
Available at: http://hdl.handle.net/2078.1/thesis:38375 [Downloaded 2023/06/05 at 11:50:38]

"Ultra-Wideband for internet of things"

Laurent, Gwendal

ABSTRACT

Over the past couple of years, big names in the technology industry like Apple and Samsung started to
release ultra-wideband-based products. This radio technology can perform high data rate transmission with
very low power consumption and has great resistance to multipath fading. Additionally, ranging applications
built on top of ultra-wideband can perform distance measurements with an accuracy of a few centimeters. In
this study, a driver is implemented for the GRiSP 2 , a board for embedded systems and Internet of Things
(IoT) running on the Erlang virtual machine out of the box. The driver is used to support a new sensor built
by the company Peer Stritzinger GMbH based on the DWM1000 manufactured by the company Qorvo.
This chip is IEEE 802.15.4-2011 compliant and uses ultra-wideband radio technology to send and receive
data. On top of this driver, a simple medium access control (MAC) layer was built to send and receive
MAC frames by following the IEEE 802.15.4-2011 standard. Finally, two-way ranging methods have been
implemented to perform ranging operations between two GRiSP 2 cards. The results of this work show
that the implementation is capable to send and receive MAC frames with a data rate of 31 kb/s and also
perform accurate ranging operations.

CITE THIS VERSION

Laurent, Gwendal. Ultra-Wideband for internet of things. Ecole polytechnique de Louvain, Université
catholique de Louvain, 2023. Prom. : Van Roy, Peter. http://hdl.handle.net/2078.1/thesis:38375

Le répertoire DIAL.mem est destiné à l'archivage
et à la diffusion des mémoires rédigés par les
étudiants de l'UCLouvain. Toute utilisation de ce
document à des fins lucratives ou commerciales
est strictement interdite. L'utilisateur s'engage à
respecter les droits d'auteur liés à ce document,
notamment le droit à l'intégrité de l'oeuvre et le
droit à la paternité. La politique complète de droit
d'auteur est disponible sur la page Copyright
policy

DIAL.mem is the institutional repository for the
Master theses of the UCLouvain. Usage of this
document for profit or commercial purposes
is stricly prohibited. User agrees to respect
copyright, in particular text integrity and credit
to the author. Full content of copyright policy is
available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

École polytechnique de Louvain

Ultra-Wideband for internet of
things

Author: Gwendal LAURENT
Supervisor: Pr. Peter VAN ROY
Readers: Peer STRITZINGER, Pr. Ramin SADRE
Academic year 2022-2023
Master [120] in Computer Science

Abstract
Over the past couple of years, big names in the technology industry like Apple

and Samsung started to release ultra-wideband-based products. This radio technol-
ogy can perform high data rate transmission with very low power consumption and
has great resistance to multipath fading. Additionally, ranging applications built
on top of ultra-wideband can perform distance measurements with an accuracy of
a few centimeters.

In this study, a driver is implemented for the GRiSP 2 , a board for embedded
systems and Internet of Things (IoT) running on the Erlang virtual machine out
of the box. The driver is used to support a new sensor built by the company
Peer Stritzinger GMbH based on the DWM1000 manufactured by the company
Qorvo. This chip is IEEE 802.15.4-2011 compliant and uses ultra-wideband radio
technology to send and receive data. On top of this driver, a simple medium
access control (MAC) layer was built to send and receive MAC frames by following
the IEEE 802.15.4-2011 standard. Finally, two-way ranging methods have been
implemented to perform ranging operations between two GRiSP 2 cards.

The results of this work show that the implementation is capable to send and
receive MAC frames with a data rate of 31 kb/s and also perform accurate ranging
operations.

I

Acknowledgements
I would like to express my gratitude to my thesis supervisor Professor Peter

Van Roy for his guidance and assistance at every step of my thesis. Moreover, I
would like to thank him for giving me the opportunity to work on this subject.

I also would like to thank Peer Stritzinger for all the invaluable advice and
insights he provided me over the course of this work.

Lastly, I would like to thank my family for their unwavering support.

II

Contents

List of Figures VI

Acronyms VII

1 Introduction 1
1.1 Related work . 2

1.1.1 GRiSP . 2
1.1.2 Ultra-Wideband (UWB) . 2

1.2 Use cases . 3
1.2.1 Real-time locating system (RTLS) 3
1.2.2 Communications . 3
1.2.3 Hera framework . 3

2 Material and resources 4
2.1 GRiSP . 4
2.2 Serial Peripheral Interface (SPI) . 5
2.3 Pmod & DWM1000 . 5

2.3.1 Pmod drivers architecture of the GRiSP 7
2.3.2 DW1000 register set . 8

2.4 Ultra-Wideband (UWB) . 8
2.5 IEEE 802.15.4-2011 . 9

2.5.1 Ultra-Wideband PHY . 9
2.5.2 MAC sub-layer . 11

3 Implementation of the driver 14
3.1 Interaction with the pmod . 14

3.1.1 Transaction format . 16
3.1.2 Example . 17

3.2 Mapping the registers . 18
3.2.1 Errors in the user manual 19
3.2.2 Read the registers . 20

III

3.2.3 Write the registers . 21
3.3 Initialization of the pmod . 23

3.3.1 Checking the connected device 23
3.3.2 Loading the leading edge algorithm 23
3.3.3 Writing optimal values . 24
3.3.4 Writing custom configuration 24
3.3.5 Setting up SFD . 25

3.4 Transmission . 26
3.4.1 Sending a frame . 26
3.4.2 Receiving a frame . 27

4 MAC layer 31
4.1 DW1000 support . 31

4.1.1 Frame filtering . 31
4.1.2 CRC generation and checking 32
4.1.3 Automatic acknowledgement 32

4.2 MAC Header . 33
4.3 Transmission . 35

4.3.1 Sending . 35
4.3.2 Receiving . 35

4.4 Example: Using the automatic acknowledgment feature of the DW1000 36
4.5 Measurements . 37

5 Two way ranging 39
5.1 Methods . 40

5.1.1 Single-sided two-way ranging 40
5.1.2 Double-sided two-way ranging 41

5.2 Implementations . 43
5.2.1 Single-sided two-way ranging 43
5.2.2 Double-sided two-way ranging 44
5.2.3 Counter wrap around . 46

5.3 Measurements . 46

6 Conclusion 49
6.1 Future work . 49

6.1.1 Improvement of the driver 49
6.1.2 MAC layer . 50
6.1.3 Upper layers . 50
6.1.4 Adaptation of the GRiSP toolchain 51

6.2 Results . 51

IV

7 Bibliography 52

A Driver code 55

B MAC layer code 103

C Examples 112
C.1 ack_no_jitter . 112
C.2 ack_jitter . 115
C.3 ack_fast_tx . 118
C.4 ss_twr . 121
C.5 ds_twr . 124

D MAC layer unit tests 130

V

List of Figures

1 GRiSP 2 (credits: grisp.org) . 4
2 DWM1000 (source: mouser.be) . 6
3 The pmod uwb (left) connected to the GRiSP 2 (right) board . . . 7
4 IEEE 802.15.4-2011 types of topologies (credits: IEEE[1]) 10
5 UWB PHY frame structure (credits: DW1000 user manual [2]) . . . 10
6 PHY header (PHR) bit description (credits [1]) 11
7 MAC Superframe (credits [1]) . 12
8 MAC frame and its fields (credits [2]) 12
9 The frame control of the MAC header and it (credits [2]) 12

10 DW1000 - SPIPHA = 1 (source: DW1000 data sheet [3]) 15
11 Different SPI transactions (source: DW1000 user manual [2]) 16
12 One byte header (source: DW1000 user manual [2]) 16
13 Two bytes header (source: DW1000 user manual [2]) 17
14 Three bytes header (source: DW1000 user manual [2]) 17
15 Description of a read operation performed on the DEV_ID register

(source: DW1000 user manual [2] 17
16 Read transaction on DEV_ID showed on the logic analyser 18
17 Read API call on register DEV_ID 20
18 Write API call on register PANADR 21
19 Write API call on register PMSC 21
20 Write API call on register PMSC on multiple sub-registers and

sub-fields . 22
21 Setup of the SFD inside the code 26

22 Example of the statistical report for an exchange of 2000 frames
containing 116 bytes of data . 37

23 Message exchanges of single sided two way ranging 40
24 Message exchanges of double sided two way ranging 42
25 Graph showing the measured distance 47

VI

Acronyms
AOA angle of arrival.

BPM Burst Position Modulation.

BPSK Binary Phase-Shift Keying.

BSP Board Support Packages.

CAP contention access period.

CFP contention-free period.

CMOS Complementary metal–oxide–semiconductor.

CSMA-CA Carrier-sense multiple access with collision avoidance.

FCS frame checking sequence.

FDT Flattened Device Tree.

FEC Forward error correction.

GTS guaranteed time slots.

IoT Internet of Things.

LR-WPAN low-rate wireless personnal area networks.

MAC medium access control.

MFR MAC footer.

MHR MAC header.

MISO Master In-Slave Out.

MOSI Master Out-Slave In.

NIF Native Implemented Function.

VII

NiF Native-implemented Functions.

PAN Personal Area Network.

PER packet error rate.

PHR PHY header.

PHY physical layer.

RTLS real-time location system.

SECDED Single-error-correction double-error-detect.

SFD Start of frame delimiter.

SHR Synchronization header.

SPI Serial Peripheral Interface.

SPICLK clock signal.

SPICSn slave select signal.

SPIPHA clock/data phase.

SPIPOL clock polarity.

TDOA time difference of arrival.

TOF time of flight.

ToF Time-of-Flight.

UWB ultra-wideband.

VIII

Chapter 1

Introduction

In our interconnected world, IoT has become omnipresent in our daily lives
and is expected to grow and expand more with the arrival of 5G. However, among
all technologies used in that ecosystem, one is being overlooked, ultra-wideband
(UWB). This technology has been proven to be resistant to multi-path fading
[4] and is also able to perform high data rate transmission using very low power
consumption [5]. Additionally, UWB is capable to realize ranging measurements 100
times more accurately than other technologies like Bluetooth or WiFi [6]. In 2021,
Apple released their AirTag product which uses UWB and Bluetooth technology
to track everyday objects like a set of keys or a wallet. More recently, in 2023,
Samsung also released their first UWB chipset, the Exynos Connect U100 which
they claim is able to perform ranging operation "down to single-digit centimeters"
[7]. These two examples show the industry’s recent interest in the technology.

The company Peer Stritzinger GmBH is planning to release a new UWB pmod
based on the DWM1000 chip manufactured by the company Qorvo for their last
version of the GRiSP board, the GRiSP 2 . A prototype has already been built,
but the board needs to be extended with a new driver to support it. Qorvo already
published a driver written in C [8], but isn’t compatible with the GRiSP 2 because
its runtime library is written in the Erlang programming language instead of C.
With this driver, the company would be able to show potential clients how the
new pmod will work and later on, build a new batch of pmod. Furthermore, a
new version of the boards, the GRiSP 0 , is planned to be released. This board
would support only one radio interface. The first version of the GRiSP 0 should
start by supporting UWB and the driver would allow them to release a first set of
prototypes.

This work will show how the driver was built layer by layer before showing a
couple of applications implemented on top of it. More precisely, chapter 2 will
give an overview of the different technologies and materials used in this study.
Chapter 3 will explain the implementation of the driver which includes read and

1

write operations to the different registers of the DW1000 as well as transmission
and reception operations. Then chapter 4, describes how the MAC layer has been
implemented on top of the driver to achieve transmission and reception of MAC
frames. Afterward, chapter 5 uses the MAC layer to perform ranging operations
using two different two-way ranging methods. Finally, chapter 6 gives a summary
of all the results as well as a list of possible improvements that could be done on
the driver and the upper layers.

The goals of the thesis are to be able to exchange reliably a series of MAC
frames between two devices even in the presence of network jitter and to perform
multiple series of distance measurements using the two-way ranging methods in
different situations and assess the precision of their implementations.

1.1 Related work

1.1.1 GRiSP
The GRiSP project and more precisely, the GRiSP base board has been the basis

of previous works. In [9], the authors developed a fault-tolerant and distributed
framework for asynchronous sensor fusion called Hera using the GRiSP-Base board
and Erlang. They showed how to perform sensor fusion for position and orientation
tracking and how efficient it can be. In [10], the author built a driver for the
MRF24J40 microchip to enable IEEE 802.1.4 based communications between
GRiSP-Base boards and also with the Zoleria RE-MOTE using Contiki.

1.1.2 Ultra-Wideband (UWB)
UWB isn’t a new technology and past works like [11] and [12] were already

claiming its potential and its possible applications in wireless personal area networks
and sensor networks twenty years ago. In [13], it was shown that UWB radar
systems are able to perform human detection through walls due to the technology’s
high range resolution and good penetration of obstacles. This kind of application can
be used in emergency situations to find survivors inside buildings after earthquakes.
Other applications use UWB combined with two-way ranging to localize objects.
For example, this paper [14] uses the DW1000 to perform two-way ranging to build
a localization system for drones performing inventory management. Moreover,
UWB positioning measurements can be fused with the measurements of other
sensors to get a more accurate and robust view of the environment. In [15],
UWB position measurements were fused with an inertial measurement unit via an
extended Kalman filter to build and assess an indoor positioning system.

2

1.2 Use cases
This work opens the door for a large number of applications for the pmod UWB.

Indeed, the implementation of the driver is only the first stepping stone of using
UWB on the GRiSP . The applications and use cases presented in this section
could have a massive impact on our daily lives.

1.2.1 Real-time locating system (RTLS)
Multiple real-time location system (RTLS) applications have already been built

using UWB. However, none were built using GRiSP . With the introduction of the
pmod UWB in the GRiSP ecosystem, robust and low power RTLS applications will
be possible. For example, on the industry level, such applications could perform
smart inventory management or even localize equipment in a large warehouse.

Additionally, in healthcare RTLS has been used to locate patients inside a
hospital in the case of emergencies or their activities inside their rooms. But also
in the cases of Alzheimer’s disease and dementia patients can be localized and be
prevented from leaving the building by automatically locking doors for example
[16] and a GRiSP based RTLS could extend the set of tools already existing.

Finally, in our daily lives, smart homes could use RTLS applications with
GRiSP to locate objects in a house. Such applications could also be used on devices
to make them more aware of their environment. For example, we could imagine
autonomous robots like robotic vacuum cleaners using UWB to track down their
position in a house and improve their efficiency.

1.2.2 Communications
Besides ranging applications, the new pmod is also able to transmit data using

the IEEE 802.15.4-2011 standard. With this driver, it will be possible to implement
layers like 6LoWPAN on the GRiSP and perform low power communications with
other GRiSP boards but also other devices running 6LoWPAN with UWB.

1.2.3 Hera framework
The Hera framework already provides a sensor fusion for the Erlang programming

language. In [9], the authors use the pmod MAXSONAR to achieve position
tracking. Two-way ranging methods could be used to perform the same type of
experiments with Hera and compare their results with the ones acquired with the
pmod MAXSONAR.

3

Chapter 2

Material and resources

2.1 GRiSP
GRiSP [17] is a project developed by the company Peer Stritzinger GmbH. It

combines both customizable hardware and software to provide embedded systems
solutions.

The hardware, the board, has two versions. The first one is called the GRiSP-
Base and the second one, the GRiSP 2 , is its evolution. In the context of this
master thesis, only the latest version will concern us. The GRiSP boards have
multiple sockets to connect different modules called Pmods that can be connected
through multiple interfaces like GPIO and SPI.

Figure 1: GRiSP 2 (credits: grisp.org)

The software runs on a custom open-source operating system that combines
both Erlang and RTEMS (Real-time executive for multiprocessor systems) a real-
time operating system that supports 18 processor architectures and open standard

4

application programming interfaces [18]. This combination enables the board to
run Erlang code out of the box and lets users create IOT applications directly
in that programming language. The different basic protocols supported by the
GRiSP uses port-drivers or a Native-implemented Functions (NiF), thus the code
of the drivers for the different PMod accessories can also be written in Erlang and
requires to seldom go back to C code level. [17]

2.2 Serial Peripheral Interface (SPI)
The Serial Peripheral Interface (SPI) is used in this thesis to communicate

between the GRiSP 2 and the Pmod UWB. It was originally designed by the
company Motorola, but it became so popular that we could argue that it became
a de facto public protocol [19]. A SPI system is composed of one master, the
microcontroller providing the clock signal, and one or multiple slaves, the integrated
circuits that receive the clock signal from the master [20]. It’s a communication
protocol that works on 4 signal lines: a clock signal (SPICLK), a slave select signal
(SPICSn), a data line from the master to the slave named Master Out-Slave In
(MOSI), and a data line from the slave to the master named Master In-Slave Out
(MISO). The specifications of the SPI bus can vary from microcontrollers and to
get the description that corresponds to a specific application one should refer to
the user manual or the datasheet of the specific chip in use [19]. In this framework,
the naming conventions will be the ones used in the DW1000 datasheet [3].

When the master wants to send or read requested data from a slave, it has to
pull the SPICSn line, activate the clock signal on the SPICLK line, send data over
the MOSI line and read the data coming from the MISO line.

2.3 Pmod & DWM1000
The Pmods are modules that can be connected to the GRiSP boards with the

different interfaces available. These modules can be sensors (e.g. accelerometer,
temperature, ...) or actuators (e.g. RC-servos, ...). The GRiSP software provides
Erlang drivers for most of the Pmods.

This thesis will focus on the Pmod UWB built by the company Stritzinger
itself. It communicates with the GRiSP board through the 12 pins SPI interface
of the board (SPI type 2A). The Pmod uses the DWM1000 module built by the
company Decawave (now owned by the company Qorvo). The module on boards the
DW1000 single chip Complementary metal–oxide–semiconductor (CMOS) UWB
transceiver as well as other RF components [21]. The DW1000 like the DWM1000
is also manufactured by the company Decawave. In this thesis, even though we are

5

working directly with the DWM1000, the actual operations are mostly performed
on the DW1000.

Figure 2: DWM1000 (source: mouser.be)

Both the DWM1000 and the DW1000 are compliant with the IEEE 802.15.4-
2011 UWB standard [1], which is a standard that defines the physical layer (PHY)
and the MAC sublayer, for low-rate wireless personnal area networks (LR-WPAN)
that are low-cost communication networks used to send data over a relatively short
distance. Therefore, the physical layer of the DW1000 uses impulse radio and a
modulation scheme that combines Burst Position Modulation (BPM) and Binary
Phase-Shift Keying (BPSK). Additionally, the device support 6 channels, detailed
in table 2.1.

Channel number Center frequency (MHz) Bandwidth (MHz)
1 3494.4 499.2
2 3993.6 499.2
3 4492.8 499.2
4 3993.6 1331.2
5 6489.6 499.2
7 6489.6 1081.6

Table 2.1: DW1000 channel table (Source: DW1000 user manual [2])

According to the DW1000 data sheet [3], the chip can be used to determine
the location of another chip to a precision of 10 centimeters. Moreover, the chip

6

also supports concurrent data transfer and precision location. Finally, It has an
extended communication range up to 290 meters at 110 kbps and with 10% packet
error rate (PER)

The GRiSP already supports numerous pmods using SPI for communication
and each one of them has its own driver code. Reading and understanding how the
driver of the pmod nav and pmod dio work was one of the first steps of this work
to understand the interactions between the board and the pmod over SPI.

Figure 3: The pmod uwb (left) connected to the GRiSP 2 (right) board

2.3.1 Pmod drivers architecture of the GRiSP
The architecture of the drivers already implemented for the GRiSP pmods all

take advantage of the gen_server behavior provided by Erlang which implements a
client-server model [22]. In this model, the server manages a resource that multiple
clients want to share. In our case, the driver will manage a resource, the pmod,
that multiple processes can share. A client can make two kinds of requests to
the server. They can make synchronous requests called Call or they can make
asynchronous requests called Cast.

The gen_server behavior also keeps in memory the server state. In the code
of the pmod nav, for example, that state is used to store information like the bus
used to communicate, its registers, and a cache. all related to each component of
the pmod [23].

Finally, a gen_server can be part of a supervision tree. In the case of the
GRiSP , the driver processes are children of the supervisor grisp_devices_sup.

7

A supervisor is another Erlang behavior that supervises worker processes. More
precisely, it keeps track of its different child processes and lets users define a
restart strategy if one of them crashes [24]. Here, grisp_devices_sup uses the
one_for_one strategy, which means that if a driver crashes, then only that one
will be restarted. In other words, if the driver throws an uncaught error and stops.
It is then restarted by the supervisor and there is no need to restart the GRiSP
board manually.

2.3.2 DW1000 register set
Using the SPI interface, the master device is able to access the register set

of the DW1000. It is organized in multiple register files with their own size and
identified with their register file IDs. The register files can be read-only, write-only,
both read-write, or have a different read-write configuration for the registers that
compose them (called special read/write). Some register files are also part of the
double receive buffer which allows the reception of a frame while the master device
is reading the previously received frame.

There are different types of register files. They can contain multiple fields and
bit flags, sub-registers, or some, like the transmission buffer, contain only one field.
Sub-registers are identified and can be accessed with a sub-address. They can be
used in an objective to optimize the read/write operations and access only the
sub-register instead of the full register file. In some cases, these sub-addresses must
be used to avoid writing reserved areas within the register files.

2.4 Ultra-Wideband (UWB)
According to the FCC, UWB is any signal with more than 500MHz bandwidth

with a band within 3.1 and 10.6GHz that respects a specific spectrum mask. [25].
There are two types of UWB communication systems: pulse-based or multicarrier-
based. Pulse-based systems generate a short burst of pulse at a specific time, while
multicarrier-based uses multiple carriers at the same time to transmit the data [5].

This radio technology has multiple advantages. First, UWB is able to transmit
high data rates by using very low power. Indeed, according to Shannon’s formula
(equation 2.1), you can increase the channel capacity C) (i.e how many bits
per second can be transmitted without error over the channel) by increasing
exponentially the transmitted power or by increasing linearly the bandwidth (BW)
[5].

C = BW log2(1 + S/N) (2.1)

8

This is very convenient for IOT devices with a small battery because they can
send data with high throughput without using too much power.

Second, UWB enables location tracking with an accuracy of up to a few
centimeters. In fact, one of the major features of UWB is the usage of the Time-
of-Flight (ToF) to calculate the distance between devices. This method is made
possible by the modulation method used to transmit the data. Since it uses narrow
pulses that have clean edges, it allows determining precisely the arrival time and
the distance even in the presence of multi-paths. This makes UWB 100 more
precise than other technologies like Wi-Fi or Bluetooth. Moreover, due to its low
latency, UWB technologies can be used for real-time location and is 50 times faster
than GPS, which makes the tracking of fast-moving objects like drones possible.
This technology has many applications in today’s connected world. This could go
from locating the key of your car in your house to locating people in a building in
the case of an emergency. [6]

2.5 IEEE 802.15.4-2011
The IEEE 802.15.4-2011 standard [1] defines the PHY and the MAC sub-layer

for communications inside LR-WPAN which are simple and low-cost networks
used to send information over a short range. The main target of this standard is
devices operating in a range of 10 meters with low-data-rate wireless connectivity
with low power consumption requirements. It has the capacity of using 64-bits
extended address or allocated 16-bits short address, low power consumption, etc.
The upper layers like the network layer or the application layer aren’t described in
this standard, but standards like 6LoWPAN have been developed to operate on
top of IEEE 802.15.4-2011 .

This section will depict the standard as it is described in the standard definition
[1] and as it is used by the DW1000 and explained in the annexes of its user manual
[2].

A network running the IEEE 802.15.4-2011 standard can use two types of
topologies: the star topology where devices are only allowed to communicate with
one central controller or the peer-to-peer topology where all devices are allowed to
communicate with any other as long as they are in range.

2.5.1 Ultra-Wideband PHY
The standard defines multiple PHY layers, the one that interests us in the

context of this work is the UWB PHY because it is the one used by ultra-wideband
devices and more particularly by the DW1000.

9

Figure 4: IEEE 802.15.4-2011 types of topologies (credits: IEEE[1])

The radio signals are based upon impulse radio signaling. The modulation
scheme is BPM-BPSK, a combination of BPM and BPSK, and each symbol is
composed of an active burst of UWB pulses. An UWB PHY frame is composed of
3 elements: a Synchronization header (SHR) preamble, a PHR, and a data field.
The SHR itself is composed of 2 elements: a sync sequence (called preamble in the
DW1000 user manual) and a Start of frame delimiter (SFD).

Figure 5: UWB PHY frame structure (credits: DW1000 user manual [2])

The SHR is made of a sequence of single pulses (either positive, negative, or
none) determined by a preamble code composed of ternary symbols (1, -1, 0). The
standard defines two lengths of preamble code and there are between 8 and 9
different codes per length and each code can only be used on specific channels. The
codes are chosen such that the resulting symbol sequence has perfect periodic auto-
correlation properties. Auto-correlation is a measure used in radar technologies
to measure how similar a signal is to itself [26]. But, a further explanation of this
property is outside the scope of this work. Nevertheless, according to the DW1000’s
user manual [2], this special structure of the preamble code allows the receiver to
use multi-paths as an advantage to increase the operating range and also determine
the arrival time of the first path.

The SFD marks the end of the preamble. The standard describes a "short
SFD" for low and medium data rates and a "long SFD" used for faster data
rates. Furthermore, the reception of the SFD marks the switch into BPM-BPSK

10

modulation. When it comes to the DW1000, this event is used for the time-stamping
of the reception of the frames. Indeed, the timestamp can be determined with high
accuracy due to its deterministic characteristics combined with the determination
of the first arriving ray [2].

After the SHR comes the PHR, it contains, among other fields, the length of the
frame payload and it uses 6 parity bits (Single-error-correction double-error-detect
(SECDED)) to detect any channel errors during its transmission

Figure 6: PHR bit description (credits [1])

Finally, the last part of the UWB PHY is the actual data payload. It has
a maximum size of 127 bytes. Like the PHR it is encoded using BPM-BPSK
modulation and uses Reed Solomon code as Forward error correction (FEC). This
section of the frame can be transmitted at data rates of 110 kbps, 850 kbps,
6.8Mbps, or 27Mbps (however, the DW1000 doesn’t support a 27Mbps data rate).

2.5.2 MAC sub-layer
The MAC sub-layer is situated above the UWB-PHY layer. It is responsible,

among other tasks, to manage the access to the radio channel. It also provides
multiple features like beacon management, acknowledgment, etc. One possible
option for the Personal Area Network (PAN) coordinator to control channel access is
to use a superframe structure to bind the channel times. A superframe is delimited
by beacon frames sent by the coordinator. The beacon frame is used to identify
a PAN, synchronize the devices inside a PAN, and defines the structure of the
superframe. A superframe can be divided into two parts. First, the contention
access period (CAP), where devices compete with each other to communicate
and use slotted Carrier-sense multiple access with collision avoidance (CSMA-
CA). Second, the contention-free period (CFP), always situated at the end of the
superframe, enables the coordinator to allocate guaranteed time slots (GTS) for
applications with special needs like low-latency applications. Figure 7 shows an
example of the structure of a superframe.

The MAC frames are put inside the data payload field of the UWB-PHY layer.
A MAC frame is composed of three elements: a MAC header (MHR), a MAC

11

Figure 7: MAC Superframe (credits [1])

payload, and a MAC footer (MFR).

Figure 8: MAC frame and its fields (credits [2])

Figure 9: The frame control of the MAC header and it (credits [2])

The MHR begins with a two bytes frame control field. It is there to identify
the type of the frame and the structure of the MAC header. As figure 9 shows,
the first three bits of the frame control indicate the type of frame. A frame can
be of type beacon (2#000), data (2#001), acknowledgement (2#010), or MAC
command (2#011) while the other value (2#1xx) are reserved. Bit #3 indicates if
there are auxiliary security headers in the frame. Bit #4 indicates if there is more
data to receive. Bit #5 specifies if the transmitter of the frame is expecting an
acknowledgment from the receiver. Bit #6 is the PAN compression field. When
it is set to one and both the destination and source addresses are present, only
the destination PAN ID is present in the MAC header and the source PAN ID is

12

assumed to be equal. Bits #7-9 are reserved. Bits #10-11 and Bits #14-15 are
address compression fields. If their values are set to 2#00, then their corresponding
PAN ID and address are not present in the MAC header. If their values are set
to 2#10, then their corresponding address is a short address (16 bits). Finally,
2#01 is reserved and shouldn’t be used, if their values are set to 2#11 then their
corresponding address is an extended address (64 bits).

Finally, the MAC frame is ended by the MFR which is two bytes long and is
in fact a frame checking sequence (FCS) CRC used to determine if the frame is
corrupted or not.

13

Chapter 3

Implementation of the driver

This chapter explains how the driver was built starting from the setup of the
SPI clock and performing data exchange on the SPI line. Before performing read
and write operations, and finally, being able to send and receive data using UWB.
The file containing the API of the driver is called pmod_uwb.erl and is present in
the appendix A.

3.1 Interaction with the pmod
Before interacting with the board, we have to determine the communication

mode (i.e. SPI mode) defined by the pair of parameters: clock polarity (SPIPOL)
and clock/data phase (SPIPHA). The SPIPOL determines on which level the clock
idles while the SPIPHA will determine which operation is performed on each edge
of the clock [19]. Table 3.1 describes the different SPI modes possible.

SPIPOL SPIPHA SPI
mode Description (from the master point of view)

0 0 0 Data is sampled on the rising (first) edge of
the clock and launched on the falling (second) edge

0 1 1 Data is sampled on the falling (second) edge of
the clock and launched on the rising (first) edge

1 0 2 Data is sampled on the falling (first) edge of
the clock and launched on the rising (second) edge

1 1 3 Data is sampled on the rising (second) edge of
the clock and launched on the falling (first) edge

Table 3.1: Different SPI modes (source: DW1000 data sheet[3])

14

Figure 10 shows the two possible interactions with the DW1000 when the
SPIPHA is set to 1. The blue line represents when the data is launched and the
red line represents when it’s sampled on the MISO and MOSI lines.

Figure 10: DW1000 - SPIPHA = 1 (source: DW1000 data sheet [3])

If these settings are not set correctly, the data sent over the different lines won’t
be correctly interpreted at the other endpoint. For example, if the polarity isn’t set
correctly, we could observe a bit shift between the expected data and the actual
value read by the GRiSP .

On the DW1000, these parameters can be set through the pin GPIO5 for
SPIPOL and GPIO6 for SPIPHA. Thus, we have to check the schematics of the
pmod UWB to see their inputs. In this case, both GPIO5 and GPIO6 are plugged
into a 3V. Therefore, SPIPHA and SPIPOL both have a value of 1. Both of these
pins are only sampled on the rising edge of the RSTn, which means that this pin
should be pulled at the startup of the driver to configure correctly the clock settings.
However, the DW1000 datasheet [3] states that this pin should be configured as
high impedance, but the current GRiSP Erlang runtime library doesn’t support
this kind of setting yet. Consequently, since we are not able to pull the RSTn
pin, SPIPOL and SPIPHA are never sampled and their values are equal to "0".
Therefore the SPI mode is the number 0 where data is sampled on the rising edge
of the clock and launched on the falling edge.

In the driver code, the SPI mode is represented by a record given at each
transaction call.

1 -define (SPI_MODE , #{clock => {low , leading }}

Listing 3.1: SPI_MODE macro used to define the clock settings

When those values are set, we are ready to perform our first transactions on
the SPI.

15

3.1.1 Transaction format
A transaction can be divided into 2 parts.
The first one, the transaction header, contains information about the type of

transaction (either read or write), the register file targeted by the operation, and
an eventual offset/sub-addressing.

The second one, the transaction body, contains either the data read from the
DW1000 or the data that has to be written on the DW1000. In the case of a write
operation, both parts are sent by the master. Otherwise, in the case of a read, the
transaction header is sent by the master, and the transaction body is sent by the
slave. Figure 11 gives a visualization of the different transactions.

Figure 11: Different SPI transactions (source: DW1000 user manual [2])

There are three types of headers that can be used to communicate with the
DW1000. The first header (figure 12) is only one byte long. Bits 0-5 contain the
register file ID, a hexadecimal value that identifies each register file of the DW1000.
Bits #6 indicates if the header contains a sub-address. In the case of this header,
its value is set to 0. Bit #7 indicates the type of operation.

Figure 12: One byte header (source: DW1000 user manual [2])

The second header (figure 13) is two bytes long and gives a short sub-indexing
that indicates a sub-address in the register file. The first byte of this header is
similar to the previous one except that bit #6 has now a value of "1" to indicate that
a sub-index is present. Bits 0-6 of the second byte specify the short sub-indexing
(ranges from 0x00 to 0x7F) and bit #7 which indicates that we are using an
extended address is set to "0" for the 2 bytes header.

16

Figure 13: Two bytes header (source: DW1000 user manual [2])

The last header (figure 14) is three bytes long and gives a long sub-indexing
which gives the possibility to use sub-addresses up to a value of 0x7FFF. To use
this header, bit #7 of the second byte should be set to "1".

