (accomp c-block))) push-acc)

gil::SRT_EQ (nth 1 notes-to-play))↪→

429)
430 ((string= c-type "Semi")
431 (print "cadence-type")
432 (print "Semi")
433

434 ;; Demi I -> V
435 (setq chords-to-play (list 0 7))
436 (setq notes-to-play (append notes-to-play (list (+ (+ chord-midi-value

(nth 0 chords-to-play)) (nth 0 triad-to-play)) (+ (+ chord-midi-value
(nth 0 chords-to-play)) (nth 1 triad-to-play)) (+ (+ chord-midi-value
(nth 0 chords-to-play)) (nth 2 triad-to-play)))))

↪→

↪→

↪→

437

438 (setq notes-to-play (append (list notes-to-play) (list (list (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 0 triad-to-play)) (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 1 triad-to-play)) (+ (+
chord-midi-value (nth 1 chords-to-play)) (nth 2 triad-to-play))))))

↪→

↪→

↪→

439

440 (gil::g-rel sp (nth 0 push-acc) gil::SRT_EQ (nth 0 notes-to-play))
441 (gil::g-rel sp (nth (* (/ mnl 2) (bar-length (accomp c-block))) push-acc)

gil::SRT_EQ (nth 1 notes-to-play))↪→

442)
443 ((string= c-type "Deceptive")

184

444 (print "cadence-type")
445 (print "Deceptive")
446 ;; Deceptive V -> VI || V -> III
447)
448)
449)
450

451 (let ((bar-len (bar-length c-block))
452 (quant 16)
453 (chord-midi-value (name-to-note-value (chord-key c-block)))
454 notes
455 final-idx
456)
457 (setq notes (octaves-of-note chord-midi-value))
458 (setq final-idx (- (* bar-len quant) 1))
459 (gil::g-dom sp (nth final-idx playing) notes)
460)
461 (post-rock-constraints sp c-block push pull playing t post-constraints)
462

463 (post-rock-constraints sp (accomp c-block) push-acc pull-acc playing-acc t t)
464)
465

466 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
467 ;; LIMITING NOTE TO THE SCALE ;;
468 ;; OR THE CHORDS ;;
469 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
470

471 ;; Constraints on polyphonic voices
472 (defun chord-key-cst (sp playing rock)
473 (let ((key (chord-key rock))
474 (quality (chord-quality rock))
475 (chord-midi-value (name-to-note-value (chord-key rock)))
476 (triad-to-play (list)) ;; intervals depending on quality
477 (notes-to-play (list))
478)
479 (cond ((string= quality "Major") (setq triad-to-play (list 0 4 3)))
480 ((string= quality "Minor") (setq triad-to-play (list 0 3 4)))
481 ((string= quality "Diminished") (setq triad-to-play (list 0 3 3)))
482 ((string= quality "Augmented") (setq triad-to-play (list 0 4 4)))
483)
484 (setq notes-to-play (build-chordset triad-to-play (- chord-midi-value 60)))
485 (loop :for i :from 0 :below (length playing) :do
486 (let ((bool-array (gil::add-bool-var-array sp (length notes-to-play) 0

1)));;Array to state that one triad is played↪→

487 (loop :for j :from 0 :below (length notes-to-play) :do
488 (gil::g-rel-reify sp (nth i playing) gil::SRT_EQ (nth j notes-to-play)

(nth j bool-array) gil::RM_IMP)↪→

185

489)
490 ;; Exactly one triad can be played at each time
491 (gil::g-rel sp gil::BOT_OR bool-array 1)
492)
493)
494)
495)
496

497 ;; Constraints on monophonic voices
498 (defun chord-key-cst-int (sp push playing rock)
499 (let (
500 (chord (get-scale-chord (chord-quality rock)))
501 (offset (- (name-to-note-value (chord-key rock)) 60))
502 chordset
503)
504 (setq chordset (build-scaleset chord offset))
505 (loop :for i :from 0 :below (length playing) :by 1 :do
506 (let (bool-array bool-temp)
507 (setq bool-array (gil::add-bool-var-array sp (+ (length chordset) 1) 0 1))
508 (loop :for n :from 0 :below (length chordset) :by 1 :do
509 (let (bool)
510 (setq bool (gil::add-bool-var-expr sp (nth i playing) gil::IRT_EQ

(nth n chordset)))↪→

511 (gil::g-rel sp bool gil::IRT_EQ (nth n bool-array))
512)
513)
514 (setq bool-temp (gil::add-bool-var-expr sp (nth i playing) gil::IRT_EQ

-1))↪→

515 (gil::g-rel sp bool-temp gil::IRT_EQ (nth (length chordset) bool-array))
516 (gil::g-rel sp gil::BOT_OR bool-array 1)
517)
518)
519)
520)
521

522 ;;;;;;;;;;;;;;;;;;;;;;;;
523 ; LIMITING PITCH RANGE ;
524 ;;;;;;;;;;;;;;;;;;;;;;;;
525

526 (defun pitch-range (sp push min-pitch max-pitch)
527 (loop :for j :below (length push) :by 1 :do
528 (if (typep (nth j push) 'gil::int-var)
529 ;; Constraints on monophonic voices
530 (progn
531 (let (bool-temp bool-one bool-min bool-max)
532 (setq bool-one (gil::add-bool-var-expr sp (nth j push) gil::IRT_EQ

-1))↪→

186

533 (setq bool-min (gil::add-bool-var-expr sp (nth j push) gil::IRT_GQ
min-pitch))↪→

534 (setq bool-max (gil::add-bool-var-expr sp (nth j push) gil::IRT_LQ
max-pitch))↪→

535 (setq bool-temp (gil::add-bool-var sp 0 1))
536 (gil::g-op sp bool-min gil::BOT_AND bool-max bool-temp)
537 (gil::g-op sp bool-temp gil::BOT_OR bool-one 1)
538)
539)
540 ;; Constraints on polyphonic voices
541 (gil::g-dom-ints sp (nth j push) gil::SRT_SUB min-pitch max-pitch)
542)
543)
544)
545

546

547 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
548 ; LIMITING MINIMUM NOTE LENGTH ;
549 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
550

551 (defun note-min-length-rock (sp push pull playing min-length)
552 (loop :for j :from 0 :below (length push) :by 1 :do
553 (loop :for k :from 1 :below min-length :by 1 :while (< (+ j k) (length pull)) :do
554 (if (typep (nth j push) 'gil::int-var)
555 ;; Constraints on monophonic voices
556 (let (bool-temp bool2 bool3 bool4 bool5 bool6)
557 (setq bool-temp (gil::add-bool-var-expr sp (nth j push) gil::IRT_NQ

-1))↪→

558 (setq bool3 (gil::add-bool-var-expr sp (nth (+ j k) pull) gil::IRT_EQ
-1))↪→

559 (gil::g-op sp bool-temp gil::BOT_IMP bool3 1)
560

561 ;; Limiting silence minimum length
562 (if (> j 0)
563 (progn
564 (setq bool2 (gil::add-bool-var-expr sp (nth j playing)

gil::IRT_EQ -1))↪→

565 (setq bool5 (gil::add-bool-var-expr sp (nth (- j 1) playing)
gil::IRT_NQ -1))↪→

566 (setq bool4 (gil::add-bool-var-expr sp (nth (+ j k) playing)
gil::IRT_EQ -1))↪→

567 (setq bool6 (gil::add-bool-var sp 0 1))
568 (gil::g-op sp bool5 gil::BOT_AND bool2 bool6)
569 (gil::g-op sp bool6 gil::BOT_IMP bool4 1)
570)
571 (progn

187

572 (setq bool2 (gil::add-bool-var-expr sp (nth j playing)
gil::IRT_EQ -1))↪→

573 (setq bool4 (gil::add-bool-var-expr sp (nth (+ j k) playing)
gil::IRT_EQ -1))↪→

574 (gil::g-op sp bool2 gil::BOT_IMP bool4 1)
575)
576)
577

578)
579 ;; Constraints on polyphonic voices
580 (gil::g-rel sp (nth (+ j k) pull) gil::SRT_DISJ (nth j push))
581)
582)
583)
584)
585

586 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
587 ; LIMITING MAXIMUM NOTE LENGTH ;
588 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
589

590 (defun note-max-length-rock (sp push pull max-length)
591 (setq l max-length)
592 (if (typep (nth 0 push) 'gil::int-var)
593 ;; Constraints on monophonic voices
594 (loop :for j :from 0 :below (- (length push) l) :by 1 :do
595 (let ((count (gil::add-int-var sp 0 l))
596 (int-array (gil::add-int-var-array sp l 0 l)))
597 (loop :for k :from 0 :below l :by 1 :do
598 (setf (nth k int-array) (gil::add-int-var-expr sp (nth j push)

gil::IOP_SUB (nth (+ 1 (+ j k)) pull)))↪→

599)
600 (gil::g-count sp int-array 0 gil::IRT_EQ count)
601 (gil::g-rel sp count gil::IRT_GQ 1)
602)
603)
604 ;; Constraints on polyphonic voices
605 (loop :for j :from 0 :below (- (length push) l) :by 1 :do
606 (let ((l-pull (gil::add-set-var-array sp l 0 127 0 127))
607 (l-pull-union (gil::add-set-var sp 0 127 0 127)))
608 (loop :for k :from 0 :below l :by 1 :do
609 (gil::g-rel sp (nth k l-pull) gil::SRT_EQ (nth (+ 1 (+ j k)) pull))
610)
611 (gil::g-setunion sp l-pull-union l-pull)
612 (gil::g-rel sp (nth j push) gil::SRT_SUB l-pull-union)
613)
614)

