
Available at: http://hdl.handle.net/2078.1/thesis:43960 [Downloaded 2024/01/08 at 10:57:13]

"FuxCP: Constraint Programming Formalisation
of Three-Voice Counterpoint According to Fux"

Lamotte, Anton

ABSTRACT

This thesis presents a formalisation of three-part musical counterpoint according to the classical theory
of Fux. It is an extension of Thibault Wafflard’s previous thesis, which formalised two-part counterpoint
and implemented it in FuxCP, a software tool designed specifically for composers to help them compose
counterpoint without the need for technical expertise. Counterpoint consists of several musical voices that
are independent and distinct from each other, yet balanced and beautiful in sound. It consists of a fixed part,
the cantus firmus, and one or more counterpoints derived from it. Three-part composition is much more
expressive than two-part counterpoint because of the interaction between the two derived parts. FuxCP
is implemented in OpenMusic, a musical interface, and uses Gecode, a well-known constraint solver, to
automatically generate counterpoints. The implementation is based on Johann Joseph Fux’s Gradus ad
Parnassum, a seminal treatise on counterpoint published in 1725, by translating its rules into formal logic
and implementing them as constraints. In particular, the extension to three voices places special emphasis
on the lowest voice, introducing innovative concepts and variables to address this key aspect. This work
contributes to the research and understanding of automated contrapuntal composition by overcoming the
challenge of generalising the interaction between voices. It also addresses preferences, which are treated
as optional rules, introducing nuance into the generation of musical solutions and enhancing the overall
aesthetic considerati...

CITE THIS VERSION

Lamotte, Anton. FuxCP: Constraint Programming Formalisation of Three-Voice Counterpoint According to
Fux. Ecole polytechnique de Louvain, Université catholique de Louvain, 2024. Prom. : Van Roy, Peter. http://
hdl.handle.net/2078.1/thesis:43960

Le répertoire DIAL.mem est destiné à l'archivage
et à la diffusion des mémoires rédigés par les
étudiants de l'UCLouvain. Toute utilisation de ce
document à des fins lucratives ou commerciales
est strictement interdite. L'utilisateur s'engage à
respecter les droits d'auteur liés à ce document,
notamment le droit à l'intégrité de l'oeuvre et le
droit à la paternité. La politique complète de droit
d'auteur est disponible sur la page Copyright
policy

DIAL.mem is the institutional repository for the
Master theses of the UCLouvain. Usage of this
document for profit or commercial purposes
is stricly prohibited. User agrees to respect
copyright, in particular text integrity and credit
to the author. Full content of copyright policy is
available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

École polytechnique de Louvain

FuxCP: Constraint Programming
Formalisation of Three-Voice
Counterpoint According to Fux

Author: Anton LAMOTTE
Supervisor: Peter VAN ROY
Readers: Yves DEVILLE, Karim HADDAD, Damien SPROCKEELS
Academic year 2023–2024
Master [120] in Computer Science and Engineering

Abstract

This thesis presents a formalisation of three-part musical counter-
point according to the classical theory of Fux. It is an extension of
ThibaultWafflard’s previous thesis, which formalised two-part coun-
terpoint and implemented it in FuxCP, a software tool designed specif-
ically for composers to help them compose counterpoint without the
need for technical expertise. Counterpoint consists of several mu-
sical voices that are independent and distinct from each other, yet
balanced and beautiful in sound. It consists of a fixed part, the can-
tus firmus, and one ormore counterpoints derived from it. Three-part
composition ismuchmore expressive than two-part counterpoint be-
cause of the interaction between the two derived parts.

FuxCP is implemented in OpenMusic, a musical interface, and
uses Gecode, a well-known constraint solver, to automatically gen-
erate counterpoints. The implementation is based on Johann Joseph
Fux’s Gradus ad Parnassum, a seminal treatise on counterpoint pub-
lished in 1725, by translating its rules into formal logic and imple-
menting them as constraints. In particular, the extension to three
voices places special emphasis on the lowest voice, introducing inno-
vative concepts and variables to address this key aspect. This work
contributes to the research and understanding of automated con-
trapuntal composition by overcoming the challenge of generalising
the interaction between voices. It also addresses preferences, which
are treated as optional rules, introducing nuance into the genera-
tion of musical solutions and enhancing the overall aesthetic consid-
erations in automated counterpoint composition. Importantly, this
work builds seamlessly on T. Wafflard’s previous efforts, ensuring
full compatibility with his thesis.

Acknowledgements
Thanks to Peter Van Roy for his unwavering availability and presence,
his always wise advice, his cheerfulness and his constant encouragement
throughout this thesis.

Thanks to Damien Sprockeels for his astute guidance and his sharp in-
sight in solving problems.

Thanks to Karim Haddad for his enthusiasm in the projet and his valu-
able musical advice.

Thanks in advance to Yves Deville for reading and reviewing this thesis.

Thanks to Vanessa Maons for all her dedication and help, and for being
probably the most supportive secretary at the University.

Thanks to Thibault Wafflard for having paved the way and provided
such good work to build on.

Thanks to all the people who took part in the development of this thesis
whether by reviewing it or by offering me hot chocolate breaks.

i

Contents

1 Introduction and context of this work 1
1.1 A brief history of counterpoint: from Bach to algorithmic generation . 1

1.1.1 Software tool for writing species counterpoint 2
1.2 Fux’s theory of counterpoint for two-, three- and four-part composition 3

1.2.1 Species counterpoint . 5
1.3 Tools and implementation . 5

1.3.1 Constraint Programming . 6
1.3.2 OpenMusic . 8
1.3.3 GiL and Gecode . 8
1.3.4 Software integration . 8

1.4 Standing on the shoulders of giants: underlying works and editions of
Gradus ad Parnassum used . 9

1.5 The contributions of this thesis . 9

2 Definition of concepts and variables 11
2.1 Voices, parts and strata . 11
2.2 Exploring the interaction of the parts with the lowest stratum 14
2.3 Definitions of the variables used in the formalisation 16

2.3.1 Variables and array notation . 17
2.3.2 Overview of all the variables . 17
2.3.3 In depth definition of the variables 20

3 Formal rules for three-part counterpoint 25
3.1 Implicit rules . 26

3.1.1 Formalisation in English . 26
3.1.2 Formalisation into constraints . 26

3.2 First species . 27
3.2.1 Formalisation into English . 27
3.2.2 Formalisation into constraints . 31

3.3 Second species . 33
3.3.1 Formalisation in English . 33
3.3.2 Formalisation into constraints . 35

3.4 Third species . 36
3.4.1 Formalisation in English . 36
3.4.2 Formalisation into constraints . 37

3.5 Fourth species . 37
3.5.1 Formalisation in English . 37
3.5.2 Formalisation into constraints . 39

3.6 Fifth species . 41
3.7 Writing a three-part composition using various species 42

4 Solution search for three-part counterpoint 43
4.1 Dealing with the higher computational complexity 43

4.1.1 Using Branch-And-Bound as a search algorithm 43
4.1.2 Heuristics . 44
4.1.3 Time to find a solution . 44

ii

4.2 Designing the costs of the solver to be as faithful as possible to the pref-
erences of Fux . 45
4.2.1 Linear combination . 46
4.2.2 Minimising the maxima . 47
4.2.3 Lexicographic order . 48
4.2.4 Comparison between the three types of costs. 50

4.3 Combining the three types of costs . 50
4.3.1 Comparing the linear combination and the lexicographic order

in practice . 51
4.3.2 Mixing the technique of maximum minimisation with lexico-

graphic order . 56
4.4 Conclusion on the search methods . 57

5 Musicality of the solutions 58
5.1 Combining first species with another species 58
5.2 Using preferences to improve musicality 60
5.3 Combining arbitrary species . 61

6 Known issues and future improvements 62
6.1 Known issues about the current state of the work 62
6.2 Future improvements . 63

Conclusion 66

Bibliography 67

A Software Architecture 71

B User Guide 73
B.1 Installing FuxCP . 73

B.1.1 Prerequisites . 73
B.1.2 Loading FuxCP in OpenMusic 73

B.2 Using FuxCP in OpenMusic . 74
B.3 Interface Parameters Description . 78

C Complete set of rules for two and three part compositions 80

D Code 93
D.1 FuxCP.lisp . 93
D.2 package.lisp . 93
D.3 interface.lisp . 94
D.4 fuxcp-main.lisp . 108
D.5 3v-ctp.lisp . 123
D.6 cf.lisp . 128
D.7 1sp-ctp.lisp . 130
D.8 2sp-ctp.lisp . 133
D.9 3sp-ctp.lisp . 138
D.10 4sp-ctp.lisp . 143
D.11 5sp-ctp.lisp . 147
D.12 constraints.lisp . 156

iii

Chapter 1

Introduction and context of thiswork
This thesis is a formalisation for three-part counterpoint based on the theory of Jo-
hann Joseph Fux, as given in his classic treatise of 1725. It provides a mathematical
formalisation of Fux’s rules and a computer environment capable of implementing
these logical rules in a concrete way to produce Fux-style counterpoint.

This thesis will therefore be divided into several parts: we will first immerse our-
selves in Gradus ad Parnassum, Fux’s central work, from which we will meticulously
extract the rules laid down by its author. We will briefly discuss these rules to make
them unambiguous, and then translate them into formal logic, so that each rule Fux
had inmindwhenwriting his work is mathematically recorded. On this basis, we will
create a computer implementation using constraint programming. We will then look
at how this implementation finds results, discussing the search algorithm and heuris-
tics used. We then discuss the cost techniques used to obtain the best possible results.
Finally, we will analyse the musical compositions produced by the tool created.

It is very important to know that this thesis is based on T.Wafflard’s thesis "FuxCP:
a constraint programming based tool formalizing Fux’s musical theory of counter-
point" [1], written in 2023, and on article "A Constraint Formalization of Fux’s Coun-
terpoint" [2], by D. Sprockeels, P. Van Roy, T. Wafflard and K. Haddad. The present
work takes up the concepts and definitions of T. Wafflard and could only be under-
stood in its full depth by reading and fully understanding his works as well. This
thesis also assumes a basic knowledge of music theory, which can be found in Chap-
ter 1 of T. Wafflard’s thesis.

1.1 A brief history of counterpoint: from Bach to algorithmic
generation

Before delving into the formalities of our study, let’s first examine Fux’s theory of coun-
terpoint, which forms the basis of the formalisation undertaken in this work. Counter-
point is a compositional technique in which there are several musical lines (or voices)
that are independent and distinct from each other, but that are balanced and sound
beautiful [3]. No voice is dominant over the others, and all are main voices, although
some may take a small precedence during part of the composition [4].

Counterpoint has been central to the work of many famous composers from dif-
ferent artistic movements, such as Bach in the Baroque era, Mozart in the Classical era
and Beethoven in the Romantic era [5]. It is still present in some modern music [6],
and has aroused interest over the centuries with the development of key texts on the
subject, such as Schenker’s Counterpoint [7] or Jeppesen’s Analysis [8]. And while
Bachmastered counterpoint to an unprecedented level for his time [9], the central and
foundational work in the teaching of counterpoint belongs to another great Baroque
composer: the Austrian Johann Joseph Fux and his treatise Gradus ad Parnassum. In
it, this composer gives a detailed analysis of the writing of two-, three- and four-part
counterpoint, all narrated as a conversation between a master and his pupil. Gradus

1

ad Parnassum is one of the works that deal with species counterpoint1, a way of con-
ceiving counterpoint in five different types that could then be combined. It is on this
work that this dissertation is based.

1.1.1 Software tool for writing species counterpoint
We have been discussing the longstanding tradition of counterpoint, a musical tech-
nique shaped by countless generations of composers. As technology advanced, the
idea of automating counterpoint composition emerged. This section takes a look at
some of the work that has been done in the field of counterpoint generation.

An early attempt, by Schottstaedt in 1984 [10], involved an expert system that is also
based on Fux’s rules. His approach used over 300 if-else clauses. However his method
had obvious limitations compared to what modern constraints are capable of, since
if-else clauses are unidirectional, whereas constraints are bidirectional, which ensures
better propagation of the constraints. More importantly constraintmodelled problems
don’t just lead to single solutions, they represent sets of potential solutions. This flex-
ibility is a significant improvement over the directional nature of if-else clauses. Fur-
thermore, constraint systems offer an advantage in specifying intricate search heuris-
tics. This adaptability and efficiency highlights the stark contrast between the out-
dated approach of if-else clauses and the modern capabilities of bidirectional con-
straint systems in the realm of counterpoint composition.

In 1997, a genetic programming and symbiosis approach to automatic counterpoint
generation was developed by J. Polito et al. This team from Michigan used a genetic
approach to optimise counterpoints of the 5th species and make them more attrac-
tive [11]. A similar approach was used in 2004 to generate fugues (another musical
technique that relies a lot on counterpoint), also using genetic algorithms [12]. The
results are quite promising, and generate more than interesting results, but the end
result is still far from being able to provide a complete counterpoint composition.

Many years later, in 2010, G. Aguilera et al., from the University of Malaga, de-
veloped an automated method for the generation of first-species counterpoint using
probabilistic logic [13]. Their approach was specifically tailored to compositions in C
major, providing a generated counterpoint in response to a given cantus firmus. How-
ever, this application evaluates only the harmonic attributes of the composition, ig-
noring the melodic aspect of the counterpoint.

Two years later, D. Herremans and K. Sörensen developed a way to generate high-
quality first-species counterpoint using a variable neighbourhood search algorithm [14].
Their research was limited to first-species counterpoint, but they addressed issues
such as preferences (finding the best counterpoint) and user-friendly interface. Once
again, their results are more than impressive, but their research is limited to the first
two-voice species.

Finally, a research was carried out in 2015 on Fux’s counterpoint [15], with the aim
of generating the first species counterpoint using dominance relations, has yielded
fairly good results. The search demonstrates the use of this paradigm and its applica-
bility, and is a good starting point for composing counterpoints of other species based
on the same concept.

1There aremany other types of counterpoint, such as free counterpoint, dissonant counterpoint, linear
counterpoint, ...

2

If we now focus on applications that have gone as far as the user interface and are
now ready to use, we should mention two namesakes, both called ’Counterpointer’,
which have the merit of offering a functional tool for composing counterpoint.

The first Counterpointer [16] is a tool which anyone can use to check the validity
(or not) of their counterpoint. Its last release was in 2019 as a desktop application,
and it works like this: an apprentice composer tries to write a counterpoint, and then
submits it to the tool. The tool then decides whether the counterpoint is valid ac-
cording to the traditional rules of counterpoint2. It also provides feedback to help the
student composer improve their future counterpoint writing. The tool is not able to
write counterpoints automatically, nor is it explicit about how it works, as it is com-
pletely closed source and has no accessible report. It is therefore impossible to know
the paradigm it uses or the exact rules it follows.