Figure 14: Three bytes header (source: DW1000 user manual [2])

3.1.2 Example
Let’s take the example of a read operation performed on the register DEV_ID

. This register is the device identifier and is hard-coded into the silicon of the
chip. That makes it the perfect register to test how the driver interacts with the
chip through the SPI interface because the expected result of the interaction is
predictable. Furthermore, the user manual gives exactly the description of the
transaction (Figure 15)

Figure 15: Description of a read operation performed on the DEV_ID register
(source: DW1000 user manual [2]

17

Figure 16: Read transaction on DEV_ID showed on the logic analyser

Figure 16 shows the output of a logic analyzer during a read operation on
DEV_ID . The logic analyzer is able to sample the different SPI lines and display
the evolution of their values over time.

Channel 0, the first row is SPICSn. We can see that when the transaction
starts, the line is pulled down and when the transaction is done, the line is pulled
back up.

Channel 1 is the MOSI line. The first byte has a value of 0x00. This is the
transaction header. Its value tells us that the operation is a read operation (bit #7
has value 0), without sub-index (bit #6 has value 0) on the register file DEV_ID
which has the ID value of 0 (bits #5-0 have a value of 0). The 4 bytes following the
header all have a value of 0xFF and should be ignored because a read operation is
performed.

Channel 2 is the MISO line. The first byte has a value of 0xFF and should be
ignored. Then the last three bytes sent by the pmod have a value of 0x3001CADE
which is the value we are expecting to read from the register file.

Channel 3 is the SPICLK. We can clearly see for each byte of the transaction,
eight pulses corresponding to the eight bits being sent or received over the MOSI
or the MISO lines.

3.2 Mapping the registers
The second step of building the driver was to map the register to allow a user

to read and write values from them. This part needs to be written with a lot of
rigor because it this the stepping stone of all the operations that can be made on
the pmod.

In the driver previously implemented by the GRiSP team, the pmod_nav and
the pmod_dio are also using the SPI interface which was a great starting point to

18

understand how the driver had to be built. Even though the approaches of the two
drivers are different, they both use Erlang maps as output to store the values read
from the pmod or as input to store the values that have to be written. Since both
driver approaches were equivalent and the pmod_dio was easier to understand,
it was decided to use the same approach for the mapping of the DW1000. For
example, the result of a read operation on the register file DEV_ID is: #{ridtag
=> "DECA", model => 1, ver => 3, rev => 0 } and if we want to write the
value "1" in the sub-register TXSTRT of the register file SYS_CTRL , then
the following map needs to be given in the arguments of the write API call: #{
txtstrt => 2#1 } (Note that the value is written in the binary form but it can
also be written in the decimal form).

Additionally, as we are about to see in the following sections, the DW100
contains different types of registers. In the process of writing the driver and its
API, extra care has been taken to write a consistent read/write API for every
register file to make the implementation more user-friendly.

3.2.1 Errors in the user manual
During the mapping of the register, a few errors were noticed in the user manual

of the DW1000 [2], here is the list of all of them and how they were solved:
• In the register map overview, the length of the register file DRX_CONF

is 44 bytes. However, the sum of the size of the sub-registers present in the
overview of the register file is 45 bytes. In the API provided by Qorvo [8],
the size of the register file is also 44 bytes but one sub-register with a length
of one byte, RXPACC_NOSAT isn’t present. Since the API provided by
Qorvo works and got tested, the information contained inside should overrule
the ones in the user manual. Thus, its version got used in the driver of the
pmod.

• In the user manual as well as in the API, the size of the register file RF_CONF
is set to 58. However, if we take the offset of the last sub-register LDOTUNE
and add its size, 5 bytes, we reach an offset of 0x35 or 53 in decimal. To
match the information provided by the chip manufacturer and to compensate
for the 5 remaining bytes, a placeholder was introduced at the end of the
register file in its mapping.

• The subregister RF_CONF has a size of 3 bytes in the user manual, but in
the API, it has a size of 4 bytes. In the driver of the pmod, its size has been
set to 4 bytes too.

• In the user manual and the API, the size of the register file TX_CAL is 52
bytes. Yet, when we sum the size of all its sub-registers, we obtain a size of

19

12 bytes. Since the difference was too big, no placeholder got introduced and
the size of the register is set to 12 bytes in the pmod driver

• The size of OTP_IF in the register overview as well as in the DW1000 API
is set to 18. However, if we sum the size of its subregisters given in the user
manual and also in the API, we reach 19 bytes. Thus, in the driver, the size
has been set to 19 bytes too.

• The register file with the ID 0x2E has two names in the user manual. In the
register map overview, it’s called LDE_CTRL but in its description, it’s
called LDE_IF . Additionally, in the API of the driver provided by Qorvo,
only LDE_IF is used. However, to avoid any confusion for a user, both
names are accepted by the driver of the pmod.

• The size of DIG_DIAG given in the user manual and the API is 41 bytes.
Nevertheless, the sum of the size of all its subregisters is equal to 38. Thus,
this value was used in the driver

• The size of PMSC given in the user manual and the API is 48 bytes.
However, if we sum the size of all its subregisters we reach a value of 41 bytes.
Additionally, if we try to compute its size by checking the last offset of its
subregister we reach 0x2B which is 43 in decimal. In the driver of the pmod,
the used size is 43 bytes.

3.2.2 Read the registers
The API function to read a register is read/1. Its only parameter is an atom

corresponding to the mnemonic of the register file we are trying to access. It will
return a map of the different elements stored inside the register file and their values.
Figure 17 shows an example of an API call for the register file DEV_ID and the
returned value

Figure 17: Read API call on register DEV_ID

This function will send a request to the gen_server of the driver which will
internally call the function read_reg/2. Its first parameter Bus is a reference to
the opened SPI bus stored in the internal state of the gen_server. The second
parameter is again the mnemonic of the register file we are trying to access. This
internal function will call the function header/2 which builds the header of the

20

transaction and returns it in binary format. It then calls grisp_spi:transfer/2
that returns the value contained in the register file in an Erlang bitstring format.
Finally, the content of the bitstring is decoded using the function reg/3 which
performs a pattern matching on the different fields contained in the bitstring and
then stores them in a map.

It is important to note that the value returned by the pmod UWB are sent in
little-endian and the default configuration of Erlang interprets bytes in big-endian.
Therefore, for most of the registers, the byte order needs to be reversed before
decoding them.

During the implementation, the choice was made to read register files fully and
not letting the possibility for users to read individual sub-registers. The goal here
was to have a reliable operation without performing any optimization using the
register offsets as little as possible.

There are two special register files that have to be processed differently than
others. First, TX_BUFFER is a write-only register, and reading its value during
transmission could corrupt its values. Therefore, an error is thrown if read_reg/2 is
called with tx_buffer is passed in the second parameter. Second, the LDE_IF or
LDE_CTRL register has a size of 10Mb, and only 8 sub-registers are documented
in the user manual with gaps that can reach 1026 bytes. Therefore, the choice
was made to read each sub-register individually using the offsets of the different
sub-registers and merge the results.

3.2.3 Write the registers
The API function to write a value in a register file is write/2. The first

parameter is like in the write operation the mnemonic of the register file we are
trying to access. The second parameter is a map similar to the one returned in the
read operation but only containing the value the user wants to change.

Figure 18: Write API call on register PANADR

Figure 19: Write API call on register PMSC

Figure 18 and 19 show 2 examples of a writing operation on the pmod. The
first one shows the operation on a "simple" register containing only two sub-fields:
PAN_ID and SHORT_ADDR . Since PAN_ID is the only sub-field present in
the map, the write operation will only modify that sub-field.

21

The second one performs the operation on a register file with a more complex
structure. Indeed it is composed of multiple sub-registers containing multiple sub-
fields. This is reflected in the map given in the parameter of the function by having
a bigger depth than the one in Figure 18. Here, the write operation will be operated
in the sub-register PMSC_CTRL0 of the register file PMSC by changing the
value of the sub-field SYSCLKS by the binary value "01". Additionally, it is
also possible to write inside multiple sub-fields of one register and also in multiple
sub-registers in the same API call shown in figure 20

Figure 20: Write API call on register PMSC on multiple sub-registers and sub-
fields

When a user wants to write a value in a register file, we must be careful to not
overwrite values that are already present in the register file. Due to the nature of
the SPI transaction, the minimum amount that someone can read or write from the
device is one byte. This implies that if someone wants to change the value of a bit
flag we need to write, at the minimum, 7 other bits that the user doesn’t want to
change. Thus we have to read their value first and write the same values alongside
the changed bit flag. In the driver, in most of the cases, the choice was made that
when the user wants to change a value inside a register file, the whole register file
will be read and written again with the changed value. In some cases, this is not
possible because of the configuration of the register file. Indeed, some register files
either have read-only sub-register (for example AGC_CTRL) or reserved bytes
that can’t be overwritten (for example EXT_SYNC). In this case, each of their
sub-registers is written individually. Additionally, since all of the sub-registers of
these special register files are longer than one byte, instead of writing again all
their values at each write, only the sub-registers targeted by a write will be written.

However, due to the choice that was made in the reading operation of only
allowing reading register files in their entirety, we need to read the whole register
file containing the sub-register and extract its values. Furthermore, since there is
no guarantee that the values of a sub-register don’t change between writes, the
register file needs to be read each time we want to write in one of its sub-register.
In other words, if a user wants to write simultaneously (i.e. on the same API call)
inside n sub-registers, then the corresponding register file will be read n times.

Additionally, some register files like RX_BUFFER are read-only register files.
If the user tries to write in those register files, an error will be thrown to protect
their values.

Finally, the transaction body should be sent in little-endian. Thus, when the
data is sent on the SPI interface, we must be sure that the endianness of the bytes
has been changed.

22

3.3 Initialization of the pmod
After the startup of the GRiSP 2 board, the driver needs to be loaded and the

DW1000 needs to be initialized. This section describes the different steps and how
the initialization has been implemented.

3.3.1 Checking the connected device
The first thing to do during the loading is to check if the user selected the

correct slot of the GRiSP 2 and connected the right pmod to it. After adding the
driver process to the supervisor and opening the SPI bus, the driver checks the
content of the register file DEV_ID with the ID 0x00. This read-only register file
contains the register identification tag and model. With these 2 registers, we are
able to check if the device is connected to the right device, the DW1000. Indeed
the value of RIDTAG is constant over all Decawave parts and should always be
0xDECA and the value of MODEL should be 0x01 for the DW1000. If one of
the values is different from the one expected, the driver throws an error and the
initialization stops there.

3.3.2 Loading the leading edge algorithm
After checking if the connected device is the right one. The leading edge

detection algorithm needs to be loaded from the ROM of the DW1000. This
algorithm is responsible to find the first path of a transmitted message and to
compute the timestamp of the reception. If the algorithm isn’t loaded, it is still
possible to perform message transmission if we deactivate the leading edge detection
before the first reception. In that case, the RX timestamp won’t be correct. Thus
some algorithms like two-way ranging can’t be performed because it relies on
the timestamps to perform their measurements. Loading the algorithm from the
ROM is done by following a precise procedure described in the user manual of the
chip [2] and also in the examples for the C driver made by the company. Extra
care must be taken when performing this operation because if the algorithm is
activated but not loaded correctly at the reception of a packet, the chip can have
unexpected behavior and get stuck in an undocumented state where data reception
isn’t possible anymore.

To load the algorithm, first, the value 0x301 needs to be written in the
PMSC_CTRL0 sub-register of the PMSC register file. This writes the value 0x01
SYSCLKS and sets the value an undocumented bit to 1. Then, the value 0x8000
needs to be written in the sub-register OTP_CTRL which sets the value of the bit
flag LDELOAD to 1. This will copy the microcode from the ROM to the RAM.
Finally, the value 0x200 needs to be written in the sub-register PMSC_CTRL0

23

which puts sets back SYSCLKS to automatic mode and sets back the value of
the undocumented bit to 0.

3.3.3 Writing optimal values
When the DW1000 turns on, some of the default values aren’t set up on optimal

values for performances. It is the job of the driver designer to overwrite these
values before using the chip to send frames. The user manual describes how to
perform that initialization if we use the default configuration of the chip. Since it
was decided to stick with these default values, the driver follows those instructions,
but if one decides to change the default transmission channel for example, other
values should be written for optimal operations. Table 3.2 shows the different
sub-registers to overwrite and the values that have to be written inside if we keep
the default configuration of the DW1000.

Register file Sub-register Default value New value
AGC_CTRL AGC_TUNE1 0x889B 0x8870
AGC_CTRL AGC_TUNE2 / 0x2502A907
DRX_CONF DRX_TUNE2 0x311E0035 0x311A002D

LDE_CFG LDE_CFG1
(NTM sub-field) 0xC 0xD

LDE_CFG LDE_CFG2 0x0000 0x1607
TX_POWER N/A 0x1E080222 0x0E082848
RF_CONF RF_TXCTRL DE1E3DE0 0x001E7DE0
TX_CAL TC_PGDELAY 0xC5 0xB5
FS_CTRL FS_PLLTUNE 0x46 0xBE

Table 3.2: All the default values to overwrite

3.3.4 Writing custom configuration
After writing the optimal values, we still have to write some custom configura-

tions that are either related to the pmod in itself or enable elements that are not
turned on by default. The following list gives an explanation of each setting and
its different effects.

1. Setting the sub-field PLLLDT to "1" to ensure that the PLL locks flags
work correctly. The goal of this operation is to have better debugging and
diagnostic capacities when a frame isn’t correctly sent or received.

24

2. Setting the sub-fields MSGP2 and MSGP3 of the sub-register GPIO_MODE
to "01". It indicates that the GPIO pins 2 and 3 are respectively operating
as RXLED output and TXLED output.

3. Setting the sub-fields MSGP0 and MSGP1 of the sub-register GPIO_MODE
to "01". It indicates that the GPIO pins 0 and 1 are respectively operating
as RXOKLED output and SFDLED output.

4. Setting the sub-fields GPDCE and KHZCLKEN to a value of "1". GPDCE
serves to enable the clock in charge of the feature that makes the LEDs blink.
KHZCLKEN enables the kilohertz clock used by the same feature.

5. Setting the sub-field BLNKEN to a value of "1". Alongside the setup made
in the three previous points, this bit enables the LED blinking functionality
of the pmod. Even though they increase power consumption, being able to
observe the LEDs blinking is a nice feature to have during development and
especially when debugging.

6. Setting the value of the sub-field EVC_EN to "1" to enable event counters
such as EVC_FFR which indicates the number of frames rejected by the
frame filtering function. These counters are also great tools to have during
debugging because they allow us to see what happened after a series of
transmissions.

7. Setting the value of the sub-field TXPSR to "2#10" which changes the
preamble symbols to 1024. This change is made because without modifying
the preamble symbols settings, the auto-acknowledgment feature used in
section 4 can’t work.

3.3.5 Setting up SFD
As we’ve seen in the previous sections, the physical layer of IEEE 802.15.4 is

divided into multiple fields. Among them, the SFD sequence marks the end of the
preamble of the frame. The DW1000 manages that part of the physical layer by
itself when we want to send a frame. However, if the auto-acknowledgment is the
first frame transmitted after startup, the SFD sequence won’t be initialized because
its initialization is only done at the first user transmission request. Therefore,
if we want the auto-acknowledgment to work right away after startup we need
to trigger the loading of the sequence. The user manual explains that the most
efficient way to perform that is to "simultaneously initiate and abort a transmission"
which resolves into setting the value of the flags TXSTRT and TROFF to "1"
simultaneously. Figure 21 shows how this operation is performed by the driver.

25

Figure 21: Setup of the SFD inside the code

3.4 Transmission
The transmission and reception of UWB-PHY frames are the highest-level

operations provided by the driver. At this level, it only treats the data payload
as one single block of data that should be transmitted or received. It’s the role of
the higher layers to manage the eventual content and the structure of the payload.
This section will explain in detail how these two operations are actually performed
by the driver.

3.4.1 Sending a frame
The procedure to send a UWB-PHY frame is the following. First, we have to

write the data inside the subregister TX_BUFFER .
Second, we have to set the value of a couple of sub-fields inside the register file

SYS_CTRL . The sub-register TXBOFFS allows the user to specify an offset
inside the transmission buffer indicating the first byte of the PHY payload. This
allows further optimization but isn’t used here and its value is set to 0. We also
have to set the value of the sub-field TFLEN which indicates the size of the
data portion of the frame plus a two bytes CRC. The DW1000 takes care of the
computation of the CRC and replace the last two bytes of the payload by the
newly computed CRC. Thus if we don’t add these two bytes to the value written
inside TFLEN , the actual data we are trying to send will be shortened by two
bytes.

Third, we can trigger the start of the transmission by the DW1000 by writing
the value "1" inside the sub-field TXSTRT of the register file SYS_CTRL .

Finally, we have to make sure that the transmission occurred correctly. This
can be done by checking the event status bit TXFRS ("transmit frame sent")
of the register file SYS_STATUS . This verification is performed by a recursive
function. This function does a read request on SYS_STATUS and checks the
value of TXFRS . If it is set to "0", then a recursive call is performed. Otherwise, if
the value is set to "1", then the function returns ok and stops. The whole operation
is operated synchronously and the calling API function won’t return before the
transmission has been performed.

At this stage, waiting for the completion of the transmission might seem useless
because the frame is transmitted right away. However, in the case where frames are
sent with a delay, this functionality is useful to avoid performing other operations

26

(e.g. turning on the receiver) before the actual transmission of the frame.
On the driver, there are two functions available in the API: transmission/1

and transmission/2. They both take a bitstring in their first parameter but the
second function allows the user to specify options for the transmission while the
first one will use the default settings.

There are four options possible to set:

• wait4resp: It indicates that the receiver should be turned on after the
transmission of a frame. The DW1000 will clear the bit after enabling the
receiver, thus this setting must be set at every transmission of a frame that
requires it. By default, this option is disabled.

• w4r_tim: It specifies the delay in microseconds between the transmission of
a frame and the automatic enabling of the reception if wait4resp is enabled.
This is useful in the case where some kind of delay between a request frame
and its response is known (for example in the double-sided two-way ranging).
It is set by default at 500µs and only used when wait4resp is enabled.

• txdlys: It enables the "transmitter delay sending" setting used to control
precisely the transmission of a frame at a time specified in tx_delay. it is by
default disabled and should be enabled for every transmission that requires
the setting.

• tx_delay: It specifies the exact clock time when the transmission of the next
frame should occur if txdlys is enabled. These two options are useful when
the program needs to know the exact transmission time of a transmission.

These options are specified at the time of transmission for two reasons. First, this
gives one more layer of abstraction which relieves the user from writing directly
inside the register files.

Second, and most important, WAIT4RESP and TXDLYS are both bits that should
be written at the same time (i.e. in the same SPI transaction) as TXSTRT.

In the beginning, the API was also able to take a String in the data argument.
It was really useful in the first stages of the implementation of the transmission for
testing purposes. However, as the development of the driver made progress, that
option became more and more useless and was finally dropped from the API in the
later versions

3.4.2 Receiving a frame
To perform a reception with the pmod UWB, the user can call two functions:

transmit/0 and transmit/1. The first one is a simplification of the first one by

27

setting to false by default the parameter of the second one. This parameter:
RXEnabled specifies if the reception has been enabled prior to the function call.
This is because in some cases the reception can automatically be turned on after
the transmission of a frame. This parameter is there to avoid trying to enable the
reception a second time which might trigger some event status bit specifying an
error during the reception of the frame before receiving the actual frame.

On the DW1000, the reception can be divided into different steps described in
the DW1000 user manual [2]:

1. Preamble detection: During that period, the device will try to detect the
preamble sequence by cross-correlating chunks of the preamble symbols. It is
possible to enable and set a timeout to allow the receiver to stop the detection
of the preamble. If the timeout is triggered, the event status bit RXRFTO
will be set to "1" and the reception will be aborted. Otherwise, if it isn’t
enabled or isn’t triggered, RXPRD is set to "1" and the procedure continues
to the next step

2. Preamble accumulation and SFD detection: after the detection of the pream-
ble, the device will accumulate the preamble symbols and look for a particular
sequence of symbols, the SFD. If the SFD isn’t detected before a certain time
after the detection of the preamble, the reception is aborted and RXSFDTO
is set to "1". Otherwise, RXSFDD is set to "1" and the process moves to
the next step.

3. PHR demodulation: At this step, the DW1000 will demodulate and decode
the PHR inside the received frame. The PHR provides information about
the length of the data payload and the data rate that has to be used in the
demodulation of the payload. The PHR also contains a SECDED error check
sequence able to correct one bit errors and detect two bits errors but can’t
correct them. If a two bits error occurs, then RXPHE will be set to "1" and
by default will abort the reception. Otherwise, RXPHD is set to "1" and we
proceed to the next step.

4. Data demodulation: In this step the data payload of the PHY frame is
demodulated, and passed through the Reed Solomon decoder. If it detects
a non-correctable error, it will set RXFSL to "1" and by default abort
the reception. Afterward, the CRC of the frame is computed and checked
with the actual transmitted CRC. If the values match, then RXDFR and
RXFCG are set to "1". These bits indicate that a frame has been received
correctly. Otherwise, if the CRCs don’t match, RXFCE will be set to "1".

As we can see above, during the reception of a frame, flags are set depending on
the situation, and in most cases, the reception will be disabled on the chip when

28

an error occurs. Therefore, during the reception of a frame, the driver has to check
the status of the different error flags and the status of RXFCG which indicates
the correct reception of a PHY frame. Also, these flags provide crucial information
on the exact step where a reception failed. Additionally, if EVC_EN is set to
"1", the DW1000 provides a register file with multiple sub-registers containing
event counters that are incremented when specific errors occur. For example, the
sub-register EVC_STO will count the number of times that a timeout occurred
during the detection of the SFD.

The reception algorithm of the driver is quite simple. First, it will clear all the
flags inside the register file SYS_CTRL that are related to the reception of a
frame (error flags, timeout flags, and flags indicating a good operation). The driver
performs this action because in some cases, some flags aren’t reset by the chip
when the reception is enabled. This can lead to a situation where the algorithm
wrongly thinks that a frame has been received when it’s not the case.

Second, if RXEnabled is set to false, then it performs a write in the sub-field
RXENAB of the register file SYS_CTRL . This will turn on the antenna for
reception.

Third, similarly to the transmission, the process will then call a recursive
function that will check the value of the different error bit flags as well as the
values of RXFCG and RXDFR . As long as none of these bits are set to one,
the function will continue to perform recursive calls. If one of the error bits has a
value of "1", the function will return the atom corresponding to the name of the
sub-field. Otherwise, if RXFCG is set to one, the function will return ok. If a
frame has been correctly received, the driver clears RXFCG by writing "1" inside
of it. This is done because in some cases, when multiple frames were received, the
bit wasn’t reset when the reception was re-enabled. This made the driver believe
that a correct reception occurred when it wasn’t the case.

Finally, the driver pulls the received data from RX_BUFFER without the
two CRC bytes and returns it in a tuple with the length of the payload minus the
two last bytes.

At this stage, we could also reset the flags instead of doing it at the beginning
of the reception. However, if we do that, that removes the debugging potential of
these flags if something goes wrong during the operation. Additionally, another
method is proposed in the code examples of the DW1000 API [8]. Indeed, the bits
are cleared at the very end of the receptions in the main function. This method
works but adds more load to the user who has to remember to perform the reset.
Since the goal of the reception function is to totally abstract the whole operation
from the user, the choice was made to hide the re-initialization of the flags inside
the function call.

The user also has to be careful if reception/1 is called with RXEnabled set

29

to ’true’ without the reception being enabled first (automatically or manually).
Indeed, the function won’t enable the reception and will be stuck in a loop because
no status flag will be set to indicate an error or a reception. Consequently, the
driver will have to be restarted manually. This situation can’t be avoided with
defensive programming because there is no way for the driver to see if the reception
has been enabled or not.

30

Chapter 4

MAC layer

The DW1000 provides support for the MAC layer but it doesn’t implement it.
It’s the role of the host system to do it. In the context of this work, the goal was
to provide support for a potential GRiSP application sending and receiving MAC
frames using the pmod UWB. These features are essential in the potential future
implementation of upper-level layers like 6LoWPAN.

In this section, the support provided by the DW1000 and its different features
will be explained. Then the construction and decoding process of the header and the
frame control of a MAC frame will be detailed. Afterward, it will describe how the
messages are sent using the pmod. Additionally, a concrete example of a message
exchange using the automatic acknowledgment feature will be described. Finally,
an analysis of different measurements done on this example will be provided.

4.1 DW1000 support
The different MAC layer hardware features supported by the DW1000 are

described in its user manual [2]. This section will provide a description of them
following the specifications described in that document.

4.1.1 Frame filtering
The DW1000 provides a frame filtering feature that will parse MAC frames

respecting the IEEE 802.15.4-2011 standard. To work, it must be enabled by
writing the value "1" inside the configuration bit FFEN inside the register file
SYS_CFG . When the feature is turned on, at the reception of a frame, it will
check it with a set of rules and either accept the frame or reject it. If the frame is
rejected, then the bit flag AFFREJ will be put at a value of "1".

31

The set of rules used to filter the frames described by the user manual is the
following:

1. The type of the frame must match the ones allowed by the set of configuration
bits inside SYS_CFG . For example, if only the configuration bit FFAD
is set to "1", then the frame filtering will only accept MAC frames of type
"Data".

2. The version of the MAC frame must be either 0x00 or 0x01.

3. If the destination PAN is present in the frame header, it has to be either the
broadcast PAN ID (i.e. 0xFFFF) or it has to match the PAN ID saved inside
the register file PANADR .

4. if the destination address is present, it must either be the short 16-bit
broadcast address or match the short 16-bit address present in PANADR
or match the 64-bit long address in EUI .

5. If the frame is a beacon frame, then it must come from the same PAN

6. The CRC must be correct

4.1.2 CRC generation and checking
On transmission, the DW1000 will compute the 2 CRC bytes of the MAC frame

and include them at the end of the data payload. At the reception, it will compute
the CRC of the received frame and compare it with the one received.

4.1.3 Automatic acknowledgement
With this feature, at the reception of a frame and if the settings are set correctly,

the device will automatically send back an acknowledgment frame to the sender.
In order to work, the frame filtering feature must be enabled on the receiver by
setting FFEN to "1" in SYS_CFG . It must be set to accept the frame type that
will be sent. Additionally, the receiver should also enable the auto-acknowledgment
with AUTOACK set to "1". On the sender side, the MAC should be correctly
formed and addressed per frame filtering rules and the acknowledgment request bit
in the frame header should be set to "1".

The automatic acknowledgment feature of the DW1000 was one of the first
features to be tested on the pmod once the transmission was working. Indeed, the
feature gives instant feedback (acknowledgment or frame rejection) without passing
through the driver which made testing easier. At first, the frame was hard-coded to
understand how the feature was working and then the MAC layer got built around
the feature.

32

4.2 MAC Header
To give support for the MAC layer, the program has to let the user encode and

read MAC headers in an easy way. To do so, multiple options were possible.
First, use a function and have one parameter per possible field in the header.

This solution could work but is quite tedious for the end user.
Second, regroup the fields in a tuple and put the tuple in the argument of the

function. While this solution improves the first one because it avoids having a
function with at least 13 parameters, its ergonomy isn’t better. This is because
the order of the parameters inside the tuple needs to be defined in advance. The
user will have to memorize the order of all 13 parameters which is a great source of
potential bugs.

Third, abstract the header and the frame control into 2 Erlang records. With
this choice, the structure and the type of data used can be defined clearly and
documented for later use. Furthermore, Erlang records can have default values.
This means that the user doesn’t have to specify every field if their default values
match the intent of the user. For all these advantages, this solution was selected
for the MAC layer of the pmod. Listing 4.1 gives the structure of the frame control
record and listing 4.2 provides the one of the MAC header

1 -record (frame_control , {
2 frame_type = ? FTYPE_DATA :: ftype (),
3 sec_en = ? DISABLED :: flag (),
4 frame_pending = ? DISABLED :: flag (),
5 ack_req = ? DISABLED :: flag (),
6 pan_id_compr = ? DISABLED :: flag (),
7 dest_addr_mode = ? SHORT_ADDR :: addr_mode (),
8 frame_version = 2#00 :: integer (),
9 src_addr_mode = ? SHORT_ADDR :: addr_mode ()}).

Listing 4.1: Frame control record

1 -record (mac_header , {
2 seqnum = 0 :: integer (),
3 dest_pan = <<16# FFFF :16>> :: addr (),
4 dest_addr = <<16# FFFF :16>> :: addr (),
5 src_pan = <<16# FFFF :16>> :: addr (),
6 src_addr = <<16# FFFF :16>> :: addr ()}).

Listing 4.2: MAC header record

The encoding and decoding of the frame control are quite easy to perform since
it has a fixed size. However, for the MAC header as a whole, these two operations
need to be performed rigorously. Indeed depending on the settings set in the frame
control, the size of some fields can change and some are even removed. Therefore,
all the edge cases need to be checked. Because of that, some custom unit tests

33

have been created to make sure that the functions were able to create and parse
correctly MAC frames. The implementation of these tests can be found in appendix
D. Furthermore, to avoid any comprehension mistakes in the tests, some of the
frames tested are the ones used in the code example given by Qorvo in the DW1000
API [8]. Still, these tests don’t cover all of the edge cases, but they are a great
tool to have during the development of the MAC layer to make sure that the code
works before having to run it on the GRiSP board connected to the DW1000 which
provides little debugging help.

For the parsing of the MAC header, we know that in every case, the first two
bytes are the one of the frame control and the third byte is the sequence number.
For the remaining bytes, we need to parse the PAN id and address fields based on
the settings of the frame control following this sequence of steps:

1. If the destination address is present, the next two bytes are the destination
PAN ID and we can continue to parse the destination address (2). Otherwise,
we can jump (3).

2. If we reached that point, it means that the destination address mode is either
the short address or the extended address. If it’s the short address then the
next 2 bytes are the address. Otherwise, if it’s the extended address, then
the next eight bytes represent the address. Then we can continue to parse
the source PAN ID (3).

3. Here, the situation is a bit more complex, and multiple situations are possible:

• If the source address mode is set to 2#00, then neither the source PAN
ID nor the source address is present in the header and the remaining
bytes are the payload of the frame (if any) plus the CRC bytes.

• If the source address mode isn’t 2#00 and the PAN ID compression is
disabled, then the next two bytes are the source PAN ID and we can go
to (4).

• If the source address mode isn’t 2#00 and the PAN ID compression is
enabled, then we need to check the destination address mode. If it isn’t
set to 2#00, then the source PAN isn’t present and we jump to (4).

4. Source address: Similarly to the destination address, if the frame control
settings of the destination address say that a short address is used, then the
next 2 bytes are the source address. If it says that an extended address is
used, then the next 8 bytes are the source address. Then, what’s left over is
the payload and the 2 bytes of CRC.

34

This whole parsing operation is performed in the internal private function: decode_addrs/3.
After the parsing, some missing values can be deduced based on the settings

set in the frame control. Indeed, if the PAN ID compression is enabled, then
we can deduce the missing PAN ID based on the PAN ID present in the header.
Additionally, if the compression is disabled, in some specific cases, it is still possible
to deduce the missing values. Indeed, in the case of a missing destination PAN ID
and address, if the frame isn’t an acknowledgment nor a beacon frame then the
frame destination is the PAN coordinator with the same PAN ID as the source.
Furthermore, if the source address mode is set to 2#00 and the frame isn’t an
acknowledgment, then its source is the PAN coordinator with the same PAN ID as
the destination.

We must also be careful of the endianness of the fields. Indeed, the DW1000
works with big-endian fields. Thus, the encoding and decoding operations must
take that into account when working with a MAC header.

4.3 Transmission

4.3.1 Sending
To send a MAC frame the user can use mac_send_data/3 and mac_send_data/4.

The only difference between these two functions is that mac_send_data/3 will
perform transmission with the default transmission settings while mac_send_data/4
lets the user define transmission settings useful for the MAC layer and the protocols
on top of it like two way ranging. To use these functions, the user has to give
the frame control and the MAC header as records and an Erlang bitstring for the
payload. Since the CRC bytes are handled internally by the DW1000, they must
not be included in the payload.

Internally, they are built on top of the transmission functions defined in section
3.4.1 so the only work for this layer is to build correctly the MAC frame based
on the user choices for the frame control, the mac header and the payload. To
do so, they call the internal function mac_frame/3 which will build the frame
into a bitstring and then appends it with the payload. The function then calls
transmit/2 which will send the MAC frame using the specified settings.

4.3.2 Receiving
To receive a MAC frame, the user can use either mac_receive/0 or mac_receive/1.

These functions are also based on the reception functions described in section 3.4.1.
Thus, their arguments represent whether or not, the reception has been enabled
prior to the call of the function. They both return a tuple of three elements: the

35

frame control, the MAC header, and the payload. Since they call reception/1,
these two functions are synchronous and won’t return before the reception of a
frame, a timeout, or a reception error.