188

615)
616

617)
618

619 ;;;
620 ;; LIMITING THE NUMBER OF COMMON NOTES ;;
621 ;;;
622

623 (defun cst-common-vars (sp vars1 vars2 sim)
624 (let (count-vars int-array n-vars perc)
625 (setq perc (/ sim 100))
626 (setq n-vars (ceiling (* (length vars1) perc)))
627

628 (setq count (gil::add-int-var sp 0 (length vars1)))
629 (setq int-array (gil::add-int-var-array sp (length vars1) -127 127))
630

631 (loop :for i :from 0 :below (min (length vars1) (length vars2)) do
632 (setf (nth i int-array) (gil::add-int-var-expr sp (nth i vars1) gil::IOP_SUB

(nth i vars2)))↪→

633)
634

635 (gil::g-count sp int-array 0 gil::IRT_EQ count)
636 (gil::g-rel sp count gil::IRT_GQ n-vars)
637)
638)
639

640 ;;
641 ;; LIMITING THE INTERVALS BETWEEN NOTES ;;
642 ;;
643

644 (defun limit-intervals-cst (sp playing)
645 (let ((max-interval 7))
646 (loop :for i :from 1 :below (length playing) :do
647 (limit-one-interval-cst sp (nth i playing) (nth (- i 1) playing) max-interval)
648)
649)
650)
651

652 (defun limit-one-interval-cst (sp playing-i playing-i-one max-interval)
653 (let (bool-interval-max interval interval-abs bool-pi bool-pi-one bool)
654 (setq bool-pi (gil::add-bool-var-expr sp playing-i gil::IRT_EQ -1))
655 (setq bool-pi-one (gil::add-bool-var-expr sp playing-i-one gil::IRT_EQ -1))
656

657 ;; Define the interval between the two notes
658 ;; interval = |playing[i] - playing[i-1]|
659 (setq interval (gil::add-int-var-expr sp playing-i gil::IOP_SUB

playing-i-one))↪→

189

660 (setq interval-abs (gil::add-int-var sp 0 127))
661 (gil::g-abs sp interval interval-abs)
662

663 ;; The maximum interval
664 ;; interval <= 7 (perfect fifth)
665 (setq bool-interval-max (gil::add-bool-var-expr sp interval-abs gil::IRT_LQ

max-interval))↪→

666

667 ;; playing[i] = -1 OR |interval| <= max-interval
668 (setq bool (gil::add-bool-var sp 0 1))
669 (gil::g-op sp bool-pi gil::BOT_OR bool-pi-one bool)
670 (gil::g-op sp bool gil::BOT_OR bool-interval-max 1)
671)
672)
673

674 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
675 ;; TRANSPOSING AN ARRAY OF VARIABLE ;;
676 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
677

678 (defun transpose-chords-key (sp chord1 quality1 chord2 quality2 push)
679 (let (
680 (notes (build-scaleset (get-scale-chord quality1)
681 (- (name-to-note-value chord1) 60)))
682 (new-notes (build-scaleset (get-scale-chord quality2)
683 (- (name-to-note-value chord2) 60)))
684 temp-push
685)
686 (setq notes (append '(-1) notes))
687 (setq new-notes (append '(-1) new-notes))
688 (setq temp-push (gil::add-int-var-array sp (length push) -1 127))
689 (loop :for i :from 0 :below (length push) :do
690 (let ((bool-array (gil::add-bool-var-array sp (length notes) 0 1)) bool-temp

bool-tot difference)↪→

691 (loop :for n :from 0 :below (min (length notes) (length new-notes)) :do
692 (let (bool1 bool2)
693 ;; If the note belongs to the chord, force the new note to belong

to the new chord↪→

694 (setq bool1 (gil::add-bool-var-expr sp (nth i push) gil::IRT_EQ
(nth n notes)))↪→

695 (setq bool2 (gil::add-bool-var-expr sp (nth i temp-push)
gil::IRT_EQ (nth n new-notes)))↪→

696 (gil::g-op sp bool1 gil::BOT_IMP bool2 1)
697)
698)
699)
700)

190

701 temp-push
702)
703)
704

705

706 (defun transpose-chords-semitones (sp chord1 quality1 semitones push)
707 (let (
708 (notes (build-scaleset (get-scale-chord quality1) ;if - mode selectionné
709 (- (name-to-note-value chord1) 60)))
710 temp-push new-notes
711)
712 (setq new-notes (loop :for i :from 0 :below (length notes) :collect (+ (nth i

notes) semitones)))↪→

713 (setq notes (append '(-1) notes))
714 (setq new-notes (append '(-1) new-notes))
715 (setq temp-push (gil::add-int-var-array sp (length push) -1 127))
716 (loop :for i :from 0 :below (length push) :do
717 (let ((bool-array (gil::add-bool-var-array sp (length notes) 0 1)) bool-temp

bool-tot difference)↪→

718 (loop :for n :from 0 :below (min (length notes) (length new-notes)) :do
719 (let (bool1 bool2)
720 ;; If the note belongs to the chord, force the new note to belong

to the new chord↪→

721 (setq bool1 (gil::add-bool-var-expr sp (nth i push) gil::IRT_EQ
(nth n notes)))↪→

722 (setq bool2 (gil::add-bool-var-expr sp (nth i temp-push)
gil::IRT_EQ (nth n new-notes)))↪→

723 (gil::g-op sp bool1 gil::BOT_IMP bool2 1)
724)
725)
726)
727)
728 temp-push
729)
730)

D.4 Utilities Functions
Two files define utilities function that were used throughout Melodizer Rock other files:

• rock-utils.csp contains the functions specifically added for Melodizer Rock

• melodizer-utils.lisp contains functions from the previous works of Melodizer 1.0 [2] and
Melodizer 2.0 [3]. As some were used for Melodizer Rock, it is recalled here.

191

D.4.1 sources/rock-utils.lisp
This file contains useful functions such as one for calculating the length of a tree, or to

propagate the attribute values through the blocks ...

1 (in-package :mldz)
2

3 ;; Function to change the values of a sub-block according to the new value
4 ;; of the parent block and the differences calculated before
5 (defun change-subblocks-values (rock-block &key bar-length
6 chord-key
7 min-pitch
8 max-pitch
9 min-note-length-flag

10 min-note-length
11 max-note-length-flag
12 max-note-length
13 min-simultaneous-notes
14 max-simultaneous-notes
15 chord-quality
16 semitones)
17 (let (block-list)
18

19 ;; Setup the sub-block list for the loop
20 (cond
21 ((typep rock-block 'mldz::rock) (setq block-list (block-list rock-block)))
22 ((or (typep rock-block 'mldz::a) (typep rock-block 'mldz::b))
23 (setq block-list (list (s-block rock-block)
24 (r-block rock-block)
25 (d-block rock-block)
26 (c-block rock-block)))
27)
28 ((or (typep rock-block 'mldz::s) (typep rock-block 'mldz::r)
29 (typep rock-block 'mldz::d) (typep rock-block 'mldz::c))
30 (setq block-list (list (accomp rock-block)))
31)
32)
33

34 ;; Update the diff parameter for this block
35 (if (not (typep rock-block 'mldz::rock))
36 (progn
37

38 ;; Pitch constraints
39 (if (and chord-key (chord-key (parent rock-block)))
40 (setf (diff-chord-key rock-block)
41 (- (name-to-note-value (chord-key (parent rock-block)))
42 (name-to-note-value chord-key)))

192

43)
44 (if (and min-pitch (min-pitch (parent rock-block)))
45 (setf (diff-min-pitch rock-block)
46 (- (min-pitch (parent rock-block))
47 min-pitch))
48)
49 (if (and max-pitch (max-pitch (parent rock-block)))
50 (setf (diff-max-pitch rock-block)
51 (- (max-pitch (parent rock-block))
52 max-pitch))
53

54)
55

56 ;;Other constraints
57 (if (not (typep rock-block 'mldz::accompaniment))
58 (progn
59 (if (and (or min-note-length-flag min-note-length) (min-note-length

(parent rock-block)))↪→

60 (setf (diff-min-length rock-block)
61 (- (log (min-note-length (parent rock-block)) 2)
62 (log min-note-length 2)))
63

64)
65 (if (and (or max-note-length-flag max-note-length) (max-note-length

(parent rock-block)))↪→

66 (setf (diff-max-length rock-block)
67 (- (log (max-note-length (parent rock-block)) 2)
68 (log max-note-length 2)))
69)
70)
71)
72