Another attempt at automatic counterpoint writing is the Counterpointer project
in 2021, created by a team of students at Brown University as part of a software en-
gineering course [17]. The project is less accomplished than the aforementioned ap-
plication, but it has the merit of being able to generate two-voice counterpoints of the
first, second and third species. It is an entirely free and open source project. While the
results are encouraging, the project has been discontinued as it was a course project
and their method of finding a counterpoint seems much less efficient than the effi-
ciency that a constraint solver can achieve.

This brief overview leads us to conclude that there is no satisfactory tool for compos-
ing counterpoint in a user-friendly way, with good quality, quickly and with several
voices. It is to fill this gap that this research has been carried out. This was the aim
of T. Wafflard’s thesis and it is therefore natural that this thesis should follow in his
footsteps.

1.2 Fux’s theory of counterpoint for two-, three- and four-part
composition

As with so many other authors who have attempted to automate the writing of coun-
terpoint, it is only natural that this work should be based on Fux’s theory. He was one
of the first to theorise counterpoint in such a comprehensive way, and although his
theory has been extended many times since, it remains a very good foundation.

For Fux, as for many other authors, species counterpoint is governed by many dif-
ferent rules, and it is these rules that interest us in the present work. The rules are
based on old concepts that can be traced back to older styles and have been studied
and discussed by generations of authors [18]. Those concepts include, for example,
the notion of opposite motion, or the notion of consonance (which in turn can be ei-
ther perfect or imperfect). These concepts and their application to counterpoint are
particularly interesting because they allow us to consider the composition of counter-
point both in a ’vertical’ way, in which we consider the harmony of the notes played
together, and in a ’horizontal’ way, in which we consider the melodic development of
each of the parts individually, which provides the independence of the counterpoints
from each other and their melodic beauty.

All the rules defined by Fux can be divided into three categories: melodic rules,
harmonic rules and motion rules. We will examine them here to get an initial sense of
what they mean, in order to be able to formalise them afterwards.

2Not only Fux’s rules, but also those of other authors.

3

Melodic Rules

Fux explains that there are rules that apply within parts (the horizontal rules). These
rules are concernedwith the intervals between one note and the next ones: we find, for
example, that a melody is more "beautiful"3 when the intervals between its successive
notes are small, when there is no chromatic succession between the notes, when the
notes are varied, and so on. These ’horizontal’ rules are called ’melodic’ rules because
they are concerned only with the melody of a given voice, and therefore apply within
that voice.

Harmonic Rules

If there is a horizontal perspective to counterpoint, there is also, of course, a vertical
perspective. This perspective is expressed in a harmonic relationship between the
different voices. At each point in the composition, a series of rules apply that concern
harmony alone, and puts some constraints on the harmonic intervals that the voices
can have between each other. Here are some harmonic rules from Fux, given as an
example: the harmonic interval between any voice and the lowest one must be either
a third, a fifth, a sixth or an octave; thirds and sixths are preferred to fifths, which in
turn are preferred to octaves; and the voices can’t use the same note at the same time.
These rules apply between the voices.

Motion Rules

Finally, there is a third type of rule: the motion rules. These rules are a hybrid of the
two discussed above in that they consider not only vertical interaction, i.e. harmony,
but also horizontal interaction, i.e. melody. They can therefore be seen as ’diagonal’
rules that relate the unique melody of each counterpoint to its respective harmonies.
There exists three types ofmotions: the directmotion, when two voicesmove together,
the obliquemotion, when one voice stays idle and another onemoves, and the contrary
motion, when both voices move in opposite directions. When coupled to harmonic
concepts, we get rules such as: contrary motions are preferred to direct motions; there
should be no successive fifths or successive octaves between the voices; and a direct
motion should not lead to a perfect consonance. As you can see, these rules take into
account not just two voices at a given point, but over several measures. They ensure a
harmonious interaction between the voices.

Preferences

This last point is one of the most important in Fux’s theory: the preferences. Pref-
erences are hints that Fux gives in Gradus ad Parnassum in order to write even better
counterpoints. As their name suggests, preferences are optional and not compulsory
to follow, as other strict ruleswould be. However, preferences are crucial to Fux’swork
because they allow us to distinguish between two valid solutions (those that obey all
the strict rules) and decide which is the best, thus allowing the composer to control
how the strict theory is applied.

Fux is never clear about whether a rule4 is a preference or a strict rule— and that’s
normal, what he conveys is mostly intuition, and human beings are quite capable of

3Throughout this work we will speak of the "beauty of music". This beauty is highly subjective, and
therefore reference will be made to the Fuxian concept of music to define whether a melody is beautiful
or not. In other words, music is considered beautiful if it conforms to Fux’s rules, and vice versa.

4We use the generic term "rule" to refer to both mandatory rules and preferences.

4

understanding whether a rule is a preference or an obligation; Fux probably didn’t
expect someone to try to formalise his work three centuries later.

These preferences should be respected whenever possible. However, if a prefer-
ence cannot be respected, the solution is still valid. Here is a good example: Fux in-
dicates that we prefer to have as many different notes as possible in the composition.
This is not a strict rule, but a preference. The more variety there is in the composition,
the more beautiful and the more preferable it will be.

1.2.1 Species counterpoint
Whendiscussing species counterpoint, we refer to five categories of counterpoint, each
of which represents a distinct concept with its own characteristics. A detailed expla-
nation of these species is given below. First, let’s concentrate on how writing coun-
terpoint works. In counterpoint composition, the starting point is a fixed melodic
line known as the cantus firmus, which is a fundamental melody composed entirely of
whole notes. This melodic line serves as the basis for composing the entire piece of
counterpoint. It’s important to emphasise that once the composition is complete, the
cantus firmus is neither more nor less important than the other voices. It has the same
degree of melodic independence as the other voices and acts as a starting point rather
than a more important voice in the compositional process.

Let’s take a look at the five species:

1. First species: Note against note – the first species counterpoint is composed en-
tirely of whole notes, and the composition is a sequence of harmonies sounding
on the first beat between the counterpoint and the other voices.

2. Second species: Half notes against whole notes – the second species counter-
point is composed entirely of half notes, which introduce dissonant harmonies.

3. Third species: Quarters against whole notes – the third species counterpoint is
made up entirely of quarter notes, which allow more different movements and
more freedom in the composition.

4. Fourth species: The ligature – the fourth species counterpoint is delayed by two
beats, creating syncopation. The notes are all half notes, tied two by two, which
creates the effect of having only delayed whole notes.

5. Fifth species: Florid counterpoint – the fifth species counterpoint is a mixture
of all the other species and is the richest form of counterpoint. It allows great
freedom of composition while respecting the rules of the other types.

These different species can be combined to form a composition with a cantus fir-
mus, a counterpoint of one species and another counterpoint of another species. Nev-
ertheless, Fux seems to prefer writing compositions that are made of a cantus firmus, a
counterpoint of the first species and another counterpoint of another species, probably
for pedagogical reasons.

1.3 Tools and implementation
Now that we have a better understanding of the species counterpoint, let’s focus on
how Fux’s rules are implemented in practice. This subsection discusses the implemen-
tation of FuxCP (the tool to automatically generate counterpoints). To do so, we briefly
explain how constraint programming works and the tools used by FuxCP (OpenMu-
sic, Gecode and GiL).

5

1.3.1 Constraint Programming
Constraint Programming (CP) is a programming paradigm used to solve large com-
binatorial problems, such as planning and scheduling problems. It works by defin-
ing constraints between variables that limit the values these variables can potentially
take [19]. In doing so, the domains of these variables are reduced. R. Barták explains
in a very clear way what a constraint really is, as he describes in his "Guide to Con-
straint Programming" [20]:

A constraint is simply a logical relation among several unknowns (or vari-
ables), each taking a value in a given domain. A constraint thus restricts
the possible values that variables can take, it represents some partial in-
formation about the variables of interest. For instance, "the circle is inside
the square" relates two objects without precisely specifying their positions,
i.e., their coordinates. Now, one may move the square or the circle and he
or she is still able to maintain the relation between these two objects. Also,
one may want to add other object, say triangle, and introduce another con-
straint, say "square is to the left of the triangle". From the user (human)
point of view, everything remains absolutely transparent.

The question now is: what is the connection between this problem-solvingmethod
and counterpoint composition? Interestingly, music happens to be an eminently suit-
able application for Constraint Programming. All aspects of a composition can be
represented by variables, rules can be established between these variables, and the
solver is responsible for finding a valid solution. In fact, in music, it is never just
one factor that determines whether the music is beautiful or not, but an interaction
of many factors. As humans, it is sometimes difficult to find a good solution (i.e. to
compose music that sounds good) because the range of possibilities and the interac-
tions between factors are so numerous. However, exploring a search space in which
numerous constraints are defined is something that a constraint solver does very well.
The most arduous task then becomes identifying the rules that make music beautiful,
and this is the task that many musicologists and composers, like Fux, have set them-
selves. Once these rules have been defined, it is "simply" a matter of formalising them
and passing them to the constraint solver so that it can compose amelody that respects
these rules.

What’s more, by defining a rigorous way of distinguishing a good composition
from a bad one, the solver can even find increasingly beautiful solutions.

To make sure that Constraint Programming is a well understood concept, we here
review its main concepts:

Constraint propagation Each time a constraint is defined, the domain of the affected
variables is reduced according to the possibilities left by the constraint. This is called
constraint propagation. Let’s imagine a variable A whose domain is {0, 1, 2, 3} and
a variable B whose domain is {0, 1, 2}. When the constraint A < B is applied, the
domain of A is reduced to {0, 1}, because the new constraint makes it impossible for
A to have a value of 2 or 3 without violating the constraint.

A constraint solver is an implementation that systematically searches the search
space for a solution. A given problem may have many solutions, only one, or none at
all.

A solution is found when all variables are fixed, i.e. their domain is reduced to a
single value. We know that a problem has no solution when the domain of any vari-

6

able becomes empty (because this means that no value can be found for that variable
without violating a constraint).

Branching Obviously, declaring constraints is not enough to magically find a solu-
tion. In the example we proposed earlier (with A and B), the single constraint placed
on the search space doesn’t allow us to determine the values of A or B, and their do-
mains remain composed of more than one value. To actually find a solution, the con-
straint performs a branching. That is, it studies two antagonic possibilities and splits
the search space into two subproblems accordingly. More specifically, it chooses a vari-
able and studies the case where that variable is equal to a certain value, and the case
where it is not equal to that value. For example, the solver might study the case where
B = 0 (the first branch) and the case where B 6= 0 (the second branch). If the solver
finds an inconsistency in either case, it knows that the entire branch can be discarded
(as it does not lead to a valid solution). Immediately after branching, the solver again
performs constraint propagation, since constraint propagation occurs whenever any
domain is modified, and consists of adjusting all domains to which the modified do-
main is linked by a constraint. In our case, after setting B to 0, the solver propagates
all constraints linked to B, i.e. the only constraint in our problem (i.e. A < B). This
affects the domain of A, reducing it to an empty domain (because no value in the do-
main ofA is less than 0). The solver, noticing that one domain is empty, concludes that
this branch contains no solution and therefore knows that the only possible branch is
the other one, i.e. the one inwhichwe assumedB 6= 0. We can therefore safely remove
0 from the domain of B, since this value is not contained in any solution. Repeating
the branching process each time it is necessary produces three solutions: A = 0 and
B = 1, A = 0 and B = 2, and finally A = 1 and B = 2.

Heuristics As with all problems involving searching a space in quest of a solution,
it is very useful to have heuristics allowing for an efficient search. A heuristic is a rule
or strategy used to make informed decisions about variable assignments and value
choices during the solution search. These rules are designed to exploit the character-
istics and structures of the problem to improve the chances of finding solutions more
quickly. A common heuristic is variable ordering, where the algorithm selects vari-
ables to assign values to based on factors such as the size of the domain or the number
of associated constraints. Another important heuristic is value ordering, which deter-
mines the order inwhich values are tested for a given variable assignment. By incorpo-
rating heuristics, constraint solvers can prioritise the most promising branches of the
search tree, effectively reducing the search space and speeding up the identification
of feasible solutions. While heuristics speed up the solving process, it’s important to
strike a balance between exploration and exploitation, as overly aggressive heuristics
risk missing potentially valuable solution paths.

To return to our previous example, a value-ordering heuristic might be "branch
first on low values of A and high values of B, since we know that we are looking for
a solution where A is less than B, and we can reason that there are more chances of
satisfying this constraint when B is large and A is small.

Optimal solutions Constraint programming can also be used to find optimal solu-
tions, i.e. solutions that have minimum cost. The cost is defined as a function that
assigns a value to each solution.

In our simple example, we could define the cost as the sum of A and B and want
to minimise the cost. This means that we are looking for a valid solution where A and
B are as small as possible. In this case, only the first of the three solutions mentioned

7

above is chosen, i.e. A = 0 and B = 1, as it is the best possible solution (with a cost of
1).

Branch and Bound Branch and Bound is a systematic algorithm used in Constraint
Programming to efficiently explore the solution space and find an optimal solution
with respect to a given cost or objective function. This technique extends the basic
Constraint Programming approach by introducing a mechanism to prune unpromis-
ing branches of the search tree. By making this, it reduces the computational effort
required to find the optimal solution. For each branch, the algorithm evaluates its fea-
sibility and its potential to lead to a better solution. If a branch is deemed infeasible or
cannot possibly improve on the current best-known solution, it is pruned from further
consideration, without having to evaluate the full depth of it. This process continues
until all branches have been explored, or until the algorithm converges on the opti-
mal solution. Branch and Bound is particularly valuable for large combinatorial prob-
lems because it efficiently narrows the search space, allowing the solver to focus on
promising regions and accelerating the discovery of optimal solutions in constrained
programming scenarios [21].

1.3.2 OpenMusic
OpenMusic is a powerful and innovative visual programming environment, written
in CommonLisp, designed specifically for composers, researchers and musicians in-
volved in computer-aided composition [22]. Developed by the Institute for Research
andCoordination inAcoustics/Music (IRCAM) inParis, OpenMusic provides a graph-
ical interface that allows users to create and manipulate musical structures using a
variety of predefined modules. This visual programming environment facilitates the
representation of complex musical ideas, algorithms and data flows through a user-
friendly interface, making it accessible to both novice and experienced composers.

FuxCP is a library for OpenMusic, which means that OpenMusic is the interface
for using FuxCP. Any user wishing to use FuxCP writes their cantus firmus (FuxCP’s
input) into OpenMusic and then launches the solution search from within OpenMu-
sic. Specifically, FuxCP retrieves the cantus firmus from OpenMusic and then defines
the constraint problem. When a solution (the counterpoints) is found, it is passed to
OpenMusic and the user gets it as an OpenMusic object.