4.4 Example: Using the automatic acknowledg-
ment feature of the DW1000

This section will illustrate the utilization of the MAC layer with a GRiSP
application. The setup needed is composed of two GRiSP 2 boards with a pmod
UWB with the antenna at a distance of two meters.

One of the boards will be the sender and sends all the data frames and wait for
the acknowledgment. The second board, the receiver, waits for data frames and
automatically sends an acknowledgment frame to the sender. More precisely, the
sender will send a total of n frames and after the transmission of each frame, it
will automatically enable the reception and wait for the acknowledgment from the
receiver. If a reception error or a timeout occurs, then the sender will try to send
the frame again. If that retry process fails m times for the same frame, then an error
is thrown and the experiment ends. On the receiver end, the auto-acknowledgment
feature of the DW1000 is activated and it will wait for the reception of frames
indefinitely and can only be stopped if the power is removed.

When the protocol was working under a stable network, some jitter got in-
troduced within the receiver to test the ability of the sender to send back non-
acknowledged frames. The jitter is simulated by getting a random number with
rand:uniform/1 and if that number is equal to one, it executes timer:sleep(200)
which suspends the process of the receiver for 200ms. This has the consequence
to enable the reception too late and miss the frame sent by the sender and thus
makes it send back the lost frame.

There are two versions of this example present in the appendix of this document
and on GitHub. The first one ack_no_jitter (appendix C.1) performs the protocol
described here without artificial jitter. The second one, ack:_jitter (appendix
C.2) introduces jitter for about 25% of the frames. To run both of these examples,
you have to set up a development environment as described in the GRiSP wiki 1.
For both of them, the receiver has to be started by using test_receiver_ack/0
on one device. Then the sender has to be launched on the second one by using
test_sender_ack/2 without forgetting to specify the number of frames to send
during the exchange in the first argument and the size of the frames to send in the
second one.

1https://github.com/grisp/grisp/wiki/Setting-Up-a-Development-Environment

36

4.5 Measurements
When the exchange of frames is done, some statistics are shown to the user. An

example of such a report can be seen in figure 22. This gives us an approximation
of the capacities of the driver. The statistics shown are the following:

• The number of frames sent gives the total number of sent frames (successful
or not)

• "Success rate": the ratio between the number of successful frames (i.e. with
an ACK from the receiver) and the total number of frames sent

• "Error rate": the ratio between the number of frames with an error and the
total number of frames sent

• "Data rate": the ratio between the total amount of data sent and the total
execution time. This gives the number of bits per second sent in average over
the whole execution

• "Total time": the total execution time

Figure 22: Example of the statistical report for an exchange of 2000 frames
containing 116 bytes of data

The measurements were done with three different GRiSP applications: test_ack_no_jitter,
test_ack_jitter both described previously and ack_fast_tx which tries to send
each frame as fast as possible. Compared to the first two applications, ack_fast_tx
writes a frame inside the TX_BUFFER once at the beginning of the execution
and sends it repeatedly during the whole execution.

37

Table 4.1 gives some measurements done on the devices with their antenna put
two meters apart. For each run, the devices tried to send 10000 frames with a
MAC data payload of 116 bytes to give a total MAC frame size of 127 bytes:

Name Total number
of frame sent Success rate Data rate (bps) Total time (s)

test_ack_no_jitter 10002 1.000
(rounded) 32444.7 286.03

test_ack_jitter 17228 0.580 9515.9 975.21
ack_fast_tx 20032 0.499 12268.1 756.44

Table 4.1: Measurements for an exchange of 10000 frames between two devices 2
meters apart

As we can see, the exchange of frames without any jitter is highly reliable
as only one frame got lost during the whole execution. The measured data rate
of 32.445 kbps is smaller than the maximum raw data rate described by IEEE
802.15.4-2011 [1]. Yet, the driver isn’t optimized and leaves space for improvements,
especially at the lower level when values are written in the registers. Additionally,
the protocol used here makes the sender wait for an acknowledgment after the
transmission of each data frame which makes the transmission quite robust but
also slow. However, in reality, the MAC layer acknowledgments are rarely used to
the profit of the ones in higher layers. For example, we could imagine a protocol
implemented on top of the MAC layer where one acknowledgment is sent every n
frame.

Another interesting point of these results shows that despite having a lower
success rate than test_ack_jitter, ack_fast_tx is faster and has a better data
rate. This can be explained by the fact that the frames are sent faster since
ack_fast_tx doesn’t have to encode and write the content of the MAC frame
inside TX_BUFFER for each transmission and retransmission.

38

Chapter 5

Two way ranging

UWB has great multipath resolution capability [27] and doesn’t suffer from
multipath fading [4]. This ability provides a fine delay resolution property and
makes this technology well-suited for time-of-arrival-based techniques to achieve
accurate localization [28]. In fact, UWB systems are the most accurate time-based
technique used in geolocation compared to narrowband systems like Bluetooth.
This is due to the fact that the accuracy of the estimation of the time of arrival is
directly proportional to the size of the bandwidth [29]

In this study, we use one particular ranging technique: two-way ranging. This
technique is used here because the DW1000 provides facilities that enable such
algorithms [2]. However, this isn’t the only technique to perform ranging with
UWB. Indeed, angle of arrival (AOA) based algorithms compute the position of
an object based on the estimation of the signal reception angles. Additionally,
RSS-based algorithms estimate the position of the target based on the signal
strength. Moreover, time difference of arrival (TDOA) techniques measure the time
difference of arrival of a signal on different reference points. Lastly, some hybrids
techniques, combining multiple position techniques are possible, like using both
GPS and UWB or even combining AOA algorithms with TDOA with an extended
Kalman filter [30]. However, a detailed discussion about these methods is outside
the scope of this work.

This chapter will first give some examples of different applications using two-way
ranging with UWB. Before describing the two methods used, namely single-sided
two-way ranging and double-sided two-way ranging. Then, it will explain the
implementations of the two methods using the MAC layer built in chapter 4.
Finally, it will analyze the measurements performed on the pmod UWB using these
methods.

39

5.1 Methods
The methods presented here estimate the distance between two transceivers by

computing the time of flight (TOF) during an exchange of messages. The formulas
presented here are described in [2] and [31].

5.1.1 Single-sided two-way ranging
In this method, only two messages are exchanged between device A, the initator,

and device B, the responder. The protocol starts with Device A sending a poll
message at time TXpoll. Device B then receives it at time RXpoll and replies with
a message at time TXresp. Finally, device A receives the reply at time RXresp.
Figure 23 gives a full overview of the messages exchanged during the protocol.

Figure 23: Message exchanges of single sided two way ranging

With these four timestamps it is possible to find tround and treply using the
formulas 5.1

tround = RXresp − TXpoll

treply = TXresp − RXpoll

(5.1)

Thus, we can find ttof with 5.2:

ttof = 1
2 ∗ (tround − treply) (5.2)

40

Finally, the product of ttof and the speed of light will give us the distance
between the initiator and the responder.

This method has the advantage of being simple. Yet, since devices A and B
compute tround and treply with their own clocks, the method suffers greatly from
the clock offset errors of the two local clocks from their nominal frequencies. As a
result, the more treply is big, the more the error contained in t̂tof (the estimated
time of flight based on the real observations) increases. For example, according
to [2] if treply is equal to 500 µs and the clock error is equal to 5ppm, then the
induced error in the time of flight estimation is equal to 1.25ns. This means that
the error in the estimated distance is around 37cm. Therefore, if treply is too big,
the estimated distance is too inaccurate to be used in a real application.

5.1.2 Double-sided two-way ranging
In double-sided two-way ranging, different protocols are possible. This work

only explores the alternative double-sided two-way ranging presented in [31] and
also displayed in the DW1000 user manual [2] as "double-sided two-way ranging
with three messages".

The exchange of the first two messages is similar to the single-sided method.
Device A sends the first message at time TXpoll and is received by device B at
time RXpoll. Then device B sends the second message at time TXresp and device
A receives it at time RXresp. Device A will then send the third and final message
at time TXfinal and device B receives it at time RXfinal.

With these six timestamps, it is possible to compute the following time periods:

tround1 = RXresp − TXpoll

treply1 = TXresp − RXpoll

tround2 = RXfinal − TXresp

treply2 = TXfinal − RXresp

(5.3)

Additionally, we can define tround1 and tround1 in terms of ttof , treply1 and treply2:

tround1 = 2ttof + treply1

tround2 = 2ttof + treply2
(5.4)

We can multiply both tround1 and tround2:

tround1 ∗ tround2 = (2ttof + treply1) ∗ 2ttof + treply2 (5.5)

If we isolate ttof , it gives us:

41

ttof = tround1 ∗ tround2 − treply1 ∗ treply2

tround1 + tround2 + treply1 + treply2
(5.6)

Finally, we can compute the distance between device A and device B by
multiplying ttof with the speed of light.

Figure 24 displays an overall picture of the whole exchange of messages.

Figure 24: Message exchanges of double sided two way ranging

Compared to single-sided two-way ranging, this method is less affected by clock
offset errors. Indeed, according to the DW1000 user manual [2], even with a clock
offset error of 20 ppm, the induced error in the time of flight estimation is in the
order of the picoseconds. Yet, error analysis only based on clock drift errors doesn’t
provide the full picture, and other sources of errors still persist which influences
the accuracy of the real measurements if they aren’t mitigated. [31]

42

5.2 Implementations
The implementations of the two methods described here are based on the code

provided by Qorvo in their implementation of the DW1000 driver [8] and on the
information contained in the user manual [2]. The codes of the protocols are a
simple translation of the code provided to the Erlang programming language using
the API of the driver implemented in the last two chapters.

5.2.1 Single-sided two-way ranging
The implementation of the single-sided two-way ranging can be found in ap-

pendix C.4 It is composed of two processes that should be run on two different
GRiSP boards. Both processes will by default try to perform 250 frame ex-
changes but this value can be changed by modifying the value of the macro
NBR_MEASUREMENTS.

The first process, ss_initiator/0, is the initator of the protocol. It will send
the poll message, receive the response from the responder, and compute the distance
between the two boards. It starts by setting up the transmission and reception
antenna delay. These values are added to the raw timestamps to compensate for
the delay between the internal digital timestamp of the RMARKER and the actual
time the RMARKER is at the antenna [2]. Afterward, the process will call the
protocol loop and start performing the measurements. One iteration of the protocol
loop performs the following steps:

1. Send the poll message, a MAC data frame with the payload value "GRiSP"

2. Receive the response message from the responder and extracts the timestamps
values

3. Read the value of TX_STAMP and RX_STAMP , which represent the
timestamp of the transmission of the poll message and the timestamp of the
reception of the response respectively

4. Compute the value of tround and treply in the device time units which are
around 15.65 picoseconds

5. Get the clock offset ratio between the two devices computed by the DW1000
at the reception

6. Compute the time of flight by using equation 5.2 applied with a correction of
the clock offset and by multiplying the result by 15.65e − 12 to convert the
value in DW1000 time unit in seconds

43

7. Compute the distance by multiplying the time of flight converted in seconds
with the speed of light

The clock offset compensation is an addition by the Qorvo engineers in the DW1000
API example code [8] to increase the accuracy of the measurements by reducing
the error induced by the difference of the clock frequencies of the two devices.

The second process, ss_responder/0 is the responder of the protocol. It will
receive the poll message and responds with a message including the reception and
transmission timestamps. Like the initiator, the process starts by setting up the
antenna delay and then starts the protocol loop. One iteration of the loop performs
the following steps:

1. Receive the poll message from the initiator

2. Read the reception timestamp of the poll message

3. Compute the delayed transmission time by adding 20000µs converted to the
DW1000 time unit to the reception timestamp.

4. Write the delayed transmission time in DX_TIME

5. Compute the estimated transmission time with the antenna delay based on
the delayed transmission time computed in the previous step

6. Send a MAC data frame containing the reception timestamp of the poll
message and the estimated transmission timestamp of the response message

The delay added before the transmission of the response at step 3 is set to let
enough time for the driver to perform steps 2 to 6 after the reception of the first
message. If this value is smaller, the responder won’t have the time to perform
these steps before the planned transmission time and make the protocol fail.

5.2.2 Double-sided two-way ranging
Similarly to the single-sided two-way ranging, the double-sided two-way ranging

protocol implementation is composed of two processes that should be run on two
different GRiSP boards. Their implementation can be found in appendix C.5.

When the protocol starts, the boards will perform 250 measurements before
providing the measurements of the exchange. However, this time, the computation
of the distance is done in the responder instead of the initiator. Both processes
start by setting up their antenna delay and then start their protocol loop.

44

The protocol loop of the initiator performs the following operations:

1. Send the poll message to the responder

2. Receive the response message from the responder.

3. Read the transmission timestamp value of the poll message and the reception
timestamp of the response message

4. Compute the delayed transmission time by adding to the reception timestamp,
30000µs converted to DW1000 time unit and write the result in DX_TIME

5. Compute the estimated transmission time of the final message by adding the
antenna delay to the delayed transmission time computed in the previous
step

6. Send a MAC data frame containing the transmission timestamp of the poll
message, the reception timestamp of the response message, and the estimated
transmission timestamp of the final message

The protocol loop of the responder performs the following operations:

1. Receive the poll message from the initiator and read the reception timestamp

2. Compute the delayed transmission time of the poll message by adding 30000µs
converted to DW1000 time units to the reception timestamp value and writes
it in DX_TIME

3. Transmit the response message with a payload value set to "Resp_TX".

4. Receive the final message from the initiator and extract the different times-
tamps inside the data payload

5. Read the transmission timestamp of the response message and the reception
timestamp of the final message

6. Compute rround1, tround2, treply1, treply2 using the different timestamps as
described in equation 5.3

7. Compute ttof in seconds by using equation 5.6 and converting its result to
seconds.

8. Compute the distance in meters between the two devices by multiplying ttof

with the speed of light

45

5.2.3 Counter wrap around
In some cases, for both methods, the measured distance can have a massive

negative value. This is due to a wrap-around in one of the device counters during
the exchange of messages. Consequently, one of the values computed either with
equation 5.1 for the single-sided method or with equation 5.3 in the case of the
double-sided method has a negative value. This could happen quite often because
the counter wrap-around period of the clock is 17.2074 seconds. Therefore, in
the implementation of both methods, the measurement performed is thrown away
if the natural order of the timestamps isn’t respected. For example, in single-
sided two-way ranging, the result isn’t saved if the reception timestamp of the
response is smaller than the transmission timestamp of the polling message or if the
transmission timestamp of the response is smaller than the reception timestamp of
the polling message.

5.3 Measurements
The first series of measurements have been performed by placing the devices

at a known distance without moving them during the whole operation. For each
two-way ranging method, one measurement has been performed at 25cm, at 2m
with a clear line of sight, and at 2.5m with a wall between the initiator and the
responder (i.e. without a clear line of sight). Table 5.1 gives the results of these
static measurements:

Type of
Measure Method

Average
distance

(m)

Standard
deviation

(m)

Minimum
(m)

Maximum
(m)

25cm single sided -0.6107 0.6827 -2.5945 0.6146
double sided -0.1942 0.1496 -0.4381 0.0983

2m clear
line of sight

single sided 2.8383 0.4531 1.8274 3.9669
double sided 2.0969 0.1516 1.8191 2.4192

2.5m no clear
line of sight

single sided 1.8247 0.38775 1.401 2.5382
double sided 2.2730 0.1464 1.9918 2.5996

Table 5.1: Different measurements results made with single-sided two-way ranging
and double-sided two-way ranging

The first elements we can see from these results are the negative values at
close range. They are probably linked to the fact that the devices are not fully
calibrated.

46

Secondly, we can observe that the standard deviations of the double-sided two-
way ranging methods are all within ∼ 15cm. This shows that the measurements
aren’t too spread out. Additionally, when we look at the single-sided two-way
ranging, the standard deviation of the three measures shows that the measurements
are more spread out and thus less precise. The average distance measured is also
way less precise even with the clock offset correction introduced by Qorvo. Yet, the
average distances measured are all within the 1-meter range which is more accurate
than expected with the long treply of the implementation.

Thirdly, we can see that even without a clear line of sight, the measured distance
is still precise which corroborates with the results of [13].

Figure 25: Graph showing the measured distance

Finally, a last set of measures has been performed with the double-sided two-way
ranging method. This time, compared to the previous measurements done, one

47

device moved during the execution of the protocol.
More precisely, at the start, the devices were placed at a distance of 30cm. Then

one of the devices moved at a distance of 2m where it stayed for a short period
of time. Finally, the board was moved again at a distance of 3m from the other
device and stayed there until the end of the measurements.

The plot in figure 25 shows the evolution of the measured distance over time.
On the graph, the different stages of the experiments are visible with two distinct
plateaux.

48

Chapter 6

Conclusion

6.1 Future work
Even though the objectives of this thesis were met. The current implementation

of the driver and MAC layer can still be improved. This section details the possible
upgrades that could be applied.

6.1.1 Improvement of the driver
First of all, the driver could be optimized to increase the data rate of an exchange

of frames between two devices. The read/write operations were written with the
idea of having a reliable and uniform implementation, thus no optimization was
applied. However, these two operations are used by all the upper layers, meaning
that if they are slow they will also affect the performances of the operations above
them. One possible enhancement could be that when a user writes a value in a
register file, its whole content is read first, then the value is changed and finally
the whole content is written again. This procedure works correctly but in the case
where a user wants to change the value of a single-bit flag, this method is quite
inefficient. One could try to optimize that process by using offset and requesting
the least amount of bytes possible while reading the register file.

Second, a more precise calibration of the devices should be done to increase the
accuracy of the measurements but also avoid negative values at close range.

Third, the transmission of a frame will be a central element of all the potential
applications that could be built on top of the driver. For that reason, we don’t want
this operation to be a bottleneck for future implementations. A big improvement
of that functionality would be to build a Native Implemented Function (NIF). This
would give us the advantage of the speed of the C programming language, but also
we would give more control over its execution. For example, we would be able to

49

give higher priorities on the hardware level to avoid preemption from the CPU.
Fourth, this work was more focused on having basic functionalities like transmis-

sion and reception working than applying possible optimization. However, power
optimization is an important point of any low-power IoT applications. In the future,
the driver should support the sleep and deep sleep functionalities of the DW1000
to reduce power consumption when the device is idle.

In addition, the DW1000 also supports a non-standard PHY packet size of 1023
bytes. Even though packets of this size don’t comply with the IEEE 802.15.4-2011
standard anymore if the data rate isn’t sufficient for a specific application, one can
extend the driver to support this extended frame size.

Finally, the double buffering mode of the DW1000 wasn’t exploited in this study
and the current version of the driver doesn’t support it. With this feature enabled,
the DW1000 is able to receive a frame while the host system performs operations
on previously received data and thus should increase the transmission data rate.
For that reason, future work should extend the driver to enable data exchanges
using the double buffering mode.

6.1.2 MAC layer
With the current implementation of the MAC layer, an application is only able

to encode a MAC frame before the transmission, decode a received MAC frame, and
use the AUTOACK functionality of the DW1000. However, this covers only a small
area of the functionalities and the responsibilities of the layer. Some functionalities
like CSMA-CA are crucial for any potential applications using a network of devices.
Hence, it is primordial to extend this layer before building the upper layers.

Additionally, no security is implemented on the current MAC layer. Nevertheless,
IOT security is something important as more and more IOT devices are present in
our daily lives. Thus, this aspect of the MAC layer shouldn’t be overlooked and
security support should be implemented in a future extension of the MAC layer.

6.1.3 Upper layers
Since the DW1000 is IEEE 802.15.4-2011 compliant, any upper level supporting

this standard could be implemented on top of this work. In particular, an imple-
mentation of 6LoWPAN on the GRiSP is something that would open the door
to a lot of IoT applications needing low power communication over a network of
nodes inside a PAN. The cards could, for example, carry other pmods to perform
different measurements and use 6LoWPAN over UWB communications to send
them to a border router.

In addition, on top of 6LoWPAN, the Thread protocol is used by big companies
in the IOT industry. Implementing the protocol on GRiSP could make the card

50

interoperable with smart home solutions already available in the market.

6.1.4 Adaptation of the GRiSP toolchain
The DW1000 allows the host to trigger a reset through the RSTn pin. Addi-

tionally, as described in section 3.1, on the rising edge of the signal, the GPIO 5
and 6 (controlling the SPIPOL and SPIPHA) are sampled. However, according
to the DW1000 datasheet [3], the GPIO pin controlling the RSTn line should be
configured as high-impedance. This type of setting for the pins of the GRiSP 2 isn’t
supported yet by the GRiSP runtime library and the GRiSP toolchain. Indeed,
currently, GRiSP 2 uses a static Flattened Device Tree (FDT) to configure the
hardware through the RTEMS Board Support Packages (BSP) and the bootloader.
To let a user change the settings of a single pin at the initialization of a driver,
future work should adapt the toolchain to support FDT overlays which will allow
overwriting entries of the FDT to correctly setup the GPIO pin and then trigger a
reset on the DW1000.

6.2 Results
To conclude, this thesis displays a successful implementation of a driver for the

new pmod UWB built by the company Peer Stritzinger GMbH. On top of this,
a simple MAC layer has been developed to send and receive MAC frames. The
measurements performed on that layer showed that the current implementation is
already able to achieve transmission at a data rate of 324443.7 bps (32.44 kb/s).
Using the implemented MAC layer, it was then possible to perform two-way ranging
with the single-sided two-way ranging and double-sided two-way ranging methods.
Once again, the different measurements done with both methods were satisfying.
The single-sided method revealed to be more precise than expected due to the
introduction of the carrier integrator value by the engineer of Qorvo in their own
implementation of the method and used as a basis in this work. Furthermore,
the results of the double-sided methods showed a great ranging accuracy with
a relatively small standard deviation within a sample of static measurements.
Additionally, the results provided by both methods on ranging operations without
a clear line of sight are consistent with the literature and show the ability of the
UWB technology to penetrate through obstacles and achieve data transmission
and accurate ranging operations.

All the code of the driver, the upper layers, and the examples used in this thesis
can be found in the appendix of this document as well as on the GitHub repository
of this work 1.

1https://github.com/GwendalLaurent/pmod_uwb

51

https://github.com/GwendalLaurent/pmod_uwb

Chapter 7

Bibliography

[1] IEEE Computer Society, “IEEE Standard for Local and metropolitan
area networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-
WPANs),” IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pp.
1–314, 2011.

[2] DW1000 user manual, Decawave (Qorvo), 2017, version 2.18.

[3] Qorvo, “DW1000 datasheet,” 2017, rev. 2.22.

[4] Win, Moe Z and Scholtz, Robert A, “On the robustness of ultra-wide bandwidth
signals in dense multipath environments,” IEEE Communications letters, vol. 2,
no. 2, pp. 51–53, 1998.

[5] R. S. Kshetrimayum, “An introduction to UWB communication systems,”
IEEE Potentials, vol. 28, no. 2, pp. 9–13, 2009.

[6] Getting Back to Basics with Ultra-Wideband (UWB), Qorvo, May 2021, White
paper.

[7] Samsung, “Samsung Announces Ultra-Wideband Chipset With
Centimeter-Level Accuracy for Mobile and Automotive Devices,”
21/03/2023. [Online]. Available: https://news.samsung.com/global/
samsung-announces-ultra-wideband-chipset-with-centimeter-level-accuracy

[8] Qorvo, “DW1000 API with STM32F10x Application Examples.” [Online].
Available: https://www.qorvo.com/products/d/da008000

[9] S. Kalbusch, V. Verpoten, and P. Van Roy, “The Hera framework for fault-
tolerant sensor fusion on an Internet of Things network with application to
inertial navigation and tracking,” Ph.D. dissertation, Master’s thesis. UCLou-
vain. http://hdl. handle. net/2078.1/thesis: 30740, 2021.

52

https://news.samsung.com/global/samsung-announces-ultra-wideband-chipset-with-centimeter-level-accuracy
https://news.samsung.com/global/samsung-announces-ultra-wideband-chipset-with-centimeter-level-accuracy
https://www.qorvo.com/products/d/da008000

[10] S. Bojabza and P. Van Roy, “ Protocol stack for 802.15. 4 based personal
network (6LoWPAN)[GRiSP project with Stritzinger].”

[11] Yang, Liuqing and Giannakis, Georgios B, “Ultra-wideband communications:
an idea whose time has come,” IEEE signal processing magazine, vol. 21, no. 6,
pp. 26–54, 2004.

[12] Porcino, Domenico and Hirt, Walter, “Ultra-wideband radio technology: po-
tential and challenges ahead,” IEEE communications magazine, vol. 41, no. 7,
pp. 66–74, 2003.

[13] Li, Jing and Zeng, Zhaofa and Sun, Jiguang and Liu, Fengshan, “Through-wall
detection of human being’s movement by UWB radar,” IEEE Geoscience and
Remote Sensing Letters, vol. 9, no. 6, pp. 1079–1083, 2012.

[14] Macoir, Nicola and Bauwens, Jan and Jooris, Bart and Van Herbruggen,
Ben and Rossey, Jen and Hoebeke, Jeroen and De Poorter, Eli, “Uwb lo-
calization with battery-powered wireless backbone for drone-based inventory
management,” Sensors, vol. 19, no. 3, p. 467, 2019.

[15] Yao, Leehter and Wu, Yeong-Wei Andy and Yao, Lei and Liao, Zhe Zheng,
“An integrated IMU and UWB sensor based indoor positioning system,” in
2017 International Conference on Indoor Positioning and Indoor Navigation
(IPIN). IEEE, 2017, pp. 1–8.

[16] Kamel Boulos, Maged N and Berry, Geoff, “Real-time locating systems (RTLS)
in healthcare: a condensed primer,” International journal of health geographics,
vol. 11, no. 1, pp. 1–8, 2012.

[17] GRiSP, “GRiSP technical specifications,” https://www.grisp.org/specs/, 2021.

[18] RTEMS, “RTEMS real time operating system (RTOS),” https://www.rtems.
org/, 2021.

[19] F. Leens, “An introduction to I 2 C and SPI protocols,” IEEE Instrumentation
& Measurement Magazine, vol. 12, no. 1, pp. 8–13, 2009.

[20] AN991/D: Using the Serial Peripheral Interface to Communicate Between
Multiple Microcomputers, NXP Semiconductors, 2002, rev. 1.

[21] Qorvo, “DWM1000 datasheet,” 2016, rev. 1.8.

[22] Ericsson, “gen_server Behaviour,” 2023. [Online]. Avail-
able: https://www.erlang.org/doc/design_principles/gen_server_concepts.
html#synchronous-requests---call

53

https://www.grisp.org/specs/
https://www.rtems.org/
https://www.rtems.org/
https://www.erlang.org/doc/design_principles/gen_server_concepts.html#synchronous-requests---call
https://www.erlang.org/doc/design_principles/gen_server_concepts.html#synchronous-requests---call

[23] GRiSP, “grisp,” https://github.com/grisp/grisp, 2023.

[24] Fred Hebert, “Who Supervises The Supervisors?” n.d. [Online]. Available:
https://learnyousomeerlang.com/supervisors

[25] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE
microwave magazine, vol. 4, no. 2, pp. 36–47, 2003.

[26] Correlation. John Wiley Sons, Ltd, 2000, ch. 9, pp. 349–392. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/047120059X.ch9

[27] Win, Moe Z and Scholtz, Robert A, “Impulse radio: How it works,” IEEE
Communications letters, vol. 2, no. 2, pp. 36–38, 1998.

[28] Dardari, Davide and Conti, Andrea and Ferner, Ulric and Giorgetti, Andrea
and Win, Moe Z, “Ranging with ultrawide bandwidth signals in multipath
environments,” Proceedings of the IEEE, vol. 97, no. 2, pp. 404–426, 2009.

[29] Ghavami, Mohammad and Michael, Lachlan and Kohno, Ryuji, Ultra wideband
signals and systems in communication engineering. John Wiley & Sons, 2007.

[30] A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Al-Hadhrami, M. A. Al-
Ammar, and H. S. Al-Khalifa, “Ultra wideband indoor positioning technologies:
Analysis and recent advances,” Sensors, vol. 16, no. 5, p. 707, 2016.

[31] C. Lian Sang, M. Adams, T. Hörmann, M. Hesse, M. Porrmann, and U. Rückert,
“Numerical and experimental evaluation of error estimation for two-way ranging
methods,” Sensors, vol. 19, no. 3, p. 616, 2019.

54

https://github.com/grisp/grisp
https://learnyousomeerlang.com/supervisors
https://onlinelibrary.wiley.com/doi/abs/10.1002/047120059X.ch9

Appendix A

Driver code

1 -define (ENABLED , 2#1).
2 -define (DISABLED , 2#0).
3 -type flag () :: ? DISABLED | ? ENABLED .
4

5 -type miliseconds () :: integer ().
6 % w4r_tim is the delay between the tx is done and the moment the

rx will be enabled (it is not a timeout)
7 -record (tx_opts , { wait4resp = ? DISABLED :: flag (), w4r_tim = 0 ::

miliseconds (), txdlys = ? DISABLED :: flag (), tx_delay = 300 ::
integer ()}).

8

9 % map the r/w bit of the transaction header
10

11 -type writeOnly () :: tx_buffer .
12 -type readOnly () :: dev_id | sys_time | rx_finfo | rx_buffer |

rx_fqual | rx_ttcki | rx_ttcko | rx_time | tx_time | sys_state
| acc_mem .

Listing A.1: pmod_uwb.hrl

1 -module (pmod_uwb).
2 -behaviour (gen_server).
3

4 %% API
5 -export ([start_link /2]).
6 -export ([init /1, handle_call /3, handle_cast /2]).
7 -export ([read /1, write /2, write_tx_data /1, get_received_data /0,

transmit /1, transmit /2, wait_for_transmission /0, reception /0,
reception /1]).

8 -export ([set_frame_timeout /1]).
9 -export ([softreset /0, clear_rx_flags /0]).

10

11 -compile ({ nowarn_unused_function , [debug_read /2, debug_write /2,
debug_write /3, debug_bitstring /1, debug_bitstring_hex /1]}).

55

12

13 % Include for the record " device "
14 -include ("grisp.hrl").
15

16 -include (" pmod_uwb .hrl").
17

18 % Define the polarity and the phase of the clock
19 -define (SPI_MODE , #{clock => {low , leading }}).
20

21 -define (WRITE_ONLY_REG_FILE (RegFileID), RegFileID == tx_buffer).
22 -define (READ_ONLY_REG_FILE (RegFileID), RegFileID == dev_id ;

RegFileID == sys_time ; RegFileID == rx_finfo ; RegFileID == rx_buffer ;
RegFileID == rx_fqual ; RegFileID == rx_ttcko ;

23 RegFileID == rx_time ;
RegFileID == tx_time ; RegFileID == sys_state ; RegFileID == acc_mem).

24

25 % The congifurations of the subregisters of these register files
are different (some sub - registers are RO , some are RW and some
have reserved bytes that can ’t be written)

26 % Thus , some registers files require to write their sub - register
independently => Write the sub - registers one by one instead of
writting the whole register file directly

27 -define (IS_SRW (RegFileID), RegFileID == agc_ctrl ; RegFileID ==
ext_sync ; RegFileID == ec_ctrl ; RegFileID == gpio_ctrl ; RegFileID ==
drx_conf ; RegFileID == rf_conf ; RegFileID == tx_cal ;

28 RegFileID == fs_ctrl ; RegFileID == aon;
RegFileID == otp_if ; RegFileID == lde_if ; RegFileID == dig_diag ;
RegFileID == pmsc).

29

30 -define (READ_ONLY_SUB_REG (SubRegister), SubRegister == irqs;
SubRegister == agc_stat1 ; SubRegister == ec_rxtc ; SubRegister ==
ec_glop ; SubRegister == drx_car_int ;

31 SubRegister == rf_status ;
SubRegister == tc_sarl ; SubRegister == sarw; SubRegister ==
tc_pg_status ; SubRegister == lde_thresh ;

32 SubRegister == lde_ppindx ;
SubRegister == lde_ppampl ; SubRegister == evc_phe ; SubRegister ==
evc_rse ; SubRegister == evc_fcg ;

33 SubRegister == evc_fce ;
SubRegister == evc_ffr ; SubRegister == evc_ovr ; SubRegister ==
evc_sto ; SubRegister == evc_pto ;

34 SubRegister == evc_fwto ;
SubRegister == evc_txfs ; SubRegister == evc_hpw ; SubRegister ==
evc_tpw).

35

36 -type regFileID () :: atom ().
37

38

39 % --- API

56

40

41 %% @private
42 start_link (Connector , _Opts) ->
43 gen_server : start_link ({local , ? MODULE }, ?MODULE , Connector , []

).
44

45

46 %%

47 %% @doc read a register file
48 %%
49 %% === Example ===
50 %% To read the register file DEV_ID
51 %% ‘‘‘
52 %% 1> pmod_uwb :read(dev_id).
53 %% #{model => 1,rev => 0, ridtag => "DECA",ver => 3}
54 %% ’’’
55 %% @end
56 %%

57 -spec read(RegFileID :: regFileID ()) -> map () | {error , any ()}.
58 read(RegFileID) when ? WRITE_ONLY_REG_FILE (RegFileID) ->
59 error({ read_on_write_only_register , RegFileID });
60 read(RegFileID) -> call({read , RegFileID }).
61

62 %%

63 %% @doc Write values in a register
64 %%
65 %% === Examples ===
66 %% To write in a simple register file (i.e. a register without any

sub - register):
67 %% ‘‘‘
68 %% 1> pmod_uwb :write(eui , #{eui => 16# AAAAAABBBBBBBBBB }).
69 %% ok
70 %% ’’’
71 %% To write in one sub - register of a register file:
72 %% ‘‘‘
73 %% 2> pmod_uwb :write(panadr , #{ pan_id => 16# AAAA}).
74 %% ok
75 %% ’’’
76 %% The previous code will only change the values inside the sub -

register PAN_ID
77 %%

57

78 %% To write in multiple sub - register of a register file in the
same burst:

79 %% ‘‘‘
80 %% 3> pmod_uwb :write(panadr , #{ pan_id => 16# AAAA , short_addr =>

16# BBBB}).
81 %% ok
82 %% ’’’
83 %% Some sub - registers have their own fields . For example to set

the value of the DIS_AM field in the sub - register AGC_CTRL1 of
the register file AGC_CTRL :

84 %% ‘‘‘
85 %% 4> pmod_uwb :write(agc_ctrl , #{ agc_ctrl1 => #{ dis_am => 2#0}}).
86 %% ’’’
87 %% @end
88 %%

89 -spec write(RegFileID :: regFileID (), Value :: map ()) -> ok | {
error , any ()}.