73)
74)
75

76 ;; Loop on sub-blocks to update their values
77 (loop :for x in block-list do
78 (setf (parent x) rock-block)
79 (if bar-length
80 (progn
81 (setq n-bars (/ bar-length (list-length block-list)))
82 (setf (bar-length x) n-bars)
83)
84)
85

86 ;;Pitch constraints

193

87 (if chord-key
88 (cond
89 ((relative-to-parent x)
90 (setf (chord-key x) (note-value-to-name (- (name-to-note-value

chord-key) (diff-chord-key x))))↪→

91)
92)
93)
94 (if min-pitch
95 (cond
96 ((relative-to-parent x)
97 (setf (min-pitch x) (- min-pitch (diff-min-pitch x)))
98)
99)

100

101)
102 (if max-pitch
103 (cond
104 ((relative-to-parent x)
105 (setf (max-pitch x) (- max-pitch (diff-max-pitch x)))
106)
107)
108)
109 (if chord-quality
110 (setf (chord-quality x) chord-quality)
111)
112

113 ;; Other constraints
114 (if (not (typep x 'mldz::accompaniment))
115 (progn
116 (if min-note-length
117 (cond
118 ((relative-to-parent x)
119 (progn
120 (setf (min-note-length-flag x) min-note-length-flag
121 (min-note-length x) (floor (expt 2 (- (log

min-note-length 2) (diff-min-length x)))))↪→

122)
123)
124)
125)
126 (if max-note-length
127 (cond
128 ((relative-to-parent x)
129 (setf (max-note-length-flag x) max-note-length-flag
130 (max-note-length x) (floor (expt 2 (- (log

max-note-length 2) (diff-max-length x))))))↪→

194

131)
132)
133 (if semitones
134 (setf (semitones x) semitones)
135)
136)
137)
138

139

140 (change-subblocks-values x :bar-length (bar-length x)
141 :chord-key (chord-key x)
142 :min-pitch (min-pitch x)
143 :max-pitch (max-pitch x)
144 :min-note-length-flag (min-note-length-flag x)
145 :min-note-length (min-note-length x)
146 :max-note-length-flag (max-note-length-flag x)
147 :max-note-length (max-note-length x)
148 :min-simultaneous-notes min-simultaneous-notes
149 :max-simultaneous-notes max-simultaneous-notes
150 :chord-quality (chord-quality x)
151 :semitones semitones
152)
153

154)
155

156)
157)
158

159 ;; Function that returns a list corresponding to the values the
160 ;; bar-length parameter of a block can take
161 (defun bar-length-range (rock-block)
162 (if (or (typep rock-block 'mldz::s)
163 (typep rock-block 'mldz::r)
164 (typep rock-block 'mldz::d)
165 (typep rock-block 'mldz::c))
166 (loop :for n
167 :from 0
168 :below 5
169 :by 1
170 :collect (number-to-string n))
171 ;; When it is rock block, it must have a number of bar
172 ;; divisable between all the blocks A and B and their s r d c sub-blocks
173 ;; thus 4 per element of its block-list
174 (let ((sum (bar-length rock-block))(result (list)))
175 (if (typep rock-block 'mldz::rock)
176 (if (= sum 0)

195

177 (if (block-list rock-block)
178 (progn
179 (setq n-block (list-length (block-list rock-block)))
180 (setq result (append '("0") (loop :for n
181 :from (* 4 n-block)
182 :below (+ (* 16 n-block) 1)
183 :by (* 4 n-block)
184 :collect (number-to-string n))))
185)
186 (setf result '("0"))
187)
188 (setq result (list (number-to-string sum)))
189)
190)
191 ;; When it is a block A or B, it must be a multiple of 4
192 (if (or (typep rock-block 'mldz::a) (typep rock-block 'mldz::b))
193 (if (= sum 0)
194 (setq result (append (loop :for n
195 :from 0
196 :below 17
197 :by 4
198 :collect (number-to-string n))))
199

200 (setq result (list (number-to-string sum)))
201)
202)
203 result
204)
205)
206)
207

208 ;; Compute the bar-length of a rock block based
209 ;; on the bar-length of its sub-blocks
210 (defun bar-length-sum-rock (rock)
211 (let ((sum 0))
212 (loop :for n :from 0 :below (list-length (block-list rock)) :by 1
213 do
214 (setq sum (+ sum (bar-length (nth n (block-list rock)))))
215)
216 sum
217)
218)
219

220 ;; Compute the bar-length of a A or B block based
221 ;; on the bar-length of its sub-blocks
222 (defun bar-length-sum-AB (A)

196

223 (+ (bar-length (s-block A))
224 (bar-length (r-block A))
225 (bar-length (d-block A))
226 (bar-length (c-block A)))
227)
228

229 ;;; When the bar-length of a sub-block is changed,
230 ;; the bar-length of the parents is adapted
231 (defun set-bar-length-up (rock-block)
232 (if (or (typep (parent rock-block) 'mldz::a) (typep (parent rock-block) 'mldz::b))
233 (setf (bar-length (parent rock-block)) (bar-length-sum-AB (parent rock-block)))
234 (setf (bar-length (parent rock-block)) (bar-length-sum-rock (parent rock-block)))
235)
236 ;; (make-my-interface (parent rock-block))
237 (if (not (typep (parent rock-block) 'mldz::rock))
238 (set-bar-length-up (parent rock-block))
239)
240)
241

242 ;; Round up to the next exponent of 2
243 (defun ceil-to-exp (val)
244 (cond
245 ((<= val 1) 1)
246 ((<= val 2) 2)
247 ((<= val 4) 4)
248 ((<= val 8) 8)
249 ((<= val 16) 16)
250)
251)
252

253 ;; Compute the total length of a tree
254 (defun get-length-tree (tree)
255 (let ((length 0))
256 (loop :for i :from 0 :below (length tree) :do
257 (if (typep (nth i tree) 'list)
258 (setq length (+ length (first (nth i tree))))
259 (setq length (+ length (abs (nth i tree))))
260)
261)
262 length
263)
264)
265

266 ;; When bar-length of a s r d or c is changed, the other block
267 ;; with the same parents get the same bar length
268 (defun propagate-bar-length-srdc (rock-block)

197

269 (let ((parent (parent rock-block)) (nbars (bar-length rock-block)))
270 (if (or (typep parent 'mldz::a) (typep parent 'mldz::b))
271 (progn
272 (setf (bar-length (s-block parent)) nbars)
273 (setf (bar-length (r-block parent)) nbars)
274 (setf (bar-length (d-block parent)) nbars)
275 (setf (bar-length (c-block parent)) nbars)
276)
277)
278)
279)
280

281 ;; http://www.lee-mac.com/sublist.html
282 ;; Sublst - Lee Mac
283 ;; The list analog of the substr function
284 ;; lst - [lst] List from which sublist is to be returned
285 ;; idx - [int] Zero-based index at which to start the sublist
286 ;; len - [int] Length of the sublist or nil to return all items following idx
287 (defun sublst (lst idx len)
288 (cond
289 ((null lst) nil)
290 ((< 0 idx) (sublst (cdr lst) (1- idx) len))
291 ((null len) lst)
292 ((< 0 len) (cons (car lst) (sublst (cdr lst) idx (1- len))))
293)
294)
295

296 ;; Count the number of blocks of type A in block-list
297 (defun count-A-block-list (block-list)
298 (let ((count 0))
299 (dolist (n block-list)
300 (if (typep n 'mldz::a)
301 (setq count (+ count 1))
302)
303)
304 count
305)
306)
307

308 ;; Count the number of blocks of type B in block-list
309 (defun count-B-block-list (block-list)
310 (let ((count 0))
311 (dolist (n block-list)
312 (if (typep n 'mldz::b)
313 (setq count (+ count 1))
314)

198

315)
316 count
317)
318)
319

320

321 ;; each diff argument is the difference between the old diff and new diff of the changed
block A or B↪→

322 ;; For example, if a block A goes from diff-max-pitch 5 to diff-max-pitch 3, the argument
diff-max-pitch is 2↪→

323 (defun propagate-AB (AB-block &key diff-min-sim
324 diff-max-sim
325 diff-min-length
326 diff-max-length
327 diff-chord-key
328 diff-chord-quality
329 diff-min-pitch
330 diff-max-pitch)
331 (let (
332 (parent (parent AB-block))
333 (type-block (type-of AB-block))
334 block-list
335)
336 (setf block-list (block-list parent))
337 ;; For each block of the same type in block-list
338 ;; If they are relative, change their value according to the difference
339 (loop :for x in block-list do
340 (if (and (not (eq x AB-block)) (relative-to-same x) (typep x type-block))
341 (progn
342 (if diff-min-sim
343 (progn
344 (setf (diff-min-sim x) (- (diff-min-sim x) diff-min-sim))
345 (setf (min-simultaneous-notes x) (- (min-simultaneous-notes

parent) (diff-min-sim x)))↪→

346 (change-subblocks-values x
347 :min-simultaneous-notes (min-simultaneous-notes x))
348)
349)
350 (if diff-max-sim
351 (progn
352 (setf (diff-max-sim x) (- (diff-max-sim x) diff-max-sim))
353 (setf (max-simultaneous-notes x) (- (max-simultaneous-notes

parent) (diff-max-sim x)))↪→

354 (change-subblocks-values x
355 :max-simultaneous-notes (max-simultaneous-notes x))
356)