1.3.3 GiL and Gecode
GiL is an interface between OpenMusic and Gecode, which in turn is an open source
toolkit for developing constraint-based systems [23], which provides a high-level C++
library for efficiently modelling and solving constraint problems. GiL allows to use
the Gecode tool within a Lisp environment, thanks to the Common Foreign Function
Interface (CFFI) [24].

1.3.4 Software integration
To put it all together: FuxCP gets its input (the cantus firmus) from the user interface,
which is OpenMusic. It then uses GiL to define a constraint programming problem in
Gecode.

As for the way the problem is defined, here is a little clarification: first, when the
cantus firmus is received, a whole series of constants and variables are defined: for
example, the length of the cantus firmus, the arrays representing the pitches of the
counterpoints, ... All these variables are then constrained according to the constraints

8

defined in the formalisation of Fux’s rules (discussed in Chapter 3). The constraints
are set sequentially: first the constraints on the cantus firmus, then the constraints on
the first counterpoint, and finally the constraints on the second counterpoint. A di-
agram of the code architecture and the integration of FuxCP with other tools can be
found in Figure A.2.

1.4 Standing on the shoulders of giants: underlying works
and editions of Gradus ad Parnassum used

As has been said, this work is the continuation of T. Wafflard’s work. However, it also
relies heavily on the work of:

• Lapière [25], who presented an interface for using Gecode functions in Lisp
called "GiL". This interface was then tested with some rhythm-oriented con-
straints.

• Sprockeels [26], who explored the use of constraint programming inOpenMusic
using GiL. The tool that was produced in this thesis is capable of producing
songs with basic harmonic and melodic constraints.

• Chardon, Diels, and Gobbi [27], who created a tool capable of combining the
strengths of the first two implementations while continuing to develop support
for GiL.

As with T. Wafflard, the musical reference work chosen is Fux’s Gradus ad Parnas-
sum, because it is a pillar of counterpoint theory and because it is fairly easy to extract
rules from it, although Fux is sometimes very vague about his intentions. As with any
book published several centuries ago (1725 in the case of Gradus ad Parnassum), there
are many versions and translations, which is something good, since Fux can some-
times be really unclear about what he means. Having many versions (some anno-
tated, some not) frommany people who also had to interpret Fux in order to translate
him is a great treasure, as it helps to clarify Fux’s meanings. This work is therefore
based on several different editions and translations of the book, although it is mainly
based on Alfred Mann’s English translation [28]. French (both Chevalier’s [29] and
Denis’s [30]), German [31] and Latin [32] translations are used when it is necessary
to remove an ambiguity or clarify an unclear rule. These translations have been cho-
sen because French is the lingua franca of the team; German is the language of Fux
and the environment in which he evolved; and Latin is the original version, so we can
hope that it is the most faithful to what he wanted to convey.

1.5 The contributions of this thesis
This work generalises T. Wafflard’s formalisation of two-part counterpoint composi-
tion to three-part composition. The following is a more detailed summary of the con-
tributions of this thesis.

• Concepts and variables to three-part counterpoint: Three-part composition is
much more than a (two+one) part composition. This requires a whole series
of concepts to be defined or adapted. While some concepts are adapted from
T. Wafflard’s work, others are completely new, such as the strata. These novel
concepts are essential for the formalisation of Fux’s three-part composition rules,
and are discussed in Chapter 2.

9

• Mathematical formalisation of three-part counterpoint: Fux’s explanations are
translated into unambiguous English and then translated again into logical no-
tation. This formalisation builds on the previous formalisation for two voices,
and sometimes (rarely) has to modify it. This formalisation can be found in
Chapter 3.

• Implementation of a working constraint solver for a three-voice composition:
The formalised logical rules are then implemented as constraints. These con-
straints are used by a solver to find solutions that include two counterpoints.
The whole code of this implementation can be found in Appendix D, and its
architecture in the Appendix A.

• Researching the bestway to express Fux’s preferences: Three-part composition
introduces so many possibilities for result composition that it is important to
discuss the way we think about preferences. The preferences are understood by
the solver as costs (where a preferred solution in Fux’s sense has a lower cost
to the solver). Therefore, some techniques for managing these preferences are
discussed to find out the best way to implement them. This is very important as
it allows the solver to produce solutions with high musicality. These techniques
are discussed in Chapter 4.

• Musical analysis of the solutions generated by the solver: Finding the best
solution also means being able to assess the quality of current solutions. For
further details, please refer to Chapter 5.

• User interface for three-point counterpoint that allows a composer to specify
how preferences are used in the solver.: All the new capabilities of the solver
and the costing techniques must also be accessible to the user: it is possible for a
user to freely combine any number of species to form a three-part composition,
and to set a cost importance order to indicate their preferences to the solver (in
addition to the already existing ability to set personalised costs). A guide to
the installation and use of the interface (and of the whole tool) can be found in
Appendix B.

10

Chapter 2

Definition of concepts and variables
The purpose of this chapter is to provide all the definitions necessary to formalise
Fux’s theory. It defines various concepts and variables that will be used in the next
chapter, which is the actual formalisation.

The first section of this chapter deals with a very important concept in the formal-
isation of three-part counterpoint, namely parts and strata. It also discusses between
which voices the constraints should apply. The second section contains all the defini-
tions of the variables used in the formalisation of Fux’s rules.

2.1 Voices, parts and strata
The most important definitions we introduce in this section are the concepts of parts
and strata. The need for these definitions arises from the increasing complexity of
the rules of counterpoint when it is generalised to three voices. When getting from
two-part to three-part composition, the rules are no longer concerned solely with the
counterpoints and the cantus firmus, but also with new concepts, such as that referred
to by Fux as ’the lowest voice’. The term ’voice’ is too generic: Fux uses it to describe
notions as different as ’counterpoint’, ’cantus firmus’, voice range and the so called
’lowest voice’. We therefore need to create a more specific vocabulary to talk about
these concepts. With this in mind, let’s explain what ’parts’ and ’strata’ are, and how
they relate to the concept of ’voice’.

Voices

Voices are a general concept, whereas parts and strata are more precise and specific
concepts. The concept of ’voice’ includes both ’parts’ and ’strata’. In other words, each
of these two concepts is a type of voice. In this thesis, when a voice is mentioned, it
can refer to either a part or a stratum, since both parts and strata are voices. To use
an object-oriented metaphor, we could say that the ’parts’ and ’strata’ classes inherit
from the ’voice’ class.

Since there are as many parts and strata as there are voices, in a composition with
n voices there will also be n parts and n strata.

Parts

A part corresponds to what a particular person sings or what a particular instrument
plays. It corresponds to a musical staff (each staff corresponds to a part). The term
’part’ is the same as that used by Fux in Gradus ad Parnassum. The parts in a three-part
composition are: the cantus firmus, the first counterpoint and the second counterpoint.
Fux distinguishes them by calling them by their range, i.e. "bass", "tenor", "alto" or
"soprano" (obviously you cannot have all four in a three-part composition).

11

Strata

A stratum delineates discrete layers or levels of pitches at any given moment in the
composition. They denote a vertical alignment of simultaneous notes and organizes
them into distinct strata. By definition, the lowest stratum encompasses the lowest
sounding notes, the highest stratum comprises the highest sounding notes, and the
intermediary stratum represents pitch levels in between. This concept is very help-
ful in identifying and categorising the vertical placement of pitches, creating distinct
categories of soundwithin the overall texture of the counterpoint composition. It pro-
vides a way of analysing and understanding the distribution of pitches across differ-
ent parts, allowing more complex rules to be established. For example, it would now
be possible to establish a rule between the notes of the cantus firmus and the highest
sounding notes (nomatter which part they come from). The full potential of strata lies
in harmonic rules, but as we shall see, some melodic rules are also related to it. When
Fux speaks about the lowest stratum, he often uses the word ’bass’. It was deliberately
chosen to use a different term than him because ’bass’ is also the name of a voice range
(like soprano and alto, for example), and there is already enough complexity in all the
terminology to add even further ambiguity.

Fux approaches the formal definition of lowest stratum without ever stating it
clearly, mentioning for example that the lowest voice can change (sometimes the bass
is the lowest voice, sometimes the tenor, ...), and that at any given moment the lowest
voice should be considered.

Since a picture is worth a thousand words, Figure 2.1 illustrates the difference be-
tween parts (the blueish lines) and strata (the red and orange lines). The lowest stra-
tum is shown in its own colour (red) because it is the most meaningful stratum, and
it is particularly important in the formalisation.

Figure 2.1: Parts and strata in a three voice composition

Important note concerning the strata Strata are an abstract concept, useful only in
the mathematical formalisation of Fux’s rules. They are necessary because we need a

12

structure that is able to comprehend the lowest sounding note for each measure. The
strata concept is obviously not needed to write counterpoint as a human being, and
the aim behind its definition is not to create a new concept for music theory, but to
enable us to use a tool in our constraint programming way of conceiving counterpoint
composition.

The term stratum was chosen in this context for its
visual impact. In geology, a stratum "is a rock layer
with a lithology (texture, colour, grain size, com-
position, fossils, etc.) different from the adjacent
ones" [33], see Figure 2.2.

Figure 2.2: Geological
strata, for the illustration

The mathematical representations for the notes of the strata are provided here:

• The lowest stratum (written N(a), see Section2.3 for the notations):

∀i ∈ [0, 3] ∀j ∈ [0,m− 1) : N(a)[i, j] = min(N(cf)[i, j], N(cp1)[i, j], N(cp2)[i, j])
(2.1)

• The first upper stratum, or medium stratum (writtenN(b), see Section2.3 for the
notations):

∀i ∈ [0, 3] ∀j ∈ [0,m− 1) : N(b)[i, j] = med1(N(cf)[i, j], N(cp1)[i, j], N(cp2)[i, j])
(2.2)

• The second upper stratum, or uppermost stratum (written N(c), see Section2.3
for the notations):

∀i ∈ [0, 3] ∀j ∈ [0,m− 1) : N(c)[i, j] = max(N(cf)[i, j], N(cp1)[i, j], N(cp2)[i, j])
(2.3)

One part per stratum and one stratum per part

For each measure, there is a bijection between the parts and the strata. This means
that, for any given measure, each stratum uniquely corresponds to a single part, and
vice versa. Put differently, if two parts within a measure share the same pitch, they
do not constitute the same stratum. Instead, one part corresponds to one stratum, and
the other one to a separate stratum.

To illustrate this, consider a scenario in a two-voice composition (see Figure 2.3),
where part ’cf’ and part ’cp1’ in measure X both have a pitch value of 67 (representing
a G). Despite having identical pitches at the same moment, one part is categorised as
the lowest stratum, while the other is designated as the uppermost stratum. This dis-
tinction becomes crucial for subsequent analysis, especially when calculating aspects
like motions. To decide which part gets to be the lowest stratum in such situations, an
arbitrary hierarchical rule is implemented. If the ambivalence is between the cantus
firmus and another part, the cantus firmus is always prioritised and assigned the role of
the lowest stratum, over any other part. In the case of a ambivalence between the first
counterpoint and the second counterpoint, the first counterpoint is given the status of
the lowest stratum.

1Where med(X)means the median value of X.

13

Figure 2.3: Establishing which part corresponds to the lowest stratum

Note concerning the intersection of the voices

Some authors consider that the voices should not cross for too long, whereas Fux
seems to have no opinion on the subject. Let’s be clearer on that point: the stratum
conceptmakes it possible to create compositions inwhich the bass doesn’t always play
the lowest notes, and this is precisely its purpose. In order for a voice other than the
bass (the tenor, for example) to play the lowest note, the melodies of the tenor and the
bass must cross. Fux is strangely silent on this subject: he says that crossings are per-
fectly permissible, but he doesn’t elaborate. Other authors are clearer, and the rules of
species counterpoint generally state that crossing is allowed, but that the voices must
not remain inverted for too long [34, p.28]. This rule was not taken into account in the
formalisation because it is not present in Gradus ad Parnassum, but it is a good notion
to keep in mind, as it could be a way of improving the FuxCP tool, with the aim of
making it compatible with other styles of counterpoint.

2.2 Exploring the interaction of the parts with the lowest stra-
tum

In three-partwriting, most constraints apply between the different parts and the low-
est stratum. This makes the lowest stratum the most important voice of all.

If we go back to the formalisation of two-voice counterpoint, we see that each rule
applies between the single counterpoint and the cantus firmus. For example, when
it is stated that each interval must be consonant, this refers to the harmonic interval
between the counterpoint and the cantus firmus. When considering three-part compo-
sition, Fux explains that the rules do not necessarily have to be followed between each
counterpoint and the cantus firmus, but rather between "each of the voices and the low-
est voice" (i.e. the lowest stratum). In other words, Fux says that the main rules apply
between the parts and the lowest stratum (whether or not the latter is the cantus fir-
mus). This is a big difference with respect to the two-voice formalisation, as it changes
the perceptionwe have of the counterpointwriting. In summary, the constraints apply
as follows:

• The main constraints apply:

– Between the cantus firmus and the lowest stratum,
– Between the first counterpoint and the lowest stratum,
– Between the second counterpoint and the lowest stratum.

• Some constraints apply:

14

– Between the cantus firmus and the first counterpoint,
– Between the cantus firmus and the second counterpoint,
– Between the first counterpoint and the second counterpoint,
– Between the three parts altogether (harmonic rules only).

Generalisation of two-part composition to three-part composition

By changing our perspective to consider the interaction between the parts and the
lowest stratum, we discover that the two-part composition is a special case: it allows
to set the rules between the counterpoints and the cantus firmus, without having to
consider the lowest stratum. Still, the two-part composition follows the rules of the
generalisation, i.e. that the parts should be set in relation with the lowest stratum.

To better understand this, let’s recall once again that in the formalisation for two-
part composition, the rules are understood to apply between the counterpoint and the
cantus firmus. In the three-voice formalisation, the rules apply between the parts and
the lowest stratum. Onemight therefore be tempted to conclude that three-voice com-
position breaks completely with two-part composition, but that would be too hasty a
conclusion. Indeed, on closer inspection, the way the rules work in two-part compo-
sition (between counterpoint and cantus firmus) is just one particular case of this new
vision. In two-part composition, too, the rules apply between the parts and the lowest
stratum. But of course, since there were only two voices, the lowest stratum was nat-
urally either counterpoint or cantus firmus. This means that when constraints were es-
tablished between the counterpoint and the cantus firmus, those same constraints were
de facto also established between the highest part and the lowest stratum. Considering
the rules as being established between the counterpoint and the cantus firmuswas just
a simplification of reality, although it was perfectly correct. The two-part formalisa-
tion is considering a convenient special case, not the general case. This is illustrated in
Figures 2.4 and 2.5. As we can see on those pseudo-compositions, it does not change
anything to apply the constraints between the counterpoints and the cantus firmus or
between the parts and the lowest stratum.