90 write(RegFileID , Value) when ? READ_ONLY_REG_FILE (RegFileID) ->
91 error({ write_on_read_only_register , RegFileID , Value});
92 write(RegFileID , Value) when is_map (Value) ->
93 call({write , RegFileID , Value}).
94

95 %%

96 %% @doc Writes the data in the TX_BUFFER register
97 %%
98 %% Value is expected to be a Binary
99 %% That choice was made to make the transmission of frames easier

later on
100 %%
101 %% === Examples ===
102 %% Send "Hello" in the buffer
103 %% ‘‘‘
104 %% 1> pmod_uwb : write_tx_data (<<" Hello ">>).
105 %% ’’’
106 %% @end
107 %%

108 -spec write_tx_data (Value :: binary ()) -> ok | {error , any ()}.
109 write_tx_data (Value) -> call({write_tx , Value}).
110

111 %%

112 %% @doc Retrieves the data received on the UWB antenna

58

113 %% @returns {DataLength , Data}
114 %% @end
115 %%

116 -spec get_received_data () -> { integer (), bitstring ()} | {error ,
any ()}.

117 get_received_data () -> call({ get_rx_data }).
118

119 %%

120 %% @doc Transmit data with the default options (i.e. don ’t wait
for resp , no delayn ...)

121 %%
122 %% === Examples ===
123 %% To transmit a frame:
124 %% ‘‘‘
125 %% 1> pmod_uwb : transmit (< Version :4, NextHop :8>>).
126 %% ok.
127 %% ’’’
128 %% @end
129 %%

130 -spec transmit (Data :: bitstring ()) -> ok | {error , any ()}.
131 transmit (Data) when is_bitstring (Data) ->
132 call({transmit , Data , # tx_opts {}}),
133 wait_for_transmission ().
134

135 %%

136 %% @doc Performs a transmission with the specified options
137 %%
138 %% === Options ===
139 %% * wait4resp : It specifies that the reception must be enabled

after the transmission in the expectation of a response
140 %% * w4r -tim: Specifies the turn around time in microseconds . That

is the time the pmod will wait before enabling rx after a tx.
Note that it won ’t be set if wit4resp is disabled

141 %% * txdlys : Specifies if the transmitter delayed sending should
be set

142 %% * tx_delay : Specifies the delay of the transmission (see
register DX_TIME)

143 %%
144 %% === Examples ===
145 %% To transmit a frame with default options :
146 %% ‘‘‘

59

147 %% 1> pmod_uwb : transmit (< Version :4, NextHop :8>>, # tx_opts {}).
148 %% ok.
149 %% ’’’
150 %% @end
151 %%

152 transmit (Data , Options) ->
153 case Options # tx_opts . wait4resp of
154 ? ENABLED -> clear_rx_flags ();
155 _ -> ok
156 end ,
157 call({transmit , Data , Options }),
158 case read(sys_status) of
159 #{ hdpwarn := 2#1} -> error({ hdpwarn });
160 _ -> ok
161 end ,
162 wait_for_transmission ().
163

164 %% Wait for the transmission to be performed
165 %% usefull in the case of a delayed transmission
166 wait_for_transmission () ->
167 case read(sys_status) of
168 #{txfrs := 1} -> ok;
169 _ -> wait_for_transmission ()
170 end.
171

172 %%

173 %% @doc Receive data using the pmod
174 %% @equiv reception (false)
175 %%
176 %% @end
177 %%

178 -spec reception () -> { integer (), bitstring ()} | {error , any ()}.
179 reception () ->
180 reception (false).
181

182 %%

183 %% @doc Receive data using the pmod
184 %%
185 %% The function will hang until a frame is received on the board
186 %%
187 %% The CRC of the received frame isn ’t included in the

60

returned value
188 %%
189 %% @param RXEnabled : specifies if the reception is already enabled

on the board (or set with delay)
190 %%
191 %% === Example ===
192 %% ‘‘‘
193 %% 1> pmod_uwb : reception ().
194 %% % Some frame is transmitted
195 %% {11, <<"Hello world">>}.
196 %% ’’’
197 %% @end
198 %%

199 -spec reception (RXEnabled :: boolean ()) -> { integer (), bitstring ()
} | {error , any ()}.

200 reception (RXEnabled) ->
201 if not RXEnabled -> enable_rx ();
202 true -> ok
203 end ,
204 case wait_for_reception () of
205 ok -> % write(sys_status , #{rxfcg => 1}),
206 get_received_data ();
207 Err -> Err
208 end.
209

210

211 %% @private
212 enable_rx () ->
213 % io: format (" Enabling reception ~n"),
214 clear_rx_flags (),
215 call({write , sys_ctrl , #{ rxenab => 2#1}}).
216

217 wait_for_reception () ->
218 % io: format (" Wait for resp~n"),
219 case read(sys_status) of
220 #{ rxrfto := 1} -> rxrfto ;
221 #{rxphe := 1} -> rxphe;
222 #{rxfce := 1} -> rxfce;
223 #{ rxrfsl := 1} -> rxrfsl ;
224 #{rxpto := 1} -> rxpto;
225 #{ rxsfdto := 1} -> rxsfdto ;
226 #{ ldeerr := 1} -> ldeerr ;
227 #{ affrej := 1} -> affrej ;
228 #{rxdfr := 0} -> wait_for_reception ();
229 #{rxfce := 1} -> rxfce;
230 #{rxfcg := 1} -> ok;
231 #{rxfcg := 0} -> wait_for_reception ();

61

232 % #{rxdfr := 1, rxfcg := 1} -> ok; % The example driver
doesn ’t do that but the user manual says that how you should
check the reception of a frame

233 _ -> error({ error_wait_for_reception })
234 end.
235

236 %%

237 %% @doc Set the frame wait timeout and enables it
238 %% @end
239 %%

240 -spec set_frame_timeout (Timeout :: miliseconds ()) -> ok.
241 set_frame_timeout (Timeout) ->
242 write(rx_fwto , #{ rxfwto => Timeout }),
243 write(sys_cfg , #{ rxwtoe => 2#1}). % enable receive wait

timeout
244

245 %%

246 %% @doc Performs a reset of the IC following the procedure
described in section 7.2.50.1

247 %%
248 %% @end
249 %%

250 softreset () ->
251 write(pmsc , #{ pmsc_ctrl0 => #{ sysclks => 2#01}}),
252 write(pmsc , #{ pmsc_ctrl0 => #{ softrest => 16#0}}),
253 write(pmsc , #{ pmsc_ctrl0 => #{ softreset => 16# FFFF}}).
254

255

256 clear_rx_flags () ->
257 write(sys_status , #{ rxsfdto => 2#1, rxpto => 2#1, rxrfto =>

2#1, rxrfsl => 2#1, rxfce => 2#1, rxphe => 2#1, rxprd => 2#1,
rxdsfdd => 2#1, rxphd => 2#1, rxdfr => 2#1, rxfcg => 2#1}).

258

259 % --- Callbacks

260

261 %% @private
262 init(Slot) ->
263 % Verify the slot used
264 case { grisp_hw : platform (), Slot} of

62

265 {grisp2 , spi2} -> ok;
266 {P, S} -> error({ incompatible_slot , P, S})
267 end ,
268 grisp_devices : register (Slot , ? MODULE),
269 Bus = grisp_spi :open(Slot),
270 case verify_id (Bus) of
271 ok -> softreset (Bus);
272 Val -> error({ dev_id_no_match , Val})
273 end ,
274 ldeload (Bus),
275 write_default_values (Bus),
276 config (Bus),
277 setup_sfd (Bus),
278 {ok , #{bus => Bus}}.
279

280 %% @private
281 handle_call ({read , RegFileID }, _From , #{bus := Bus} = State) -> {

reply , read_reg (Bus , RegFileID), State};
282 handle_call ({write , RegFileID , Value}, _From , #{bus := Bus} =

State) -> {reply , write_reg (Bus , RegFileID , Value), State};
283 handle_call ({write_tx , Value}, _From , #{bus := Bus} = State) -> {

reply , write_tx_data (Bus , Value), State};
284 handle_call ({transmit , Data , Options }, _From , #{bus := Bus} =

State) -> {reply , tx(Bus , Data , Options), State};
285 handle_call ({ delayed_transmit , Data , Delay}, _From , #{bus := Bus}

= State) -> {reply , delayed_tx (Bus , Data , Delay), State};
286 handle_call ({ get_rx_data }, _From , #{bus := Bus} = State) -> {reply

, get_rx_data (Bus), State};
287 handle_call (Request , _From , _State) -> error({ unknown_call ,

Request }).
288

289 %% @private
290 handle_cast (Request , _State) -> error({ unknown_cast , Request }).
291

292 % --- Internal
--

293

294 call(Call) ->
295 Dev = grisp_devices : default (? MODULE),
296 gen_server :call(Dev# device .pid , Call).
297

298

299 %%

300 %% @doc Varify the dev_id register of the pmod
301 %% @returns ok if the value is correct , otherwise the value read
302 %%

63

303 verify_id (Bus) ->
304 #{ ridtag := RIDTAG , model := MODEL} = read_reg (Bus , dev_id),
305 case {RIDTAG , MODEL} of
306 {"DECA", 1} -> ok;
307 _ -> {RIDTAG , MODEL}
308 end.
309

310 %%

311 %% @private
312 %% Performs a softreset on the pmod
313 %%

314 softreset (Bus) ->
315 write_reg (Bus , pmsc , #{ pmsc_ctrl0 => #{ sysclks => 2#01}}),
316 write_reg (Bus , pmsc , #{ pmsc_ctrl0 => #{ softrest => 16#0}}),
317 write_reg (Bus , pmsc , #{ pmsc_ctrl0 => #{ softreset => 16# FFFF}})

.
318

319 %%

320 %% @private
321 %% Writes the default values described in section 2.5.5 of the

user manual
322 %%

323 write_default_values (Bus) ->
324 write_reg (Bus , lde_if , #{ lde_cfg1 => #{ntm => 16#D}, lde_cfg2

=> 16#1607 }),
325 write_reg (Bus , agc_ctrl , #{ agc_tune1 => 16#8870 , agc_tune2 =>

16#2502 A907}),
326 write_reg (Bus , drx_conf , #{ drx_tune2 => 16#311 A002D}),
327 write_reg (Bus , tx_power , #{ tx_power => 16#0 E082848 }),
328 write_reg (Bus , rf_conf , #{ rf_txctrl => 16#001 E3FE3}),
329 write_reg (Bus , tx_cal , #{ tc_pgdelay => 16# B5}),
330 write_reg (Bus , fs_ctrl , #{ fs_plltune => 16# BE}).
331

332 %%

333 %% @private
334 %%

64

335 config (Bus) ->
336 write_reg (Bus , ext_sync , #{ ec_ctrl => #{ pllldt => 2#1}}),
337 % write_reg (Bus , pmsc , #{ pmsc_ctrl1 => #{ lderune => 2#0}}),
338 % Now enable RX and TX leds
339 write_reg (Bus , gpio_ctrl , #{ gpio_mode => #{msgp2 => 2#01 ,

msgp3 => 2#01}}),
340 % Enable RXOK and SFD leds
341 write_reg (Bus , gpio_ctrl , #{ gpio_mode => #{msgp0 => 2#01 ,

msgp1 => 2#01}}),
342 write_reg (Bus , pmsc , #{ pmsc_ctrl0 => #{gpdce => 2#1, khzclken

=> 2#1}}),
343 write_reg (Bus , pmsc , #{ pmsc_ledc => #{ blnken => 2#1}}),
344 write_reg (Bus , dig_diag , #{ evc_ctrl => #{ evc_en => 2#1}}), %

enable counting event for debug purposes
345 % write_reg (Bus , sys_cfg , #{ rxwtoe => 2#1}),
346 write_reg (Bus , tx_fctrl , #{txpsr => 2#10}). % Setting preamble

symbols to 1024
347

348

349 %%

350 %% @private
351 %% Load the microcode from ROM to RAM
352 %% It follows the steps described in section 2.5.5.10 of the

DW1000 user manual
353 %%

354 ldeload (Bus) ->
355 write_reg (Bus , pmsc , #{ pmsc_ctrl0 => #{ sysclks => 2#01}}),
356 write_reg (Bus , pmsc , #{ pmsc_ctrl0 => #{otp => 2#1, res8 => 2#1

}}), % Writes 0x0301 in pmsc_ctrl0
357 write_reg (Bus , otp_if , #{ otp_ctrl => #{ ldeload => 2#1}}), %

Writes 0x8000 in OTP_CTRL
358 timer:sleep (150) , % User manual requires a wait of 150 s
359 write_reg (Bus , pmsc , #{ pmsc_ctrl0 => #{ sysclks => 2#0}}), %

Writes 0x0200 in pmsc_ctrl0
360 write_reg (Bus , pmsc , #{ pmsc_ctrl0 => #{res8 => 2#0}}).
361

362 %%

363 %% @private
364 %% If no frame is transmitted before AUTOACK , then the SFD isn ’t

properly set
365 %% (cf. section 5.3.1.2 SFD initialisation)
366 %%

65

367 setup_sfd (Bus) ->
368 write_reg (Bus , sys_ctrl , #{ txstrt => 2#1, trxoff => 2#1}).
369

370 %%

371 %% @private
372 %% Transmit the data using UWB
373 %% @param Options is used to set options about the transmission

like a transmission delay , etc.
374 %%

375 -spec tx(_, Data :: bitstring (), Options :: # tx_opts {}) -> ok.
376 tx(Bus , Data , # tx_opts { wait4resp = Wait4resp , w4r_tim = W4rTim ,

txdlys = TxDlys , tx_delay = TxDelay }) ->
377 % Writing the data that will be sent (w/o CRC)
378 DataLength = byte_size (Data) + 2, % DW1000 automatically adds

the 2 bytes CRC
379 write_tx_data (Bus , Data),
380 % Setting the options of the transmission
381 case Wait4resp of
382 ? ENABLED -> write_reg (Bus , ack_resp_t , #{ w4r_tim => W4rTim

});
383 _ -> ok
384 end ,
385 case TxDlys of
386 ? ENABLED -> write_reg (Bus , dx_time , #{ dx_time => TxDelay })

;
387 _ -> ok
388 end ,
389 write_reg (Bus , tx_fctrl , #{ txboffs => 2#0, tr => 2#0, tflen =>

DataLength }),
390 write_reg (Bus , sys_ctrl , #{ txstrt => 2#1, wait4resp =>

Wait4resp , txdlys => TxDlys }). % start transmission and some
options

391

392 %%

393 %% @private
394 %% Transmit the data with a specified delay using UWB
395 %%

396 delayed_tx (Bus , Data , Delay) ->
397 write_reg (Bus , dx_time , #{ dx_time => Delay}),

66

398 DataLength = byte_size (Data) + 2, % DW1000 automatically adds
the 2 bytes CRC

399 write_tx_data (Bus , Data),
400 write_reg (Bus , tx_fctrl , #{ txboffs => 2#0, tflen => DataLength

}),
401 write_reg (Bus , sys_ctrl , #{ txstrt => 2#1, txdlys => 2#1}). %

start transmission
402

403 %%

404 %% @private
405 %% Get the received data (without the CRC bytes) stored in the

rx_buffer
406 %%

407 get_rx_data (Bus) ->
408 #{ rxflen := FrameLength } = read_reg (Bus , rx_finfo),
409 Frame = read_rx_data (Bus , FrameLength -2) , % Remove the CRC

bytes
410 { FrameLength , Frame}.
411

412 %%

413 %% @private
414 %% @doc Reverse the byte order of the bitstring given in the

argument
415 %% @param Bin a bitstring
416 %%

417 reverse (Bin) -> reverse (Bin , <<>>).
418 reverse (<<Bin:8>>, Acc) ->
419 <<Bin , Acc/binary >>;
420 reverse (<<Bin :8, Rest/bitstring >>, Acc) ->
421 reverse (Rest , <<Bin , Acc/binary >>).
422

423 %%

424 %% @private
425 %% @doc Creates the header of the SPI transaction between the

GRiSP and the pmod
426 %%
427 %% It creates a header of 1 bytes. The header is used in a

transaction that will affect
428 %% the whole register file (read/write)

67

429 %%
430 %% @param Op an atom (either <i>read </i> or <i>write </i>
431 %% @param RegFileID an atom representing the register file
432 %% @returns a formated header of 1 byte long as described

in the user manual
433 %%

434 header (Op , RegFileID) ->
435 <<(rw(Op)):1, 2#0:1 , (regFile (RegFileID)):6>>.
436

437 %%

438 %% @private
439 %% @doc Creates the header of the SPI transaction between the

GRiSP and the pmod
440 %%
441 %% It creates a header of 2 bytes. The header is used in a

transaction that will affect
442 %% the whole sub - register (read/write)
443 %% Careful : The sub - register needs to be mapped in the hrl file
444 %%
445 %% @param Op an atom (either <i>read </i> or <i>write </i>
446 %% @param RegFileID an atom representing the register file
447 %% @param SubRegister an atom representing the sub - register
448 %% @returns a formated header of 2 byte long as described

in the user manual
449 %%

450 header (Op , RegFileID , SubRegister) ->
451 case subReg (SubRegister) < 127 of
452 true -> header (Op , RegFileID , SubRegister , 2);
453 _ -> header (Op , RegFileID , SubRegister , 3)
454 end.
455

456 header (Op , RegFileID , SubRegister , 2) ->
457 << (rw(Op)):1, 2#1:1 , (regFile (RegFileID)):6,
458 2#0:1 , (subReg (SubRegister)):7 >>;
459 header (Op , RegFileID , SubRegister , 3) ->
460 <<_:1, HighOrder :8, LowOrder :7>> = <<(subReg (SubRegister))

:16>>,
461 << (rw(Op)):1, 2#1:1 , (regFile (RegFileID)):6,
462 2#1:1 , LowOrder :7,
463 HighOrder :8>>.
464

465 %%

68

466 %% @private
467 %% @doc Read the values stored in a register file
468 %%

469 read_reg (Bus , lde_ctrl) -> read_reg (Bus , lde_if);
470 read_reg (Bus , lde_if) ->
471 lists:foldl(fun(Elem , Acc) ->
472 Res = read_sub_reg (Bus , lde_if , Elem),
473 maps:merge(Acc , Res)
474 end ,
475 #{},
476 [lde_thresh , lde_cfg1 , lde_ppindx , lde_ppampl ,

lde_rxantd , lde_cfg2 , lde_repc]);
477 read_reg (Bus , RegFileID) ->
478 Header = header (read , RegFileID),
479 [Resp] = grisp_spi : transfer (Bus , [{?SPI_MODE , Header , 1,

regSize (RegFileID)}]),
480 % debug_read (RegFileID , Resp),
481 reg(decode , RegFileID , Resp).
482

483

484 read_sub_reg (Bus , RegFileID , SubRegister) ->
485 Header = header (read , RegFileID , SubRegister),
486 HeaderSize = byte_size (Header),
487 % io: format ("[HEADER] type ~w - ~w - ~w~n", [HeaderSize ,

Header , subRegSize (SubRegister)]),
488 [Resp] = grisp_spi : transfer (Bus , [{?SPI_MODE , Header ,

HeaderSize , subRegSize (SubRegister)}]),
489 reg(decode , SubRegister , Resp).
490

491

492 %%

493 %% @doc get the received data
494 %% @param Length is the total length of the data we are trying to

read
495 %%

496 read_rx_data (Bus , Length) ->
497 Header = header (read , rx_buffer),
498 [Resp] = grisp_spi : transfer (Bus , [{?SPI_MODE , Header , 1,

Length }]),
499 Resp.
500

501 % TODO: check that user isn ’t trying to write reserved bits by

69

passing res , res1 , ... in the map fields
502 %%

503 %% @doc used to write the values in the map given in the Value
argument

504 %%

505 -spec write_reg (Bus :: map (), RegFileID :: regFileID (), Value :: map ())
-> ok | {error , any ()}.

506 % Write each sub - register one by one.
507 % If the user tries to write in a read -only sub -register , an error

is thrown
508 write_reg (Bus , RegFileID , Value) when ? IS_SRW (RegFileID) ->
509 maps:map(
510 fun(SubRegister , Val) ->
511 CurrVal = maps:get(SubRegister , read_reg (Bus ,

RegFileID)), % ? can the read be done before ? Maybe but not
assured that no values changes after a write in the register

512 Body = case CurrVal of
513 V when is_map (V) -> reg(encode ,

SubRegister , maps: merge_with (fun(_Key , _Old , New) -> New end ,
CurrVal , Val));

514 _ -> reg(encode , SubRegister , #{
SubRegister => Val})

515 end ,
516 Header = header (write , RegFileID , SubRegister),
517 % debug_write (RegFileID , SubRegister , Body),
518 _ = grisp_spi : transfer (Bus , [{?SPI_MODE , <<Header /

binary , Body/binary >>, 2+ subRegSize (SubRegister), 0}])
519 end ,
520 Value),
521 ok;
522 write_reg (Bus , RegFileID , Value) ->
523 Header = header (write , RegFileID),
524 CurrVal = read_reg (Bus , RegFileID),
525 ValuesToWrite = maps: merge_with (fun(_Key , _Value1 , Value2) ->

Value2 end , CurrVal , Value),
526 Body = reg(encode , RegFileID , ValuesToWrite),
527 % debug_write (RegFileID , Body),
528 _ = grisp_spi : transfer (Bus , [{?SPI_MODE , <<Header /binary , Body

/binary >>, 1+ regSize (RegFileID), 0}]),
529 ok.
530

531 %%

532 %% @doc write_tx_data /2 sends data (Value) in the register

70

tx_buffer
533 %% @param Value is the data to be written . It must be a binary and

have a size of maximum 1024 bits
534 %%

535 write_tx_data (Bus , Value) when is_binary (Value), (bit_size (Value)
< 1025) ->

536 Header = header (write , tx_buffer),
537 Length = byte_size (Value),
538 % debug_write (tx_buffer , Body),
539 _ = grisp_spi : transfer (Bus , [{?SPI_MODE , <<Header /binary ,

Value/binary >>, 1+ Length , 0}]),
540 ok.
541

542 %% ----- Register mapping
--

543 %%

544 %% @doc Used to either decode the data returned by the pmod or to
encode to data that will be sent to the pmod

545 %%
546 %% The transmission on the MISO line is done byte by byte starting

from the lowest rank byte to the highest rank
547 %% Example : dev_id value is 0 xDECA0130 but 0 x3001CADE is

transmitted over the MISO line
548 %%

549 reg(encode , SubRegister , Value) when ? READ_ONLY_SUB_REG (
SubRegister) -> error({ writing_read_only_sub_register ,
SubRegister , Value});

550 reg(decode , dev_id , Resp) ->
551 <<
552 RIDTAG :16, Model :8, Ver :4, Rev :4
553 >> = reverse (Resp),
554 #{
555 ridtag => integer_to_list (RIDTAG , 16) , model => Model , ver

=> Ver , rev => Rev
556 };
557 reg(decode , eui , Resp) ->
558 #{
559 eui => reverse (Resp)
560 };
561 reg(encode , eui , Val) ->
562 #{
563 eui := EUI

71

564 } = Val ,
565 reverse (<<
566 EUI :64
567 >>);
568 reg(decode , panadr , Resp) ->
569 <<
570 PanId :16, ShortAddr :16
571 >> = reverse (Resp),
572 #{
573 pan_id => PanId , short_addr => ShortAddr
574 };
575 reg(encode , panadr , Val) ->
576 #{
577 pan_id := PanId , short_addr := ShortAddr
578 } = Val ,
579 reverse (<<
580 PanId :16, ShortAddr :16
581 >>);
582 reg(decode , sys_cfg , Resp) ->
583 <<
584 FFA4 :1, FFAR :1, FFAM :1, FFAA :1, FFAD :1, FFAB :1, FFBC :1,

FFEN :1, % bits 7-0
585 FCS_INIT2F :1, DIS_RSDE :1, DIS_PHE :1, DIS_DRXB :1, DIS_FCE

:1, SPI_EDGE :1, HIRQ_POL :1, FFA5 :1, % bits 15-8
586 _:1, RXM110K :1, _:3, DIS_STXP :1, PHR_MODE :2, % bits 23 -16
587 AACKPEND :1, AUTOACK :1, RXAUTR :1, RXWTOE :1, _:4 % bits

31 -24
588 >> = Resp ,
589 #{
590 aackpend => AACKPEND , autoack => AUTOACK , rxautr => RXAUTR

, rxwtoe => RXWTOE ,
591 rxm110k => RXM110K , dis_stxp => DIS_STXP , phr_mode =>

PHR_MODE ,
592 fcs_init2F => FCS_INIT2F , dis_rsde => DIS_RSDE , dis_phe =>

DIS_PHE , dis_drxb => DIS_DRXB , dis_fce => DIS_FCE , spi_edge =>
SPI_EDGE , hirq_pol => HIRQ_POL , ffa5 => FFA5 ,

593 ffa4 => FFA4 , ffar => FFAR , ffam => FFAM , ffaa => FFAA ,
ffad => FFAD , ffab => FFAB , ffbc => FFBC , ffen => FFEN

594 };
595 reg(encode , sys_cfg , Val) ->
596 #{
597 aackpend := AACKPEND , autoack := AUTOACK , rxautr := RXAUTR

, rxwtoe := RXWTOE ,
598 rxm110k := RXM110K , dis_stxp := DIS_STXP , phr_mode :=

PHR_MODE ,
599 fcs_init2F := FCS_INIT2F , dis_rsde := DIS_RSDE , dis_phe :=

DIS_PHE , dis_drxb := DIS_DRXB , dis_fce := DIS_FCE , spi_edge :=
SPI_EDGE , hirq_pol := HIRQ_POL , ffa5 := FFA5 ,

600 ffa4 := FFA4 , ffar := FFAR , ffam := FFAM , ffaa := FFAA ,

72

ffad := FFAD , ffab := FFAB , ffbc := FFBC , ffen := FFEN
601 } = Val ,
602 <<
603 FFA4 :1, FFAR :1, FFAM :1, FFAA :1, FFAD :1, FFAB :1, FFBC :1,

FFEN :1, % bits 7-0
604 FCS_INIT2F :1, DIS_RSDE :1, DIS_PHE :1, DIS_DRXB :1, DIS_FCE

:1, SPI_EDGE :1, HIRQ_POL :1, FFA5 :1, % bits 15-8
605 2#0:1 , RXM110K :1, 2#0:3 , DIS_STXP :1, PHR_MODE :2, % bits

23 -16
606 AACKPEND :1, AUTOACK :1, RXAUTR :1, RXWTOE :1, 2#0:4 % bits

31 -24
607 >>;
608 reg(decode , sys_time , Resp) ->
609 <<
610 SysTime :40
611 >> = reverse (Resp),
612 #{
613 sys_time => SysTime
614 };
615 reg(decode , tx_fctrl , Resp) ->
616 <<
617 IFSDELAY :8, TXBOFFS :10, PE:2, TXPSR :2, TXPRF :2, TR:1, TXBR

:2, R:3, TFLE :3, TFLEN :7
618 >> = reverse (Resp),
619 #{
620 ifsdelay => IFSDELAY , txboffs => TXBOFFS , pe => PE , txpsr

=> TXPSR , txprf => TXPRF , tr => TR , txbr => TXBR , r => R, tfle
=> TFLE , tflen => TFLEN

621 };
622 reg(encode , tx_fctrl , Val) ->
623 #{
624 ifsdelay := IFSDELAY , txboffs := TXBOFFS , pe := PE , txpsr

:= TXPSR , txprf := TXPRF , tr := TR , txbr := TXBR , r := R, tfle
:= TFLE , tflen := TFLEN

625 } = Val ,
626 reverse (<<
627 IFSDELAY :8, TXBOFFS :10, PE:2, TXPSR :2, TXPRF :2, TR:1, TXBR

:2, R:3, TFLE :3, TFLEN :7
628 >>);
629 % TX_BUFFER is write only => no decode
630 reg(decode , dx_time , Resp) ->
631 #{
632 dx_time => reverse (Resp)
633 };
634 reg(encode , dx_time , Val) ->
635 #{
636 dx_time := DX_TIME
637 } = Val ,
638 reverse (<<

73

639 DX_TIME :40
640 >>);
641 reg(decode , rx_fwto , Resp) ->
642 <<
643 RXFWTO :16
644 >> = reverse (Resp),
645 #{
646 rxfwto => RXFWTO
647 };
648 reg(encode , rx_fwto , Val) ->
649 #{
650 rxfwto := RXFWTO
651 } = Val ,
652 reverse (<<
653 RXFWTO :16
654 >>);
655 reg(decode , sys_ctrl , Resp) ->
656 <<
657 WAIT4RESP :1, TRXOFF :1, _:2, CANSFCS :1, TXDLYS :1, TXSTRT :1,

SFCST :1, % bits 7-0
658 _:6, RXDLYE :1, RXENAB :1, % bits 15-8
659 _:8, % bits 23 -16
660 _:7, HRBPT :1 % bits 31 -24
661 >> = Resp ,
662 #{
663 sfcst => SFCST , txstrt => TXSTRT , txdlys => TXDLYS ,

cansfcs => CANSFCS , trxoff => TRXOFF , wait4resp => WAIT4RESP ,
664 rxenab => RXENAB , rxdlye => RXDLYE ,
665 hrbpt => HRBPT
666 };
667 reg(encode , sys_ctrl , Val) ->
668 #{
669 sfcst := SFCST , txstrt := TXSTRT , txdlys := TXDLYS ,

cansfcs := CANSFCS , trxoff := TRXOFF , wait4resp := WAIT4RESP ,
670 rxenab := RXENAB , rxdlye := RXDLYE ,
671 hrbpt := HRBPT
672 } = Val ,
673 <<
674 WAIT4RESP :1, TRXOFF :1, 2#0:2 , CANSFCS :1, TXDLYS :1, TXSTRT

:1, SFCST :1, % bits 7-0
675 2#0:6 , RXDLYE :1, RXENAB :1, % bits 15-8
676 2#0:8 , % bits 23 -16
677 2#0:7 , HRBPT :1 % bits 31 -24
678 >>;
679 reg(decode , sys_mask , Resp) ->
680 <<
681 MTXFRS :1, MTXPHS :1, MTXPRS :1, MTXFRB :1, MAAT :1, MESYNCR :1,

MCPLOCK :1, Reserved0 :1, % bits 7-0
682 MRXFCE :1, MRXFCG :1, MRXDFR :1, MRXPHE :1, MRXPHD :1, MLDEDON

74

:1, MRXSFDD :1, MRXPRD :1, % bits 15-8
683 MSLP2INIT :1, MGPIOIRQ :1, MRXPTO :1, MRXOVRR :1, Reserved1 :1,

MLDEERR :1, MRXRFTO :1, MRXRFSL :1, % bits 23 -16
684 Reserved2 :2, MAFFREJ :1, MTXBERR :1, MHPDDWAR :1, MPLLHILO :1,

MCPLLLL :1, MRFPLLLL :1 % bits 31 -24
685 >> = Resp ,
686 #{
687 mtxfrs => MTXFRS , mtxphs => MTXPHS , mtxprs => MTXPRS ,

mtxfrb => MTXFRB , maat => MAAT , mesyncr => MESYNCR , mcplock =>
MCPLOCK , res0 => Reserved0 , % bits 7-0

688 mrxfce => MRXFCE , mrxfcg => MRXFCG , mrxdfr => MRXDFR ,
mrxphe => MRXPHE , mrxphd => MRXPHD , mldeon => MLDEDON , mrxsfdd
=> MRXSFDD , mrxprd => MRXPRD , % bits 15-8