199

357)
358 (if diff-min-length
359 (progn
360 (setf (diff-min-length x) (- (diff-min-length x)

diff-min-length))↪→

361 (setf (min-note-length x) (floor (expt 2 (- (log
(min-note-length parent) 2) (diff-min-length x)))))↪→

362 (change-subblocks-values x
363 :min-note-length-flag (min-note-length-flag x)
364 :min-note-length (min-note-length x))
365)
366)
367 (if diff-max-length
368 (progn
369 (setf (diff-max-length x) (- (diff-max-length x)

diff-max-length))↪→

370 (setf (max-note-length x) (floor (expt 2 (- (log
(max-note-length parent) 2) (diff-max-length x)))))↪→

371 (change-subblocks-values x
372 :max-note-length-flag (max-note-length-flag x)
373 :max-note-length (max-note-length x))
374)
375)
376 (if diff-chord-key
377 (progn
378 (setf (diff-chord-key x) (- (diff-chord-key x)

diff-chord-key))↪→

379 (setf (chord-key x) (note-value-to-name (-
(name-to-note-value (chord-key parent)) (diff-chord-key
x))))

↪→

↪→

380 (change-subblocks-values x
381 :chord-key (chord-key x))
382)
383)
384 (if diff-chord-quality
385 (progn
386 (setf (diff-chord-quality x) (- (diff-chord-quality x)

diff-chord-quality))↪→

387 (setf (chord-quality x) (- (chord-quality parent)
(diff-chord-quality x)))↪→

388 (change-subblocks-values x
389 :chord-quality (chord-quality x))
390)
391)
392 (if diff-min-pitch
393 (progn

200

394 (setf (diff-min-pitch x) (- (diff-min-pitch x)
diff-min-pitch))↪→

395 (setf (min-pitch x) (- (min-pitch parent) (diff-min-pitch
x)))↪→

396 (change-subblocks-values x
397 :min-pitch (min-pitch x))
398)
399)
400 (if diff-max-pitch
401 (progn
402 (setf (diff-max-pitch x) (- (diff-max-pitch x)

diff-max-pitch))↪→

403 (setf (max-pitch x) (- (max-pitch parent) (diff-max-pitch
x)))↪→

404 (change-subblocks-values x
405 :max-pitch (max-pitch x))
406)
407)
408)
409)
410)
411)
412)
413

414 ;;
https://stackoverflow.com/questions/59920951/defining-a-minimum-function-to-return-the-minimum-of-a-list-using-another-func↪→

415 (defun smallest (x y)
416 (if (< x y) x y)
417)
418

419 (defun biggest (x y)
420 (if (< x y) y x)
421)
422

423 (defun octaves-of-note (note)
424 (let ((modnote (mod note 12)))
425 (loop for i from 0 to (/ 128 12)
426 collect (+ (* i 12) modnote)
427 ;; collect (+ (* i -12) modnote)
428)
429)
430)
431

432 ; Create push and pull list from a voice object
433 (defun create-push-pull-int (input-chords quant)
434 (let (temp

201

435 (next 0)
436 (push (list))
437 (pull (list '-1))
438 (playing (list))
439 (tree (om::tree input-chords))
440 (pitch (to-pitch-list (om::chords input-chords))))
441 (setq tree (second tree))
442 (loop :for i :from 0 :below (length tree) :by 1 :do
443 (let ((subtree (second (nth i tree))))
444 (setq temp (read-tree-int (make-list quant :initial-element -1) (make-list

quant :initial-element -1) (make-list quant :initial-element -1)
subtree pitch 0 (/ quant (ceil-to-exp (get-length-tree subtree)))
next))

↪→

↪→

↪→

445 (setq push (append push (first temp)))
446 (setq pull (append pull (second temp)))
447 (setq playing (append playing (third temp)))
448 (setf next (fourth temp))
449)
450)
451 (list push pull playing))
452)
453

454 ;; ((4 4) (1 1 1 1))
455 ; <tree> is the rhythm tree to read
456 ; <pitch> is the ordered list of pitch (each element of push is represented by a list with

the pitch of notes played on this quant)↪→

457 ; <pos> is the next position in push to add values
458 ; <length> is the current duration of a note to add
459 ; <next> is the index in pitch of the next notes we will add
460 ;recursive function to read a rhythm tree and create push and pull
461 (defun read-tree-int (push pull playing tree pitch pos length next)
462 (progn
463 (loop :for i :from 0 :below (length tree) :by 1 :do
464 (if (typep (nth i tree) 'list)
465 (let (temp)
466 (setq temp (read-tree-int push pull playing (second (nth i tree))

pitch pos (/ (* length (first (nth i tree))) (length (second (nth
i tree)))) next))

↪→

↪→

467 (setq push (first temp))
468 (setq pull (second temp))
469 (setq playing (third temp))
470 (setf next (fourth temp))
471 (setf pos (fifth temp))
472)
473 (progn
474 (let (next-pitch)

202

475 (if (> (nth i tree) 0)
476 (setq next-pitch (first (nth next pitch)))
477 (setq next-pitch -1)
478)
479 (setf (nth pos push) next-pitch)
480 (loop :for j :from pos :below (+ pos (abs (* length (nth i tree))))

:by 1 :do↪→

481 (setf (nth j playing) next-pitch)
482)
483 (setf pos (+ pos (abs (* length (nth i tree)))))
484 (setf (nth (- pos 1) pull) next-pitch)
485 (if (> (nth i tree) 0)
486 (setf next (+ next 1))
487)
488)
489)
490)
491)
492 (list push pull playing next pos)
493)
494)
495

496 ; Getting a list of chords and a rhythm tree from the playing list of intvar
497 (defun build-voice-int (sol push pull playing bars quant tempo)
498 (let ((p-push (list))
499 (p-pull (list))
500 (p-playing (list))
501 (chords (list))
502 (tree (list))
503 (ties (list))
504 (prev 0)
505)
506 (setq p-push (nconc p-push (mapcar (lambda (n) (* 100 (gil::g-values sol n))) push)))
507 (setq p-pull (nconc p-pull (mapcar (lambda (n) (* 100 (gil::g-values sol n))) pull)))
508 (setq p-playing (nconc p-playing (mapcar (lambda (n) (* 100 (gil::g-values sol n)))

playing)))↪→

509

510 (setq count 0)
511 ;; (setq rest 0)
512 (loop :for b :from 0 :below bars :by 1 :do
513 (if (< (nth (* b quant) p-playing) 0)
514 (setq rest 1)
515 (setq rest 0)
516)
517 (setq rhythm (list))
518 (loop :for q :from 0 :below quant :by 1 :do

203

519 (setq i (+ (* b quant) q))
520 (cond
521 ((>= (nth i p-push) 0)
522 ; if rhythm impulse
523 (progn
524 (setq duration 0)
525 (setq j (+ i 1))
526 (loop
527 (if (>= j (length p-pull))
528 (setq duration (* (floor 60000 (* tempo quant)) (- j i)))
529 (return)
530)
531 (if (>= (nth j p-pull) 0)
532 (if (= (nth j p-pull) (nth i p-push))
533 (progn
534 (setq duration (* (floor 60000 (* tempo quant)) (-

j i)))↪→

535 (return)
536)
537)
538)
539 (incf j)
540)
541 (setq chord (make-instance 'chord :LMidic (list (nth i p-push))

:Ldur (list duration)))↪→

542 (setq chords (nconc chords (list chord)))
543 (cond
544 ((= rest 1)
545 (progn
546 (setq rhythm (nconc rhythm (list (* -1 count))))
547 (setq rest 0)))
548 ((/= q 0)
549 (setq rhythm (nconc rhythm (list count))))
550)
551 (setq count 1))
552)
553 ((and (< (nth i p-playing) 0) (= rest 0))
554 (setq rest 1)
555 (if (> count 0)
556 (setq rhythm (nconc rhythm (list count)))
557)
558 (setq count 1)
559)
560 ; else
561 (t (setq count (+ count 1)))
562)

204

563)
564 (if (= rest 1)
565 (setq rhythm (nconc rhythm (list (* -1 count))))
566 (setq rhythm (nconc rhythm (list count)))
567)
568 (setq count 0)
569 (setq rhythm (list '(4 4) rhythm))
570

571 (setq tree (nconc tree (list rhythm)))
572)
573 (setq tree (list '? tree))
574 (list chords tree)
575)
576)
577

578 ; returns the list of intervals defining a given mode
579 (defun get-scale-chord (mode)
580 (cond
581 ((string-equal mode "Major")
582 (list 2 2 1 2 2 2 1)
583)
584 ((string-equal mode "Minor")
585 (list 2 1 2 2 1 2 2)
586)
587 ((string-equal mode "Diminished")
588 (list 2 1 2 1 2 1 2)
589)
590 ((string-equal mode "Augmented")
591 (list 3 1 3 1 3 1)
592)
593)
594)
595

596 (defun build-chordset (chord offset)
597 (let ((noteset (build-notesets chord offset)) (chordset (list)))
598 (loop :for i :from 0 :below (length (first noteset)) :do
599 (setq chordset (nconc chordset (list (list (nth i (nth 0 noteset)) (nth i (nth

1 noteset)) (nth i (nth 2 noteset))))))↪→

600)
601 chordset
602)
603)

205

D.4.2 sources/melodizer-utils.lisp
This file contains useful functions that weren’t created for Meldoizer Rock.