Figure 2.4: Applying the constraints be-
tween the counterpoint and the cantus
firmus

Figure 2.5: Applying the constraints be-
tween the parts and the lowest stra-
tum

However, when it comes to generalising the composition of counterpoint for three
voices, the same simplification is no longer possible. We are now forced to establish
our rules between the parts and the lowest stratum, and no longer between the coun-
terpoints and the cantus firmus. In Figures 2.6 and 2.7 it becomes clear that establishing
the rules between the counterpoints and the cantus firmus is really different from ap-
plying them between the various parts and the lowest stratum. In these figures, the
parts don’t intersect and therefore fit perfectly with the strata, so the constraints are

15

always applied to the same counterpoint. This was done for the sake of intelligibility
of the graphs, but it is of course possible for the parts to cross and for the "target" of
the constraints not always to be the same counterpoint.

Figure 2.6: Wrong approach: apply-
ing the constraints between the coun-
terpoint and the cantus firmus.

Figure 2.7: Correct approach: applying
the constraints between the parts and
the lowest stratum.

It is, of course, possible for the cantus firmus to be equal to the lowest stratum all
along, in which case nothing changes from the perspective we had when composing
for two voices. In this particular case, by applying the rules with respect to the cantus
firmus, we would find ourselves de facto applying the rules with respect to the low-
est stratum (and we would be back to the situation described above, see Figures 2.6
and 2.7, only that there is now one more part). It is when the cantus firmus pitches are
higher up than those of the counterpoints that considering the lowest stratumbecomes
necessary.

A very important detail brought about by this paradigm shift is the following: in
the formalisation of two-part composition, the constraints are applied between the
counterpoints and the cantus firmus, which guarantees that the cantus firmus is taken
into account in the constraints. But if we now apply the constraints only between the
counterpoints and the lowest stratum, there is no longer any guarantee that the cantus
firmus will be linked to the other voices by any constraints, for example if the cantus
firmus is not the lowest stratum. Nevertheless, it is important that the relationship
between the cantus firmus and the lowest stratum is also taken into account, not just
the relationship between the counterpoints and the lowest stratum. This means that
when we apply the constraints between the parts and the lowest stratum, we must
also apply them to the cantus firmus (since the cantus firmus is a part, like any of the
counterpoints).

2.3 Definitions of the variables used in the formalisation
In this section we define the variables used in the formalisation. Many of these vari-
ables were already present in T. Wafflard’s work and are reused in this formalisation,
with some changes. All these (re)definitions are explained in detail in this section.

Throughout this section, when reference is made to the past ("this variable used
to be", "this variable keeps the same definition", ...), it means that reference is made
to the previous definition of the variable, which was the one defined in T. Wafflard’s
work.

Nota bene Please take into consideration that all the rules from T. Wafflard’s thesis
(which can be found in Appendix C) are fully compatible with the new definitions

16

of the variables. The reason for this is that the rules from T. Wafflard apply for a
specific case of our generalisation (see Section 2.2). They thus also work with the
generalisation.

2.3.1 Variables and array notation
First, let’s look at how the variables are defined and the notationwe use to access them.
The variables are defined to capture a compositional reality, such as the notes of the
voices, the harmonic intervals between those voices, or many other concepts. They
are represented by a letter (N for the notes, H for the harmonic intervals, ...) and are
mainly arrays because they have a different value for each beat of the composition. To
knowwhich beatwe are talking about, we address the variable in a computer notation.
For example, N[i, j] means "the note on the i-th beat of the j-th measure". This implies
that i ranges from 0 to 3 and that j ranges from 0 to the number of measures (which
is written asm).

Once defined, the variables are related to each other according to the formalised
rules. The constraint solver searches for all possible values of these variables, accord-
ing to the constraints, and stops when all variables inN (the pitches) are fixed, as this
means that a solution has been reached (the notes of the counterpoints are known,
and this is the goal of the solver).

Of course, there are many different solutions for the same cantus firmus, and in
order to distinguish between two valid solutions (i.e. all solutions that respect all
constraints), costs are introduced. Some variables are therefoe actually costs, that are
intended to convey the preferences expressed by Fux in Gradus ad Parnassum. The
solver considers a valid solution with a low cost to be better than a valid solution
with a high cost. Each individual cost C can be either 0 (no cost), 1 (low cost), 2
(medium cost), 4 (high cost), 8 (last resort) and 64m (cost proportional to length).
These individual costs C are then combined into a total cost τ that the solver tries to
minimise. We will see in Chapter 4 how the costs are actually combined.

2.3.2 Overview of all the variables
Wemay now take a look at all the variables that are useful throughout this work. You
may note that a vast majority of them already exists in T. Wafflard’s thesis, but with
one big change, each variable is now linked to a voice. To understand this, let’s take
an example. In a two-part composition, it was obvious that H (the harmonic intervals
array) described the intervals between the cantus firmus and the only counterpoint. It
was also obvious that P (the motions array) described the motions of the single coun-
terpoint. And so it is with all the variables. When writing a three-voice composition,
we havemanypossibilitieswhenwe talk about intervals ormotions. Intervals between
which voices? Movements of which counterpoint? To deal with this, each variable is
now related to a voice.

The relationship between a variable and a voice is expressed as a function. X(v)
represents the variable X of the voice v. The arguments of the function can be either:

• cf - for linking the variable to the cantus firmus.

• cp1 - for linking the variable to the first counterpoint.

• cp2 - for linking the variable to the second counterpoint.

• a - for linking the variable to the lowest stratum.

• b - for linking the variable to the intermediate stratum.

17

• c - for linking the variable to the uppermost stratum.

For example, X(cf) refers to the variable X of the cantus firmus.

When a variable is not explicitly linked to a voice, it is implied that the relation
expressed for it is true for all parts. In other words, if the variableX is written without
any precision, itmeans thatwe are speaking about the variable X of all parts. Formally:

X ≡ ∀v ∈ {cf , cp1, cp2} : X(v) (2.4)

Note that this only applies to parts, not strata. X could still apply to a stratum, but it
would then be mentioned as X(s), where s is the layer. This is very important: it
allows T. Wafflard’s rules for two voices to remain valid with the new definition of the
variables. It also simplifies the notations.

The following is a summary of the variables used in the formalisation and the type
of voices to which they apply. X(v) means that the variable X can be linked to any
voice, X(p)means that the variable X onlymakes sensewhen linked to a part and X(s)
means that the variable X only makes sense when linked to a stratum. The variables
are defined in more detail in section 2.3.3.

• N(v) - the notes (pitches) of the voice v. This is the same variable as the variable
’cp’ in T. Wafflard’s thesis.

• H(v1, v2) - the harmonic intervals between voice v1 and voice v2: this variable
is particular, as it needs two arguments to be meaningful,

• M(v) - the melodic intervals of the voice v,

• P(p) - the motions of the part p,

• A(p) - the boolean array representing whether the part p is the lowest stratum.

• IsCfB(v) - the boolean array representing whether the cantus firmus is lower
than the voice v,

• IsCons(v) - to the boolean array representing whether the voice v is consonant
with the lowest stratum or not,

• S(p) - an array specific to the fifth species2, representing for each beat what set of
rules a note follows. For example S(p)[0, 0] = 3means that the very first note of
the part p actually belongs to the third species. This is important since the fifth
species is actually a mixture of all the others. As all other variables, there is one
per part.

The formalisation also uses some constants, namely:

• species(p)3 - the species of part p — by definition, species(cf) = 0,

• n(p) - the number of notes in part p,

• sm(p) - themaximum number of notes contained in part p, if all notes were quar-
ter notes, excepted the last one (that is always a whole note),

2The S array is treated in the section about the fifth species 3.6.
3This has nothing to do with S(p). This constant describes the species of the whole part. If p is a fifth

species counterpoint, then species(p) = 5

18

• lb(p) - the lower bound of the range of part p,

• ub(p) - the upper bound of the range of part p,

• R(p) - the range of part p, i.e. R(p) := [lb(p), ub(p)],

• borrow(p) - the borrowing scale4 of part p,

• N (p) - the borrowed notes of part p, where NR(p) = N ∩R

• B(p) - the set of beats on which a note is played5 according to the species of part
p,

• b(p) - the number of beats6 in a measure according to the species of part p,

• d(p) - the duration of a note7 according to the species of part p,

• m - the number of measures in the composition, which is the same for all voices,

• Dis - the set of all consonances, i.e. {1, 2, 5, 6, 10, 11}

• Cons - the set of all consonances, i.e. {0, 3, 4, 7, 8, 9}, where Consp are the perfect
consonances, i.e. {0, 7}, and Consh_triad are the consonances of a harmonic triad
as defined by Fux, i.e. {0, 3, 4, 7}.

Please note that the constants can only be linked to the parts, never to a stratum. In-
deed, it would have no sense to speak about the species of a stratum or about the
extended domain of a stratum.

The formalisation also uses the variables C (the cost factors) and τ (the total cost).
A summary of all the costs can be found in Table B.1. To refer to a given cost, the
formalisation uses subset notation. For example, ’example cost’ is written as Cexample.

To make sure that those notations are clear, here are some examples: the notation
N(a) corresponds to the variable representing the notes (pitches) of the lowest stra-
tum, whereasN(cf) are the notes of the cantus firmus. The species of the second coun-
terpoint is written species(cp2). If only N is written, then the equation in which N is
located holds true for any possible part. That is, the relationship N [0, 0] = 60 would
mean: the pitch of the first note of all partsmust be a middle C (whose representation
in MIDI is 60).

4Remember that Fux mainly uses notes without a flat or sharp, which means that if the composition
begins with a C, it will be written in Ionian mode, if it begins with a G, in Mixolydian mode, etc. Bor-
rowing mode is a way for counterpoint to access notes that are not originally in its mode. For example, a
counterpoint in E (i.e. Phrygian mode) that has the major mode (E major, i.e. Ionian E) as its borrowing
mode will also have access to the notes F#, C#, G# and D#.

5To make it clearer: for the first species, the only beat in a measure is {0}, as there is only a note on
the first beat. For the second species, the set of beats is {0, 2}. For the third species, it is: {0, 1, 2, 3}. For
the fourth species: {0, 2}. And for the fifth species: {0, 1, 2, 3}.

6Thus, it is always equal to the size of the set B(p).
7For the first species, it is equal to 1, as each note is a whole note. For the second species, it is 1

2
, for

the third, it is 1

4
, for the fourth, it is 1

2
, and for the fifth, it is 1

4
. It is always equal to 1

b(p)
.

19

Note regarding the fourth species

Let’s recall that the fourth species behaves in a particular way compared to the other
species. First of all, it is exclusively composed of syncopations. Its notes are half notes,
always linked two by two from bar to bar, producing a pitch change in the middle of
the measure, on the upbeat. This gives the impression of hearing a whole note that
is constantly shifted by two beats, in other words: syncopation. Concretely; the syn-
copation means that the beats of the fourth species should be considered as "shifted":
its upbeat should be considered as the downbeat, and its downbeat as the upbeat
of the previous measure. This means that in the majority of cases, the equations for
the fourth species would have to be rewritten, swapping the 0 and 2 indexes (H[0,
j] becomes H[2, j] in the fourth species and H[2, j] becomes H[0, j+1] in the fourth
species). To avoid duplication of the equations (a first equation for all species and
a second equation for the fourth species) and also to avoid equations that were too
complex and difficult to read, it was decided to make the index swap implicit.

Here is an example: H[0, 0] = 7 should be understood as H[2, 0] = 7 if it concerns
a fourth-species counterpoint.

2.3.3 In depth definition of the variables
N(v) notes

N is the array corresponding the pitches of each voice. Its size is sm. It is the
same array as the one named ’cp’ in T. Wafflard’s thesis, and it got renamed to N (for
notes), for the sake of clarity. As we have now three of those arrays (one for the first
counterpoint, one for the second counterpoint, and even one for the cantus firmus), it
needed a less ambiguous name than the one it had before.

The notes in arrayN arewritten inMIDI format. Thismeans that amiddle C (C4 in
scientific pitch notation) is represented by 60, and each semitone has a value of 1. So,
starting from the middle C, we have:
{C4, D4, E4, F4, G4, A4, B4} ≡ {60, 62, 64, 65, 67, 69, 71, 72}.

H(abs)(v1, v2) h-intervals h-intervals-abs h-intervals-to-cf ...
This variable is an array of size sm and represents the harmonic intervals between

voice v1 and voice v2. It is the only variable that is associatedwith two different voices.
So H(v1, v2)[i, j] represents the intervals between the ith beat of the jth measure of
voice v1 and the first beat of the jth measue of voice v2. v1 can be a part and v2 can be
a stratum, since you can calculate harmonic intervals between a part and a stratum.
If v2 is not specified, it is equal to a by default. In other words, H(v1) represents the
intervals between the voice v1 and the lowest stratum: H(v1) ≡ H(v1, a). This default
value was chosen because the most relevant harmonic intervals are those between the
voices and the lowest stratum.

Some important values the H variable can take: a minor third is 3, a major third is
4, a fifth is 7 and an octave is 12 (or 0 if modulo).

∀v1, v2 ∈ {cf , cp1, cp2, a, b, c}, ∀i ∈ B(v1), ∀j ∈ [0,m) :

Habs(v1, v2)[i, j] = |N(v1)[i, j]−N(v2)[0, j]|
H(v1 − v2)[i, j] = Habs[i, j] mod 12

where Habs[i, j] ∈ [0, 127], H[i, j] ∈ [0, 11]

(2.5)

20

M(x)
(brut)(v) m-intervals-brut
The variable M represents the melodic intervals of a voice. It can be evaluated

either on a part or on a stratum, each of these situations leading to different behaviours.

• Mx
brut(p) (i.e. when related to a part) represents themelodic intervals of the part

p, and itsmode of operation remains the same as in T.Wafflard’s thesis: Mx
brut[i,j]

represents the melodic interval between N[i,j] and the note that comes x notes
later. For example, if N [0, 0] = 60 and N [1, 0] = 67, the interval is 7. More
exactly, Mx represents the melodic interval between the current beat and the xth
following note, according to d(p)8. M represents the absolute value of Mbrut. By
default,M ≡M1, thus,M ≡ ∀p ∈ {cf , cp1, cp2} : M1(p).

∀x ∈ {1, 2}, ∀i ∈ B,∀j ∈ [0,m− x) :

Mx
brut[i, j] =

{
N [i+ xd, j]−N [i, j] if i+ xd < 4

N [((i+ xd) mod 4), j + 1]−N [i, j] if i+ xd ≥ 4

Mx[i, j] = |Mx
brut[i, j]|

whereMx
brut[i, j] ∈ [−12, 12], Mx[i, j] ∈ [0, 11]

(2.6)

• Mbrut(s) (i.e. when related to a stratum) has it own way of working, that is
defined in the next paragraphs. We focus specifically on M(a), the melodic in-
tervals of the lowest stratum.