689 mslp2init => MSLP2INIT , mgpioirq => MGPIOIRQ , mrxpto =>
MRXPTO , mrxovrr => MRXOVRR , res1 => Reserved1 , mldeerr =>
MLDEERR , mrxrfto => MRXRFTO , mrxrfsl => MRXRFSL , % bits 23 -16

690 res2 => Reserved2 , maffrej => MAFFREJ , mtxberr => MTXBERR ,
mhpddwar => MHPDDWAR , mpllhilo => MPLLHILO , mcpllll => MCPLLLL

, mrfpllll => MRFPLLLL % bits 31 -24
691 };
692 reg(encode , sys_mask , Val) ->
693 #{
694 mtxfrs := MTXFRS , mtxphs := MTXPHS , mtxprs := MTXPRS ,

mtxfrb := MTXFRB , maat := MAAT , mesyncr := MESYNCR , mcplock :=
MCPLOCK , res0 := Reserved0 , % bits 7-0

695 mrxfce := MRXFCE , mrxfcg := MRXFCG , mrxdfr := MRXDFR ,
mrxphe := MRXPHE , mrxphd := MRXPHD , mldeon := MLDEDON , mrxsfdd
:= MRXSFDD , mrxprd := MRXPRD , % bits 15-8

696 mslp2init := MSLP2INIT , mgpioirq := MGPIOIRQ , mrxpto :=
MRXPTO , mrxovrr := MRXOVRR , res1 := Reserved1 , mldeerr :=
MLDEERR , mrxrfto := MRXRFTO , mrxrfsl := MRXRFSL , % bits 23 -16

697 res2 := Reserved2 , maffrej := MAFFREJ , mtxberr := MTXBERR ,
mhpddwar := MHPDDWAR , mpllhilo := MPLLHILO , mcpllll := MCPLLLL

, mrfpllll := MRFPLLLL % bits 31 -24
698 } = Val ,
699 <<
700 MTXFRS :1, MTXPHS :1, MTXPRS :1, MTXFRB :1, MAAT :1, MESYNCR :1,

MCPLOCK :1, Reserved0 :1, % bits 7-0
701 MRXFCE :1, MRXFCG :1, MRXDFR :1, MRXPHE :1, MRXPHD :1, MLDEDON

:1, MRXSFDD :1, MRXPRD :1, % bits 15-8
702 MSLP2INIT :1, MGPIOIRQ :1, MRXPTO :1, MRXOVRR :1, Reserved1 :1,

MLDEERR :1, MRXRFTO :1, MRXRFSL :1, % bits 23 -16
703 Reserved2 :2, MAFFREJ :1, MTXBERR :1, MHPDDWAR :1, MPLLHILO :1,

MCPLLLL :1, MRFPLLLL :1 % bits 31 -24
704 >>;
705 reg(decode , sys_status , Resp) ->
706 <<
707 TXFRS :1, TXPHS :1, TXPRS :1, TXFRB :1, AAT :1, ESYNCR :1,

CPLOCK :1, IRQS :1, % bits 7-0

75

708 RXFCE :1, RXFCG :1, RXDFR :1, RXPHE :1, RXPHD :1, LDEDONE :1,
RXSFDD :1, RXPRD :1, % bits 15-8

709 SPL2INIT :1, GPIOIRQ :1, RXPTO :1, RXOVRR :1, Reserved0 :1,
LDEERR :1, RXRFTO :1, RXRFSL :1, % bits 23 -16

710 ICRBP :1, HSRBP :1, AFFREJ :1, TXBERR :1, HPDWARN :1, RXSFDTO
:1, CLCKPLL_LL :1, RFPLL_LL :1, % bits 31 -24

711 Reserved1 :5, TXPUTE :1, RXPREJ :1, RXRSCS :1 % bits 39 -32
712 >> = Resp ,
713 #{
714 txfrs => TXFRS , txphs => TXPHS , txprs => TXPRS , txfrb =>

TXFRB , aat => AAT , esyncr => ESYNCR , cplock => CPLOCK , irqs =>
IRQS , % bits 7-0

715 rxfce => RXFCE , rxfcg => RXFCG , rxdfr => RXDFR , rxphe =>
RXPHE , rxphd => RXPHD , ldedone => LDEDONE , rxsfdd => RXSFDD ,
rxprd => RXPRD , % bits 15-8

716 splt2init => SPL2INIT , gpioirq => GPIOIRQ , rxpto => RXPTO ,
rxovrr => RXOVRR , res0 => Reserved0 , ldeerr => LDEERR , rxrfto

=> RXRFTO , rxrfsl => RXRFSL , % bits 23 -16
717 icrbp => ICRBP , hsrbp => HSRBP , affrej => AFFREJ , txberr

=> TXBERR , hdpwarn => HPDWARN , rxsfdto => RXSFDTO , clkpll_ll =>
CLCKPLL_LL , rfpll_ll => RFPLL_LL , % bits 31 -24

718 res1 => Reserved1 , txpute => TXPUTE , rxprej => RXPREJ ,
rxrscs => RXRSCS

719 };
720 reg(encode , sys_status , Val) ->
721 #{
722 txfrs := TXFRS , txphs := TXPHS , txprs := TXPRS , txfrb :=

TXFRB , aat := AAT , esyncr := ESYNCR , cplock := CPLOCK , irqs :=
IRQS , % bits 7-0

723 rxfce := RXFCE , rxfcg := RXFCG , rxdfr := RXDFR , rxphe :=
RXPHE , rxphd := RXPHD , ldedone := LDEDONE , rxsfdd := RXSFDD ,
rxprd := RXPRD , % bits 15-8

724 splt2init := SPL2INIT , gpioirq := GPIOIRQ , rxpto := RXPTO ,
rxovrr := RXOVRR , res0 := Reserved0 , ldeerr := LDEERR , rxrfto

:= RXRFTO , rxrfsl := RXRFSL , % bits 23 -16
725 icrbp := ICRBP , hsrbp := HSRBP , affrej := AFFREJ , txberr

:= TXBERR , hdpwarn := HPDWARN , rxsfdto := RXSFDTO , clkpll_ll :=
CLCKPLL_LL , rfpll_ll := RFPLL_LL , % bits 31 -24

726 res1 := Reserved1 , txpute := TXPUTE , rxprej := RXPREJ ,
rxrscs := RXRSCS

727 } = Val ,
728 <<
729 TXFRS :1, TXPHS :1, TXPRS :1, TXFRB :1, AAT :1, ESYNCR :1,

CPLOCK :1, IRQS :1, % bits 7-0
730 RXFCE :1, RXFCG :1, RXDFR :1, RXPHE :1, RXPHD :1, LDEDONE :1,

RXSFDD :1, RXPRD :1, % bits 15-8
731 SPL2INIT :1, GPIOIRQ :1, RXPTO :1, RXOVRR :1, Reserved0 :1,

LDEERR :1, RXRFTO :1, RXRFSL :1, % bits 23 -16
732 ICRBP :1, HSRBP :1, AFFREJ :1, TXBERR :1, HPDWARN :1, RXSFDTO

76

:1, CLCKPLL_LL :1, RFPLL_LL :1, % bits 31 -24
733 Reserved1 :5, TXPUTE :1, RXPREJ :1, RXRSCS :1 % bits 39 -32
734 >>;
735 reg(decode , rx_finfo , Resp) ->
736 <<
737 RXPACC :12, RXPSR :2, RXPRFR :2, RNG :1, RXBR :2, RXNSPL :2, _

:1, RXFLE :3, RXFLEN :7
738 >> = reverse (Resp),
739 #{
740 rxpacc => RXPACC , rxpsr => RXPSR , rxprfr => RXPRFR , rng =>

RNG , rxbr => RXBR , rxnspl => RXNSPL , rxfle => RXFLE , rxflen =>
RXFLEN

741 };
742 reg(decode , rx_buffer , Resp) ->
743 #{ rx_buffer => reverse (Resp)};
744 reg(decode , rx_fqual , Resp) ->
745 <<
746 CIR_PWR :16, PP_APL3 :16, FP_AMPL2 :16, STD_NOISE :16
747 >> = Resp ,
748 #{
749 cir_pwr => CIR_PWR , pp_apl3 => PP_APL3 , fp_ampl2 =>

FP_AMPL2 , std_noise => STD_NOISE
750 };
751 reg(decode , rx_ttcki , Resp) ->
752 #{
753 rx_ttcki => reverse (Resp)
754 };
755 reg(decode , rx_ttcko , Resp) ->
756 <<
757 _:1, RCPHASE :7, RSMPDEL :8, _:5, RXTOFS :19
758 >> = reverse (Resp),
759 #{
760 rcphase => RCPHASE , rsmpdel => RSMPDEL , rxtofs => RXTOFS
761 };
762 reg(decode , rx_time , Resp) ->
763 <<
764 RX_RAWST :40, FP_AMPL1 :16, FP_INDEX :16, RX_STAMP :40
765 >> = reverse (Resp),
766 #{
767 rx_rawst => RX_RAWST , fp_ampl1 => FP_AMPL1 , fp_index =>

FP_INDEX , rx_stamp => RX_STAMP
768 };
769 reg(decode , tx_time , Resp) ->
770 <<
771 TX_RAWST :40, TX_STAMP :40
772 >> = reverse (Resp),
773 #{
774 tx_rawst => TX_RAWST , tx_stamp => TX_STAMP
775 };

77

776 reg(decode , tx_antd , Resp) ->
777 #{
778 tx_antd => reverse (Resp)
779 };
780 reg(encode , tx_antd , Val) ->
781 #{
782 tx_antd := TX_ANTD
783 } = Val ,
784 reverse (<<
785 TX_ANTD :16
786 >>);
787 reg(decode , sys_state , Resp) ->
788 <<
789 _:8, PMSC_STATE :8, _:3, RX_STATE :5, _:4, TX_STATE :4
790 >> = reverse (Resp),
791 #{
792 pmsc_state => PMSC_STATE , rx_state => RX_STATE , tx_state

=> TX_STATE
793 };
794 reg(decode , ack_resp_t , Resp) ->
795 <<
796 ACK_TIME :8, _:4, W4R_TIME :20
797 >> = reverse (Resp),
798 #{
799 ack_tim => ACK_TIME , w4r_tim => W4R_TIME
800 };
801 reg(encode , ack_resp_t , Val) ->
802 #{
803 ack_tim := ACK_TIME , w4r_tim := W4R_TIME
804 } = Val ,
805 reverse (<<
806 ACK_TIME :8, 2#0:4 , W4R_TIME :20
807 >>);
808 reg(decode , rx_sniff , Resp) ->
809 <<
810 Reserved0 :16, SNIFF_OFFT :8, Reserved1 :4, SNIFF_ONT :4
811 >> = reverse (Resp),
812 #{
813 res0 => Reserved0 ,
814 sniff_offt => SNIFF_OFFT ,
815 sniff_ont => SNIFF_ONT ,
816 res1 => Reserved1
817 };
818 reg(encode , rx_sniff , Val) ->
819 #{
820 res0 := Reserved0 ,
821 sniff_offt := SNIFF_OFFT ,
822 sniff_ont := SNIFF_ONT ,
823 res1 := Reserved1

78

824 } = Val ,
825 reverse (<<
826 Reserved0 :16, SNIFF_OFFT :8, Reserved1 :4, SNIFF_ONT :4
827 >>);
828 % Smart transmit power control (cf. user manual p 104)
829 reg(decode , tx_power , Resp) ->
830 <<
831 BOOSTP125 :8, BOOSTP250 :8, BOOSTP500 :8, BOOSTNORM :8
832 >> = reverse (Resp),
833 #{
834 boostp125 => BOOSTP125 , boostp250 => BOOSTP250 , boostp500

=> BOOSTP500 , boostnorm => BOOSTNORM
835 };
836 reg(encode , tx_power , Val) ->
837 % Leave the possibility to the user to write the value as one
838 case Val of
839 #{ tx_power := ValToEncode } -> reverse (<< ValToEncode

:32>>);
840 #{ boostp125 := BOOSTP125 , boostp250 := BOOSTP250 ,

boostp500 := BOOSTP500 , boostnorm := BOOSTNORM } ->reverse (<<
BOOSTP125 :8, BOOSTP250 :8, BOOSTP500 :8, BOOSTNORM :8>>)

841 end;
842 reg(decode , chan_ctrl , Resp) ->
843 <<
844 RX_PCODE :5, TX_PCODE :5, RNSSFD :1, TNSSFD :1, RXPRF :2, DWSFD

:1, Reserved0 :9, RX_CHAN :4, TX_CHAN :4
845 >> = reverse (Resp),
846 #{
847 rx_pcode => RX_PCODE , tx_pcode => TX_PCODE , rnssfd =>

RNSSFD , tnssfd => TNSSFD , rxprf => RXPRF , dwsfd => DWSFD , res0
=> Reserved0 , rx_chan => RX_CHAN , tx_chan => TX_CHAN

848 };
849 reg(encode , chan_ctrl , Val) ->
850 #{
851 rx_pcode := RX_PCODE , tx_pcode := TX_PCODE , rnssfd :=

RNSSFD , tnssfd := TNSSFD , rxprf := RXPRF , dwsfd := DWSFD , res0
:= Reserved0 , rx_chan := RX_CHAN , tx_chan := TX_CHAN

852 } = Val ,
853 reverse (<<
854 RX_PCODE :5, TX_PCODE :5, RNSSFD :1, TNSSFD :1, RXPRF :2, DWSFD

:1, Reserved0 :9, RX_CHAN :4, TX_CHAN :4
855 >>);
856 reg(encode , usr_sfd , Value) ->
857 #{
858 usr_sfd := USR_SFD
859 } = Value ,
860 reverse (<<
861 USR_SFD :(8*41)
862 >>);

79

863 reg(decode , usr_sfd , Resp) ->
864 <<
865 USR_SFD :(8*41)
866 >> = reverse (Resp),
867 #{
868 usr_sfd => USR_SFD
869 };
870 % AGC_CTRL is a complex register with reserved bits that can ’t be

written
871 reg(encode , agc_ctrl1 , Val) ->
872 #{
873 res := Reserved , dis_am := DIS_AM
874 } = Val ,
875 reverse (<<
876 Reserved :15, DIS_AM :1
877 >>);
878 reg(encode , agc_tune1 , Val) ->
879 #{
880 agc_tune1 := AGC_TUNE1
881 } = Val ,
882 reverse (<<
883 AGC_TUNE1 :16
884 >>);
885 reg(encode , agc_tune2 , Val) ->
886 #{
887 agc_tune2 := AGC_TUNE2
888 } = Val ,
889 reverse (<<
890 AGC_TUNE2 :32
891 >>);
892 reg(encode , agc_tune3 , Val) ->
893 #{
894 agc_tune3 := AGC_TUNE3
895 } = Val ,
896 reverse (<<
897 AGC_TUNE3 :16
898 >>);
899 reg(decode , agc_ctrl , Resp) ->
900 <<
901 _:4, EDV2 :9, EDG1 :5, _:6, % AGC_STAT1 (RP => don ’t save

reserved bits)
902 _:80, % Reserved 4
903 AGC_TUNE3 :16, % AGC_TUNE3
904 _:16, % Reserved 3
905 AGC_TUNE2 :32, % AGC_TUNE2
906 _:48, % Reserved 2
907 AGC_TUNE1 :16, % AGC_TUNE1
908 Reserved0 :15, DIS_AM :1, % AGC_CTRL1 (RW => save reserved

bits)

80

909 _:16 % Reserved 1
910 >> = reverse (Resp),
911 #{
912 agc_ctrl1 => #{res => Reserved0 , dis_am => DIS_AM },
913 agc_tune1 => AGC_TUNE1 ,
914 agc_tune2 => AGC_TUNE2 ,
915 agc_tune3 => AGC_TUNE3 ,
916 agc_stat1 => #{edv2 => EDV2 , edg1 => EDG1}
917 };
918 reg(encode , ec_ctrl , Val) ->
919 #{
920 res := Reserved , ostrm := OSTRM , wait := WAIT , pllldt :=

PLLLDT , osrsm := OSRSM , ostsm := OSTSM
921 } = Val ,
922 reverse (<<
923 Reserved :20, OSTRM :1, WAIT :8, PLLLDT :1, OSRSM :1, OSTSM :1 %

EC_CTRL
924 >>);
925 reg(decode , ext_sync , Resp) ->
926 <<
927 _:26, OFFSET_EXT :6, % EC_GLOP
928 RX_TS_EST :32, % EC_RXTC
929 Reserved :20, OSTRM :1, WAIT :8, PLLLDT :1, OSRSM :1, OSTSM :1 %

EC_CTRL
930 >> = reverse (Resp),
931 #{
932 ec_ctrl => #{res => Reserved , ostrm => OSTRM , wait => WAIT

, pllldt => PLLLDT , osrsm => OSRSM , ostsm => OSTSM},
933 rx_ts_est => RX_TS_EST ,
934 ec_golp => #{ offset_ext => OFFSET_EXT }
935 };
936 % "The host system doesn ’t need to access the ACC_MEM in normal

operation , however it may be of interest [...] for diagnostic
purpose " (from DW1000 user manual)

937 reg(decode , acc_mem , Resp) ->
938 #{
939 acc_mem => reverse (Resp)
940 };
941 reg(encode , gpio_mode , Val) ->
942 #{
943 msgp8 := MSGP8 , msgp7 := MSGP7 , msgp6 := MSGP6 , msgp5 :=

MSGP5 , msgp4 := MSGP4 , msgp3 := MSGP3 , msgp2 := MSGP2 , msgp1 :=
MSGP1 , msgp0 := MSGP0

944 } = Val ,
945 reverse (<<
946 2#0:8 , MSGP8 :2, MSGP7 :2, MSGP6 :2, MSGP5 :2, MSGP4 :2, MSGP3

:2, MSGP2 :2, MSGP1 :2, MSGP0 :2, 2#0:6 % GPIO_MODE
947 >>);
948 reg(encode , gpio_dir , Val) ->

81

949 #{
950 gdm8 := GDM8 , gdm7 := GDM7 , gdm6 := GDM6 , gdm5 := GDM5 ,

gdm4 := GDM4 , gdm3 := GDM3 , gdm2 := GDM2 , gdm1 := GDM1 , gdm0 :=
GDM0 ,

951 gdp8 := GDP8 , gdp7 := GDP7 , gdp6 := GDP6 , gdp5 := GDP5 ,
gdp4 := GDP4 , gdp3 := GDP3 , gdp2 := GDP2 , gdp1 := GDP1 , gdp0 :=

GDP0
952 } = Val ,
953 reverse (<<
954 2#0:11 , GDM8 :1, 2#0:3 , GDP8 :1, GDM7 :1, GDM6 :1, GDM5 :1,

GDM4 :1, GDP7 :1, GDP6 :1, GDP5 :1, GDP4 :1, GDM3 :1, GDM2 :1, GDM1 :1,
GDM0 :1, GDP3 :1, GDP2 :1, GDP1 :1, GDP0 :1 % GPIO2_DIR

955 >>);
956 reg(encode , gpio_dout , Val) ->
957 #{
958 gom8 := GOM8 , gom7 := GOM7 , gom6 := GOM6 , gom5 := GOM5 ,

gom4 := GOM4 , gom3 := GOM3 , gom2 := GOM2 , gom1 := GOM1 , gom0 :=
GOM0 ,

959 gop8 := GOP8 , gop7 := GOP7 , gop6 := GOP6 , gop5 := GOP5 ,
gop4 := GOP4 , gop3 := GOP3 , gop2 := GOP2 , gop1 := GOP1 , gop0 :=

GOP0
960 } = Val ,
961 reverse (<<
962 2#0:11 , GOM8 :1, 2#0:3 , GOP8 :1, GOM7 :1, GOM6 :1, GOM5 :1,

GOM4 :1, GOP7 :1, GOP6 :1, GOP5 :1, GOP4 :1, GOM3 :1, GOM2 :1, GOM1 :1,
GOM0 :1, GOP3 :1, GOP2 :1, GOP1 :1, GOP0 :1 % GPIO_DOUT

963 >>);
964 reg(encode , gpio_irqe , Val) ->
965 #{
966 girqe8 := GIRQE8 , girqe7 := GIRQE7 , girqe6 := GIRQE6 ,

girqe5 := GIRQE5 , girqe4 := GIRQE4 , girqe3 := GIRQE3 , girqe2 :=
GIRQE2 , girqe1 := GIRQE1 , girqe0 := GIRQE0

967 } = Val ,
968 reverse (<<
969 2#0:23 , GIRQE8 :1, GIRQE7 :1, GIRQE6 :1, GIRQE5 :1, GIRQE4 :1,

GIRQE3 :1, GIRQE2 :1, GIRQE1 :1, GIRQE0 :1 % GPIO_IRQE
970 >>);
971 reg(encode , gpio_isen , Val) ->
972 #{
973 gisen8 := GISEN8 , gisen7 := GISEN7 , gisen6 := GISEN6 ,

gisen5 := GISEN5 , gisen4 := GISEN4 , gisen3 := GISEN3 , gisen2 :=
GISEN2 , gisen1 := GISEN1 , gisen0 := GISEN0

974 } = Val ,
975 reverse (<<
976 2#0:23 , GISEN8 :1, GISEN7 :1, GISEN6 :1, GISEN5 :1, GISEN4 :1,

GISEN3 :1, GISEN2 :1, GISEN1 :1, GISEN0 :1 % GPIO_ISEN
977 >>);
978 reg(encode , gpio_imod , Val) ->
979 #{

82

980 gimod8 := GIMOD8 , gimod7 := GIMOD7 , gimod6 := GIMOD6 ,
gimod5 := GIMOD5 , gimod4 := GIMOD4 , gimod3 := GIMOD3 , gimod2 :=

GIMOD2 , gimod1 := GIMOD1 , gimod0 := GIMOD0
981 } = Val ,
982 reverse (<<
983 2#0:23 , GIMOD8 :1, GIMOD7 :1, GIMOD6 :1, GIMOD5 :1, GIMOD4 :1,

GIMOD3 :1, GIMOD2 :1, GIMOD1 :1, GIMOD0 :1 % GPIO_IMOD
984 >>);
985 reg(encode , gpio_ibes , Val) ->
986 #{
987 gibes8 := GIBES8 , gibes7 := GIBES7 , gibes6 := GIBES6 ,

gibes5 := GIBES5 , gibes4 := GIBES4 , gibes3 := GIBES3 , gibes2 :=
GIBES2 , gibes1 := GIBES1 , gibes0 := GIBES0

988 } = Val ,
989 reverse (<<
990 2#0:23 , GIBES8 :1, GIBES7 :1, GIBES6 :1, GIBES5 :1, GIBES4 :1,

GIBES3 :1, GIBES2 :1, GIBES1 :1, GIBES0 :1 % GPIO_IBES
991 >>);
992 reg(encode , gpio_iclr , Val) ->
993 #{
994 giclr8 := GICLR8 , giclr7 := GICLR7 , giclr6 := GICLR6 ,

giclr5 := GICLR5 , giclr4 := GICLR4 , giclr3 := GICLR3 , giclr2 :=
GICLR2 , giclr1 := GICLR1 , giclr0 := GICLR0

995 } = Val ,
996 reverse (<<
997 2#0:23 , GICLR8 :1, GICLR7 :1, GICLR6 :1, GICLR5 :1, GICLR4 :1,

GICLR3 :1, GICLR2 :1, GICLR1 :1, GICLR0 :1 % GPIO_ICLR
998 >>);
999 reg(encode , gpio_idbe , Val) ->

1000 #{
1001 gidbe8 := GIDBE8 , gidbe7 := GIDBE7 , gidbe6 := GIDBE6 ,

gidbe5 := GIDBE5 , gidbe4 := GIDBE4 , gidbe3 := GIDBE3 , gidbe2 :=
GIDBE2 , gidbe1 := GIDBE1 , gidbe0 := GIDBE0

1002 } = Val ,
1003 reverse (<<
1004 2#0:23 , GIDBE8 :1, GIDBE7 :1, GIDBE6 :1, GIDBE5 :1, GIDBE4 :1,

GIDBE3 :1, GIDBE2 :1, GIDBE1 :1, GIDBE0 :1 % GPIO_IDBE
1005 >>);
1006 reg(encode , gpio_raw , Val) ->
1007 #{
1008 grawp8 := GRAWP8 , grawp7 := GRAWP7 , grawp6 := GRAWP6 ,

grawp5 := GRAWP5 , grawp4 := GRAWP4 , grawp3 := GRAWP3 , grawp2 :=
GRAWP2 , grawp1 := GRAWP1 , grawp0 := GRAWP0

1009 } = Val ,
1010 reverse (<<
1011 2#0:23 , GRAWP8 :1, GRAWP7 :1, GRAWP6 :1, GRAWP5 :1, GRAWP4 :1,

GRAWP3 :1, GRAWP2 :1, GRAWP1 :1, GRAWP0 :1 % GPIO_RAW
1012 >>);
1013 reg(decode , gpio_ctrl , Resp) ->

83

1014 <<
1015 _:23, GRAWP8 :1, GRAWP7 :1, GRAWP6 :1, GRAWP5 :1, GRAWP4 :1,

GRAWP3 :1, GRAWP2 :1, GRAWP1 :1, GRAWP0 :1, % GPIO_RAW
1016 _:23, GIDBE8 :1, GIDBE7 :1, GIDBE6 :1, GIDBE5 :1, GIDBE4 :1,

GIDBE3 :1, GIDBE2 :1, GIDBE1 :1, GIDBE0 :1, % GPIO_IDBE
1017 _:23, GICLR8 :1, GICLR7 :1, GICLR6 :1, GICLR5 :1, GICLR4 :1,

GICLR3 :1, GICLR2 :1, GICLR1 :1, GICLR0 :1, % GPIO_ICLR
1018 _:23, GIBES8 :1, GIBES7 :1, GIBES6 :1, GIBES5 :1, GIBES4 :1,

GIBES3 :1, GIBES2 :1, GIBES1 :1, GIBES0 :1, % GPIO_IBES
1019 _:23, GIMOD8 :1, GIMOD7 :1, GIMOD6 :1, GIMOD5 :1, GIMOD4 :1,

GIMOD3 :1, GIMOD2 :1, GIMOD1 :1, GIMOD0 :1, % GPIO_IMOD
1020 _:23, GISEN8 :1, GISEN7 :1, GISEN6 :1, GISEN5 :1, GISEN4 :1,

GISEN3 :1, GISEN2 :1, GISEN1 :1, GISEN0 :1, % GPIO_ISEN
1021 _:23, GIRQE8 :1, GIRQE7 :1, GIRQE6 :1, GIRQE5 :1, GIRQE4 :1,

GIRQE3 :1, GIRQE2 :1, GIRQE1 :1, GIRQE0 :1, % GPIO_IRQE
1022 _:11, GOM8 :1, _:3, GOP8 :1, GOM7 :1, GOM6 :1, GOM5 :1, GOM4 :1,

GOP7 :1, GOP6 :1, GOP5 :1, GOP4 :1, GOM3 :1, GOM2 :1, GOM1 :1, GOM0
:1, GOP3 :1, GOP2 :1, GOP1 :1, GOP0 :1, % GPIO_DOUT

1023 _:11, GDM8 :1, _:3, GDP8 :1, GDM7 :1, GDM6 :1, GDM5 :1, GDM4 :1,
GDP7 :1, GDP6 :1, GDP5 :1, GDP4 :1, GDM3 :1, GDM2 :1, GDM1 :1, GDM0

:1, GDP3 :1, GDP2 :1, GDP1 :1, GDP0 :1, % GPIO_DIR
1024 _:32, % Reserved
1025 _:8, MSGP8 :2, MSGP7 :2, MSGP6 :2, MSGP5 :2, MSGP4 :2, MSGP3 :2,

MSGP2 :2, MSGP1 :2, MSGP0 :2, _:6 % GPIO_MODE
1026 >> = reverse (Resp),
1027 #{
1028 gpio_mode => #{msgp8 => MSGP8 , msgp7 => MSGP7 , msgp6 =>

MSGP6 , msgp5 => MSGP5 , msgp4 => MSGP4 , msgp3 => MSGP3 , msgp2 =>
MSGP2 , msgp1 => MSGP1 , msgp0 => MSGP0},

1029 gpio_dir => #{gdm8 => GDM8 , gdm7 => GDM7 , gdm6 => GDM6 ,
gdm5 => GDM5 , gdm4 => GDM4 , gdm3 => GDM3 , gdm2 => GDM2 , gdm1 =>

GDM1 , gdm0 => GDM0 ,
1030 gdp8 => GDP8 , gdp7 => GDP7 , gdp6 => GDP6 ,

gdp5 => GDP5 , gdp4 => GDP4 , gdp3 => GDP3 , gdp2 => GDP2 , gdp1 =>
GDP1 , gdp0 => GDP0},

1031 gpio_dout => #{gom8 => GOM8 , gom7 => GOM7 , gom6 => GOM6 ,
gom5 => GOM5 , gom4 => GOM4 , gom3 => GOM3 , gom2 => GOM2 , gom1 =>

GOM1 , gom0 => GOM0 ,
1032 gop8 => GOP8 , gop7 => GOP7 , gop6 => GOP6 ,

gop5 => GOP5 , gop4 => GOP4 , gop3 => GOP3 , gop2 => GOP2 , gop1 =>
GOP1 , gop0 => GOP0},

1033 gpio_irqe => #{ girqe8 => GIRQE8 , girqe7 => GIRQE7 , girqe6
=> GIRQE6 , girqe5 => GIRQE5 , girqe4 => GIRQE4 , girqe3 => GIRQE3
, girqe2 => GIRQE2 , girqe1 => GIRQE1 , girqe0 => GIRQE0 },

1034 gpio_isen => #{ gisen8 => GISEN8 , gisen7 => GISEN7 , gisen6
=> GISEN6 , gisen5 => GISEN5 , gisen4 => GISEN4 , gisen3 => GISEN3
, gisen2 => GISEN2 , gisen1 => GISEN1 , gisen0 => GISEN0 },

1035 gpio_imod => #{ gimod8 => GIMOD8 , gimod7 => GIMOD7 , gimod6
=> GIMOD6 , gimod5 => GIMOD5 , gimod4 => GIMOD4 , gimod3 => GIMOD3

84

, gimod2 => GIMOD2 , gimod1 => GIMOD1 , gimod0 => GIMOD0 },
1036 gpio_ibes => #{ gibes8 => GIBES8 , gibes7 => GIBES7 , gibes6

=> GIBES6 , gibes5 => GIBES5 , gibes4 => GIBES4 , gibes3 => GIBES3
, gibes2 => GIBES2 , gibes1 => GIBES1 , gibes0 => GIBES0 },

1037 gpio_iclr => #{ giclr8 => GICLR8 , giclr7 => GICLR7 , giclr6
=> GICLR6 , giclr5 => GICLR5 , giclr4 => GICLR4 , giclr3 => GICLR3
, giclr2 => GICLR2 , giclr1 => GICLR1 , giclr0 => GICLR0 },

1038 gpio_idbe => #{ gidbe8 => GIDBE8 , gidbe7 => GIDBE7 , gidbe6
=> GIDBE6 , gidbe5 => GIDBE5 , gidbe4 => GIDBE4 , gidbe3 => GIDBE3
, gidbe2 => GIDBE2 , gidbe1 => GIDBE1 , gidbe0 => GIDBE0 },

1039 gpio_raw => #{ grawp8 => GRAWP8 , grawp7 => GRAWP7 , grawp6
=> GRAWP6 , grawp5 => GRAWP5 , grawp4 => GRAWP4 , grawp3 => GRAWP3
, grawp2 => GRAWP2 , grawp1 => GRAWP1 , grawp0 => GRAWP0 }

1040 };
1041 reg(encode , drx_tune0b , Val) ->
1042 #{
1043 drx_tune0b := DRX_TUNE0b
1044 } = Val ,
1045 reverse (<<
1046 DRX_TUNE0b :16
1047 >>);
1048 reg(encode , drx_tune1a , Val) ->
1049 #{
1050 drx_tune1a := DRX_TUNE1a
1051 } = Val ,
1052 reverse (<<
1053 DRX_TUNE1a :16
1054 >>);
1055 reg(encode , drx_tune1b , Val) ->
1056 #{
1057 drx_tune1b := DRX_TUNE1b
1058 } = Val ,
1059 reverse (<<
1060 DRX_TUNE1b :16
1061 >>);
1062 reg(encode , drx_tune2 , Val) ->
1063 #{
1064 drx_tune2 := DRX_TUNE2
1065 } = Val ,
1066 reverse (<<
1067 DRX_TUNE2 :32
1068 >>);
1069 reg(encode , drx_sfdtoc , Val) ->
1070 #{
1071 drx_sfdtoc := DRX_SFDTOC
1072 } = Val ,
1073 reverse (<<
1074 DRX_SFDTOC :16
1075 >>);