1 (in-package :mldz)
2

3 ; converts a list of MIDI values to MIDIcent
4 (defun to-midicent (l)
5 (if (null l)
6 nil
7 (cons (* 100 (first l)) (to-midicent (rest l)))
8)
9)

10

11 ; convert from MIDIcent to MIDI
12 (defun to-midi (l)
13 (if (null l)
14 nil
15 (cons (/ (first l) 100) (to-midi (rest l)))
16)
17)
18

19 ;converts the value of a note to its name
20 (defmethod note-value-to-name (note)
21 (cond
22 ((eq note 60) "C")
23 ((eq note 61) "C#")
24 ((eq note 62) "D")
25 ((eq note 63) "Eb")
26 ((eq note 64) "E")
27 ((eq note 65) "F")
28 ((eq note 66) "F#")
29 ((eq note 67) "G")
30 ((eq note 68) "Ab")
31 ((eq note 69) "A")
32 ((eq note 70) "Bb")
33 ((eq note 71) "B")
34)
35)
36

37 ;converts the name of a note to its value
38 (defmethod name-to-note-value (name)
39 (cond
40 ((string-equal name "C") 60)
41 ((string-equal name "C#") 61)
42 ((string-equal name "D") 62)
43 ((string-equal name "Eb") 63)

206

44 ((string-equal name "E") 64)
45 ((string-equal name "F") 65)
46 ((string-equal name "F#") 66)
47 ((string-equal name "G") 67)
48 ((string-equal name "Ab") 68)
49 ((string-equal name "A") 69)
50 ((string-equal name "Bb") 70)
51 ((string-equal name "B") 71)
52)
53)
54

55 ; finds the smallest element of a list
56 (defun min-list (L)
57 (cond
58 ((null (car L)) nil); the list is empty -> return nil
59 ((null (cdr L)) (car L)); the list has 1 element -> return it
60 (T
61 (let ((head (car L)); default behavior
62 (tailMin (min-list (cdr L))))
63 (if (< head tailMin) head tailMin)
64)
65)
66)
67)
68

69 ; finds the biggest element of a list
70 (defun max-list (L)
71 (cond
72 ((null (car L)) nil); the list is empty -> return nil
73 ((null (cdr L)) (car L)); the list has 1 element -> return it
74 (T
75 (let ((head (car L)); default behavior
76 (tailMax (max-list (cdr L))))
77 (if (> head tailMax) head tailMax)
78)
79)
80)
81)
82

83

84 ; finds the biggest element in a list of lists
85 (defun max-list-list (L)
86 (cond
87 ((null (car L)) nil); the list is empty -> return nil
88 ((null (cdr L)) (max-list (car L))); the list has 1 element -> return it
89 (T

207

90 (let ((head (max-list (car L))); default behavior
91 (tailMax (max-list-list (cdr L))))
92 (if (> head tailMax) head tailMax)
93)
94)
95)
96)
97

98 ; create a list from min to max by step
99 (defun range (max &key (min 0) (step 1))

100 (loop :for n :from min :below max :by step
101 :collect n))
102

103 ; function to update the list of solutions in a pop-up menu without having to close and
re-open the window↪→

104 ; TODO find a more efficient way to do this
105 (defun update-pop-up (self my-panel data position size output)
106 (om::om-add-subviews my-panel
107 (om::om-make-dialog-item
108 'om::om-pop-up-dialog-item
109 position ;(om::om-make-point 5 130)
110 size ;(om::om-make-point 320 20)
111 "list of solutions"
112 :range (loop for item in (make-data-sol data) collect (car item))
113 :di-action #'(lambda (m)
114 (cond
115 ((string-equal output "output-solution")
116 (setf (output-solution (om::object self)) (nth

(om::om-get-selected-item-index m) data)); set the output
solution to the currently selected solution

↪→

↪→

117 (let ((indx (om::om-get-selected-item-index m)))
118 (om::openeditorframe ; open the editor of the selected

solution↪→

119 (om::omNG-make-new-instance
120 (nth indx data)
121 (format nil "melody ~D" (1+ indx)); name of the

window↪→

122)
123)
124)
125)
126 ((string-equal output "output-motif")
127 (setf (output-motif (om::object self)) (nth

(om::om-get-selected-item-index m) data))↪→

128 (let ((indx (om::om-get-selected-item-index m)))
129 (om::openeditorframe

208

130 (om::omNG-make-new-instance
131 (output-motif (om::object self))
132 (format nil "motif ~D" (1+ indx)); name of the

window↪→

133)
134)
135)
136)
137 ((string-equal output "output-phrase")
138 (setf (output-phrase (om::object self)) (nth

(om::om-get-selected-item-index m) data))↪→

139 (let ((indx (om::om-get-selected-item-index m)))
140 (om::openeditorframe
141 (om::omNG-make-new-instance
142 (output-phrase (om::object self))
143 (format nil "phrase ~D" (1+ indx)); name of the

window↪→

144)
145)
146)
147)
148 ((string-equal output "output-period")
149 (setf (output-period (om::object self)) (nth

(om::om-get-selected-item-index m) data))↪→

150 (let ((indx (om::om-get-selected-item-index m)))
151 (om::openeditorframe
152 (om::omNG-make-new-instance
153 (output-period (om::object self))
154 (format nil "period ~D" (1+ indx))
155)
156)
157)
158)
159)
160)
161)
162)
163)
164

165 ;function to get the starting times (in ms) of the notes
166 ; from karim haddad (OM)
167 (defmethod voice-onsets ((self voice))
168 "on passe de voice a chord-seq juste pour avoir les onsets"
169 (let ((obj (om::objfromobjs self (make-instance 'om::chord-seq))))
170 (butlast (om::lonset obj))
171)

209

172)
173

174 ;function to get the duration (in ms) of the notes
175 (defmethod voice-durs ((self voice))
176 "on passe de voice a chord-seq juste pour avoir les onsets"
177 (let ((obj (om::objfromobjs self (make-instance 'om::chord-seq))))
178 (om::ldur obj)
179)
180)
181

182 ; returns the list of intervals defining a given mode
183 (defun get-scale (mode)
184 (cond
185 ((string-equal mode "ionian (major)")
186 (list 2 2 1 2 2 2 1)
187)
188 ((string-equal mode "dorian")
189 (list 2 1 2 2 2 1 2)
190)
191 ((string-equal mode "phrygian")
192 (list 1 2 2 2 1 2 2)
193)
194 ((string-equal mode "lydian")
195 (list 2 2 2 1 2 2 1)
196)
197 ((string-equal mode "mixolydian")
198 (list 2 2 1 2 2 1 2)
199)
200 ((string-equal mode "aeolian (natural minor)")
201 (list 2 1 2 2 1 2 2)
202)
203 ((string-equal mode "locrian")
204 (list 1 2 2 1 2 2 2)
205)
206 ((string-equal mode "harmonic minor")
207 (list 2 1 2 2 1 3 1)
208)
209 ((string-equal mode "pentatonic")
210 (list 2 2 3 2 3)
211)
212 ((string-equal mode "chromatic")
213 (list 1 1 1 1 1 1 1 1 1 1 1 1)
214)
215)
216)
217

210

218 (defun get-chord (quality)
219 (cond
220 ((string-equal quality "Major")
221 (list 4 3 5)
222)
223 ((string-equal quality "Minor")
224 (list 3 4 5)
225)
226 ((string-equal quality "Augmented")
227 (list 4 4 4)
228)
229 ((string-equal quality "Diminished")
230 (list 3 3 6)
231)
232 ((string-equal quality "Major 7")
233 (list 4 3 4 1)
234)
235 ((string-equal quality "Minor 7")
236 (list 3 4 3 2)
237)
238 ((string-equal quality "Dominant 7")
239 (list 4 3 3 2)
240)
241 ((string-equal quality "Minor 7 flat 5")
242 (list 3 3 4 2)
243)
244 ((string-equal quality "Diminished 7")
245 (list 3 3 3 3)
246)
247 ((string-equal quality "Minor-major 7")
248 (list 3 4 4 1)
249)
250

251 ; TODO gérer les accords 9 ou +
252 ((string-equal quality "Major 9")
253 (list 3 4 5)
254)
255 ((string-equal quality "Minor 9")
256 (list 4 3 5)
257)
258 ((string-equal quality "9 Augmented 5")
259 (list 3 4 5)
260)
261 ((string-equal quality "9 flatted 5")
262 (list 3 4 5)
263)