Why is it complicated to consider melodic intervals of strata? Since strata don’t
have melodic intervals per se (they actually do have melodic intervals, but it doesn’t
really make sense to consider them), we need to redefine what we mean when speak-
ing about the melodic intervals of a stratum. If it is not clear why strata have no in-
herent melodic intervals, remember that strata are an abstract concept that is used
only in mathematical relationships (and respective constraints). People who listen to
the music hear the different parts (be they different tessitura, different instruments,
...) and the way these parts interact together in melodic movements and harmonic
convergences, rendering a beautiful music, or not. Strata are an abstraction of the har-
monic interactions between the parts, and because of this, they are a consequence of
the parts: they exist because the parts exist, and not the other way round! And since
strata are defined according to harmonic principles (as was suggested before, they are
successions of vertical alignments), speaking about the proper melodic intervals of a
stratummakes no sense. One could then conclude that melodic intervals do not apply
to strata, and go ahead. Nevertheless, Fux does speak about computing the motions
between a part and the lowest stratum. And to be able to compute motions, one needs
to compare two different melodic intervals. So we need to have a definition for the
melodic intervals of a stratum.

Definition ofM(s), themelodic intervals of a stratum Tounderstandhowwearrive
at a definition for the melodic intervals of a stratum, we need to remember that the
lowest stratum is just the collection of all the lowest-sounding notes in the composition.
It is therefore quite logical to think of the melodic intervals of the lowest stratum as
the melodic intervals that lead to all those lowest-sounding notes. We thus define the
melodic intervals of the lowest stratum to be: the interval that lead to the note of the
lowest stratum in the corresponding part. Let’s make this clearer with an example.

8If d(p)=x, it means that the following note comes in x beats. So if d=1, M2[0,0] represents the
interval between N[0,0] and N[2,0].

21

Let’s consider that the lowest stratum consists of the notes [Ccp1 , Ecf , Gcp2] (where
Ccp1 indicates that the C belongs to the first counterpoint), that in the cantus firmus
the interval that lead to the E is a +0 (i.e. staying on the same note), and that in the
second counterpoint the interval that lead to the G was a -4 (getting down of two
tones). The corresponding melodic intervals array of the lowest stratum would then
be [+0, -4]. This example has been written again in a more visual way in equation 2.7
to make it easier to understand. To the left of the equation is the pitch array of each
voicementioned. To the right of the equation is themelodic interval array of each voice
mentioned. The numbers in bold red are those corresponding to the lowest stratum.

N(cf) = [64, 64, 71] Mbrut(cf) = [+0, +7]

N(cp1) = [60, 67, 74] Mbrut(cp1) = [+7, +7]

N(cp2) = [72, 71, 67] Mbrut(cp2) = [−1, -4]

N(a) = [60, 64, 67] Mbrut(a) = [+0, -4]

(2.7)

The formal definition of the melodic intervals of the lowest stratum is hence as
follows: the melodic interval in measure j of the lowest stratum is equal to the last
melodic interval in measure j of the part that is the lowest stratum in measure j + 1.
Remember that this complex definition is needed in order for the computation of the
motions to work fine, and that the motions of the lowest stratum, juste as the lowest
stratum, are an abstract notion that serves only in formulas and constraints. The mo-
tions of the lowest stratum do not intend to represent any concrete motion really happening
in the composition, nor does it correspond to the melodic intervals between the pitches of the
lowest stratum.It may be worth noting that if a part is the lowest stratum all the time,
then the motions of the lowest stratum will be completely equal to those of that part.

∀j ∈ [0,m− 1) :

Mbrut(a)[j] =

Mbrut(cf)[0][j] if A(cf)[j + 1]

Mbrut(cp1)[max(B(cp1))][j] if A(cp1)[j + 1]

Mbrut(cp2)[max(B(cp2))][j] if A(cp2)[j + 1]

(2.8)

It might be helpful to have a look at Figures 2.8 and 2.9 to understand better how the
melodic intervals arrays for the lowest stratum. The melodic intervals of the lowest
stratum are those that lead to the notes of the lowest stratum.

Figure 2.8: Understanding the melodic
intervals of the lowest stratum with a
first species counterpoint

Figure 2.9: Understanding the melodic
intervals of the lowest stratum with a
second species counterpoint

22

P(p) motions
The motions array represents the motions9 of a part p with respect to the lowest

stratum. Of course, to be able to compute the motions between two voices, we must
compare their melodic intervals, hence, we must deal with melodic intervals of a stra-
tum. This is not a problem anymore since we have defined what the melodic intervals
of the lowest stratum mean in the previous sub-section. However, a problem arises
when computing the motions of the part that is also the lowest stratum in some mea-
sures. When this happens, we end up calculating motions between a part and itself.
Any part is inevitably moving in direct motion with itself, and this situation leads to
only direct motions being calculated. This becomes problematic when using the P ar-
ray in some constraints. To tackle this problem, the motions of a part are equal to -1
when the part is also the lowest stratum (which is denoted A(p), see Section2.3.3).
This value can be considered as a ’non-applicable’ value: this part has no motion with
respect to the lowest stratum, as it is currently the lowest stratum.

∀p ∈ {cf , cp1, cp2}, ∀x ∈ {1, 2}, ∀i ∈ B, ∀j ∈ [0,m− 1), x := b− i

motion(p)[i, j] =

0 if (Mx
brut(p)[i, j] > 0 > M(a)brut[j])

∨(Mx
brut(p)[i, j] < 0 < M(a)brut[j])

1 ifMx
brut(p)[i, j] = 0⊕M(a)brut[j] = 0

2 if (Mx
brut(p)[i, j] > 0 ∧M(a)brut[j] > 0)

∨(Mx
brut(p)[i, j] < 0 ∧M(a)brut[j] < 0)

∨(Mx
brut(p)[i, j] = 0 =M(a)brut[j])

P (p)[i, j] =

{
−1 if A(p)[j]
motion(p)[i, j] if ¬A(p)[j]

(2.9)
Equation 2.9 may seem daunting, but it is actually very simple (just a little ver-

bose). It works like this:
For each beat in the composition:

• If a part is also the lowest stratum, P is -1 (i.e. non applicable, otherwise we
would calculate the motion between the part and itself).

• If the part moves in the opposite direction to the lowest stratum, P is 0.

• If the part stays where it is and the lowest stratum moves (or vice versa), P is 1.

• If the part moves in the same direction as the lowest stratum, P is 2.

A(p) is-lowest
A is an array of boolean variables of sizem (the number of measures), where each

variable indicates whether the part p is the lowest stratum. In other words, A(p) is
true if p is the lowest stratum. The notation "A" was chosen as the uppercase of "a",
which itself represents the lowest stratum. It is also worth to be noted that only one
of the parts can be the lowest stratum at the time. This does not mean that two parts

9Reminder: there are three types of motion: direct, when both voices move together, contrary, when
one voice moves up and the other moves down, and oblique, when one voice doesn’t move and the other
does

23

cannot equal the lowest stratum at the same time, it is indeed possible that two parts
blend in unison in the final chord, and that both pitches are the lowest sounding notes.
It means that only one of those parts is going to be considered to be the lowest stratum
(and the other one will be the intermediate stratum). See Section 2.1 for more details
about this bijection.

Here is the mathematical definition of the A array:

∀j ∈ [0,m) :

A(cf)[j] =

{
> if N(cf)[0, j] = N(a)[0, j]

⊥ else

A(cp1)[j] =

{
> if (N(cp1)[0, j] = N(a)[0, j]) ∧ ¬A(cf)[j]

⊥ else

A(cp2)[j] =

{
> if ¬A(cf)[j] ∧ ¬A(cp1)[j]
⊥ else

(2.10)

As can be seen in these equations, only the downbeat of eachmeasure is taken into
accountwhen computing theA array. The reason for this is that it is the downbeat note
that determines which chord will be the chord of the measure, while the other beats
are just fioritures. Another reason for this is that the A variable only serves in contexts
where the first note of the measure is relevant.

In practice, there is only an is-not-bass array in the code (which is then equal to
¬A), as it is almost always more useful to know if a part is not the lowest stratum than
knowing if it is the lowest one.

IsCfB(p) is-cf-lower-arr
This boolean array is true when the cantus firmus is lower than the considered part

and false otherwise:

∀p ∈ {cp1, cp2} ∀i ∈ B(p), ∀j ∈ [0,m)

IsCfB(p)[i, j] =

{
> if N(p)[i, j] ≥ N(cf)[0, j]

⊥ otherwise
(2.11)

IsCons(p) is-cons-arr
This boolean array is true when the harmonic interval with the lowest stratum at

a given index is a consonance and false otherwise:

∀i ∈ B, ∀j ∈ [0,m)

IsCons[i, j](all, p, imp) =

{
> if H[i, j] ∈ Cons(all, p, imp)
⊥ otherwise

(2.12)

24

Chapter 3

Formal rules for three-part counter-
point
The purpose of this section is to extract all the rules that Fux mentions in his work and
to make sure that they are unambiguous.

It consists of seven sections: first, a section for the implicit rules (the rules that Fux
doesn’t mention, but are present in all his examples), then a section for each species,
and finally a short section that considers the interaction between different species.
There is no section on rules for all species, yet there are rules that apply to all species. In
fact, all the rules mentioned in the first species section also apply to the other species.
Fux doesn’t explicitly mention this point, but it becomes clear when you look at how
he teaches and applies these rules in composition. Therefore, all rules from the first
species apply to all species.

Each species section is divided into two subsections: the first subsection is about
setting up Fux’s rules and discussing them in English. The second subsection is about
translating the rules into formal logic.

Some important notes

• Concerning the green dot—All the rules from T. Wafflard’s thesis still apply to
three-part compositions. The numbering of the rules in this work is consistent
with T.Wafflard’s work1. If a rule is definedwith the same number as an existing
rule for two-part compositions, this means that the corresponding rule from T.
Wafflard’s work does not apply to three-part composition, and that the new rule
should be used instead. To make this clearer, there is a green dot (•) next to
the rules from T. Wafflard’s thesis that got redefined when used in a three-voice
composition.

• Concerning the [PREF] marker — Some rules are mandatory and must be fol-
lowed to find a valid solution, and other rules are just preferences that can be
followed to find a better solution. The preferences have been marked ’[PREF]’
throughout the chapter clearly mark which rule is mandatory and which is a
preference.

• Concerning the default costs—Each time a cost is mentioned in the formalisa-
tion, the value corresponding to it is its default value, as defined in Appendix B.
Note, however, that in practice the value for each cost can be changed by the user
to suit their needs.

• Concerning the purpose of all the rules— Some rules are concerned with mu-
sicality: composing counterpoint that sounds nice; for example, the rule that for-
bids dissonance. Some rules are concerned with singability: composing coun-
terpoint that is not too difficult for the human voice to sing; for example, the rule
forbidding a melodic leap greater than a sixth.

1The whole set of rules (two-part composition and three-part composition) can be found in Ap-
pendix C.

25

3.1 Implicit rules
These implicit rules apply to all types of counterpoint. They are never explicitly de-
fined by Fux, but are derived from his many examples. These implicit rules are there-
fore actually used by Fux, even though he doesn’t talk about them.

3.1.1 Formalisation in English
1.H2 and 1.H3 • First and last notes have not to be perfect consonances anymore.
Fux doesn’t state this in his text, but in many of his examples, we see that when he

composes with three voices (and more), the first and last harmonic intervals between
the parts and the lowest stratum are not necessary a perfect consonance anymore.

1.H7 and 1.H8 • The harmonic interval of the penultimate measure must be either a mi-
nor third, a perfect fifth, a major sixth, or an octave.

In two-part composition rules, Fux said that the last harmonic interval had to be
either a minor or a majord third. This is something he doesn’t respect at all in three-
part composition, but we can see that he still tries to use minor third and major sixths
when possible, in the penultimate measure. The rule from two-part species was thus
rewritten in order to be appropriate: either use a perfect consonance, a minor third,
or a major sixth.

G8 The last chord must be composed only of the notes of the harmonic triad.
Again, this isn’t stated explicitly, but we see that all of his examples end with a

chord containing exclusively the notes of the harmonic triad.

G9 The last chord must have the same fundamental as the one of the scale used throughout
the composition.

This rule emanates from an observation of Fux’s examples throughout the chap-
ter. The last chord of all his compositions always have the same fundamental as the
fundamental of the scale used throughout the composition. When the cantus firmus
is the lowest stratum, this is not a problem, as the cantus firmi always end with the
fundamental note of the scale. But when not, it has to be imposed by a constraint, or
we may end up with surprising results.

3.1.2 Formalisation into constraints
1.H2 and 1.H3 • First and last notes have not to be perfect consonances anymore.
There is no constraint associated with this rule, as it is a relaxation of a rule from

the two-part composition rule set.

1.H7 and 1.H8 • The harmonic interval of the penultimate measure must be either a
minor third, a perfect fifth, a major sixth, or an octave.

H[0,m− 2] ∈ {0, 3, 7, 9} (3.1)

G8 The last chord must be composed only of the notes of the harmonic triad.

∀s ∈ {b, c} : H(s)[0,m− 1] ∈ Consh_triad (3.2)

26

G9 The last chordmust have the same fundamental as the one of the scale used throughout
the composition.

Since the fundamental of the scale is defined by being the first note of the cantus
firmus, we impose that the last note of the lowest stratummust be equal to the first one
of the cantus firmus (taking the modulos into account).

N(a)[0,m− 1] mod 12 = N(cf)[0, 0] mod 12 (3.3)

3.2 First species
This section deals with the rules that apply to the first species of counterpoint. As
mentioned earlier, these rules apply to all species in the context of a three-part com-
position. In other words, these rules apply whenever species(p) ∈ {0, 1, 2, 3, 4, 5}.
More specifically, the rules in this section apply to the first beat of each species, except
for the fourth species, where they apply to the third beat (see the note on the fourth
species 2.3.2).

The first species consists of whole notes only. It is the basis of counterpoint and its
simplest case.

Figure 3.1: Example of a first species counterpoint in three-part composition

3.2.1 Formalisation into English

Structural constraints

1.S1 All notes are whole notes.

"This species consists of three whole notes in each instance." Mann [28,
p.71]

This pretty straightforward rule is the very definition of the first species. It adds
nothing in comparison with the rules for the two part comparison. It is hence already
implemented by the first species for two voices and does not need any consideration.

Harmonic rules

1.H1 • All notes on the downbeat are consonant with the notes of the lowest stratum.

"This species consists of three notes, the upper two being consonant with
the lowest." Mann [28, p.71]

27

This rule is an update of previous 1.H1 (that previously was saying that all inter-
vals must be consonants). Fux states that the upper voices and the lowest one are
consonant, and not all voices together.

1.H8 [PREF] The harmonic triad should be used as much as possible.