85

1076 reg(encode , drx_pretoc , Val) ->
1077 #{
1078 drx_pretoc := DRX_PRETOC
1079 } = Val ,
1080 reverse (<<
1081 DRX_PRETOC :16
1082 >>);
1083 reg(encode , drx_tune4h , Val) ->
1084 #{
1085 drx_tune4h := DRX_TUNE4H
1086 } = Val ,
1087 reverse (<<
1088 DRX_TUNE4H :16
1089 >>);
1090 reg(decode , drx_conf , Resp) ->
1091 <<
1092 % RXPACC_NOSAT :8, % present in the user manual but not in

the driver code in C
1093 _:8, % Placeholder for the remaining 8 bits
1094 DRX_CAR_INT :24,
1095 DRX_TUNE4H :16,
1096 DRX_PRETOC :16,
1097 _:16,
1098 DRX_SFDTOC :16,
1099 _:160 ,
1100 DRX_TUNE2 :32,
1101 DRX_TUNE1b :16,
1102 DRX_TUNE1a :16,
1103 DRX_TUNE0b :16,
1104 _:16
1105 >> = reverse (Resp),
1106 #{
1107 drx_tune0b => DRX_TUNE0b ,
1108 drx_tune1a => DRX_TUNE1a ,
1109 drx_tune1b => DRX_TUNE1b ,
1110 drx_tune2 => DRX_TUNE2 ,
1111 drx_tune4h => DRX_TUNE4H ,
1112 drx_car_int => DRX_CAR_INT ,
1113 drx_sfdtoc => DRX_SFDTOC ,
1114 drx_pretoc => DRX_PRETOC %,
1115 % rxpacc_nosat => RXPACC_NOSAT
1116 };
1117 reg(encode , rf_conf , Val) ->
1118 #{
1119 txrxsw := TXRXSW , ldofen := LDOFEN , pllfen := PLLFEN ,

txfen := TXFEN
1120 } = Val ,
1121 reverse (<<
1122 2#0:9 , TXRXSW :2, LDOFEN :5, PLLFEN :3, TXFEN :5, 2#0:8 %

86

RF_CONF
1123 >>);
1124 reg(encode , rf_rxctrlh , Val) ->
1125 #{
1126 rf_rxctrlh := RF_RXCTRLH
1127 } = Val ,
1128 reverse (<<
1129 RF_RXCTRLH :8 % RF_RXCTRLH
1130 >>);
1131 % user manual gives fields but encoding should be done as one

following table 38
1132 reg(encode , rf_txctrl , Val) ->
1133 #{
1134 rf_txctrl := RF_TXCTRL
1135 } = Val ,
1136 reverse (<<
1137 RF_TXCTRL :32
1138 >>);
1139 reg(encode , ldotune , Val) ->
1140 #{
1141 ldotune := LDOTUNE
1142 } = Val ,
1143 reverse (<<
1144 LDOTUNE :40
1145 >>);
1146 reg(decode , rf_conf , Resp) ->
1147 <<
1148 _:40, % Placeholder for the remaining 40 bits
1149 LDOTUNE :40, % LDOTUNE
1150 _:28, RFPLLLOCK :1, CPLLHIGH :1, CPLLLOW :1, CPLLLOCK :1, %

RF_STATUS
1151 _:128 , _:96, % Reserved 2 - On user manual 16 bytes but

offset gives 28 bytes (16 bytes (128 bits) + 12 bytes (96 bits)
)

1152 RF_TXCTRL :32, % cf. encode function : Reserved :20, TXMQ :3,
TXMTUNE :4, _:5 - RF_TXCTRL

1153 RF_RXCTRLH :8, % RF_RXCTRLH
1154 _:56, % Reserved 1
1155 _:9, TXRXSW :2, LDOFEN :5, PLLFEN :3, TXFEN :5, _:8 % RF_CONF
1156 >> = reverse (Resp),
1157 #{
1158 ldotune => LDOTUNE ,
1159 rf_status => #{ rfplllock => RFPLLLOCK , cplllow => CPLLLOW ,

cpllhigh => CPLLHIGH , cplllock => CPLLLOCK },
1160 rf_txctrl => RF_TXCTRL ,
1161 rf_rxctrlh => RF_RXCTRLH ,
1162 rf_conf => #{ txrxsw => TXRXSW , ldofen => LDOFEN , pllfen =>

PLLFEN , txfen => TXFEN}
1163 };

87

1164 reg(encode , tc_sarc , Val) ->
1165 #{
1166 sar_ctrl := SAR_CTRL
1167 } = Val ,
1168 reverse (<<
1169 2#0:15 , SAR_CTRL :1
1170 >>);
1171 reg(encode , tc_pg_ctrl , Val) ->
1172 #{
1173 pg_tmeas := PG_TMEAS , res := Reserved , pg_start :=

PG_START
1174 } = Val ,
1175 reverse (<<
1176 2#0:2 , PG_TMEAS :4, Reserved :1, PG_START :1
1177 >>);
1178 reg(encode , tc_pgdelay , Val) ->
1179 #{
1180 tc_pgdelay := TC_PGDELAY
1181 } = Val ,
1182 reverse (<<
1183 TC_PGDELAY :8
1184 >>);
1185 reg(encode , tc_pgtest , Val) ->
1186 #{
1187 tc_pgtest := TC_PGTEST
1188 } = Val ,
1189 reverse (<<
1190 TC_PGTEST :8
1191 >>);
1192 reg(decode , tx_cal , Resp) ->
1193 <<
1194 TC_PGTEST :8, % TC_PGTEST
1195 TC_PGDELAY :8, % TC_PGDELAY
1196 _:4, DELAY_CNT :12, % TC_PG_STATUS
1197 _:2, PG_TMEAS :4, Reserved0 :1, PG_START :1, % TC_PG_CTRL
1198 SAR_WTEMP :8, SAR_WVBAT :8, % TC_SARW
1199 _:8, SAR_LTEMP :8, SAR_LVBAT :8, % TC_SARL
1200 _:8, % Place holder to fill the gap between the offsets
1201 _:15, SAR_CTRL :1 % TC_SARC
1202 >> = reverse (Resp),
1203 #{
1204 tc_pgtest => TC_PGTEST ,
1205 tc_pgdelay => TC_PGDELAY ,
1206 tc_pg_status => #{ delay_cnt => DELAY_CNT },
1207 tc_pg_ctrl => #{ pg_tmeas => PG_TMEAS , res => Reserved0 ,

pg_start => PG_START },
1208 tc_sarw => #{ sar_wtemp => SAR_WTEMP , sar_wvbat =>

SAR_WVBAT },
1209 tc_sarl => #{ sar_ltemp => SAR_LTEMP , sar_lvbat =>

88

SAR_LVBAT },
1210 tc_sarc => #{ sar_ctrl => SAR_CTRL }
1211 };
1212 reg(encode , fs_pllcfg , Val) ->
1213 #{
1214 fs_pllcfg := FS_PLLCFG
1215 } = Val ,
1216 reverse (<<
1217 FS_PLLCFG :32
1218 >>);
1219 reg(encode , fs_plltune , Val) ->
1220 #{
1221 fs_plltune := FS_PLLTUNE
1222 } = Val ,
1223 reverse (<<
1224 FS_PLLTUNE :8
1225 >>);
1226 reg(encode , fs_xtalt , Val) ->
1227 #{
1228 res := Reserved , xtalt := XTALT
1229 } = Val ,
1230 reverse (<<
1231 Reserved :3, XTALT :5
1232 >>);
1233 reg(decode , fs_ctrl , Resp) ->
1234 <<
1235 _:48, % Reserved 3
1236 Reserved :3, XTALT :5, % FS_XTALT
1237 _:16, % Reserved 2
1238 FS_PLLTUNE :8, % FS_PLLTUNE
1239 FS_PLLCFG :32, % FS_PLLCFG
1240 _:56 % Reserved 1
1241 >> = reverse (Resp),
1242 #{
1243 fs_xtalt => #{res => Reserved , xtalt => XTALT},
1244 fs_plltune => FS_PLLTUNE ,
1245 fs_pllcfg => FS_PLLCFG
1246 };
1247 reg(encode , aon_wcfg , Val) ->
1248 #{
1249 onw_lld := ONW_LLD , onw_llde := ONW_LLDE , pres_slee :=

PRES_SLEE , own_l64 := OWN_L64 , own_ldc := OWN_LDC , own_leui :=
OWN_LEUI , own_rx := OWN_RX , own_rad := OWN_RAD

1250 } = Val ,
1251 reverse (<<
1252 2#0:3 , ONW_LLD :1, ONW_LLDE :1, 2#0:2 , PRES_SLEE :1, OWN_L64

:1, OWN_LDC :1, 2#0:2 , OWN_LEUI :1, 2#0:1 , OWN_RX :1, OWN_RAD :1 %
AON_WCFG

1253 >>);

89

1254 reg(encode , aon_ctrl , Val) ->
1255 #{
1256 dca_enab := DCA_ENAB , dca_read := DCA_READ , upl_cfg :=

UPL_CFG , save := SAVE , restore := RESTORE
1257 } = Val ,
1258 reverse (<<
1259 DCA_ENAB :1, 2#0:3 , DCA_READ :1, UPL_CFG :1, SAVE :1, RESTORE

:1 % AON_CTRL
1260 >>);
1261 reg(encode , aon_rdat , Val) ->
1262 #{
1263 aon_rdat := AON_RDAT
1264 } = Val ,
1265 reverse (<<
1266 AON_RDAT :8 % AON_RDAT
1267 >>);
1268 reg(encode , aon_addr , Val) ->
1269 #{
1270 aon_addr := AON_ADDR
1271 } = Val ,
1272 reverse (<<
1273 AON_ADDR :8 % AON_ADDR
1274 >>);
1275 reg(encode , aon_cfg0 , Val) ->
1276 #{
1277 sleep_tim := SLEEP_TIM , lpclkdiva := LPCLKDIVA , lpdiv_en

:= LPDIV_EN , wake_cnt := WAKE_CNT , wake_spi := WAKE_SPI ,
wake_pin := WAKE_PIN , sleep_en := SLEEP_EN

1278 } = Val ,
1279 reverse (<<
1280 SLEEP_TIM :16, LPCLKDIVA :11, LPDIV_EN :1, WAKE_CNT :1,

WAKE_SPI :1, WAKE_PIN :1, SLEEP_EN :1 % AON_CFG0
1281 >>);
1282 reg(encode , aon_cfg1 , Val) ->
1283 #{
1284 res := Reserved , lposc_c := LPOSC_C , smxx := SMXX ,

sleep_ce := SLEEP_CE
1285 } = Val ,
1286 reverse (<<
1287 Reserved :13, LPOSC_C :1, SMXX :1, SLEEP_CE :1 % AON_CFG1
1288 >>);
1289 reg(decode , aon , Resp) ->
1290 <<
1291 Reserved :13, LPOSC_C :1, SMXX :1, SLEEP_CE :1, % AON_CFG1
1292 SLEEP_TIM :16, LPCLKDIVA :11, LPDIV_EN :1, WAKE_CNT :1,

WAKE_SPI :1, WAKE_PIN :1, SLEEP_EN :1, % AON_CFG0
1293 _:8, % Reserved 1
1294 AON_ADDR :8, % AON_ADDR
1295 AON_RDAT :8, % AON_RDAT

90

1296 DCA_ENAB :1, _:3, DCA_READ :1, UPL_CFG :1, SAVE :1, RESTORE :1,
% AON_CTRL

1297 _:3, ONW_LLD :1, ONW_LLDE :1, _:2, PRES_SLEE :1, OWN_L64 :1,
OWN_LDC :1, _:2, OWN_LEUI :1, _:1, OWN_RX :1, OWN_RAD :1 % AON_WCFG

1298 >> = reverse (Resp),
1299 #{
1300 aon_cfg1 => #{res => Reserved , lposc_c => LPOSC_C , smxx =>

SMXX , sleep_ce => SLEEP_CE },
1301 aon_cfg0 => #{ sleep_tim => SLEEP_TIM , lpclkdiva =>

LPCLKDIVA , lpdiv_en => LPDIV_EN , wake_cnt => WAKE_CNT , wake_spi
=> WAKE_SPI , wake_pin => WAKE_PIN , sleep_en => SLEEP_EN },

1302 aon_addr => AON_ADDR ,
1303 aon_rdat => AON_RDAT ,
1304 aon_ctrl => #{ dca_enab => DCA_ENAB , dca_read => DCA_READ ,

upl_cfg => UPL_CFG , save => SAVE , restore => RESTORE },
1305 aon_wcfg => #{ onw_lld => ONW_LLD , onw_llde => ONW_LLDE ,

pres_slee => PRES_SLEE , own_l64 => OWN_L64 , own_ldc => OWN_LDC ,
own_leui => OWN_LEUI , own_rx => OWN_RX , own_rad => OWN_RAD }

1306 };
1307 reg(encode , otp_wdat , Val) ->
1308 #{
1309 otp_wdat := OTP_WDAT
1310 } = Val ,
1311 reverse (<<
1312 OTP_WDAT :32 % OTP_WDAT
1313 >>);
1314 reg(encode , otp_addr , Val) ->
1315 #{
1316 otpaddr := OTP_ADDR , res := Reserved
1317 } = Val ,
1318 reverse (<<
1319 Reserved :5, OTP_ADDR :11 % OTP_ADDR
1320 >>);
1321 reg(encode , otp_ctrl , Val) ->
1322 #{
1323 ldeload := LDELOAD , res1 := Reserved1 , otpmr := OTPMR ,

otpprog := OTPPROG , res2 := Reserved2 , otpmrwr := OTPMRWR , res3
:= Reserved3 , otpread := OTPREAD , otp_rden := OTPRDEN

1324 } = Val ,
1325 reverse (<<
1326 LDELOAD :1, Reserved1 :4, OTPMR :4, OTPPROG :1, Reserved2 :2,

OTPMRWR :1, Reserved3 :1, OTPREAD :1, OTPRDEN :1 % OTP_CTRL
1327 >>);
1328 reg(encode , otp_stat , Val) ->
1329 #{
1330 res := Reserved , otp_vpok := OTP_VPOK , otpprgd := OTPPRGD
1331 } = Val ,
1332 reverse (<<
1333 Reserved :14, OTP_VPOK :1, OTPPRGD :1 % OTP_STAT

91

1334 >>);
1335 reg(encode , otp_rdat , Val) ->
1336 #{
1337 otp_rdat := OTP_RDAT
1338 } = Val ,
1339 reverse (<<
1340 OTP_RDAT :32 % OTP_RDAT
1341 >>);
1342 reg(encode , opt_srdat , Val) ->
1343 #{
1344 otp_srdat := OTP_SRDAT
1345 } = Val ,
1346 reverse (<<
1347 OTP_SRDAT :32 % OTP_SRDAT
1348 >>);
1349 reg(encode , otp_sf , Val) ->
1350 #{
1351 res1 := Reserved1 , ops_sel := OPS_SEL , res2 := Reserved2 ,

ldo_kick := LDO_KICK , ops_kick := OPS_KICK
1352 } = Val ,
1353 reverse (<<
1354 Reserved1 :2, OPS_SEL :1, Reserved2 :3, LDO_KICK :1, OPS_KICK

:1 % OTP_SF
1355 >>);
1356 reg(decode , otp_if , Resp) ->
1357 <<
1358 Reserved5 :2, OPS_SEL :1, Reserved6 :3, LDO_KICK :1, OPS_KICK

:1, % OTP_SF
1359 OTP_SRDAT :32, % OTP_SRDAT
1360 OTP_RDAT :32, % OTP_RDAT
1361 Reserved4 :14, OTP_VPOK :1, OTPPRGD :1, % OTP_STAT
1362 LDELOAD :1, Reserved1 :4, OTPMR :4, OTPPROG :1, Reserved2 :2,

OTPMRWR :1, Reserved3 :1, OTPREAD :1, OTPRDEN :1, % OTP_CTRL
1363 Reserved0 :5, OTP_ADDR :11, % OTP_ADDR
1364 OTP_WDAT :32 % OTP_WDAT
1365 >> = reverse (Resp),
1366 #{
1367 otp_sf => #{res1 => Reserved5 , ops_sel => OPS_SEL , res2 =>

Reserved6 , ldo_kick => LDO_KICK , ops_kick => OPS_KICK },
1368 otp_srdat => OTP_SRDAT ,
1369 otp_rdat => OTP_RDAT ,
1370 otp_stat => #{res => Reserved4 , otp_vpok => OTP_VPOK ,

otpprgd => OTPPRGD },
1371 otp_ctrl => #{ ldeload => LDELOAD , res1 => Reserved1 , otpmr

=> OTPMR , otpprog => OTPPROG , res2 => Reserved2 , otpmrwr =>
OTPMRWR , res3 => Reserved3 , otpread => OTPREAD , otp_rden =>
OTPRDEN },

1372 otp_addr => #{ otpaddr => OTP_ADDR , res => Reserved0 },
1373 otp_wdat => OTP_WDAT

92

1374 };
1375 reg(decode , lde_thresh , Resp) ->
1376 <<
1377 LDE_THRESH :16
1378 >> = reverse (Resp),
1379 #{
1380 lde_thresh => LDE_THRESH
1381 };
1382 reg(encode , lde_cfg1 , Val) ->
1383 #{
1384 pmult := PMULT , ntm := NTM
1385 } = Val ,
1386 reverse (<<
1387 PMULT :3, NTM :5
1388 >>);
1389 reg(decode , lde_cfg1 , Resp) ->
1390 <<
1391 PMULT :3, NTM :5
1392 >> = reverse (Resp),
1393 #{
1394 lde_cfg1 => #{pmult => PMULT , ntm => NTM}
1395 };
1396 reg(decode , lde_ppindx , Resp) ->
1397 <<
1398 LDE_PPINDX :16
1399 >> = reverse (Resp),
1400 #{
1401 lde_ppindx => LDE_PPINDX
1402 };
1403 reg(decode , lde_ppampl , Resp) ->
1404 <<
1405 LDE_PPAMPL :16
1406 >> = reverse (Resp),
1407 #{
1408 lde_ppampl => LDE_PPAMPL
1409 };
1410 reg(encode , lde_rxantd , Val) ->
1411 #{
1412 lde_rxantd := LDE_RXANTD
1413 } = Val ,
1414 reverse (<<
1415 LDE_RXANTD :16
1416 >>);
1417 reg(decode , lde_rxantd , Resp) ->
1418 <<
1419 LDE_RXANTD :16
1420 >> = reverse (Resp),
1421 #{
1422 lde_rxantd => LDE_RXANTD

93

1423 };
1424 reg(encode , lde_cfg2 , Val) ->
1425 #{
1426 lde_cfg2 := LDE_CFG2
1427 } = Val ,
1428 reverse (<<
1429 LDE_CFG2 :16
1430 >>);
1431 reg(decode , lde_cfg2 , Resp) ->
1432 <<
1433 LDE_CFG2 :16
1434 >> = reverse (Resp),
1435 #{
1436 lde_cfg2 => LDE_CFG2
1437 };
1438 reg(encode , lde_repc , Val) ->
1439 #{
1440 lde_repc := LDE_REPC
1441 } = Val ,
1442 reverse (<<
1443 LDE_REPC :16
1444 >>);
1445 reg(decode , lde_repc , Resp) ->
1446 <<
1447 LDE_REPC :16
1448 >> = reverse (Resp),
1449 #{
1450 lde_repc => LDE_REPC
1451 };
1452 reg(encode , evc_ctrl , Val) ->
1453 #{
1454 evc_clr := EVC_CLR , evc_en := EVC_EN
1455 } = Val ,
1456 reverse (<<
1457 2#0:30 , EVC_CLR :1, EVC_EN :1 % EVC_CTRL
1458 >>);
1459 reg(encode , diag_tmc , Val) ->
1460 #{
1461 tx_pstm := TX_PSTM
1462 } = Val ,
1463 reverse (<<
1464 2#0:11 , TX_PSTM :1, 2#0:4 % DIAG_TMC
1465 >>);
1466 reg(decode , dig_diag , Resp) ->
1467 <<
1468 _:11, TX_PSTM :1, _:4, % DIAG_TMC
1469 _:64, % Reserved 1
1470 _:4, EVC_TPW :12, % EVC_TPW
1471 _:4, EVC_HPW :12, % EVC_HPW

94

1472 _:4, EVC_TXFS :12, % EVC_TXFS
1473 _:4, EVC_FWTO :12, % EVC_FWTO
1474 _:4, EVC_PTO :12, % EVC_PTO
1475 _:4, EVC_STO :12, % EVC_STO
1476 _:4, ECV_OVR :12, % EVC_OVR
1477 _:4, EVC_FFR :12, % EVC_FFR
1478 _:4, EVC_FCE :12, % EVC_FCE
1479 _:4, EVC_FCG :12, % EVC_FCG
1480 _:4, EVC_RSE :12, % EVC_RSE
1481 _:4, EVC_PHE :12, % EVC_PHE
1482 _:30, EVC_CLR :1, EVC_EN :1 % EVC_CTRL
1483 >> = reverse (Resp),
1484 #{
1485 diag_tmc => #{ tx_pstm => TX_PSTM },
1486 evc_tpw => EVC_TPW ,
1487 evc_hpw => EVC_HPW ,
1488 evc_txfs => EVC_TXFS ,
1489 evc_fwto => EVC_FWTO ,
1490 evc_pto => EVC_PTO ,
1491 evc_sto => EVC_STO ,
1492 evc_ovr => ECV_OVR ,
1493 evc_ffr => EVC_FFR ,
1494 evc_fce => EVC_FCE ,
1495 evc_fcg => EVC_FCG ,
1496 evc_rse => EVC_RSE ,
1497 evc_phe => EVC_PHE ,
1498 evc_ctrl => #{ evc_clr => EVC_CLR , evc_en => EVC_EN }
1499 };
1500 reg(encode , pmsc_ctrl0 , Val) ->
1501 #{
1502 softreset := SOFTRESET , pll2_seq_en := PLL2_SEQ_EN ,

khzclken := KHZCLKEN , gpdrn := GPDRN , gpdce := GPDCE ,
1503 gprn := GPRN , gpce := GPCE , amce := AMCE , adcce := ADCCE ,

otp := OTP , res8 := Res8 , res7 := Res7 , face := FACE , txclks :=
TXCLKS , rxclks := RXCLKS , sysclks := SYSCLKS % Here we need

res8 for the initial config of the DW1000 . We need to write it
1504 } = Val ,
1505 reverse (<<
1506 SOFTRESET :4, 2#000:3 , PLL2_SEQ_EN :1, KHZCLKEN :1, 2#011:3 ,

GPDRN :1, GPDCE :1, GPRN :1, GPCE :1, AMCE :1, 2#0000:4 , ADCCE :1,
OTP :1, Res8 :1, Res7 :1, FACE :1, TXCLKS :2, RXCLKS :2, SYSCLKS :2 %
PMSC_CTRL0

1507 >>);
1508 reg(encode , pmsc_ctrl1 , Val) ->
1509 #{
1510 khzclkdiv := KHZCLKDIV , lderune := LDERUNE , pllsyn :=

PLLSYN , snozr := SNOZR , snoze := SNOZE , arxslp := ARXSLP ,
atxslp := ATXSLP , pktseq := PKTSEQ , arx2init := ARX2INIT

1511 } = Val ,

95

1512 reverse (<<
1513 KHZCLKDIV :6, 2#01000000:8 , LDERUNE :1, 2#0:1 , PLLSYN :1,

SNOZR :1, SNOZE :1, ARXSLP :1, ATXSLP :1, PKTSEQ :8, 2#0:1 , ARX2INIT
:1, 2#0:1 % PMSC_CTRL1

1514 >>);
1515 reg(encode , pmsc_snozt , Val) ->
1516 #{
1517 snoz_tim := SNOZ_TIM
1518 } = Val ,
1519 reverse (<<
1520 SNOZ_TIM :8 % PMSC_SNOZT
1521 >>);
1522 reg(encode , pmsc_txfseq , Val) ->
1523 #{
1524 txfineseq := TXFINESEQ
1525 } = Val ,
1526 reverse (<<
1527 TXFINESEQ :16 % PMSC_TXFINESEQ
1528 >>);
1529 reg(encode , pmsc_ledc , Val) ->
1530 #{
1531 res31 := RES31 , blnknow := BLNKNOW , res15 := RES15 , blnken

:= BLNKEN , blink_tim := BLINK_TIM
1532 } = Val ,
1533 reverse (<<
1534 RES31 :12, BLNKNOW :4, RES15 :7, BLNKEN :1, BLINK_TIM :8 %

PMSC_LEDC
1535 >>);
1536 % mapping pmsc ctrl0 from: https :// forum.qorvo.com/t/pmsc -ctrl0 -

bits8 -15/746/3
1537 reg(decode , pmsc , Resp) ->
1538 % User manual says: reserved bits should be preserved at their

reset value => can hardcode their values ? Safe to do that ?
1539 <<
1540 Res31 :12, BLNKNOW :4, Res15 :7, BLNKEN :1, BLINK_TIM :8, %

PMSC_LEDC
1541 TXFINESEQ :16, % PMSC_TXFINESEQ
1542 _ :(25*8) , % Reserved 2
1543 SNOZ_TIM :8, % PMSC_SNOZT
1544 _:32, % Reserved 1
1545 KHZCLKDIV :6, _:8, LDERUNE :1, _:1, PLLSYN :1, SNOZR :1, SNOZE

:1, ARXSLP :1, ATXSLP :1, PKTSEQ :8, _:1, ARX2INIT :1, _:1, %
PMSC_CTRL1

1546 SOFTRESET :4, _:3, PLL2_SEQ_EN :1, KHZCLKEN :1, _:3, GPDRN :1,
GPDCE :1, GPRN :1, GPCE :1, AMCE :1, _:4, ADCCE :1, OTP :1, Res8 :1,

Res7 :1, FACE :1, TXCLKS :2, RXCLKS :2, SYSCLKS :2 % PMSC_CTRL0
1547 >> = reverse (Resp),
1548 #{
1549 pmsc_ledc => #{res31 => Res31 , blnknow => BLNKNOW , res15

96

=> Res15 , blnken => BLNKEN , blink_tim => BLINK_TIM },
1550 pmsc_txfseq => #{ txfineseq => TXFINESEQ },
1551 pmsc_snozt => #{ snoz_tim => SNOZ_TIM },
1552 pmsc_ctrl1 => #{ khzclkdiv => KHZCLKDIV , lderune => LDERUNE

, pllsyn => PLLSYN , snozr => SNOZR , snoze => SNOZE , arxslp =>
ARXSLP , atxslp => ATXSLP , pktseq => PKTSEQ , arx2init =>
ARX2INIT },

1553 pmsc_ctrl0 => #{ softreset => SOFTRESET , pll2_seq_en =>
PLL2_SEQ_EN , khzclken => KHZCLKEN , gpdrn => GPDRN , gpdce =>
GPDCE , gprn => GPRN , gpce => GPCE , amce => AMCE , adcce => ADCCE
, otp => OTP , res8 => Res8 , res7 => Res7 , face => FACE , txclks
=> TXCLKS , rxclks => RXCLKS , sysclks => SYSCLKS }

1554 };
1555 reg(decode , RegFile , Resp) -> error({ unknown_regfile_to_decode ,

RegFile , Resp});
1556 reg(encode , RegFile , Resp) -> error({ unknown_regfile_to_encode ,

RegFile , Resp}).
1557

1558 rw(read) -> 0;
1559 rw(write) -> 1.
1560

1561 % Mapping of the different register IDs to their hexadecimal value
1562 regFile (dev_id) -> 16#00;
1563 regFile (eui) -> 16#01;
1564 % 0x02 is reserved
1565 regFile (panadr) -> 16#03;
1566 regFile (sys_cfg) -> 16#04;
1567 % 0x05 is reserved
1568 regFile (sys_time) -> 16#06;
1569 % 0x07 is reserved
1570 regFile (tx_fctrl) -> 16#08;
1571 regFile (tx_buffer) -> 16#09;
1572 regFile (dx_time) -> 16#0A;
1573 % 0x0B is reserved
1574 regFile (rx_fwto) -> 16#0C;
1575 regFile (sys_ctrl) -> 16#0D;
1576 regFile (sys_mask) -> 16#0E;
1577 regFile (sys_status) -> 16#0F;
1578 regFile (rx_finfo) -> 16#10;
1579 regFile (rx_buffer) -> 16#11;
1580 regFile (rx_fqual) -> 16#12;
1581 regFile (rx_ttcki) -> 16#13;
1582 regFile (rx_ttcko) -> 16#14;
1583 regFile (rx_time) -> 16#15;
1584 % 0x16 is reserved
1585 regFile (tx_time) -> 16#17;
1586 regFile (tx_antd) -> 16#18;
1587 regFile (sys_state) -> 16#19;
1588 regFile (ack_resp_t) -> 16#1A;

97

1589 % 0x1B is reserved
1590 % 0x1C is reserved
1591 regFile (rx_sniff) -> 16#1D;
1592 regFile (tx_power) -> 16#1E;
1593 regFile (chan_ctrl) -> 16#1F;
1594 % 0x20 is reserved
1595 regFile (usr_sfd) -> 16#21;
1596 % 0x22 is reserved
1597 regFile (agc_ctrl) -> 16#23;
1598 regFile (ext_sync) -> 16#24;
1599 regFile (acc_mem) -> 16#25;
1600 regFile (gpio_ctrl) -> 16#26;
1601 regFile (drx_conf) -> 16#27;
1602 regFile (rf_conf) -> 16#28;
1603 % 0x29 is reserved
1604 regFile (tx_cal) -> 16#2A;
1605 regFile (fs_ctrl) -> 16#2B;
1606 regFile (aon) -> 16#2C;
1607 regFile (otp_if) -> 16#2D;
1608 regFile (lde_ctrl) -> regFile (lde_if); % No size ?
1609 regFile (lde_if) -> 16#2E;
1610 regFile (dig_diag) -> 16#2F;
1611 % 0x30 - 0x35 are reserved
1612 regFile (pmsc) -> 16#36;
1613 % 0x37 - 0x3F are reserved
1614 regFile (RegId) -> error({ wrong_register_ID , RegId}).
1615

1616 % Only the writtable subregisters in SRW register files are
present here

1617 % AGC_CTRL
1618 subReg (agc_ctrl1) -> 16#02;
1619 subReg (agc_tune1) -> 16#04;
1620 subReg (agc_tune2) -> 16#0C;
1621 subReg (agc_tune3) -> 16#12;
1622 subReg (agc_stat1) -> 16#1E;
1623 subReg (ec_ctrl) -> 16#00;
1624 subReg (gpio_mode) -> 16#00;
1625 subReg (gpio_dir) -> 16#08;
1626 subReg (gpio_dout) -> 16#0C;
1627 subReg (gpio_irqe) -> 16#10;
1628 subReg (gpio_isen) -> 16#14;
1629 subReg (gpio_imode) -> 16#18;
1630 subReg (gpio_ibes) -> 16#1C;
1631 subReg (gpio_iclr) -> 16#20;
1632 subReg (gpio_idbe) -> 16#24;
1633 subReg (gpio_raw) -> 16#28;
1634 subReg (drx_tune0b) -> 16#02;
1635 subReg (drx_tune1a) -> 16#04;
1636 subReg (drx_tune1b) -> 16#06;

98

1637 subReg (drx_tune2) -> 16#08;
1638 subReg (drx_sfdtoc) -> 16#20;
1639 subReg (drx_pretoc) -> 16#24;
1640 subReg (drx_tune4h) -> 16#26;
1641 subReg (rf_conf) -> 16#00;
1642 subReg (rf_rxctrlh) -> 16#0B;
1643 subReg (rf_txctrl) -> 16#0C;
1644 subReg (ldotune) -> 16#30;
1645 subReg (tc_sarc) -> 16#00;
1646 subReg (tc_pg_ctrl) -> 16#08;
1647 subReg (tc_pgdelay) -> 16#0B;
1648 subReg (tc_pgtest) -> 16#0C;
1649 subReg (fs_pllcfg) -> 16#07;
1650 subReg (fs_plltune) -> 16#0B;
1651 subReg (fs_xtalt) -> 16#0E;
1652 subReg (aon_wcfg) -> 16#00;
1653 subReg (aon_ctrl) -> 16#02;
1654 subReg (aon_rdat) -> 16#03;
1655 subReg (aon_addr) -> 16#04;
1656 subReg (aon_cfg0) -> 16#06;
1657 subReg (aon_cfg1) -> 16#0A;
1658 subReg (otp_wdat) -> 16#00;
1659 subReg (otp_addr) -> 16#04;
1660 subReg (otp_ctrl) -> 16#06;
1661 subReg (otp_stat) -> 16#08;
1662 subReg (otp_rdat) -> 16#0A;
1663 subReg (otp_srdat) -> 16#0E;
1664 subReg (otp_sf) -> 16#12;
1665 subReg (lde_thresh) -> 16#00;
1666 subReg (lde_cfg1) -> 16#806;
1667 subReg (lde_ppindx) -> 16#1000;
1668 subReg (lde_ppampl) -> 16#1002;
1669 subReg (lde_rxantd) -> 16#1804;
1670 subReg (lde_cfg2) -> 16#1806;
1671 subReg (lde_repc) -> 16#2804;
1672 subReg (evc_ctrl) -> 16#00;
1673 subReg (diag_tmc) -> 16#24;
1674 subReg (pmsc_ctrl0) -> 16#00;
1675 subReg (pmsc_ctrl1) -> 16#04;
1676 subReg (pmsc_snozt) -> 16#0C;
1677 subReg (pmsc_txfseq) -> 16#26;
1678 subReg (pmsc_ledc) -> 16#28.
1679