211

264 ((string-equal quality "7 flat 9")
265 (list 4 3 5)
266)
267 ((string-equal quality "Augmented 9")
268 (list 3 4 5)
269)
270 ((string-equal quality "Minor 11")
271 (list 3 4 5)
272)
273 ((string-equal quality "Major 11")
274 (list 4 3 5)
275)
276 ((string-equal quality "Dominant 11")
277 (list 3 4 5)
278)
279 ((string-equal quality "Dominant # 11")
280 (list 4 3 5)
281)
282 ((string-equal quality "Major # 11")
283 (list 3 4 5)
284)
285)
286)
287

288 ; function to get all of a given note (e.g. C)
289 (defun get-all-notes (note)
290 (let ((acc '()) (backup note))
291 (om::while (<= note 127) :do
292 (setq acc (cons note acc)); add it to the list
293 (incf note 12)
294)
295 (setf note (- backup 12))
296 (om::while (>= note 0) :do
297 (setq acc (cons note acc)); add it to the list
298 (decf note 12)
299)
300 acc
301)
302)
303

304 ; function to get all notes playable on top of a given chord CHECK WHAT NOTES CAN BE
PLAYED FOR OTHER CASES THAN M/m↪→

305 (defun get-admissible-notes (chords mode inversion)
306 (let ((return-list '()))
307 (cond
308 ((string-equal mode "major"); on top of a major chord, you can play either of

the notes from the chord though the preferred order is 1-5-3↪→

212

309 (setf return-list (reduce #'cons
310 (get-all-notes (first chords))
311 :initial-value return-list
312 :from-end t
313))
314 (setf return-list (reduce #'cons
315 (get-all-notes (second chords))
316 :initial-value return-list
317 :from-end t
318))
319 (setf return-list (reduce #'cons
320 (get-all-notes (third chords))
321 :initial-value return-list
322 :from-end t
323))
324)
325 ((string-equal mode "minor"); on top of a minor chord, you can play either of

the notes from the chord though the preferred order is 1-5-3↪→

326 (setf return-list (reduce #'cons
327 (get-all-notes (first chords))
328 :initial-value return-list
329 :from-end t
330))
331 (setf return-list (reduce #'cons
332 (get-all-notes (second chords))
333 :initial-value return-list
334 :from-end t
335))
336 (setf return-list (reduce #'cons
337 (get-all-notes (third chords))
338 :initial-value return-list
339 :from-end t
340))
341)
342 ((string-equal mode "diminished"); only the third can be played on top of

diminished chords↪→

343 (cond
344 ((= inversion 0)
345 (setf return-list (reduce #'cons
346 (get-all-notes (second chords))
347 :initial-value return-list
348 :from-end t
349))
350)
351 ((= inversion 1)
352 (setf return-list (reduce #'cons

213

353 (get-all-notes (first chords))
354 :initial-value return-list
355 :from-end t
356))
357)
358 ((= inversion 2)
359 (setf return-list (reduce #'cons
360 (get-all-notes (third chords))
361 :initial-value return-list
362 :from-end t
363))
364)
365)
366)
367)
368)
369)
370

371 ; function to get the mode of the chord (major, minor, diminished,...) and the inversion
(0 = classical form, 1 = first inversion, 2 = second inversion)↪→

372 (defun get-mode-and-inversion (intervals)
373 (let ((major-intervals (list (list 4 3) (list 3 5) (list 5 4))); possible intervals in

midi for major chords↪→

374 (minor-intervals (list (list 3 4) (list 4 5) (list 5 3))) ; possible intervals in
midi for minor chords↪→

375 (diminished-intervals (list (list 3 3) (list 3 6) (list 6 3)))); possible
intervals in midi for diminished chords↪→

376 (cond
377 ((position intervals major-intervals :test #'equal); if the chord is major
378 (list "major" (position intervals major-intervals :test #'equal))
379)
380 ((position intervals minor-intervals :test #'equal); if the chord is minor
381 (list "minor" (position intervals minor-intervals :test #'equal))
382)
383 ((position intervals diminished-intervals :test #'equal); if the chord is

diminished↪→

384 (list "diminished" (position intervals diminished-intervals :test
#'equal))↪→

385)
386)
387)
388)
389

390 ;makes a list (name voice-instance) from a list of voices:
391 ;(from Karim Haddad)
392 (defun make-data-sol (liste)

214

393 (loop for l in liste
394 for i from 1 to (length liste)
395 collect (list (format nil "solution ~D: ~A" i l) l)))
396

397

398 ; taken from rhythm box
399 ; https://github.com/blapiere/Rhythm-Box
400 (defun rel-to-gil (rel)
401 "Convert a relation operator symbol to a GiL relation value."
402 (cond
403 ((eq rel '=) gil::IRT_EQ)
404 ((eq rel '=/=) gil::IRT_NQ)
405 ((eq rel '<) gil::IRT_LE)
406 ((eq rel '=<) gil::IRT_LQ)
407 ((eq rel '>) gil::IRT_GR)
408 ((eq rel '>=) gil::IRT_GQ)
409)
410)
411

412 ; Create push and pull list from a voice object
413 (defun create-push-pull (input-chords quant)
414 (let (temp
415 (next 0)
416 (push (list))
417 (pull (list '-1))
418 ;; (pull (list))
419 (playing (list))
420 (tree (om::tree input-chords))
421 (pitch (to-pitch-list (om::chords input-chords))))
422 (setq tree (second tree))
423 (print "before chords")
424 (print input-chords)
425 (print "tree:")
426 (print tree)
427 (loop :for i :from 0 :below (length tree) :by 1 :do
428 (print "call to read-tree")
429 ;; bugs on the first call to read-tree with this error :
430 ;; ERROR: Cannot take CDR of 1.
431 (setq temp (read-tree (make-list quant :initial-element -1) (make-list quant

:initial-element -1) (make-list quant :initial-element -1) (second (nth i
tree)) pitch 0 quant next))

↪→

↪→

432 (setq push (append push (first temp)))
433 (setq pull (append pull (second temp)))
434 (setq playing (append playing (third temp)))
435 (setf next (fourth temp))
436)

215

437 (list push pull playing))
438)
439

440 ;; (car cdr)
441

442 ;; ((4 4) (1 1 1 1))
443 ; <tree> is the rhythm tree to read
444 ; <pitch> is the ordered list of pitch (each element of push is represented by a list with

the pitch of notes played on this quant)↪→

445 ; <pos> is the next position in push to add values
446 ; <length> is the current duration of a note to add
447 ; <next> is the index in pitch of the next notes we will add
448 ;recursive function to read a rhythm tree and create push and pull
449 (defun read-tree (push pull playing tree pitch pos length next)
450 (print "in read-tree")
451 (progn
452 (print "Pitch:")
453 (print pitch)
454 (setf length (/ length (ceil-to-exp (length tree))))
455 (print "pre-loop")
456 (loop :for i :from 0 :below (length tree) :by 1 :do
457 (if (typep (nth i tree) 'list)
458 (let (temp)
459 (print "if")
460 (setq temp (read-tree push pull playing (second (nth i tree)) pitch

pos length next))↪→

461 (setq push (first temp))
462 (setq pull (second temp))
463 (setq playing (third temp))
464 (setf next (fourth temp))
465 (setf pos (fifth temp))
466)
467 (progn
468 (print "else")
469 (setf (nth pos push) (nth next pitch))
470 (loop :for j :from pos :below (+ pos (* length (nth i tree))) :by 1

:do↪→

471 (setf (nth j playing) (nth next pitch))
472)
473 (setf pos (+ pos (* length (nth i tree))))
474 (setf (nth (- pos 1) pull) (nth next pitch))
475 (setf next (+ next 1))
476)
477)
478)
479 (list push pull playing next pos)

216

480)
481)
482

483 ; <input-chords> is the voice objects for the chords
484 ; <quantOrig> quantification used by melodizer
485 ; Return a list in which each element i represent a note starting at a time i*quant
486 ; -1 means no note starting at that time, a chord object means multiple note starting
487 (defun create-push (input-chords quantOrig)
488 (let ((note-starting-times (voice-onsets input-chords))
489 (quant (/ (second (first (om::tempo input-chords))) (/ quantOrig 16)))
490 (tree (om::tree input-chords))
491 (push-list (list))
492 (chords (to-pitch-list (om::chords input-chords))) ; get chords list
493)
494 (setf note-starting-times (mapcar (lambda (n) (/ n quant)) note-starting-times)) ;

dividing note-starting-times by quant↪→

495 (loop :for j :from 0 :below (+ (max-list note-starting-times) 1) :by 1 :do
496 (if (= j (car note-starting-times)); if j == note-starting-times[0]
497 (progn
498 (setq push-list (nconc push-list (list (car chords))))
499 (setf chords (cdr chords))
500 (setf note-starting-times (cdr note-starting-times))) ;add chords[0]

to push and prune qt[0] and pchords[0]↪→

501 (setq push-list (nconc push-list (list -1)))) ; else add -1 to push
502)
503)
504)
505