"The harmonic triad should be employed in every measure if there is no
special reason against it." Mann [28, p.71]

As a footnote states it [28, footnote, p.71], Fux refers to the "harmonic triad" as
being a chord in this position: 1-3-5 (contrary to what is today understood as a har-
monic triad). The rule says it is not obligated, but it is preferred, to use the 1-3-5 chord,
considering that 1 is the lowest voice.

1.H9 One might use sixths or octaves.

"Occasionally, one uses a consonance not properly belonging to the triad,
namely, a sixth or an octave." Mann [28, p.72]

Here, Fux explains that when it is not possible to have a harmonic triad, you can
use sixths or octaves instead. Remember that the sixths or the octaves are calculated
from the lowest stratum. Since the rule 1.H1 obligates the use of a perfect consonance
(i.e. a third, a fifth, a sixth or an octave), when the harmonic triad cannot be used, it is
already naturally replaced by a third or a sixth, because no other intervals are allowed.
It is thus not a new rule but a restatement of rule 1.H1.

1.H10 Tenths are prohibited in the last chord.

"One feels that the degree of perfection and repose which is required
of the final chord does not become sufficiently positive with this imperfect
consonance [(speaking about a tenth)]." Mann [28, p.77]

When Fux says this, he takes a tenth as an example, but it here understood that the
final chord cannot include a tenth (third + octave), nor an eight-teenth (third + two
octaves), etc. Nevertheless, "simple" third are considered completely valid.

1.H11 [PREF] Octaves should be preferred over unisons.

"Unison is less harmonious than the octave." Mann [28, p.79]

This rule does not bring anything new, as there is already a rule stating that two
parts cannot blend in unison (rule 1.H5 in appendix). If no unison is possible, then
the octaves will always be preferred over the unison (since the latter is not possible).

1.H12 Last chord cannot include a minor third.

"The minor third is not capable of giving a sense of conclusion." Mann
[28, p.80]

Fux later states that minor modes should not include a third altogether, but that
sometimes it is impossible to do without it, so the major third is allowed in minor
modes.

28

Melodic rules

The following rules obviously don’t apply to the cantus firmus, since its melody is al-
ready fixed.

1.M3 [PREF] Steps are preferred to skips.

"[Each part] follows the natural order closely." Mann [28, p.73]

After having said this, Fux complements his explication by saying the counter-
points should be "moving gracefully, stepwise without any skip". This is clearly a
preference, and has already been covered when implementing the first species for two
voices (see rule G8). It can thus be ignored in the scope of this thesis.

1.M4 [PREF] The notes of each part should be as diverse as possible.

"[Each part] follows the principle of variety." Mann [28, p.73]

Fux never clearly defines what he means by the "principle of variety". So we try
to define it according to what we can read in his work. The examples he gives are a
great help. He first writes an incorrect example and then corrects it, saying that the
corrected example is better because it follows the principle of varietymore closely. The
difference between the two examples is that the number of different pitches has been
increased. So we can define the principle of variety as: use as many different notes as
possible in a single voice.

The principle of variety is therefore clearly a preference.
This principle is very interesting because it introduces the only rule across all rules

that has a scope greater than two measures. While without this rule the solver uses
constraints that apply only to one measure (think of harmonic constraints) or some-
times to twomeasures (think of melodic constraints), this constraint is the first to give
the solver some "memory" about the composition. And although sevenmeasures may
seem like a small range, it means that the constraint covers a large part of the compo-
sition (when dealing with compositions of 10 to 15 measures, of course).

1.M5 Each part should stay in its voice range.

"One should not exceed the limits of the five lines without grave neces-
sity." Mann [28, p.79]

Fux says here that each part should stay on the musical staff (Fux’s "five lines").
Since every staff can be represented differently according to the clef that is used, this
rule could be always true. Obviously, Fux meant the staff corresponding to the voice
range (treble clef for a soprano, bass clef for a bass, ...).

This is actually something that is already handledwhen declaring theN(p) arrays,
as they are declared with an upper and lower bound (ub(p) and lb(p)), corresponding
to their voice range.

1.M6 Melodic intervals cannot be greater or equal to a sixth.

"The skip of a major sixth is prohibited." Mann [28, p.79]

This rule is only a restatement of rule 1.M2, saying that melodic intervals cannot
exceed a minor sixth interval.

29

Motion rules

1.P1 • [PREF] Reaching a perfect consonance by direct motion should be avoided.

"[Reaching] perfect consonance by direct motion [is allowed if] there is
no other possibility." Mann [28, p.77]

This is a new rule as it only applies to three-part composition, but it cancels an
already existing rule that used to be applied in two-part composition. The same rule
in two-part composition states that it is prohibited to reach a perfect consonance using
adirectmotion. In three-part composition, this is not prohibited anymore, as not doing
it is sometimes impossible, and you may thus derogate from this rule.

1.P4 [PREF] Successive perfect consonances should be avoided.

"The necessity of avoiding the succession of two perfect consonances
[...]." Mann [28, p.72]

Fux implies here that there should not be two consecutive perfect consonances. He
does not specify whether this rule applies to all three parts at once (i.e. if there was
a consonance between part 1 and part 2 in measure X, there cannot be one between
part 2 and 3 in measure X+1), or whether it applies to each pair of parts separately.
However, in his example (Fig. 91 of the English version [28]) we can clearly see that
there is a perfect consonance in every measure (parts 1-3, then 1-2, then 1-3, then 2-3,
then 1-2). From this we can deduce that for each pair of parts it is forbidden for two
perfect consonances to follow each other.

However, a closer look at his examples throughout the book reveals that Fux does
not respect this rule at all. To name just a few places where this rule does not apply,
let’s mention figure 108, in the first three measures, between the bass and the cantus
firmus; figure 109, in the same place, between the cantus firmus and the alto; figure 110,
in measures 8 and 9, between the bass and the alto. For this reason, this rule must be
considered as a preference rather than an absolute constraint.

To make this a preference is still very surprising, since many authors of counter-
point consider the succession of perfect consonances to be completely forbidden [34].
However, we are concentrating here on the Fux formalisation, and the possibility of
completely forbidding perfect consonance successions is a choice offered to the user
in the interface.

1.P5 Each part starts distant from the lowest stratum.

"To allow enough space for the voices to move toward each other by con-
trary motion, the upper voices begin distant from the bass." Mann [28, p.75]

This preference cannot be made clearer: the voices start distant from the lowest
stratum.

1.P6 It is prohibited that all parts move in the same direction.

"All voices ascend[ing] [is] a progression which can hardly be managed
without awkwardness resulting." Mann [28, p.76]

What Fux is explaining here is simply that the three parts cannot move in the same
direction. In other words, if two voices go up, the last one cannot go up. If two voices
go down, the last one cannot go down. And if two voices stand still, the last one must
move.

30

1.P7 It is prohibited to use successive ascending sixths on a direct upwards motion.

"Ascending sixths on the downbeat sound harsh." Mann [28, p.77]

This rule is quite simple and states that if one harmonic interval is a sixth, then the
next harmonic interval cannot also be a sixth.

3.2.2 Formalisation into constraints

Structural constraints

1.S1 All notes are whole notes.
This rule needs no special constraint, since it is the very definition of the first

species to consist only of whole notes.

Harmonic rules

1.H1 • All notes on the downbeat are consonant with the notes of the lowest stratum.
The new definition of variable H already captures the change in the rule. This

means that the equation of the previous rule 1.H1 defined for two voices stays the
same.

1.H8 [PREF] The harmonic triad should be used as much as possible.
As this rule is actually a preference and not a mandatory rule, it has been imple-

mented as a cost. If the harmonic triad is used, then the cost is 0. Else, it is 1.

∀j ∈ [0,m− 1) :

(H(b)[0, j] /∈ {3, 4}) ∨ (H(c)[0, j] 6= 7) ⇐⇒ Cprefer−harmonic−triad [j] = 1
(3.4)

1.H9 One might use sixths or octaves.
As discussed in the previous subsection, there is no constraint to add for this rule.

1.H10 Tenths are prohibited in the last chord.

Hbrut[0,m− 1] > 12 =⇒ H[0,m− 1] /∈ {3, 4} (3.5)

If the harmonic interval is bigger than an octave, then you cannot use thirds any-
more.

1.H11 [PREF] Octaves should be preferred over unisons.
As discussed before, there is no constraint to add for this rule.

1.H12 Last chord cannot include a minor third.

H[0,m− 1] 6= 3 (3.6)

Melodic rules

1.M3 [PREF] Steps are preferred to skips.
As discussed in the previous subsection, there is no constraint to add as it already

exists (see rule G8).

31

1.M4 [PREF] The notes of each part should be as diverse as possible.
As it is not explained either if this has to be true for the whole partition or only

for two following notes, it has been chosen as an arbitrary seven successive notes to
apply the rule on. This means that the solution is penalized if a note in measure X was
alreadypresent inmeasures [X-3, X+3]. This amountwas chosen because it represents
the number of flat notes that exist, pushing for the solver to find a solution that contain
all of them.

∀p ∈ {cp1, cp2}, ∀j ∈ [0,m), ∀k ∈ [j + 1,min(j + 3,m− 1)] :

N(p)[0, j] = N(p)[0, j + k] ⇐⇒ Cvariety[j +m ∗ k] = 2
(3.7)

1.M5 Each part should stay in its voice range.
As was discussed before, there is no constraint associated to this rule, as it is al-

ready covered by the definition of the voice range.

1.M6 Melodic intervals cannot be greater or equal to a sixth.
As was said before, no constraint must be implemented for this rule as it is a re-

statement of rule 1.M2.

Motion rules

1.P1 • [PREF] Reaching a perfect consonance by direct motion should be avoided.
Since there is no way in constraint programming to implement a rule that must be

obeyed only if possible other than by using a cost, the initial constraint was rewritten
to a new one.

∀j ∈ [0,m− 1) :

P [0, j] = 2 ∧H[0, j + 1] ∈ Consp ⇐⇒ Cdirect_move_to_p_cons[j] = 8
(3.8)

Remember: P [0, j] = 2means that the motion is direct.

1.P4 [PREF] Successive perfect consonances should be avoided.
As discussed before, this rule is actually a preference.

∀p1, p2 ∈ {cf , cp1, cp2}, where p1 6= p2, ∀j ∈ [0,m− 1) :

(H(p1, p2)[0, j] ∈ Consp) ∧ (H(p1, p2)[0, j + 1] ∈ Consp)
=⇒ Csucc_p_cons = 2

(3.9)

The cost has been set to two according to the cost hierarchy defined in T.Wafflard’s
thesis (a cost of two is amedium cost), but it is possible for the user to change this cost.
The costs are discussed in detail in Section 4.2.

1.P5 Each part starts distant from the lowest stratum.
This is not a strict rule but an indication to make easier for the composer to have

contrary motions. Since this is neither a requirement nor a preference, it can simply
be added as a heuristic for the solver. This is discussed in Section 4.1.2, on heuristics.

1.P6 It is prohibited that all parts move in the same direction.
To prevent this, we need only look at the motions between the parts and the lowest

stratum. If one of their motions is contrary, then it is guaranteed that the three voices
will not go in the same direction (because at least one is contrary). The same applies if
one of the motions is oblique. The problem arises when all the movements are direct,

32

because this would mean that the three voices are going in the same direction. So at
least one motion must be something other than direct. Remember that 0 represents a
contrary motion, 1 represents an oblique motion and 2 represents a direct motion.

∀j ∈ [0,m− 1) :∨
p∈{cf ,cp1,cp2}

P (p)[0, j] ∈ {0, 1} (3.10)

1.P7 It is prohibited to use successive ascending sixths on a direct upwards motion.
Either the harmonic interval is not a sixth in any of both positions, or one of them

is not moving up.

∀j ∈ [1,m− 1), ∀p1, p2 ∈ {cf , cp1, cp2}where p1 6= p2, sixth := {8, 9} :
(H(p1, p2)[0, j − 1] /∈ sixth) ∨ (H(p1, p2)[0, j] /∈ sixth)
∨M(p1)[0, j] > 0 ∨M(p2)[0, j] > 0

(3.11)

3.3 Second species
The second species consists only of half notes. It introducesmore dissonance thanwas
possible with the first species.

All the rules in this section apply only when species(p) = 2, with p being the part
mentioned in the rule. Note that the rules for the first species also apply to counter-
points of the second species.

Figure 3.2: Example of a second species counterpoint in three-part composition

3.3.1 Formalisation in English

Harmonic rules

2.H4 Major thirds are now allowed in the last chord.

"A major third [may] appear in the last chord." Mann [28, p.87]

This is a consequence of now using three voices instead of two. Fuxmakes explicit two
implicit rules we had already defined (1.H2 and 1.H3 and G8). It has thus already
been implemented in the first species for two voices.

2.H5 The half notes must be coherent with respect to the whole notes.

"The half notes are always concordant with the two whole notes." Mann
[28, p.88]

33

One might ask what Fux meant when he wrote "concordant". Did he mean to say
"consonant"? Our take on the question is that he meant that the half notes are written
whilst taking the whole notes into account. This interpretation is aligned with the
French translation, and even with the Latin original. In other words, Fux just says
"there are constraints on the half notes". It is thus not a rule per se.

Melodic rules

2.M2 • It is allowed to ligate the fourth-to-last with the third-to-last or to ligature the
third-to-last with the second-to-last.

"Ligatures have no place in this species [except] in the final cadence."
Mann [28, p.87]

Fux explains that in some cases, you have no other option than ligaturing the fourth-to-
last and the third-to-last notes. The reasons he gives for this are all part of the previous
mentioned rules (no successive perfect consonances, no unison, ...).

Later on, he also says that the third-to-last and the second-to-last notes can be lig-
atured (hence producing a whole note).

"A whole note may occasionally be used in the next to last measure."
Mann [28, p.93]

He says that in the chapter about third species, but it seems that this applies even in
cases where the second species is not used in combination with the third (see figures
134, 173 and 174 of the English version).

He doesn’t state clearly if the three of them can get ligatured, but it seems quite
obvious that this is not allowed, as it would introduce a lot of redundancy in the com-
position. It is hence decided that the rule is: a ligature may happen in one case or in
the other, but not in both.

We thus have to relax the already existing constraint from two-part composition
stating that no two consecutive notes can be the same, to accept it in some cases.

Motion rules

2.P3 [PREF] Successive fifths on the downbeat are only allowed when they are separated
by a third on the upbeat.

"A half note may, for the sake of the harmonic triad, occasionally make
a succession of two parallel fifth acceptable - which can be effected by the
skip of a third." Mann [28, p.86]

Fux didn’t speak about prohibiting two parallel (i.e. consecutive) fifths in the second
species for two voices. That being said, it is indeed prohibited in three parts com-
position as you cannot have two successive perfect consonances (see rule 1.P4). We
thus have to relax constraint 1.P4 in order to accept two successive consonances, when
the two successive fifths flank a third. And since the rule on successive perfect con-
sonances is actually a preference, this means that the cost of successive perfect conso-
nances is not applied if those two consonances are fifths and there is a third in between.