1680

1681 % Mapping of the size in bytes of the different register IDs
1682 regSize (dev_id) -> 4;
1683 regSize (eui) -> 8;
1684 regSize (panadr) -> 4;
1685 regSize (sys_cfg) -> 4;

99

1686 regSize (sys_time) -> 5;
1687 regSize (tx_fctrl) -> 5;
1688 regSize (tx_buffer) -> 1024;
1689 regSize (dx_time) -> 5;
1690 regSize (rx_fwto) -> 2; % user manual gives 2 bytes and bits 16 -31

are reserved
1691 regSize (sys_ctrl) -> 4;
1692 regSize (sys_mask) -> 4;
1693 regSize (sys_status) -> 5;
1694 regSize (rx_finfo) -> 4;
1695 regSize (rx_buffer) -> 1024;
1696 regSize (rx_fqual) -> 8;
1697 regSize (rx_ttcki) -> 4;
1698 regSize (rx_ttcko) -> 5;
1699 regSize (rx_time) -> 14;
1700 regSize (tx_time) -> 10;
1701 regSize (tx_antd) -> 2;
1702 regSize (sys_state) -> 4;
1703 regSize (ack_resp_t) -> 4;
1704 regSize (rx_sniff) -> 4;
1705 regSize (tx_power) -> 4;
1706 regSize (chan_ctrl) -> 4;
1707 regSize (usr_sfd) -> 41;
1708 regSize (agc_ctrl) -> 33;
1709 regSize (ext_sync) -> 12;
1710 regSize (acc_mem) -> 4064;
1711 regSize (gpio_ctrl) -> 44;
1712 regSize (drx_conf) -> 44; % user manual gives 44 bytes but sum of

register length gives 45 bytes
1713 regSize (rf_conf) -> 58; % user manual gives 58 but sum of all its

register gives 53 => Placeholder for the remaining 8 bytes
1714 regSize (tx_cal) -> 13; % user manual gives 52 bytes but sum of all

sub regs gives 13 bytes
1715 regSize (fs_ctrl) -> 21;
1716 regSize (aon) -> 12;
1717 regSize (otp_if) -> 19; % user manual gives 18 bytes in regs table

but sum of all sub regs is 19 bytes
1718 regSize (lde_ctrl) -> undefined ; % No size ?
1719 regSize (lde_if) -> undefined ; % No size ?
1720 regSize (dig_diag) -> 38; % user manual gives 41 bytes but sum of

all sub regs gives 38 bytes
1721 regSize (pmsc) -> 44. % user manual gives 48 bytes but sum of all

sub regs gives 41 bytes
1722

1723 %% Gives the size in bytes
1724 subRegSize (agc_ctrl1) -> 2;
1725 subRegSize (agc_tune1) -> 2;
1726 subRegSize (agc_tune2) -> 4;
1727 subRegSize (agc_tune3) -> 2;

100

1728 subRegSize (agc_stat1) -> 3;
1729 subRegSize (ec_ctrl) -> 4;
1730 subRegSize (gpio_mode) -> 4;
1731 subRegSize (gpio_dir) -> 4;
1732 subRegSize (gpio_dout) -> 4;
1733 subRegSize (gpio_irqe) -> 4;
1734 subRegSize (gpio_isen) -> 4;
1735 subRegSize (gpio_imode) -> 4;
1736 subRegSize (gpio_ibes) -> 4;
1737 subRegSize (gpio_iclr) -> 4;
1738 subRegSize (gpio_idbe) -> 4;
1739 subRegSize (gpio_raw) -> 4;
1740 subRegSize (drx_tune0b) -> 2;
1741 subRegSize (drx_tune1a) -> 2;
1742 subRegSize (drx_tune1b) -> 2;
1743 subRegSize (drx_tune2) -> 4;
1744 subRegSize (drx_sfdtoc) -> 2;
1745 subRegSize (drx_pretoc) -> 2;
1746 subRegSize (drx_tune4h) -> 2;
1747 subRegSize (rf_conf) -> 4;
1748 subRegSize (rf_rxctrlh) -> 1;
1749 subRegSize (rf_txctrl) -> 4; % ! table in user manual gives 3 but

details gives 4
1750 subRegSize (ldotune) -> 5;
1751 subRegSize (tc_sarc) -> 2;
1752 subRegSize (tc_pg_ctrl) -> 1;
1753 subRegSize (tc_pgdelay) -> 1;
1754 subRegSize (tc_pgtest) -> 1;
1755 subRegSize (fs_pllcfg) -> 4;
1756 subRegSize (fs_plltune) -> 1;
1757 subRegSize (fs_xtalt) -> 1;
1758 subRegSize (aon_wcfg) -> 2;
1759 subRegSize (aon_ctrl) -> 1;
1760 subRegSize (aon_rdat) -> 1;
1761 subRegSize (aon_addr) -> 1;
1762 subRegSize (aon_cfg0) -> 4;
1763 subRegSize (aon_cfg1) -> 2;
1764 subRegSize (otp_wdat) -> 4;
1765 subRegSize (otp_addr) -> 2;
1766 subRegSize (otp_ctrl) -> 2;
1767 subRegSize (otp_stat) -> 2;
1768 subRegSize (otp_rdat) -> 4;
1769 subRegSize (otp_srdat) -> 4;
1770 subRegSize (otp_sf) -> 1;
1771 subRegSize (lde_thresh) -> 2;
1772 subRegSize (lde_cfg1) -> 1;
1773 subRegSize (lde_ppindx) -> 2;
1774 subRegSize (lde_ppampl) -> 2;
1775 subRegSize (lde_rxantd) -> 2;

101

1776 subRegSize (lde_cfg2) -> 2;
1777 subRegSize (lde_repc) -> 2;
1778 subRegSize (evc_ctrl) -> 4;
1779 subRegSize (diag_tmc) -> 2;
1780 subRegSize (pmsc_ctrl0) -> 4;
1781 subRegSize (pmsc_ctrl1) -> 4;
1782 subRegSize (pmsc_snozt) -> 1;
1783 subRegSize (pmsc_txfseq) -> 2;
1784 subRegSize (pmsc_ledc) -> 4;
1785 subRegSize (_) -> error({error}).
1786

1787 % --- Debug

1788

1789 debug_read (Reg , Value) ->
1790 io: format ("[PmodUWB] read [16#~2.16.0 B - ~w] --> ~s -> ~s~n",
1791 [regFile (Reg), Reg , debug_bitstring (Value),

debug_bitstring_hex (Value)]
1792).
1793

1794 debug_write (Reg , Value) ->
1795 io: format ("[PmodUWB] write [16#~2.16.0 B - ~w] --> ~s -> ~s~n",
1796 [regFile (Reg), Reg , debug_bitstring (Value),

debug_bitstring_hex (Value)]
1797).
1798 debug_write (Reg , SubReg , Value) ->
1799 io: format ("[PmodUWB] write [16#~2.16.0 B - ~w - 16#~2.16.0 B - ~

w] --> ~s -> ~s~n",
1800 [regFile (Reg), Reg , subReg (SubReg), SubReg ,

debug_bitstring (Value), debug_bitstring_hex (Value)]
1801).
1802

1803 debug_bitstring (Bitstring) ->
1804 lists: flatten ([io_lib : format (" 2#~8.2.0 B ", [X]) || <<X>> <=

Bitstring]).
1805

1806 debug_bitstring_hex (Bitstring) ->
1807 lists: flatten ([io_lib : format (" 16#~2.16.0 B ", [X]) || <<X>> <=

Bitstring]).

Listing A.2: pmod_uwb.erl

102

Appendix B

MAC layer code

1 -include (" pmod_uwb .hrl").
2

3 -define (FTYPE_BEACON , 3#000) .
4 -define (FTYPE_DATA , 2#001) .
5 -define (FTYPE_ACK , 2#010) .
6 -define (FTYPE_MACCOM , 2#011) .
7

8 -define (NONE , 2#00).
9 -define (SHORT_ADDR , 2#10).

10 -define (EXTENDED , 2#11).
11

12

13 -type ftype () :: ? FTYPE_BEACON | ? FTYPE_DATA | ? FTYPE_ACK | ?
FTYPE_MACCOM .

14 -type addr_mode () :: ?NONE | ? SHORT_ADDR | ? EXTENDED .
15 -type addr () :: bitstring ().
16

17 % @doc frame control of a MAC header for IEEE 802.15.4
18 -record (frame_control , { frame_type = ? FTYPE_DATA :: ftype (),
19 sec_en = ? DISABLED :: flag (),
20 frame_pending = ? DISABLED :: flag (),
21 ack_req = ? DISABLED :: flag (),
22 pan_id_compr = ? DISABLED :: flag (),
23 dest_addr_mode = ? SHORT_ADDR :: addr_mode

(),
24 frame_version = 2#00 :: integer (),
25 src_addr_mode = ? SHORT_ADDR :: addr_mode ()

}).
26

27 % @doc MAC header for IEEE 802.15.4
28 % Doesn ’t include the frame control nor a potential auxiliary

security header
29 -record (mac_header , { seqnum = 0 :: integer (),

103

30 dest_pan = <<16# FFFF :16>> :: addr (),
31 dest_addr = <<16# FFFF :16>> :: addr (),
32 src_pan = <<16# FFFF :16>> :: addr (),
33 src_addr = <<16# FFFF :16>> :: addr ()}).

Listing B.1: mac_layer.hrl

1 -module (mac_layer).
2

3 -include (" mac_layer .hrl").
4

5 -export ([mac_send_data /3, mac_send_data /4, mac_receive /0,
mac_receive /1]).

6 -export ([mac_decode /1]).
7 -export ([mac_frame /2, mac_frame /3]).
8

9

10 % --- API

11

12 %

13 % @doc builds a mac frame without a payload
14 % @equiv mac_frame (FrameControl , MacHeader , <<>>)
15 % @end
16 %

17 -spec mac_frame (FrameControl :: # frame_control {}, MacHeader :: #
mac_header {}) -> bitstring ().

18 mac_frame (FrameControl , MacHeader) ->
19 mac_frame (FrameControl , MacHeader , <<>>).
20

21 %

22 % @doc builds a mac frame
23 % @returns a MAC frame ready to be transmitted in a bitstring (not

including the CRC automatically added by the DW1000)
24 % @end
25 %

26 -spec mac_frame (FrameControl :: # frame_control {}, MacHeader :: #
mac_header {}, Payload :: bitstring ()) -> bitstring ().

27 mac_frame (FrameControl , MacHeader , Payload) ->
28 Header = build_mac_header (FrameControl , MacHeader),

104

29 <<Header /bitstring , Payload /bitstring >>.
30

31 %

32 % @doc Sends a MAC frame using the pmod_uwb without any options
33 % The 2 bytes CRC are automatically added at the end of the

payload and
34 % must not be included in the Payload given in the arguments
35 %

36 -spec mac_send_data (FrameControl :: # frame_control {}, MacHeader ::
mac_header {}, Payload :: bitstring ()) -> ok.

37 mac_send_data (FrameControl , MacHeader , Payload) ->
38 mac_send_data (FrameControl , MacHeader , Payload , # tx_opts {}).
39

40 %

41 % @doc Sends a MAC frame using the pmod_uwb using the specified
options

42 % The 2 bytes CRC are automatically added at the end of the
payload and

43 % must not be included in the Payload given in the arguments
44 % @end
45 %

46 -spec mac_send_data (FrameControl :: # frame_control {}, MacHeader ::
mac_header {}, Payload :: bitstring (), Option :: # tx_opts {})

-> ok | { FrameControl :: # frame_control {}, MacHeader :: #
mac_header {}, Payload :: bitstring ()}.

47 mac_send_data (FrameControl , MacHeader , Payload , Options) ->
48 Message = mac_frame (FrameControl , MacHeader , Payload),
49 pmod_uwb : transmit (Message , Options).
50

51 %

52 % @doc Receive a frame using the pmod_uwb and decode the frame
53 %
54 % @equiv mac_receive (false)
55 %
56 % @return the received mac frame decoded
57 %

58 -spec mac_receive () -> { FrameControl :: # frame_control {},

105

MacHeader :: # mac_header {}, Payload :: bitstring ()}.
59 mac_receive () ->
60 mac_receive (false).
61

62 %

63 % @doc Receive a frame using the pmod_uwb and decode the frame
64 % @param RXEnab indicates if the reception was already enabled (or

is enabled with delay)
65 % Warning : if this function is called with RXEnab = true

and the reception isn ’t set , the driver will be stuck in a loop
without any timeout

66 % @return the received mac frame decoded
67 %

68 -spec mac_receive (RXEnab :: boolean ()) -> { FrameControl :: #
frame_control {}, MacHeader :: # mac_header {}, Payload ::
bitstring ()}.

69 mac_receive (RXEnab) ->
70 case pmod_uwb : reception (RXEnab) of
71 {_Length , Data} -> mac_decode (Data);
72 Err -> Err
73 end.
74

75 % --- Internal
--

76

77 %

78 % @doc builds a mac header based on the FrameControl and the
MacHeader structures given in the args.

79 % The MAC header doesn ’t support security fields yet
80 % @returns the MAC header in a bitstring
81 % @end
82 %

83 -spec build_mac_header (FrameControl :: # frame_control {}, MacHeader
:: # mac_header {}) -> bitstring ().

84 build_mac_header (FrameControl , MacHeader) ->
85 FC = build_frame_control (FrameControl),
86

87 DestPan = reverse_byte_order (MacHeader # mac_header .dest_pan ,
<<>>),

88 DestAddr = reverse_byte_order (MacHeader # mac_header .dest_addr ,

106

<<>>),
89 DestAddrFields = case FrameControl # frame_control .

dest_addr_mode of
90 ?NONE -> <<>>;
91 _ -> <<DestPan /bitstring , DestAddr /

bitstring >>
92 end ,
93

94 SrcPan = reverse_byte_order (MacHeader # mac_header .src_pan ,
<<>>),

95 SrcAddr = reverse_byte_order (MacHeader # mac_header .src_addr ,
<<>>),

96 SrcAddrFields = case { FrameControl # frame_control . src_addr_mode
, FrameControl # frame_control . pan_id_compr , FrameControl #
frame_control . dest_addr_mode } of

97 {?NONE , _, _} -> <<>>;
98 {_, ?DISABLED , _} -> <<SrcPan /bitstring ,

SrcAddr /bitstring >>; % if no compression is applied on PANID
and SRC addr is present

99 {_, ?ENABLED , ?NONE} -> <<SrcPan /
bitstring , SrcAddr /bitstring >>; % if there is a compression of
the PANID but the dest addr isn ’t present

100 {_, ?ENABLED , _} -> <<SrcAddr /bitstring >>
% if there is a compression of the PANID and the dest addr is
present

101 end ,
102 <<FC/bitstring , (MacHeader # mac_header . seqnum):8,

DestAddrFields /bitstring , SrcAddrFields /bitstring >>.
103

104

105 %

106 % @doc decodes the MAC frame given in the arguments
107 % @return A tuple containing the decoded frame control , the

decoded mac header and the payload
108 % @end
109 %

110 -spec mac_decode (Data :: bitstring ()) -> { FrameControl :: #
frame_control {}, MacHeader :: # mac_header {}, Payload ::
bitstring ()}.

111 mac_decode (Data) ->
112 <<FC :16/ bitstring , Seqnum :8, Rest/bitstring >> = Data ,
113 FrameControl = decode_frame_control (FC),
114 decode_rest (FrameControl , Seqnum , Rest).
115

116 %

107

117 % @private
118 % @doc Decodes the remaining sequence of bit present in the

payload after the seqnum
119 % @end
120 %

121 decode_rest (# frame_control { frame_type = ? FTYPE_ACK } = FrameControl
, Seqnum , _Rest) ->

122 { FrameControl , # mac_header { seqnum = Seqnum }, <<>>};
123 decode_rest (FrameControl , Seqnum , Rest) ->
124 [DestPan_ , DestAddr , SrcPan_ , SrcAddr , Payload] = lists:

flatten (decode_addrs (dest_pan_id , Rest , FrameControl)),
125 DestPan = case {DestPan_ , FrameControl # frame_control .

pan_id_compr , FrameControl # frame_control . frame_type } of
126 { <<>>, ?ENABLED , _} -> SrcPan_ ; % Can always

deduce if the compression is enabled
127 { <<>>, ?DISABLED , ? FTYPE_ACK } -> <<>>; % if

compression isn ’t enabled and ACK => can ’t deduce
128 { <<>>, ?DISABLED , ? FTYPE_BEACON } -> <<>>; % if

compression isn ’t enabled and BEACON => can ’t deduce
129 { <<>>, ?DISABLED , _} -> SrcPan_ ; % Other wise

destination is PAN coord with same PANID as SRC
130 {_, _, _} -> DestPan_
131 end ,
132 SrcPan = case {SrcPan_ , FrameControl # frame_control .

pan_id_compr , FrameControl # frame_control . frame_type } of
133 { <<>>, ?ENABLED , _} -> DestPan ;
134 { <<>>, ?DISABLED , ? FTYPE_ACK } -> <<>>; % if

compression is disabled and frame type is an ACK => can ’t
deduce (e.g. ACK comming from outside the PAN

135 { <<>>, ?DISABLED , _} -> DestPan ;
136 {_, _, _} -> SrcPan_
137 end ,
138 MacHeader = # mac_header { seqnum = Seqnum , dest_pan = DestPan ,

dest_addr = DestAddr , src_pan = SrcPan , src_addr = SrcAddr },
139 { FrameControl , MacHeader , Payload }.
140

141

142 %

143 % @private
144 % @doc decode the address fields present in the remaining sequence

of bits based on the settings inside Framecontrol
145 %
146 % The first parameter is an atom representing the the field that

108

should be parsed next
147 % @end
148 %

149 decode_addrs (dest_pan_id , Rest , FrameControl) ->
150 case FrameControl # frame_control . dest_addr_mode of
151 ?NONE -> [<<>>, <<>>, decode_addrs (src_pan_id , Rest ,

FrameControl)];
152 _ -> <<PanID :16/ bitstring , Tail/bitstring >> = Rest ,
153 [reverse_byte_order (PanID), decode_addrs (dest_addr ,

Tail , FrameControl)]
154 end;
155 decode_addrs (dest_addr , Rest , FrameControl) ->
156 case FrameControl # frame_control . dest_addr_mode of
157 ? SHORT_ADDR -> <<Addr :16/ bitstring , Tail/bitstring >> =

Rest ,
158 [reverse_byte_order (Addr), decode_addrs (

src_pan_id , Tail , FrameControl)];
159 ? EXTENDED -> <<Addr :64/ bitstring , Tail/bitstring >> = Rest ,
160 [reverse_byte_order (Addr), decode_addrs (

src_pan_id , Tail , FrameControl)];
161 _ -> io: format ("Frame control dest_addr : ~w~n", [

FrameControl # frame_control . dest_addr_mode])
162 end;
163 decode_addrs (src_pan_id , Rest , FrameControl) ->
164 case { FrameControl # frame_control . pan_id_compr , FrameControl #

frame_control . src_addr_mode } of
165 {?ENABLED , _} -> [<<>>, decode_addrs (src_addr , Rest ,

FrameControl)];
166 {_, ?NONE} -> [<<>>, <<>>, Rest];
167 _ -> <<PanID :16/ bitstring , Tail/bitstring >> = Rest , % If

compr disabled and src_addr_mode isn ’t none
168 [reverse_byte_order (PanID), decode_addrs (src_addr ,

Tail , FrameControl)]
169 end;
170 decode_addrs (src_addr , Rest , FrameControl) ->
171 case FrameControl # frame_control . src_addr_mode of
172 ?NONE -> [<<>>, Rest];
173 ? SHORT_ADDR -> <<Addr :16/ bitstring , Payload /bitstring >> =

Rest ,
174 [reverse_byte_order (Addr), Payload];
175 ? EXTENDED -> <<Addr :64/ bitstring , Payload /bitstring >> =

Rest ,
176 [reverse_byte_order (Addr), Payload]
177 end.
178

179 %

109

180 % @private
181 % @doc Creates a MAC frame control
182 % @param FrameType : MAC frame type
183 % @param AR: ACK request
184 % @end
185 %

186 -spec build_frame_control (FrameControl :: # frame_control {}) ->
bitstring ().

187 build_frame_control (FrameControl) ->
188 # frame_control { pan_id_compr =PanIdCompr , ack_req =AckReq ,

frame_pending = FramePending , sec_en =SecEn ,
189 frame_type =FrameType , src_addr_mode = SrcAddrMode ,

frame_version = FrameVersion , dest_addr_mode = DestAddrMode } =
FrameControl ,

190 <<2#0:1, PanIdCompr :1, AckReq :1, FramePending :1, SecEn :1,
FrameType :3, SrcAddrMode :2, FrameVersion :2, DestAddrMode :2,
2#0:2 > >.

191

192

193 %

194 % @private
195 % @doc Decode the frame control given in a bitstring form in the

parameters
196 % @end
197 %

198 -spec decode_frame_control (FC :: bitstring) -> # frame_control {}.
199 decode_frame_control (FC) ->
200 <<_:1, PanIdCompr :1, AckReq :1, FramePending :1, SecEn :1,

FrameType :3, SrcAddrMode :2, FrameVersion :2, DestAddrMode :2, _
:2>> = FC ,

201 # frame_control { frame_type = FrameType , sec_en = SecEn ,
frame_pending = FramePending , ack_req = AckReq , pan_id_compr =
PanIdCompr , dest_addr_mode = DestAddrMode , frame_version =
FrameVersion , src_addr_mode = SrcAddrMode }.

202

203 % --- Tool functions
--

204

205 reverse_byte_order (Bitstring) -> reverse_byte_order (Bitstring ,
<<>>).

206 reverse_byte_order (<<Head :8>>, Acc) ->
207 <<Head :8, Acc/bitstring >>;

110

208 reverse_byte_order (<<Head :8, Tail/bitstring >>, Acc) ->
209 reverse_byte_order (Tail , <<Head :8, Acc/bitstring >>).

Listing B.2: mac_layer.erl

111

Appendix C

Examples

C.1 ack_no_jitter

1 % @doc robot public API.
2 -module (robot).
3

4 -behavior (application).
5

6 -include (" mac_layer .hrl").
7

8 % Callbacks
9 -export ([test_receiver_ack /0]).

10 -export ([test_sender_ack /2]).
11 -export ([start /2]).
12 -export ([stop /1]).
13

14

15

16 % --- API

17

18 test_receiver_ack () ->
19 pmod_uwb :write(panadr , #{ pan_id => 16# BEEF , short_addr =>

16#0002 }),
20 pmod_uwb :write(sys_cfg , #{ffad => 2#1, autoack => 2#1}), %

allow ACK and data frame reception and enable autoack
21 pmod_uwb :write(sys_cfg , #{ffen => 2#1}), % enable frame

filtering and allow ACK frame reception and enable autoack
22 receive_data_jitter ().
23

24 % @doc Test the sender
25 % @param NbrFrames => The number of frames to send

112

26 % @param FrameSize => The size of the frame to send in bytes
27 test_sender_ack (NbrFrames , FrameSize) ->
28 pmod_uwb :write(panadr , #{ pan_id => 16# BEEF , short_addr =>

16#0001 }),
29 pmod_uwb :write(rx_fwto , #{ rxfwto => 16# FFFF}),
30 pmod_uwb :write(sys_cfg , #{ rxwtoe => 2#1}),
31 #{ short_addr := SrcAddr } = pmod_uwb :read(panadr),
32 pmod_uwb :write(sys_cfg , #{ffaa => 2#1, autoack => 2#1}), %

allow ACK and data frame reception and enable autoack
33 pmod_uwb :write(sys_cfg , #{ffen => 2#1}), % enable frame

filtering and allow ACK frame reception and enable autoack
34 Data = <<0:(FrameSize *8) >>,
35 Start = os: timestamp (),
36 {Success , Error , Total} = send_data_wait_ack (0, NbrFrames ,

SrcAddr , 10, 10, Data , {0, 0, 0}),
37 End = os: timestamp (),
38 Time = timer: now_diff (End , Start)/1000000 ,
39 io: format (" ------------------- Report -------------------~n"),
40 io: format ("Sent ~w frames - Success rate ~.3f (~w/~w) - Error

rate ~.3f (~w/~w)~n", [Total , Success /Total , Success , Total ,
Error/Total , Error , Total]),

41 io: format ("Data rate ~.1f b/s - In ~w s ~n", [(bit_size (Data)*
NbrFrames)/Time , Time]),

42 io: format (" --~n").
43

44 % --- Private

45 receive_data_jitter () ->
46 case mac_layer : mac_receive (false) of
47 {# frame_control { frame_type = ?FTYPE_DATA , pan_id_compr = ?

ENABLED } = _FrameControl , MacHeader , _Data} ->
48 io: format (" Received data from ~w with seqnum ~w~n", [

MacHeader # mac_header .src_addr , MacHeader # mac_header . seqnum]),
49 pmod_uwb : wait_for_transmission ();
50 % pmod_uwb :write(sys_status , #{txfrs => 2#1});
51 {_, _, _} -> io: format (" Received unexpected frame~n");
52 Err -> io: format (" Reception error: ~w~n", [Err])
53 end ,
54 receive_data_jitter ().
55 %
56 %

57 % @private
58 % @param Cnt: number of MAC message already sent
59 % @param Max: total number of MAC message to send
60 % @param SrcAddr : the address of the device sending the MAC

message

113

61 % @param TrialsLeft : the number of reception attempts left
62 % @param TotTrialsAllowed : the maximum number of times we will try

to receive a frame after a bad reception
63 % @TODO use RXAUTR later on
64 %

65 -spec send_data_wait_ack (Cnt :: integer (), Max :: integer (),
SrcAddr :: integer (), TrialsLeft :: integer (), TotTrialsAllowed

:: integer (), Data :: bitstring (), _Stats) -> ok | {error , any
()}.

66 send_data_wait_ack (_, _, _, 0, _, _, Stats) -> error({
reception_error , "Max trials reached ", Stats});

67 send_data_wait_ack (Max , Max , _, _, _, _, Stats) -> Stats;
68 send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft , TotTrialsAllowed

, Data , {Success , Error , TotalFrameSent }) ->
69 Seqnum = Cnt rem 16#FF ,
70 FrameControl = # frame_control { ack_req = ?ENABLED , pan_id_compr

= ? ENABLED },
71 MacHeader = # mac_header { seqnum = Seqnum , dest_pan = <<16# BEEF

:16>>, dest_addr = < <16#0002:16 > > , src_addr = <<SrcAddr :16>>},
72 % io: format (" Sending message #~w with seqnum ~w~n", [Cnt ,

Seqnum]),
73 mac_layer : mac_send_data (FrameControl , MacHeader , Data , #

tx_opts { wait4resp = ?ENABLED , w4r_tim = 0}),
74 case mac_layer : mac_receive (true) of
75 {# frame_control { frame_type = ? FTYPE_ACK } = _RxFrameControl

, # mac_header { seqnum = Seqnum } = _RxMacHeader , _RxData } -> % io
: format (" ACK received for frame seqnum ~w~n", [_RxMacHeader #
mac_header . seqnum]),

76

send_data_wait_ack (Cnt +1, Max , SrcAddr , TotTrialsAllowed ,
TotTrialsAllowed , Data , { Success +1, Error , TotalFrameSent +1});

77 { _RxFrameControl , _RxMacHeader , RxData } -> io: format ("
Received MAC frame but not ACK: ~w~n", [RxData]),

78

send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft ,
TotTrialsAllowed , Data , {Success , Error , TotalFrameSent });

79 _ -> io: format (" Reception error. Trying again ...~n"),
80 pmod_uwb :write(sys_status , #{rxfto => 2#1}), %

reset rxfto to avoid false t.o.
81 send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft -1,

TotTrialsAllowed , Data , {Success , Error +1, TotalFrameSent +1})
82 end.
83 % --- Callbacks

84

114

85 % @private
86 start(_Type , _Args) ->
87 {ok , Supervisor } = robot_sup : start_link (),
88 grisp: add_device (spi2 , pmod_uwb),
89 % Res = pmod_uwb :read(dev_id),
90 {ok , Supervisor }.
91

92 % @private
93 stop(_State) -> ok.

Listing C.1: main code for the example ack_no_jitter

C.2 ack_jitter

1 % @doc robot public API.
2 -module (robot).
3

4 -behavior (application).
5

6 -include (" mac_layer .hrl").
7

8 % Callbacks
9 -export ([test_receiver_ack /0]).

10 -export ([test_sender_ack /2]).
11 -export ([start /2]).
12 -export ([stop /1]).
13

14

15 % --- API

16 test_receiver_ack () ->
17 pmod_uwb :write(panadr , #{ pan_id => 16# BEEF , short_addr =>

16#0002 }),
18 pmod_uwb :write(sys_cfg , #{ffad => 2#1, autoack => 2#1}), %

allow ACK and data frame reception and enable autoack
19 pmod_uwb :write(sys_cfg , #{ffen => 2#1}), % enable frame

filtering and allow ACK frame reception and enable autoack
20 receive_data_jitter ().
21

22 % @doc Test the sender
23 % @param NbrFrames => The number of frames to send
24 % @param FrameSize => The size of the frame to send in bytes
25 test_sender_ack (NbrFrames , FrameSize) ->
26 pmod_uwb :write(panadr , #{ pan_id => 16# BEEF , short_addr =>

16#0001 }),
27 pmod_uwb :write(rx_fwto , #{ rxfwto => 16# FFFF}),

115

28 pmod_uwb :write(sys_cfg , #{ rxwtoe => 2#1}),
29 #{ short_addr := SrcAddr } = pmod_uwb :read(panadr),
30 pmod_uwb :write(sys_cfg , #{ffaa => 2#1, autoack => 2#1}), %

allow ACK and data frame reception and enable autoack
31 pmod_uwb :write(sys_cfg , #{ffen => 2#1}), % enable frame

filtering and allow ACK frame reception and enable autoack
32 Data = <<0:(FrameSize *8) >>,
33 Start = os: timestamp (),
34 {Success , Error , Total} = send_data_wait_ack (0, NbrFrames ,

SrcAddr , 10, 10, Data , {0, 0, 0}),
35 End = os: timestamp (),
36 Time = timer: now_diff (End , Start)/1000000 ,
37 io: format (" ------------------- Report -------------------~n"),
38 io: format ("Sent ~w frames - Success rate ~.3f (~w/~w) - Error

rate ~.3f (~w/~w)~n", [Total , Success /Total , Success , Total ,
Error/Total , Error , Total]),

39 io: format ("Data rate ~.1f b/s - In ~w s ~n", [(bit_size (Data)*
NbrFrames)/Time , Time]),

40 io: format (" --~n").
41

42 % --- Private

43 receive_data_jitter () ->
44 case mac_layer : mac_receive (false) of
45 {# frame_control { frame_type = ?FTYPE_DATA , pan_id_compr = ?

ENABLED } = _FrameControl , MacHeader , Data} ->
46 io: format (" Received data from ~w with seqnum ~w~n", [

MacHeader # mac_header .src_addr , MacHeader # mac_header . seqnum]),
47 % Simulates some delay in the network for every frame

out of 4
48 case rand: uniform (4) of
49 1 -> timer:sleep (200);
50 _ -> ok
51 end ,
52 pmod_uwb : wait_for_transmission ();
53 % pmod_uwb :write(sys_status , #{txfrs => 2#1});
54 {_, _, _} -> io: format (" Received unexpected frame~n");
55 Err -> io: format (" Reception error: ~w~n", [Err])
56 end ,
57 receive_data_jitter ().
58

59 %

60 % @private
61 % @param Cnt: number of MAC message already sent
62 % @param Max: total number of MAC message to send
63 % @param SrcAddr : the address of the device sending the MAC

116

message
64 % @param TrialsLeft : the number of reception attempts left
65 % @param TotTrialsAllowed : the maximum number of times we will try

to receive a frame after a bad reception
66 %

67 -spec send_data_wait_ack (Cnt :: integer (), Max :: integer (),
SrcAddr :: integer (), TrialsLeft :: integer (), TotTrialsAllowed

:: integer (), Data :: bitstring (), _Stats) -> ok | {error , any
()}.