506

507 ; <input-chords> is the voice objects for the chords
508 ; <quant> NOT USED YET (FORCED TO 500) smallest possible note length
509 ; Return a list in which each element i represent a note stopping at a time i*quant
510 ; -1 means no note stop at that time, a chord object means multiple note starting
511 (defun create-pull (input-chords)
512 (let ((note-starting-times (voice-onsets input-chords)) ; note-starting-times = start

time of each chord↪→

513 (note-dur-times (voice-durs input-chords)) ; note-dur-times = duration of each
note↪→

514 (note-stopping-times (list))
515 (quant 500)
516 (pull-list (list))
517 (pitch (to-pitch-list (om::chords input-chords))) ; get chords list
518)
519 (setf note-starting-times (mapcar (lambda (n) (/ n quant)) note-starting-times)) ;

dividing note-starting-times by quant↪→

520 (setf note-dur-times (mapcar (lambda (n) (mapcar (lambda (m) (/ m quant)) n))
note-dur-times)) ; dividing note-dur-times by quant↪→

217

521 (loop :for j :from 0 :below (length note-starting-times) :by 1 :do
522 (setq note-stopping-times (nconc note-stopping-times (list (mapcar (lambda (n)

(+ n (nth j note-starting-times))) (nth j note-dur-times))))) ; Adding
note-starting-times to note-dur-times to get note-stopping-times

↪→

↪→

523)
524 (loop :for j :from 0 :below (+ (max-list-list note-stopping-times) 1) :by 1 :do
525 (setq pull-list (nconc pull-list (list -1))))
526 (loop for l in note-stopping-times
527 for k in pitch do
528 (loop for i in l
529 for j in k do
530 (if (typep (nth i pull-list) 'list)
531 (setf (nth i pull-list) (nconc (nth i pull-list) (list j)))
532 (setf (nth i pull-list) (list j)))
533)
534)
535)
536)
537

538 ; reformat a scale to be a canvas of pitch and not intervals
539 (defun adapt-scale (scale)
540 (let ((major-modified (list (first scale))))
541 (loop :for i :from 1 :below (length scale) :by 1 :do
542 (setq major-modified (nconc major-modified (list (+ (nth i scale) (nth (- i 1)

major-modified)))))↪→

543)
544 (return-from adapt-scale major-modified)
545)
546)
547

548 ; build the list of acceptable pitch based on the scale and a key offset
549 (defun build-scaleset (scale offset)
550 (let ((major-modified (adapt-scale scale))
551 (scaleset (list)))
552 (loop :for octave :from -1 :below 11 :by 1 append
553 (setq scaleset (nconc scaleset (mapcar (lambda (n) (+ (+ n (* octave 12))

offset)) major-modified)))↪→

554)
555 (setq scaleset (remove-if 'minusp scaleset))
556)
557)
558

559 ; build the list of acceptable pitch based on the scale and a key offset
560 (defun build-notesets (chord offset)
561 (let ((chord-modified (adapt-scale chord))
562 (notesets (list)))

218

563 (loop :for i :from 0 :below (length chord-modified) :by 1 :do
564 (setq noteset (list))
565 (loop :for octave :from -1 :below 11 :by 1 append
566 (setq noteset (nconc noteset (list (+ (+ (nth i chord-modified) (*

octave 12)) offset))))↪→

567)
568 (setq noteset (remove-if 'minusp noteset))
569 (setq notesets (nconc notesets (list noteset)))
570)
571 notesets
572)
573)
574

575

576

577 ; <chords> a list of chord object
578 ; Return the list of pitch contained in chords in midi format
579 (defun to-pitch-list (chords)
580 (loop :for n :from 0 :below (length chords) :by 1 collect (to-midi (om::lmidic (nth n

chords))))↪→

581)
582

583

584 ; Getting a list of chords and a rhythm tree from the playing list of intvar
585 (defun build-voice (sol push pull bars quant tempo)
586 (let ((p-push (list))
587 (p-pull (list))
588 (chords (list))
589 (tree (list))
590 (ties (list))
591 (prev 0)
592)
593

594 (setq p-pull (nconc p-pull (mapcar (lambda (n) (to-midicent (gil::g-values sol n)))
pull)))↪→

595 (setq p-push (nconc p-push (mapcar (lambda (n) (to-midicent (gil::g-values sol n)))
push)))↪→

596 (setq count 1)
597 (loop :for b :from 0 :below bars :by 1 :do
598 (if (not (nth (* b quant) p-push))
599 (setq rest 1)
600 (setq rest 0)
601)
602 (setq rhythm (list))
603 (loop :for q :from 0 :below quant :by 1 :do
604 (setq i (+ (* b quant) q))

219

605 (cond
606 ((nth i p-push)
607 ; if rhythm impulse
608 (progn
609 (setq durations (list))
610 (loop :for m :in (nth i p-push) :do
611 (setq j (+ i 1))
612 (loop
613 (if (nth j p-pull)
614 (if (find m (nth j p-pull))
615 (progn
616 (setq dur (* (floor 60000 (* tempo quant)) (-

j i)))↪→

617 (setq durations (nconc durations (list dur)))
618

619 (return)
620)
621)
622)
623 (incf j)
624)
625)
626 (setq chord (make-instance 'chord :LMidic (nth i p-push) :Ldur

durations))↪→

627 (setq chords (nconc chords (list chord)))
628 (cond
629 ((= rest 1)
630 (progn
631 (setq rhythm (nconc rhythm (list (* -1 count))))
632 (setq rest 0)))
633 ((/= q 0)
634 (setq rhythm (nconc rhythm (list count))))
635)
636 (setq count 1))
637)
638 ; else
639 (t (setq count (+ count 1)))
640)
641)
642 (if (= rest 1)
643 (setq rhythm (nconc rhythm (list (* -1 count))))
644 (setq rhythm (nconc rhythm (list count)))
645)
646 (setq count 0)
647 (setq rhythm (list '(4 4) rhythm))
648

220

649 (setq tree (nconc tree (list rhythm)))
650)
651 (setq tree (list '? tree))
652

653 (list chords tree)
654)
655)
656

657 (defun build-chord-seq (sol push pull bars quant tempo)
658 (let ((p-push (list))
659 (p-pull (list))
660 (chords (list))
661 (durations (list))
662 (onsets (list)))
663

664 (setq p-pull (nconc p-pull (mapcar (lambda (n) (to-midicent (gil::g-values sol n)))
pull)))↪→

665 (setq p-push (nconc p-push (mapcar (lambda (n) (to-midicent (gil::g-values sol n)))
push)))↪→

666

667 (loop :for i :from 0 :below (+ (* bars quant) 1) :do
668 (if (nth i p-push)
669 (progn
670 (setq onset (* (/ 60000 (* tempo (/ quant 4))) i))
671 (setq duration (list))
672 (loop :for m :in (nth i p-push) :do
673 (setq j (+ i 1))
674 (loop
675 (if (nth j p-pull)
676 (if (find m (nth j p-pull))
677 (progn
678 (setq dur (* (/ 60000 (* tempo (/ quant 4))) (- j

i)))↪→

679 (setq duration (nconc duration (list dur)))
680

681 (return)
682)
683)
684)
685 (incf j)
686)
687)
688 (setq chords (nconc chords (list (nth i p-push))))
689 (setq durations (nconc durations (list duration)))
690 (setq onsets (nconc onsets (list onset)))
691)

221

692)
693)
694

695 (list chords onsets durations)
696)
697)
698

699 ;return T if the two list have the same elements (order doesn't matter)
700 (defun compare (l1 l2)
701 (and (subsetp l1 l2) (subsetp l2 l1)))
702

703 ; return the quant value based on the index selected
704 (defun get-quant (str)
705 (cond ((string= str "1 bar") 1)
706 ((string= str "1/2 bar") 2)
707 ((string= str "1 beat") 4)
708 ((string= str "1/2 beat") 8)
709 ((string= str "1/4 beat") 16)
710 ((string= str "1/8 beat") 32)
711 ((string= str "1/3 bar") 3)
712 ((string= str "1/6 bar") 6)
713 ((string= str "1/3 beat") 12)
714 ((string= str "1/6 beat") 24)
715 ((string= str "1/12 beat") 48)
716 ((not str) 192))
717)
718

719 ; return the quant value based on the index selected
720 (defun get-length (str)
721 (cond ((string= str "1 bar") 192)
722 ((string= str "1/2 bar") 96)
723 ((string= str "1 beat") 48)
724 ((string= str "1/2 beat") 24)
725 ((string= str "1/4 beat") 12)
726 ((string= str "1/8 beat") 6)
727 ((string= str "1/3 bar") 64)
728 ((string= str "1/6 bar") 32)
729 ((string= str "1/3 beat") 16)
730 ((string= str "1/6 beat") 8)
731 ((string= str "1/12 beat") 4)
732 ((not str) 1))
733)
734