34

Figure 3.3: Successive fifths - prohib-
ited

Figure 3.4: Successive fifths separated
by a third - valid

3.3.2 Formalisation into constraints

Harmonic rules

2.H4 Major thirds are now allowed in the last chord.
No need to add a new constraint as this rule is already covered by rules 1.H2 and

1.H3 and 1.H8.

2.H5 The half notes must be coherent with respect to the whole notes.
No need to add a new constraint as this is not an actual rule.

Melodic rules

2.M2 • It is allowed to ligate the fourth-to-last with the third-to-last or to ligature the
third-to-last with the second-to-last.

This is a relaxation of the two-voice rule 2.M2 "two consecutive notes cannot be
the same".

The reason why this rule has been implemented as a constraint relaxation instead
than as a cost is because Fux does not say that ligaturing is bad, he just presents it as
a new option offered by the three-part composition.

∀j ∈ [1,m), j 6= m− 2 :

((N [2, j − 1] 6= N [0, j]) ∧ (N [0, j] 6= N [2, j]))

∧
((N [2,m− 3] 6= N [0,m− 2]) ∨ (N [0,m− 2] 6= N [2,m− 2]))

(3.12)

The first line prohibits ligatures except in the positions where they are allowed,
and the second line states that only one ligature can occur.

Motion rules

2.P3 [PREF] Successive fifths on the downbeat are only allowed when they are separated
by a third on the upbeat.

This rule is a relaxation of the cost 1.P4 defined above, and is thus rewritten to
correspond to a special case that occurs with the second species.

In the following equation, only p1 must be a second species counterpoint, p2 can

35

be any species.
∀p1, p2 ∈ {cf , cp1, cp2}where p1 6= p2, ∀j ∈ [0,m− 1) :

Csucc_p_cons =

0 if (H(p1, p2)[0, j] /∈ Consp) ∨ (H(p1, p2)[0, j + 1] /∈ Consp)
0 if (H(p1, p2)[0, j] = 7) ∧ (H(p1, p2)[0, j + 1] = 7)

∧(H(p1, p2)[2, j] = 3) ∨ (H(p1, p2)[2, j] = 4)

2 otherwise
(3.13)

The meaning of this equation is that Csucc_p_cons is equal to zero if one of the two
considered consonances is not perfect (because then we do not have two successive
perfect consonances), or if we have two successive fifths with a third in between. Oth-
erwise (when we have perfect consonances), the cost must be set.

3.4 Third species
The third species consists only of quarter notes. It introduces even more dissonance
than the second species and opens the space for more variation.

All the rules in this section apply when species(p) = 3. Note that the rules for the
first species also apply to counterpoints of the third species.

Figure 3.5: Example of a third species counterpoint in three-part composition

3.4.1 Formalisation in English

Harmonic rules

3.H5 The quarter notes must be coherent with respect to the whole notes.

"The quarters have to concur with the whole notes of the other voices."
Mann [28, p.91]

When Fux uses the word "concur", he most likely means "are related" and not "are
consonant". This is the same as for the rule 2.H5 in the second species, where the half
notes had to be concordantwith the cantus firmus. This is not a rule in itself, Fux is just
saying that some rules should be followed (i.e. the other constraints).

3.H6 [PREF] If the harmonic triad could not be used on the downbeat, it should be used
on the second or third beat.

"Take care whenever you cannot use the harmonic triad on the first quar-
ter occurring on the upbeat, to use it on the second or third quarters." Mann
[28, p.91]

This rule is quite clear and speaks for itself.

36

Melodic rules

Fux introduces no new melodic constraints for the third species.

Motion rules

Fux introduces no new motion constraints for the third species.

3.4.2 Formalisation into constraints

Harmonic rules

3.H5 The quarter notes must be coherent with respect to the whole notes.
As has been discussed in the previous section, there is no constraint to add for this

rule, which isn’t really a rule.

3.H6 [PREF] If the harmonic triad could not be used on the downbeat, it should be used
on the second or third beat.

This rule is quite clear and speaks for itself. Since this is not a strict rule but an
advice, it was treated as a cost.

∀j ∈ [0,m) :

(H[1, j] /∈ Consh_triad) ∧ (H[2, j] /∈ Consh_triad)
⇐⇒ Charmonic−triad−3rd−species[j] = 1

(3.14)

3.5 Fourth species
As a reminder, the fourth species consists of syncopations. Each note is played on the
upbeat and is ligated to the next note on the downbeat.

All the rules in this section apply when species(p) = 4. Note that the rules for the
first species also apply to counterpoints of the third species.

Figure 3.6: Example of a fourth species counterpoint in three-part composition

3.5.1 Formalisation in English

Structural constraints

4.S1 The fourth species is staggered by two beats.

"The ligature is nothing but a delaying of the note following." Mann [28,
p.95]

37

Fux here insists on a fact that we have already discussed in 2.3.2. The fourth species
behaves as if its upbeats were the downbeats and its downbeats were the upbeats of
the previous measure.

4.S2 All parts can become the lowest stratum somewhere in the composition.

"The tenor takes the place of the bass - a thing that not only the tenor
may do, but also the alto and even the soprano." Mann [28, p.100]

Fux speaks here about our concept of strata. The tenor can become the lowest stra-
tum, just like the alto and the soprano may do. This is a fundamental concept of the
generalization of Fux counterpoint to three voices, and has already been extensively
discussed before (see Section 2.1).

Harmonic rules

4.H5 [PREF] Imperfect consonances are preferred over fifth intervals, which in turn are
preferred over octaves.

"The fifth is a perfect consonance, the octave a more perfect one, and the
unison the most perfect of all; and the more perfect a consonance, the less
harmony it has." Mann [28, p.97]

This rule is as clear as it gets.

Melodic rules

Fux introduces no new melodic constraints for the fourth species.

Motion rules

4.P3 [PREF] Successive fifths are allowed when using ligatures.

"[Itwould be impossible to remove] the ligatures because of another con-
sideration, the immediate succession of several fifths." Mann [28, p.95]

By saying that it exists a rule that prohibits the succession of fifths (which is actually
just a particular case of rule 1.P4, stating that you cannot have two successive perfect
consonances) when there is no ligature, Fux is telling us in an indirect way that this
rule is not applicable when there are ligatures. He further complements by saying
"there is great power in ligatures - the ability to avoid or improve incorrect passages".

The conclusion is that successive fifths are allowed in the fourth species.

4.P4 [PREF] Resolving to a fifth is preferred over resolving to an octave.

"A dissonance that resolves to a fifth is more acceptable than a disso-
nance that resolves to an octave." Mann [28, p.98]

This rule could not be clearer.

4.P5 Stationary movement in the bass implies dissonance in the fourth species part.

"If I said that the first note of the ligature must always be consonant, that
applies only to the instances in which the lower voice moves from bar to bar,
but not the instances in which the bass remains on a pedal point, that is, in
the same position. In such a case a ligature involving only dissonances is
not only correct but even very beautiful." Mann [28, p.98]

38

The rule evoked here cancels the rule 4.H1 from two-part composition that states that
all notes should be consonant. From now on, if the lowest stratum has a stationary
movement, the corresponding delayed note in the fourth speciesmust be a dissonance,
instead of a consonance.

4.P6 A note provoking a hidden fifth gets replaced by a rest.

"Here a hidden succession of fifths occurs, which is easily perceptible
to the ear and should be avoided in three part composition. This may be
managed by using a rest." Mann [28, p.98]

Fux’s uses the term ’hidden succession of fifths’ without any prior definition. It is
therefore difficult to be sure of what he meant, since the traditional terms for such
progressions are as vague and variable as the traditional rules that govern them. Nev-
ertheless, many authors seem to agree on the following definition of a ’hidden inter-
val’: a hidden fifth or hidden octave is when you approach a perfect fifth or perfect
octave by direct motion. [35, p.31]. Looking closely at figures 137, 151 and 152 of the
English version of Gradus ad Parnassum, this definition is consistent with Fux’s inter-
pretation.

The point of the rule then is: if a solution leads to a hidden fifth, then the note that
provokes the fifth is replaced by a rest. This rule is an a posteriori rule: it applies after
the solution has been found. The current rule thus complements the rule 4.P3 (about
successive fifths in fourth species) and the rule 1.P1 (about direct moves to perfect
consonances) without changing them.

See figures 3.7 and 3.8:

Figure 3.7: Invalid solution featuring hid-
den fifths

Figure 3.8: Valid solution replacing the
hidden fifth by a rest.

3.5.2 Formalisation into constraints

Structural constraints

4.S1 The fourth species is staggered by two beats.
There is no constraint to add since this rule is the very definition of the fourth

species.

4.S2 All parts can become the lowest stratum somewhere in the composition.
Again, there is no constraint to add since this rule is already covered by the concept

of lowest stratum.

Harmonic rules

4.H5 [PREF] Imperfect consonances are preferred over fifth intervals, which in turn are
preferred over octaves.

39

This rule is almost covered by the existing costs (see rule 1.H6), as a perfect con-
sonance has a higher cost than an imperfect consonance. But Fux says not only that
imperfect consonance should be preferred over perfect ones, he says that fifths should
be preferred over octaves. This precision in the rule (fifth is better than octave) could
be solved by either putting a higher cost to octaves and lower one to fifths, or to put
the cost for fifth before the cost for octaves in the lexicographical array of costs, but
this is discussed in the parts about costs (see 4.2).

Motion rules

In this subsection, the correct notation is used for the species (see 2.3.2). So X[0,0]
actually means X[0,0], and not X[2,0] as in other parts.

4.P3 [PREF] Successive fifths are allowed when using ligatures.
The point of this rule is that Fux introduces an exception to 1.P4: successive fifths

are allowed in the fourth species.
We shall then amend the rule 1.P4 (don’t forget that it is a cost) to allow successive

fifths in any case, and rewrite it as:

∀p1, p2 ∈ {cf , cp1, cp2}, with p1 6= p2, ∀j ∈ [0,m− 1) :

Csucc_p_cons =

0 if (H(p1, p2)[2, j] /∈ Consp) ∨ (H(p1, p2)[2, j + 1] /∈ Consp)
0 if (H(p1, p2)[2, j] = 7) ∧ (H(p1, p2)[2, j + 1] = 7)

2 otherwise
(3.15)

The meaning of this equation is that the cost is set to zero if the two consecutive
intervals are not perfect consonances, or if the consecutive intervals are both fifths.
Otherwise, the cost must be set.

4.P4 [PREF] Resolving to a fifth is preferred over resolving to an octave.
This is already covered by the rule 4.H5 (prefer fifths over octaves), since prefer-

ring fifths over octaves in all cases implies preferring to resolve to a fifth rather than to
an octave.

4.P5 Stationary movement in the bass implies dissonance in the fourth species part.

∀j ∈ [0,m− 1) :

M(a)[0, j] 6= 0 ⇐⇒ H[2, j] ∈ Cons
M(a)[0, j] = 0 ⇐⇒ H[2, j] ∈ Dis

(3.16)

4.P6 A note provoking a hidden fifth gets replaced by a rest.

∀j ∈ [1,m− 1) :

H[0, j] = 7 ∧ P [0, j] = 2 ⇐⇒ N [0, j − 1] = ∅
(3.17)

This rule is very special because it applies after the search, not during the search.
More precisely, after the search is started and a result is found, only then does this rule
begin to apply. To understand why, remember that the suppressed note is suppressed
because it causes a hidden fifth. But the only way to have a hidden fifth is to have
an existing note, you cannot have a hidden fifth to a non-existing note. So we don’t
delete the note during the search, because then we would also delete the hidden fifth
(because you can’t have a hidden fifth without a note) and so we would change the

40

solution. You have to find a solution first, and then remove the possible note that
causes a hidden fifth.

This is actually a very interesting property, because here we have a note that is not
played and yet has an effect on the composition.

3.6 Fifth species
As a reminder, the fifth species is a mix of all previously mentioned species, which
means that it combines the rules from all previous species.

Figure 3.9: Example of a fifth species counterpoint in three-part composition

No additional rules (be they harmonic rules, melodic rules or motion rules) were
observed by Fux when writing a three-part counterpoint with the fifth species.

However, in order to have some rhythmic variety when composing with two fifth
species counterpoints, it was decided to impose a rule that Fux never mentioned. We
know that the fifth is just all the other species combined, and the way the solver un-
derstands this is that it considers each note of the composition to belong to a particular
species. This is represented as S[i,j], where S[i, j] = x means that the i-th note of the
j-th measure belongs to the x-th species. So if S(cp1)[2, 3] = 3, then the second note
of the third measure of the first counterpoint is constrained by the constraints of the
third species. From the solver’s point of view, S is just an array like all the others, but it
branches on it during the search to guarantee that the composition of the fifth species
is composed of as many species as possible.

This gives us a metric for similarity, since two fifth-species counterpoints that have
the same S array will be rhythmically redundant. To tackle this problem, we force the
solver to find a solution where S(cp1) must be at least half as different as S(cp2).

As can be seen in Figure 3.10,
the first composition is indeed
rhythmically redundant, since
both fifth-species counterpoints
have (almost) the same rhythm.
The second is much less redun-
dant, since it was required that
the counterpoints use different
species for at least 50% of the
beats.

Figure 3.10: Two compositions of two fifth-species
counterpoint, one redundant and the other not

41

species(cp1) = species(cp2) = 5 ⇐⇒
3∑
i=0

m−1∑
j=0

(S(cp1)[i, j] = S(cp2)[i, j]) <
sm
2

(3.18)
This equation is only true if both counterpoints are of the fifth species, and its

meaning is that the sumof the timesS(cp1) = S(cp2)must be less than half the number
of notes in the composition.

3.7 Writing a three-part composition using various species
In Gradus ad Parnassum, Fux almost always writes his counterpoints using a combina-
tion of the first species and another species, i.e. he makes the following combinations:
1+1, 1+2, 1+3, 1+4, and 1+5. Only sometimes does he make other combinations, ei-
ther with two counterpoints of the same type (5+5) or with two different types (2+3).

When creating combinations of different species, Fuxdoesn’t give any specific rules
for combining them. It seems that the different species interact with each other as they
would do with the first species, taking into account only the first beat of the measure.
For example, if we compute a first counterpoint belonging to the 3rd species and a
second counterpoint belonging to the second species, the rules that apply between
the two counterpoints will be set between all the beats of the first counterpoint and
the first beat of the second counterpoint and between all the beats of the second coun-
terpoint and the first beat of the first counterpoint. This corresponds towhatwewould
have done if we had applied the rules between a counterpoint and the cantus firmus,
where the rules apply between all beats of the cantus firmus and the first beat of the
counterpoint.