68 send_data_wait_ack (_, _, _, 0, _, _, Stats) -> error({
reception_error , "Max trials reached ", Stats});

69 send_data_wait_ack (Max , Max , _, _, _, _, Stats) -> Stats;
70 send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft , TotTrialsAllowed

, Data , {Success , Error , TotalFrameSent }) ->
71 Seqnum = Cnt rem 16#FF ,
72 FrameControl = # frame_control { ack_req = ?ENABLED , pan_id_compr

= ? ENABLED },
73 MacHeader = # mac_header { seqnum = Seqnum , dest_pan = <<16# BEEF

:16>>, dest_addr = < <16#0002:16 > > , src_addr = <<SrcAddr :16>>},
74 % io: format (" Sending message #~w with seqnum ~w~n", [Cnt ,

Seqnum]),
75 mac_layer : mac_send_data (FrameControl , MacHeader , Data , #

tx_opts { wait4resp = ?ENABLED , w4r_tim = 0}),
76 case mac_layer : mac_receive (true) of
77 {# frame_control { frame_type = ? FTYPE_ACK } = _RxFrameControl

, # mac_header { seqnum = Seqnum } = _RxMacHeader , _RxData } -> % io
: format (" ACK received for frame seqnum ~w~n", [_RxMacHeader #
mac_header . seqnum]),

78

send_data_wait_ack (Cnt +1, Max , SrcAddr , TotTrialsAllowed ,
TotTrialsAllowed , Data , { Success +1, Error , TotalFrameSent +1});

79 { _RxFrameControl , _RxMacHeader , RxData } -> io: format ("
Received MAC frame but not ACK: ~w~n", [RxData]),

80

send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft ,
TotTrialsAllowed , Data , {Success , Error , TotalFrameSent });

81 _ -> io: format (" Reception error. Trying again ...~n"),
82 pmod_uwb :write(sys_status , #{rxfto => 2#1}), %

reset rxfto to avoid false t.o.
83 send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft -1,

TotTrialsAllowed , Data , {Success , Error +1, TotalFrameSent +1})
84 end.
85

86 % --- Callbacks

117

87

88 % @private
89 start(_Type , _Args) ->
90 {ok , Supervisor } = robot_sup : start_link (),
91 grisp: add_device (spi2 , pmod_uwb),
92 % Res = pmod_uwb :read(dev_id),
93 {ok , Supervisor }.
94

95 % @private
96 stop(_State) -> ok.

Listing C.2: main code for the example ack_jitter

C.3 ack_fast_tx

1 % @doc robot public API.
2 -module (robot).
3

4 -behavior (application).
5

6 -include (" mac_layer .hrl").
7

8 % Callbacks
9 -export ([test_receiver_ack /0]).

10 -export ([test_sender_ack /2]).
11 -export ([start /2]).
12 -export ([stop /1]).
13

14

15 % --- API

16 test_receiver_ack () ->
17 pmod_uwb :write(panadr , #{ pan_id => 16# BEEF , short_addr =>

16#0002 }),
18 pmod_uwb :write(sys_cfg , #{ffad => 2#1, autoack => 2#1}), %

allow ACK and data frame reception and enable autoack
19 pmod_uwb :write(sys_cfg , #{ffen => 2#1}), % enable frame

filtering and allow ACK frame reception and enable autoack
20 receive_data_jitter ().
21

22 % @doc Test the sender
23 % @param NbrFrames => The number of frames to send
24 % @param FrameSize => The size of the frame to send in bytes
25 test_sender_ack (NbrFrames , FrameSize) ->
26 pmod_uwb :write(panadr , #{ pan_id => 16# BEEF , short_addr =>

16#0001 }),

118

27 pmod_uwb :write(rx_fwto , #{ rxfwto => 16# FFFF}),
28 pmod_uwb :write(sys_cfg , #{ rxwtoe => 2#1}),
29 #{ short_addr := SrcAddr } = pmod_uwb :read(panadr),
30 pmod_uwb :write(sys_cfg , #{ffaa => 2#1, autoack => 2#1}), %

allow ACK and data frame reception and enable autoack
31 pmod_uwb :write(sys_cfg , #{ffen => 2#1}), % enable frame

filtering and allow ACK frame reception and enable autoack
32 Data = <<0:(FrameSize *8) >>,
33 FrameControl = # frame_control { ack_req = ?ENABLED , pan_id_compr

= ? ENABLED },
34 MacHeader = # mac_header { seqnum = 254, dest_pan = <<16# BEEF

:16>>, dest_addr = < <16#0002:16 > > , src_addr = <<SrcAddr :16>>},
35 MacFrame = mac_layer : mac_frame (FrameControl , MacHeader , Data),
36 pmod_uwb : write_tx_data (MacFrame),
37 Start = os: timestamp (),
38 {Success , Error , Total} = send_data_wait_ack (0, NbrFrames ,

SrcAddr , 10, 10, byte_size (MacFrame), {0, 0, 0}),
39 End = os: timestamp (),
40 Time = timer: now_diff (End , Start)/1000000 ,
41 io: format (" ------------------- Report -------------------~n"),
42 io: format ("Sent ~w frames - Success rate ~.3f (~w/~w) - Error

rate ~.3f (~w/~w)~n", [Total , Success /Total , Success , Total ,
Error/Total , Error , Total]),

43 io: format ("Data rate ~.1f b/s - In ~w s ~n", [(bit_size (Data)*
NbrFrames)/Time , Time]),

44 io: format (" --~n").
45

46 % --- Private

47 receive_data_jitter () ->
48 case mac_layer : mac_receive (false) of
49 {# frame_control { frame_type = ?FTYPE_DATA , pan_id_compr = ?

ENABLED } = _FrameControl , MacHeader , _Data} ->
50 pmod_uwb : wait_for_transmission ();
51 % pmod_uwb :write(sys_status , #{txfrs => 2#1});
52 {_, _, _} -> io: format (" Received unexpected frame~n");
53 Err -> io: format (" Reception error: ~w~n", [Err])
54 end ,
55 receive_data_jitter ().
56

57 %

58 % @private
59 % @param Cnt: number of MAC message already sent
60 % @param Max: total number of MAC message to send
61 % @param SrcAddr : the address of the device sending the MAC

message

119

62 % @param TrialsLeft : the number of reception attempts left
63 % @param TotTrialsAllowed : the maximum number of times we will try

to receive a frame after a bad reception
64 % @TODO use RXAUTR later on
65 %

66 -spec send_data_wait_ack (Cnt :: integer (), Max :: integer (),
SrcAddr :: integer (), TrialsLeft :: integer (), TotTrialsAllowed

:: integer (), Data :: bitstring (), _Stats) -> ok | {error , any
()}.

67 send_data_wait_ack (_, _, _, 0, _, _, Stats) -> error({
reception_error , "Max trials reached ", Stats});

68 send_data_wait_ack (Max , Max , _, _, _, _, Stats) -> Stats;
69 send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft , TotTrialsAllowed

, DataLength , {Success , Error , TotalFrameSent }) ->
70 % Starting the transmission
71 pmod_uwb :write(tx_fctrl , #{ txboffs => 2#0, tr => 2#0, tflen =>

DataLength }),
72 pmod_uwb :write(sys_ctrl , #{ txstrt => 2#1, wait4resp => ?

ENABLED , txdlys => 0}), % start transmission and some options
73 case mac_layer : mac_receive (true) of
74 {# frame_control { frame_type = ? FTYPE_ACK } = _RxFrameControl

, # mac_header { seqnum = Seqnum } = _RxMacHeader , _RxData } ->
send_data_wait_ack (Cnt +1, Max , SrcAddr , TotTrialsAllowed ,
TotTrialsAllowed , DataLength , { Success +1, Error , TotalFrameSent
+1});

75 { _RxFrameControl , _RxMacHeader , RxData } ->
send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft ,
TotTrialsAllowed , DataLength , {Success , Error , TotalFrameSent })
;

76 _ -> io: format (" Reception error. Trying again ...~n"),
77 pmod_uwb :write(sys_status , #{rxfto => 2#1}), %

reset rxfto to avoid false t.o.
78 send_data_wait_ack (Cnt , Max , SrcAddr , TrialsLeft -1,

TotTrialsAllowed , DataLength , {Success , Error +1,
TotalFrameSent +1})

79 end.
80

81 % --- Callbacks

82

83 % @private
84 start(_Type , _Args) ->
85 {ok , Supervisor } = robot_sup : start_link (),
86 grisp: add_device (spi2 , pmod_uwb),
87 % Res = pmod_uwb :read(dev_id),
88 {ok , Supervisor }.

120

89

90 % @private
91 stop(_State) -> ok.

Listing C.3: main code for the ack_fast_tx example

C.4 ss_twr

1 % @doc robot public API.
2 -module (robot).
3

4 -behavior (application).
5

6 -include (" mac_layer .hrl").
7

8 % Callbacks
9 -export ([start /2]).

10 -export ([stop /1]).
11 -export ([ss_initiator /0, ss_responder /0]).
12

13 %-define (TU , 1.565444993393822e -11). % 1 t.u. is ~1.5654e -11 s
14 -define (TU , 15.65e -12).
15 -define (C, 299792458) . % Speed of light
16 % https :// forum.qorvo.com/t/sample - programs /788/3
17 -define (UUS_TO_DWT_TIME , 65536) . % in one UWB s , there are 65536

t.u (UWB s are special s ???)
18 -define (FREQ_OFFSET_MULTIPLIER , 1/(131072 * 2 * (1024/998.4 e6))).
19 -define (HERTZ_TO_PPM_MUL , 1.0e -6/6489.6 e6).
20

21 -define (NBR_MEASUREMENTS , 250).
22 -define (TX_ANTD , 23500) .
23 -define (RX_ANTD , 23500) .
24

25 % --- Single -sided two -way ranging

26

27 ss_initiator () ->
28 pmod_uwb :write(tx_antd , #{ tx_antd => ? TX_ANTD }), % ! this

value is not correct - the devices should be calibrated
29 pmod_uwb :write(lde_if , #{ lde_rxantd => ? RX_ANTD }),
30 ss_initiator (? NBR_MEASUREMENTS , []).
31

32 ss_initiator (0, Measurements) ->
33 Total = length (Measurements),
34 MeasureAVG = lists:sum(Measurements)/Total ,
35 StdDev = std_dev (Measurements , MeasureAVG , Total , 0),

121

36 io: format (" -------------------------------- Summary
--------------------------------~n"),

37 io: format ("Sent ~w request -~n",[Total]),
38 io: format (" Average distance measured : ~w - standard deviation :

~w ~n", [MeasureAVG , StdDev]),
39 io: format ("Min: ~w - Max ~w~n", [lists:min(Measurements),

lists:max(Measurements)]),
40 io: format ("

---~
n"),

41 Measurements ;
42 ss_initiator (N, Measurements) ->
43 Measure = ss_initiator_loop (),
44 io: format ("~w~n", [Measure]),
45 timer:sleep (100) ,
46 case Measure of
47 error -> ss_initiator (N-1, Measurements);
48 _ -> ss_initiator (N-1, [Measure | Measurements])
49 end.
50

51 ss_initiator_loop () ->
52 % Builds the MAC frame for Poll message
53 FrameControl = # frame_control { pan_id_compr = ?ENABLED ,

dest_addr_mode = ?SHORT_ADDR , src_addr_mode = ? SHORT_ADDR },
54 MacHeader = # mac_header { seqnum = 0, dest_pan = <<16# FFFF :16>>,

dest_addr = <<16# FFFF :16>>, src_addr = <<16# FFFF :16>>},
55 Options = # tx_opts { wait4resp = ?ENABLED , w4r_tim = 0},
56

57 mac_layer : mac_send_data (FrameControl , MacHeader , <<"GRiSP" >>,
Options),

58

59 {_, _, Data} = mac_layer : mac_receive (true), % Reception of
Resp

60 %io: format (" Received data: ~w~n", [Data]),
61

62 % Getting the timestamps of the TX of Poll and of the RX of
Resp

63 #{ tx_stamp := PollTXTimestamp } = pmod_uwb :read(tx_time),
64 #{ rx_stamp := RespRXTimestamp } = pmod_uwb :read(rx_time),
65

66 { PollRXTimestamp , RespTXTimestamp } = get_resp_ts (Data), %
Getting the timestamps sent by the responder

67 % io: format (" PollTX : ~w - PollRX : ~w - RespTX : ~w - RespRX : ~w
~n", [PollTXTimestamp , PollRXTimestamp , RespTXTimestamp ,
RespRXTimestamp]),

68

69 TRound = RespRXTimestamp - PollTXTimestamp ,
70 TResp = RespTXTimestamp - PollRXTimestamp ,
71

122

72 % Getting the clock offset ratio
73 #{ drx_car_int := DRX_CAR_INT } = pmod_uwb :read(drx_conf),
74 ClockOffsetRatio = (DRX_CAR_INT * ? FREQ_OFFSET_MULTIPLIER * ?

HERTZ_TO_PPM_MUL),
75

76 io: format (" PollTX ~w - RespRX ~w - PollRX ~w - RespTX ~w~n", [
PollTXTimestamp , RespRXTimestamp , PollRXTimestamp ,
RespTXTimestamp]),

77 TimeOfFlight = ((TRound - TResp) * ((1- ClockOffsetRatio)/2))
* ?TU ,

78 if
79 (RespRXTimestamp >= PollTXTimestamp) and (RespTXTimestamp

>= PollRXTimestamp) -> TimeOfFlight * ?C;
80 true -> error
81 end.
82

83 get_resp_ts (Data) ->
84 <<PollRXTimestamp :40, RespTXTimestamp :40>> = Data ,
85 { PollRXTimestamp , RespTXTimestamp }.
86

87 ss_responder () ->
88 pmod_uwb :write(tx_antd , #{ tx_antd => ? TX_ANTD }),
89 pmod_uwb :write(lde_if , #{ lde_rxantd => ? RX_ANTD }),
90 #{ pan_id := PANID , short_addr := Addr} = pmod_uwb :read(panadr)

,
91 ss_responder_loop (? NBR_MEASUREMENTS , PANID , Addr).
92

93 ss_responder_loop (0, _, _) -> ok;
94 ss_responder_loop (N, PANID , Addr) ->
95 { FrameControl , MacHeader , _} = mac_layer : mac_receive (),
96 #{ rx_stamp := PollRXTimestamp } = pmod_uwb :read(rx_time),
97

98 RespTXTimestamp_ = PollRXTimestamp + (20000 * ? UUS_TO_DWT_TIME
),

99 pmod_uwb :write(dx_time , #{ dx_time => RespTXTimestamp_ }),
100

101 RespTXTimestamp = RespTXTimestamp_ + ?TX_ANTD ,
102 TXData = << PollRXTimestamp :40, RespTXTimestamp :40>>,
103 TXMacHeader = # mac_header { seqnum = MacHeader # mac_header . seqnum

+1, dest_pan = MacHeader # mac_header .src_pan , dest_addr =
MacHeader # mac_header .src_addr , src_pan = <<PANID :16>>, src_addr

= <<Addr :16>>},
104 Options = # tx_opts { txdlys = ?ENABLED , tx_delay =

RespTXTimestamp },
105

106 mac_layer : mac_send_data (FrameControl , TXMacHeader , TXData ,
Options),

107 ss_responder_loop (N-1, PANID , Addr).
108

123

109 % --- Tool functions for stats

110

111 -spec std_dev (Measures :: list (), Mean :: number (), N :: number (),
Acc :: number ()) -> number ().

112 std_dev ([], _, N, Acc) ->
113 math:sqrt(Acc/N);
114 std_dev ([H | T], Mean , N, Acc) ->
115 std_dev (T, Mean , N, Acc + math:pow(H-Mean , 2)).
116

117

118 % --- Callbacks

119

120 % @private
121 start(_Type , _Args) ->
122 {ok , Supervisor } = robot_sup : start_link (),
123 grisp: add_device (spi2 , pmod_uwb),
124 % Res = pmod_uwb :read(dev_id),
125 {ok , Supervisor }.
126

127 % @private
128 stop(_State) -> ok.

Listing C.4: main code for the example ss_twr

C.5 ds_twr

1 % @doc robot public API.
2 -module (robot).
3

4 -behavior (application).
5

6 -include (" mac_layer .hrl").
7

8 -export ([ds_initiator /0, ds_responder /0]).
9 %

10 % Callbacks
11 -export ([start /2]).
12 -export ([stop /1]).
13

14 %-define (TU , 1.565444993393822e -11). % 1 t.u. is ~1.5654e -11 s
15 -define (TU , 15.65e -12).
16 -define (C, 299792458) . % Speed of light
17 % https :// forum.qorvo.com/t/sample - programs /788/3

124

18 -define (UUS_TO_DWT_TIME , 65536) . % in one UWB s , there are 65536
t.u (UWB s are special s ???)

19

20 -define (NBR_MEASUREMENTS , 250).
21 -define (TX_ANTD , 16450) .
22 -define (RX_ANTD , 16450) .
23

24 % --- Double -sided two -way ranging

25 ds_initiator () ->
26 % Set the antenna delay -> !! the values should be calibrated
27 pmod_uwb :write(tx_antd , #{ tx_antd => ? TX_ANTD }),
28 pmod_uwb :write(lde_if , #{ lde_rxantd => ? RX_ANTD }),
29 pmod_uwb : set_frame_timeout (16# FFFF),
30 ds_initiator_loop (? NBR_MEASUREMENTS , {0,0,[] ,0}).
31

32 ds_initiator_loop (0, {Succeeded , Errors , _Measures , Total}) ->
33 SuccessRate = Succeeded / Total ,
34 ErrorRate = Errors / Total ,
35 io: format (" -------------------------------- Summary

--------------------------------~n"),
36 io: format ("Sent ~w request - ratio: ~w/~w - Success rate: ~w -

Error rate: ~w~n",[Total , Succeeded , Total , SuccessRate ,
ErrorRate]),

37 io: format ("
---~
n");

38 ds_initiator_loop (Left , {Succeeded , Errors , Measures , Total}) ->
39 case ds_initiator_protocol () of
40 ok -> ds_initiator_loop (Left - 1, { Succeeded +1, Errors ,

Measures , Total +1});
41 error -> ds_initiator_loop (Left -1, {Succeeded , Errors +1,

Measures , Total +1}) % No response to Poll message -> try again
42 end.
43

44 ds_initiator_protocol () ->
45 % Sending the poll message
46 FrameControl = # frame_control { pan_id_compr = ? ENABLED },
47 MacHeader = # mac_header { seqnum = 0, dest_pan = <<16# FFFF :16>>,

dest_addr = <<16# FFFF :16>>, src_addr = <<16# FFFF :16>>},
48 % enabling wait4resp to avoid an early timeout . Here we know

that resp will take at least 10000 s
49 mac_layer : mac_send_data (FrameControl , MacHeader , <<" DS_INIT "

>>, # tx_opts { wait4resp = ?ENABLED , w4r_tim = 20000}),
50 io: format ("Poll message is sent~n"),
51

52 % Receiving the resp message
53 case mac_layer : mac_receive (true) of

125

54 {_, _, <<" Resp_TX ">>} -> #{ tx_stamp := PollTXTimestamp } =
pmod_uwb :read(tx_time),

55 #{ rx_stamp := RespRXTimestamp } = pmod_uwb
:read(rx_time), % Getting the reception timestamp of the resp
message

56

57 % Setting up the final message
58 FinalTXTime = RespRXTimestamp + (30000 *

? UUS_TO_DWT_TIME),
59 pmod_uwb :write(dx_time , #{ dx_time =>

FinalTXTime }),
60 FinalTXTimestamp = FinalTXTime + ?TX_ANTD

,
61 Message = << PollTXTimestamp :40,

RespRXTimestamp :40, FinalTXTimestamp :40>>,
62 pmod_uwb :write(sys_status , #{txfcg => 2#1

}),
63 % Sending the final message
64 mac_layer : mac_send_data (FrameControl ,

MacHeader , Message , # tx_opts { txdlys = ?ENABLED , tx_delay =
FinalTXTime }),

65 io: format ("Final message sent~n"),
66 io: format (" PollTX : ~w - RespRX ~w -

FinalTX ~w~n", [PollTXTimestamp , RespRXTimestamp ,
FinalTXTimestamp]),

67 io: format ("Data sent~n"),
68 timer:sleep (100);
69 Err -> io: format (" Reception error: ~w~n", [Err]),
70 error
71 end.
72

73

74 ds_responder () ->
75 % Set the antenna delay -> !! the values should be calibrated
76 pmod_uwb :write(tx_antd , #{ tx_antd => ? TX_ANTD }),
77 pmod_uwb :write(lde_if , #{ lde_rxantd => ? RX_ANTD }),
78 Measures = ds_responder_loop (? NBR_MEASUREMENTS , {0, 0, [], 0})

,
79 io: format ("~w~n", [Measures]).
80

81 ds_responder_loop (0, {Succeeded , Errors , Measures , Total}) ->
82 SuccessRate = Succeeded /Total ,
83 ErrorRate = Errors /Total ,
84 MeasureAVG = lists:sum(Measures)/Succeeded ,
85 StdDev = std_dev (Measures , MeasureAVG , Succeeded , 0),
86 io: format (" -------------------------------- Summary

--------------------------------~n"),
87 io: format (" Received ~w request - ratio: ~w/~w - Success rate:

~w - Error rate: ~w~n",[Total , Succeeded , Total , SuccessRate ,

126

ErrorRate]),
88 io: format (" Average distance measured : ~w - standard deviation :

~w ~n", [MeasureAVG , StdDev]),
89 io: format ("Min: ~w - Max ~w~n", [lists:min(Measures), lists:

max(Measures)]),
90 io: format ("

---~
n"),

91 Measures ;
92 ds_responder_loop (N, {Succeeded , Errors , Measures , Total}) ->
93 pmod_uwb :write(sys_cfg , #{ rxwtoe => 2#0}),
94 case ds_responder_protocol () of
95 error_rx_poll -> ds_responder_loop (N-1, {Succeeded , Errors

+1, Measures , Total +1});
96 error -> ds_responder_loop (N-1, {Succeeded , Errors +1,

Measures , Total +1});
97 Distance -> ds_responder_loop (N-1, { Succeeded +1, Errors , [

Distance | Measures], Total +1})
98 end.
99

100 ds_responder_protocol () ->
101 % Receiving poll message
102 case mac_layer : mac_receive () of
103 { FrameControl , MacHeader , <<" DS_INIT ">>} ->
104 io: format ("Poll message received ~n"),
105 pmod_uwb : set_frame_timeout (16# FFFF),
106 #{ rx_stamp := PollRXTimestamp } = pmod_uwb :read(rx_time

), % Getting the the reception timestamp of the poll message
107

108 % Setting up and sending the resp message
109 RespTXTime = PollRXTimestamp + (30000 * ?

UUS_TO_DWT_TIME),
110 pmod_uwb :write(dx_time , #{ dx_time => RespTXTime }),
111 RespMacHeader = # mac_header { src_addr = <<16# FFFF :16>>,

dest_pan = MacHeader # mac_header .src_pan , dest_addr = MacHeader
mac_header .src_addr , seqnum = MacHeader # mac_header . seqnum },

112 mac_layer : mac_send_data (FrameControl , RespMacHeader ,
<<" Resp_TX " >>, # tx_opts { wait4resp = ?ENABLED , w4r_tim = 20000})
,

113 io: format (" Response message sent~n"),
114

115 % Receiving the final message
116 case mac_layer : mac_receive (true)of
117 {_, _, <<PollTXTimestamp :40, RespRXTimestamp :40,

FinalTXTimestamp :40>>} ->
118 #{ tx_stamp := RespTXTimestamp } = pmod_uwb :read

(tx_time), % Getting the tx timestamp of the resp message
119 #{ rx_stamp := FinalRXTimestamp } = pmod_uwb :

read(rx_time), % Getting the rx timestamp of the final message

127

120

121 TRound1 = RespRXTimestamp - PollTXTimestamp ,
122 TRound2 = FinalRXTimestamp - RespTXTimestamp ,
123 TReply1 = RespTXTimestamp - PollRXTimestamp ,
124 TReply2 = FinalTXTimestamp - RespRXTimestamp ,
125

126 TProp = (TRound1 * TRound2 - TReply1 * TReply2
)/(TRound1 + TRound2 + TReply1 + TReply2),

127 io: format ("TProp: ~w~n", [TProp]),
128 TOF = TProp * ?TU ,
129 Distance = TOF * ?C,
130

131 io: format (" PollRX : ~w - RespTX ~w - FinalRX ~w
~n", [PollRXTimestamp , RespTXTimestamp , FinalRXTimestamp]),

132 io: format (" TRound1 : ~w - TRound2 ~w - TReply1
~w - TReply2 ~w ~n", [TRound1 , TRound2 , TReply1 , TReply2]),

133 io: format (" Computed distance : ~w~n", [Distance
]),

134 if
135 (PollTXTimestamp =< RespRXTimestamp) and (

RespRXTimestamp =< FinalTXTimestamp) and (PollRXTimestamp =<
RespTXTimestamp) and (RespTXTimestamp =< FinalRXTimestamp) ->
Distance ;

136 true -> io: format ("Small error~n"), error
% There was a wrap around in the clock of one of the GRIP -
Throw away the result

137 end;
138 Err -> io: format (" Reception error: ~w~n", [Err]),
139 error
140 end;
141 Err -> io: format (" Receiving error: ~w~n", [Err]),
142 error_rx_poll
143 end.
144

145 % --- Tool functions for stats

146

147 -spec std_dev (Measures :: list (), Mean :: number (), N :: number (),
Acc :: number ()) -> number ().

148 std_dev ([], _, N, Acc) ->
149 math:sqrt(Acc/N);
150 std_dev ([H | T], Mean , N, Acc) ->
151 std_dev (T, Mean , N, Acc + math:pow(H-Mean , 2)).
152

153 % --- Callbacks

154

128

155 % @private
156 start(_Type , _Args) ->
157 {ok , Supervisor } = robot_sup : start_link (),
158 grisp: add_device (spi2 , pmod_uwb),
159 % Res = pmod_uwb :read(dev_id),
160 {ok , Supervisor }.
161

162 % @private
163 stop(_State) -> ok.

Listing C.5: main code for the example ds_twr

129

Appendix D

MAC layer unit tests

1 -module (mac_layer_tests).
2

3 -include_lib ("eunit/ include /eunit.hrl").
4

5 -include ("../ src/ mac_layer .hrl").
6

7 % --- Setup

8

9 % --- Tests

10

11 mac_message_from_api_test () ->
12 FrameControl = # frame_control { ack_req = ?ENABLED , pan_id_compr

= ?ENABLED , frame_version = 2#00},
13 MacHeader = # mac_header { seqnum = 0, dest_pan = <<16# DECA :16>>,

dest_addr = <<"RX" >>, src_addr = <<"TX">>},
14 ? assertEqual (< <16#6188:16 , 0:8, 16# CADE :16, "XR", "XT", "Hello

" >>,
15 mac_layer : mac_message (FrameControl , MacHeader , <<

"Hello" >>)).
16

17 mac_message_pan_id_not_compressed_test () ->
18 FrameControl = # frame_control { ack_req = ?ENABLED , pan_id_compr

= ?DISABLED , frame_version = 2#00},
19 MacHeader = # mac_header { seqnum = 0, dest_pan = <<16# DECA :16>>,

dest_addr = <<"RX" >>, src_pan = <<16# DECA :16>>, src_addr = <<"
TX">>},

20 ? assertEqual (< <16#2188:16 , 0:8, 16# CADE :16, "XR", 16# CADE :16,
"XT", "Hello" >>,

21 mac_layer : mac_message (FrameControl , MacHeader , <<

130

"Hello" >>)).
22

23 mac_message_broadcast_test () ->
24 FrameControl = # frame_control { ack_req = ?ENABLED , pan_id_compr

= ?DISABLED , frame_version = 2#00},
25 MacHeader = # mac_header { seqnum = 0, dest_pan = <<16# FFFF :16>>,

dest_addr = <<16# FFFF :16>>, src_pan = <<16# FFFF :16>>, src_addr
= <<16# FFFF :16>>},

26 ? assertEqual (< <16#2188:16 , 0:8, 16# FFFF :16, 16# FFFF :16, 16#
FFFF :16, 16# FFFF :16, "Hello" >>,

27 mac_layer : mac_message (FrameControl , MacHeader , <<
"Hello" >>)).

28

29 decode_mac_message_test () ->
30 Message = < <16#6188:16 , 0:8, 16# CADE :16, "XR", "XT", "Hello"

>>,
31 FrameControl = # frame_control { ack_req = ?ENABLED , pan_id_compr

= ?ENABLED , frame_version = 2#00},
32 MacHeader = # mac_header { seqnum = 0, dest_pan = <<16# DECA :16>>,

dest_addr = <<"RX" >>, src_pan = <<16# DECA :16>>, src_addr = <<"
TX">>},

33 ? assertEqual ({ FrameControl , MacHeader , <<"Hello">>},
34 mac_layer : mac_decode (Message)).
35

36 decode_mac_message_uncompressed_pan_id_test () ->
37 Message = < <16#2188:16 , 0:8, 16# CADE :16, "XR", 16# CADE :16, "XT

", "Hello" >>,
38 FrameControl = # frame_control { ack_req = ?ENABLED ,

frame_version = 2#00},
39 MacHeader = # mac_header { seqnum = 0, dest_pan = <<16# DECA :16>>,

dest_addr = <<"RX" >>, src_pan = <<16# DECA :16>>, src_addr = <<"
TX">>},

40 ? assertEqual ({ FrameControl , MacHeader , <<"Hello">>},
41 mac_layer : mac_decode (Message)).
42

43 decode_ack_frame_from_device_test () ->
44 Message = < <16#0200:16 , 50:8>>,
45 FrameControl = # frame_control { frame_type = ?FTYPE_ACK ,

src_addr_mode = ?NONE , dest_addr_mode = ?NONE},
46 MacHeader = # mac_header { seqnum = 50},
47 ? assertEqual ({ FrameControl , MacHeader , <<>>},
48 mac_layer : mac_decode (Message)).
49

50 % If Src address mode is zero and frame isn ’t an ACK. It implies
that the frame comes from the PAN coordinator

51 decode_mac_message_no_src_test () ->
52 Message = < <16#4108:16 , 22:8 , 16# CADE :16, 16# CDAB :16, "Test"

>>,
53 FrameControl = # frame_control { frame_type = ?FTYPE_DATA ,

131

pan_id_compr = ?ENABLED , dest_addr_mode = ?SHORT_ADDR ,
src_addr_mode = ?NONE},

54 % SRC addr set to zero because can ’t imply the addr of the PAN
coordinator at this level

55 MacHeader = # mac_header { seqnum = 22, dest_pan = <<16# DECA
:16>>, dest_addr = <<16# ABCD :16>>, src_pan = <<16# DECA :16>>,
src_addr = <<>>},

56 ? assertEqual ({ FrameControl , MacHeader , <<"Test">>},
57 mac_layer : mac_decode (Message)).
58

59 decode_mac_message_no_src_no_compt_test () ->
60 Message = < <16#0108:16 , 22:8 , 16# CADE :16, 16# CDAB :16, "Test"

>>,
61 FrameControl = # frame_control { frame_type = ?FTYPE_DATA ,

pan_id_compr = ?DISABLED , dest_addr_mode = ?SHORT_ADDR ,
src_addr_mode = ?NONE},

62 % SRC addr set to zero because can ’t imply the addr of the PAN
coordinator at this level

63 MacHeader = # mac_header { seqnum = 22, dest_pan = <<16# DECA
:16>>, dest_addr = <<16# ABCD :16>>, src_pan = <<16# DECA :16>>,
src_addr = <<>>},

64 ? assertEqual ({ FrameControl , MacHeader , <<"Test">>},
65 mac_layer : mac_decode (Message)).

Listing D.1: unit tests performed for the encoding and decoding of a MCA frame

132

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

	List of Figures
	Acronyms
	Introduction
	Related work
	GRiSP
	Ultra-Wideband (UWB)

	Use cases
	Real-time locating system (RTLS)
	Communications
	Hera framework

	Material and resources
	GRiSP
	Serial Peripheral Interface (SPI)
	Pmod & DWM1000
	Pmod drivers architecture of the GRiSP
	DW1000 register set

	Ultra-Wideband (UWB)
	IEEE 802.15.4-2011
	Ultra-Wideband PHY
	MAC sub-layer

	Implementation of the driver
	Interaction with the pmod
	Transaction format
	Example

	Mapping the registers
	Errors in the user manual
	Read the registers
	Write the registers

	Initialization of the pmod
	Checking the connected device
	Loading the leading edge algorithm
	Writing optimal values
	Writing custom configuration
	Setting up SFD

	Transmission
	Sending a frame
	Receiving a frame

	MAC layer
	DW1000 support
	Frame filtering
	CRC generation and checking
	Automatic acknowledgement

	MAC Header
	Transmission
	Sending
	Receiving

	Example: Using the automatic acknowledgment feature of the DW1000
	Measurements

	Two way ranging
	Methods
	Single-sided two-way ranging
	Double-sided two-way ranging

	Implementations
	Single-sided two-way ranging
	Double-sided two-way ranging
	Counter wrap around

	Measurements

	Conclusion
	Future work
	Improvement of the driver
	MAC layer
	Upper layers
	Adaptation of the GRiSP toolchain

	Results

	Bibliography
	Driver code
	MAC layer code
	Examples
	ack_no_jitter
	ack_jitter
	ack_fast_tx
	ss_twr
	ds_twr

	MAC layer unit tests