735 ; shuffles a list
736 ; from https://gist.github.com/shortsightedsid/62d0ee21bfca53d9b69e
737 (defun list-shuffler (input-list &optional accumulator)

222

738 "Shuffle a list using tail call recursion."
739 (if (eq input-list nil)
740 accumulator
741 (progn
742 (rotatef (car input-list)
743 (nth (random (length input-list)) input-list))
744 (list-shuffler (cdr input-list)
745 (append accumulator (list (car input-list)))))))
746

747 (defun set-percent-diff (sp percent-diff sol push pull playing)
748 (let ((p-push (list))
749 (p-pull (list))
750 (p-playing (list)))
751 (print "set-percent-diff")
752 (setq p-push (nconc p-push (mapcar (lambda (n) (gil::g-values sol n)) push)))
753 (setq p-pull (nconc p-pull (mapcar (lambda (n) (gil::g-values sol n)) pull)))
754 (setq p-playing (nconc p-playing (mapcar (lambda (n) (gil::g-values sol n))

playing)))↪→

755

756 (loop :for i :from 0 :below (length playing) :by 1
757 do
758 (if (< (random 101) percent-diff)
759 (gil::g-rel sp (nth i playing) gil::SRT_NQ (nth i p-playing))
760)
761)
762)
763)
764

765

766

D.5 GiL Example

1 (in-package :mldz)
2

3 ; DUMMY-PROBLEM
4 ; This function creates a CSP by creating the space and the variables, posting the

branching, specifying↪→

5 ; the search options and creating the search engine.
6 (defun dummy-problem ()
7 (let ((sp (gil::new-space)); create the space;

223

8 vars se tstop sopts max id-list)
9

10 ;initialize the variables
11 (setq vars (gil::add-int-var-array sp 3 1 4))
12

13 ; constraints
14 (gil::g-count-array sp vars (list 1 1 1 1) gil::IRT_EQ 2)
15 ; branching
16 (gil::g-branch sp vars gil::INT_VAR_SIZE_MIN gil::INT_VAL_MIN)
17

18 ;time stop
19 (setq tstop (gil::t-stop)); create the time stop object
20 (gil::time-stop-init tstop 500000); initialize it (time is expressed in

ms)↪→

21

22 (setq sopts (gil::search-opts)); create the search options object
23 (gil::init-search-opts sopts); initialize it
24 (gil::set-time-stop sopts tstop); set the timestop object to stop the

search if it takes too long↪→

25

26 ; search engine
27 (setq se (gil::search-engine sp (gil::opts sopts) gil::BAB)); branch and

bound search-engine, remove t for dfs↪→

28 (print se)
29

30 (print "CSP constructed")
31 ; return
32 (list se vars tstop sopts)
33)
34)
35

36 ; SEARCH-NEXT-DUMMY-PROBLEM
37 ; <l> is a list containing in that order the search engine for the problem, the

variables↪→

38 ; this function finds the next solution of the CSP using the search engine given as
an argument↪→

39 (defun search-next-dummy-problem (l)
40 (let ((se (first l))
41 (pitch* (second l))
42 (tstop (third l))

224

43 (sopts (fourth l))
44 sol pitches)
45

46 (gil::time-stop-reset tstop);reset the tstop timer before launching the
search↪→

47 (setq sol (gil::search-next se)); search the next solution, sol is the
space of the solution↪→

48 (if (null sol)
49 (error "No more solutions")
50)
51 ; print the solution from GiL
52 (setq pitches (gil::g-values sol pitch*)); store the values of the

solution↪→

53 (print "pitches")
54 (print pitches)
55)
56)

225

Appendix E

Collection of Scores

The following chapter contains all the scores cited in this thesis. It contains two
categories of scores:

• The scores produced by Melodizer Rock as a result of the examples of Chapter
6

• The scores used as an example in the explanation of the thesis or a source
melody for the examples of Chapter 6

E.1 Obtained Scores
This section will gives the score produced by Melodizer Rock when tested on the

examples of chapter 6

E.1.1 Example 6.1
Those are the two first scores obtained with a simple A block and only a few

constraints. Figures E.1 E.2

E.1.2 Example 6.2
Those are the two first scores obtained for an example with both an A block and

a B block. Figures E.3 E.4

E.1.3 Example 6.3
Those are the two first obtained scores when testing Melodizer Rock on a structure

with two A blocks and a source melody. Figures E.5 E.6

226

Figure E.1: First solution to an example with a single A block

Figure E.2: Second solution to an example with a single A block

E.1.4 Example 6.4
Those are the first two results of Melodizer Rock when tested on a full AABA

structure. Figures E.7 E.8

E.1.5 Example 6.5
Those are the two first scores obtained with the last example, that is, a full

AABA structure and a melody-source-A and melody-source-B. Figures E.9 E.10
E.11 E.12

227

E.2 External Scores

E.2.1 I’ll Be There by The Jackson 5
Example of the song I’ll Be There by the Jackson 5 in Figure E.13.

E.2.2 Every Breath You Take by The Police
This score was used as a source melody for the example 6.5.

228

Sheetmusic-free.com

Sheetmusic-free.com

Sheetmusic-free.com

Sheetmusic-free.com

Sheetmusic-free.com

Sheetmusic-free.com

Sheetmusic-free.com

Figure E.3: First solution of an example with an A block and a B block

Figure E.4: Second solution of an example with an A block and a B block

237

Figure E.5: First solution of an example with two A blocks and a source melody

238

Figure E.6: Second solution of an example with two A blocks and a source melody

239

Figure E.7: First solution of an example with an AABA structure

240

Figure E.8: Second solution of an example with an AABA structure

241

Figure E.9: First page of the first solution given by Melodizer Rock, with the inputs of
Every Breath You take [12] for an AABA structure

242

Figure E.10: Second page of the first solution given by Melodizer Rock, with the inputs of
Every Breath You take [12] for an AABA structure

243

Figure E.11: First page of the second solution given by Melodizer Rock, with the inputs of
Every Breath You take [12] for an AABA structure [12]

244

Figure E.12: Second page of the second solution given by Melodizer Rock, with the inputs
of Every Breath You take [12] for an AABA structure[12]

245

Figure E.13: "I’ll Be There" by the Jackson 5 score as given by Drew Nobile in [4]

246

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

247

	Introduction
	Context and Outline
	Road-map

	Theoretical Framework
	Music Theory
	Music Terminology
	Rhythm
	Melody
	Harmony

	Rock Music Composition
	AABA and s r d c
	Cadence

	Constraint Programming
	Definitions
	Constraint Propagation
	Branching Heuristics
	Tree Traversal Strategies

	Software Background
	Gecode
	Variables
	Constraints
	Reified Constraints
	Branching
	Search

	OpenMusic
	Patches
	Editors
	Voice and Poly Objects

	Melodizer 1.0
	GiL
	Search

	Melodizer 2.0
	Music Representation
	Blocks
	Search & Solver

	Melodizer Rock : Implementation
	Music Representation
	Melody Representation
	Accompaniment Representation

	Structure
	Rock
	A and B
	s, r, d, and c
	Accompaniment

	General constraints
	Accompaniment Constraints
	Melody Constraints

	Block-specific Constraints
	A and B-specific Constraints
	s r d and c-specific Constraints

	Solver
	Constraint Satisfaction Problem
	Search Engine
	Search

	Melodizer Rock : User Interface
	Rock Editor
	A and B Editors
	s, r, d, and c Editors
	s Editor
	r Editor
	d Editor
	c Editor

	Composing with Melodizer Rock
	A Simple A Block
	An A Block and a B Block
	A Source Melody on Two A Blocks
	A Full Song Form
	A Full Song Form with Two Source Melodies

	Future Works
	Diving Deeper Within Rock
	Other Structures than AABA
	Alternative Take on srdc
	Improve the Melodic Line
	Improve the Musical Accompaniment

	Explore Other Musical Genres
	GiL Overhead

	Conclusion
	An Interactive Interface
	A Specific CSP for Rock Music
	An Impressive Tool for Composing

	Bibliography
	Installation and Setup
	Download and Installation
	Setup

	Tutorial for Melodizer Rock
	Constraints
	General Constraints
	Accompaniment General Constraints
	Melody General Constraints

	Block Specific Constraints
	Melody Source Constraints
	Similarity Constraint Between IntVarArrays
	Transposition of an IntVarArray
	c-specific Constraints

	Melodizer Rock Code
	Package Setup
	Melodizer.lisp
	sources/package.lisp

	Objects
	sources/rock.lisp
	sources/rock-AB.lisp
	sources/rock-srdc.lisp
	sources/rock-accompaniment.lisp

	CSP Files
	sources/rock-csp.lisp
	sources/rock-csts.lisp

	Utilities Functions
	sources/rock-utils.lisp
	sources/melodizer-utils.lisp

	GiL Example

	Collection of Scores
	Obtained Scores
	Example 6.1
	Example 6.2
	Example 6.3
	Example 6.4
	Example 6.5

	External Scores
	I'll Be There by The Jackson 5
	Every Breath You Take by The Police