Below is a brief summary of the rules that apply to each species:

• First species— rules of the first species,

• Second species — rules of the first species + rules of the second species,

• Third species— rules of the first species + rules of the third species,

• Fourth species— rules of the first species + rules of the fourth species,

• Fifth species— rules of all species, selected according to the S array.

This means that in a composition with two counterpoints, one of the 2nd species and
one of the 3rd species, the first counterpoint will follow the rules of the 1st and the
2nd species, and the second counterpoint will follow the rules of the 1st and the 3rd
species.

42

Chapter 4

Solution search for three-part coun-
terpoint
Three-part composition is much richer than two-part composition. In fact, it offers
many more possibilities than the two-part composition. In constraint solver terms,
this means that the search space is much larger, which means two things: the compu-
tational complexity of finding a solution is greater, and there are many more possible
solutions. The first difficulty is to find a valid solution in this large search space, and
the second difficulty is to find the solution that best respects the preferences expressed
by Fux.

In this chapter, we first discuss the computational aspect and then turn to the pref-
erence management aspect. The computational complexity section covers: the search
algorithm used, the heuristics implemented, and some of the factors that influence
the speed of finding a solution; whereas the preference management section covers:
discussing how to translate Fux’s preferences into solver costs, and comparing the dif-
ferent methods that exist for doing so.

4.1 Dealing with the higher computational complexity
Composing a three-part counterpoint is more computationally demanding than com-
posing a two-part counterpoint: the search space has been greatly expandedby adding
a whole new set of variables, and the time it takes to find a solution may be too high
if you do not think about optimising the search. In addition, adding a third voice to
a composition does not bring many new constraints (which would help to discard
some potential solutions faster), but it does bring many preferences, which in con-
straint programming are translated into costs. The solver must be efficient in finding
the solution that has the lowest cost (i.e. that is best in terms of musicality).

4.1.1 Using Branch-And-Bound as a search algorithm
To cope with the increased complexity brought about by the three-part composition,
it was decided to switch from the Depth First Search algorithm (used in the previous
version from FuxCP) to a more efficient Branch and Bound (BAB). This allows us
to handle costs properly and to find faster solutions. Moreover, the BAB algorithm
can also produce non-optimal results, which is very valuable since finding the best
overall solution can be time-consuming. When starting the search for a solution, it is
now possible to ask for the next solution (i.e. a better solution than the one found
previously, and if none was found previously, then just any valid solution), or for the
best solution. In the latter case, the solver will continue to search until it finds the best
solution or until it is stopped, returning a better solution each time it finds one.

43

4.1.2 Heuristics

Main heuristics

When it comes to finding a solution, we obviously need some heuristics to guide the
search, because there are so many different possibilities for a three-part composition.
To know which heuristics to use, simply think about the most important variable to
fix first. In case it is not clear enough, the key to writing counterpoint for many voices
is to know what the bass, i.e. the lowest stratum, is doing. This is true whether the
composer is a human or a constraint solver. The first heuristic thus follows naturally,
and it is: branch on the lowest stratum array, take the highest constrained variable yet, and try
with any value less than the median. This value branching is used because the possible
values for the lowest stratum are those of the notes of the three parts. Since the lowest
stratum is designed to always be equal to the lowest sounding note, it doesn’t make
sense to try to give it a high value. Therefore, lower values are chosen.

The other central heuristic instructs the solver to branch on the variables of theN arrays
(containing the pitches of the voices), choosing as a priority the variables whose domain is
small, and try with random values. This choice ismotivated by the fact that in the case of a
highly constrained counterpoint (5th species) and a weakly constrained counterpoint
(1st species), the counterpoint should not only seek to improve the highly constrained
counterpoint, but also the weakly constrained counterpoint. This is why the heuristic
chosen is based on the size of the domain and not on the level of constraint. Choosing
a random value ensures maximum variety in the final composition and quickly leads
to a solution with a variety of notes.

Additional heuristics

A first additional heuristic is to branch on the array representing the species contained in
the fifth species, to ensure a varied composition. If we are dealing with a counterpoint of
the fourth or fifth species, we also branch on the "no ligature cost", so that the solver
explores solutions in which the notes are linked, since this is the very nature of the
fourth species.

The rule 1.P5 states that the voices should start distant, and as suggested in the
section on rules, this should be implemented in a heuristic. However, when we im-
plemented the heuristic that all voices should start distant from the lowest one, we
did not see any improvement, neither in search speed nor in solution quality. In fact,
it sometimes slowed down the search, so this heuristic was dropped. Furthermore,
Fux’s advice that the voices should start far apart in order to progress in the oppo-
site direction is only true if the bottom layer moves up. If the bottom stratum moves
down, the top strata should move up, so starting far apart becomes a compositional
disadvantage in this case (as the voices are limited by their range).

4.1.3 Time to find a solution
In general, the solver is able to find a valid solution fairly quickly (in the order of a sec-
ond). However, in some cases it is more difficult to find a valid solution and the solver
may take a little longer to find one. These cases are generally related to: the species of
the counterpoints, and the spacing between the voice ranges of the counterpoints. It is
difficult to know which combination of ranges and species will lead to a fast solution,
but some general tendencies can be observed:

• Species of the counterpoint – The more complex the species of the counter-
points are (think of the 3rd and 5th species, for example), the longer it will

44

probably take the solver to find a solution. The reason is quite obvious: the
more complex the species, the more variables the solver has to play with and the
larger the search space.

• Distance between the voice ranges – The closer the ranges are, the greater the
probability that the solver will take a long time to find a solution. For example,
finding a solution by giving the two counterpoints the same range as the cantus
firmus is more time-consuming than choosing distant ranges. This is because the
voices cannot form a unison, and the possibilities for each voice are therefore
smaller when their ranges are close together.

There are also cases where the exact combination of two given vocal ranges for two
given species makes the search take some time, but by changing the vocal range a
little, the solver quite surprisingly finds a solution immediately. It is still unclear why
this happens. Our best guess is that there are some particular combinations of cantus
firmus, voice ranges and species for which the solver has difficulty finding a solution,
because of the specific search space of this setting.

It is worth noting that the solver’s greatest difficulty (in all cases) is finding a valid
solution. Once a valid solution has been found, the solver quickly finds a whole series
of solutions, each one better than the previous one (until, of course, it is difficult to
find the best solution: then the solver starts taking some time again). The distance be-
tween the best solution and the solution found by the solver before reaching a plateau
when searching is difficult to estimate. However, it should be remembered that the
tool is intended to be used iteratively (the user tries a combination, changes the cost,
tries again, etc). In the end, it is human preferences that matter most, and there is no
guarantee that the best solution for the user will be the one that the solver thinks is
best. This means that the direction the solver takes is more important than the best
solution in itself.

4.2 Designing the costs of the solver to be as faithful as possi-
ble to the preferences of Fux

A constraint solver cannot determinewhether one valid solution is better than another
valid solution by itself, and yet we need it to produce the best possible musical solu-
tion. We can already say that one solution is better than another if it respects Fux’s
preferences (see 1.2) more. In order for the solver to understand these preferences
and to be able to distinguish the musical quality of two solutions, we give costs to it.
The lower the cost, the higher the preference.

Knowing that we are looking for the solution whose cost must be as low as pos-
sible, the question arises: how can we calculate the cost in order to best reflect the
preferences expressed in Gradus ad Parnassum?

The way to translate each preference into a corresponding cost has of course been
formalised in the previous sections, but that’s not the crux of the matter. The question
we face here is: what is the best way to combine all these individual costs to get the
most accurate result in terms of what Fux is trying to convey in terms of preferences?

Three main ways of combining the costs have been identified. These are, in order
from the simplest to the most complex:

1. a linear combination of all costs,

2. computing the maximum over all costs and minimising it,

3. a lexicographic order search,

45

We first describe each of these techniques and their respective advantages, and then
compare them (and the results they produce).

Throughout this sectionwe talk about some specific costs. All these costs are listed
in 4.2.3 with a short explanation. Some more details can be found in Appendix B.3.
For the full description of a specific cost, please refer to its corresponding rule.

4.2.1 Linear combination
The first method of calculating our costs is a linear combination. This is the technique
used in the previous version of FuxCP. More precisely, it uses a linear combination in
which all the weights are equal to one.

Here is a more detailed explanation: there exists a total cost, τ , which is equal to
the sum of all individual costs, C. The next step is to minimise τ . Each Ci is usually
itself a sum of sub-costs. Take, for example, the cost of using harmonic fifths, Cfifths =∑

j Cfifths [j]. This cost is the sum of all sub-costs of having harmonic fifths (one per
measure). By default, having a harmonic fifth in a measure has a sub-cost of 2. This
default values can be changed by the user to be set somewhere on a scale that ranges
from 0 to 64m.

As mentioned at the beginning of this subsection, this procedure can be under-
stood as a linear combination with weights of one only. However, since the cost fac-
tors are given different values according to the user’s choices, this method is actually
more like a regular linear combination, except that the costs are not multiplied by any
weights, but the costs are themselves made larger or smaller before the linear combi-
nation is calculated.

The linear combination has twomajor advantages: ease of implementation and high
comprehensibility. However, it has a major drawback: since the total cost τ that gets
minimised is the sum of all costs C, the best solution might be a solution where one
cost is absolutely huge and all the others are small. This might not be a problem if
the outstanding cost is not really relevant, but if it is the cost of not using a harmonic
triad, it goes completely against the preferences that Fux conveys in his work, mak-
ing the solution inappropriate. A representation of this situation can be found in the
Figure 4.1.

Figure 4.1: Example of a situation where a solution with an outstanding cost is pre-
ferred to a solution with equivalent low costs when using a linear combination

46

Another disadvantage of linear combination is that the result is quite unpredictable:
changing the value of the cost may or may not make a difference, and you may need
to set huge values to see a real effect. For example, if a composer really wants oblique
motion, they may be forced to set the cost of the other types of motion to a huge value,
or they may not see the difference between the default solution and their personalised
solution. This is due to the fact that all the costs are mixed together and form an indis-
tinguishable soup that the solver considers as a whole, and a small increase in the cost
of the direct and contrary motions is very likely to be absorbed into this soup without
any change being noticed.

4.2.2 Minimising the maxima
In order to overcome the problem of outstanding costs that we encounteredwhen con-
sidering the linear combination solution, one could consider a technique that specif-
ically addresses these outstanding costs: namely, minimising the maximum cost. For
example, τ the total cost, could be set equal to the current largest cost. By doing this,
the solver would try to find a solution where the focus is on the worst cost and try to
reduce it before trying to reduce the other costs.

The problem with this method arises when one cost is significantly higher than
the others because it has been defined that way. Let’s take the example of a composer
wanting as many oblique motions as possible. They will set the cost for direct motion
and contrary motion to the highest possible cost and start the search. It is not possible
to have only obliquemotions, since it wouldmean that all motions are direct (and thus
not oblique). As a result, there will always be either direct or contrary motions, and
since the cost for them has been set very high, it would be impossible for the solver to
converge to a good solution. The solver will be more focused on lowering costs that
are high by design, than to lower all the other costs. This means that those high costs
are limiting the search of the solution, creating a bottleneck effect. Once the solver
has reached the best potential value of the worst cost, it cannot continue to find better
solutions. This situation is illustrated in Figure 4.2.

Figure 4.2: Example of two situations where a cost causes a bottleneck in the search
because the solver cannot distinguish between left and right situations. The solver will
blindly choose one of the two solutions, even if the solution on the left is obviously
better.

47

Furthermore, even when considering a less extreme case (e.g. the default setting),
this method requires a normalisation of the costs: there are 3 × (m − 2) sub-costs
for the variety cost but only m sub-costs for the octave cost. This means that without
normalisation, the variety cost will be on average three times larger than the octave
cost, which means that the solver will put three times more effort into minimising the
variety cost than the octave cost, which is unfair and unpractical.

4.2.3 Lexicographic order
The third way of dealing with the costs is to arrange them in an array and then per-
form a lexicographic minimisation. In other words, the costs are arranged by order of
importance: frommost important to least important. The most important cost to min-
imise is placed first in this array, and the solver only tries to minimise the other costs if
the first cost remained the same or decreased. This method makes a lot of sense when
you think about the rules that emanate of Gradus ad Parnassum. For example, Fux says
that perfect consonance can be achieved by direct motion if there is no other possi-
bility. This means that, all other things being equal, we would prefer not to achieve
perfect consonance by direct motion, but that between a bad solution1 in which per-
fect consonance is not achieved by direct motion, and a good solution in which perfect
consonance is achieved by direct motion, we would choose the good solution.

Some costs are also more important than others in absolute terms. For example,
when Fux says that an imperfect consonance is preferred to a fifth, which in turn is
preferred to an octave. This amounts to lexicographicly ranking the cost of using an
octave first (because we really don’t want octaves), and then the cost of using a fifth
(and there is no cost of using an imperfect consonance, since Fux indicates that this is
preferable).

τ = [Coctaves︸ ︷︷ ︸
minimise this first

, Cfifths] (4.1)

A second example, which ties in particularly well with the first, is that Fux tells us
that the harmonic triad must be used in every measure unless a rule forbids it. In say-
ing this, he places the preference for the harmonic triad above all other preferences,
because the only reason that can prevent the use of a harmonic triad is a fixed con-
straint (and not a preference). You’ll notice that the harmonic triad consists of a fifth
(which is a perfect consonant), so Fux is telling us that we’d rather use a fifth in a har-
monic triad than an imperfect consonant outside a harmonic triad. The lexicographic
order search is the only one that allows this kind of concept to be taken into account,
because in a linear combination these two preferenceswould bemutually "exclusive"2:
the first preference would add a cost where the second preference would not, and the
second preference would add a cost where the first would not.

τ = [Charmonic_triad︸ ︷︷ ︸
minimise this first

, Coctaves︸ ︷︷ ︸
and start minimising this only if it is
not possible anymore tominimise the
harmonic triad cost

, Cfifths]
(4.2)

This way we can keep integrating the different costs until we get a full array τ with
all the costs ordered in a lexicographic way.

Of course, it is not always as simple as in the examples above, because it is not
always easy to determine which cost has priority over which other. Sometimes Fux
is very clear about it (e.g. for the harmonic triad cost, which Fux says has priority

1A solution in which almost all other costs are high.
2In the sense that their effects would work against each other.

48

over everything else), and sometimes he isn’t (do we prefer no off-key notes, or as
much variety as possible?). This is a drawback of this method, because we have to
hierarchise the costs, even if the choice is difficult. What’s more, once the costs are
ranked, their order becomes absolute and the solver loses some of its flexibility.

Knowing this, we came up with a suggested order that should be as close as pos-
sible to Fux’s preferred order (or at least what we understood him to convey as his
preferred order in Gradus ad Parnassum). This order should of course be changeable
at the composer’s discretion3. The default order we have agreed upon is as follows.
When a cost is followed by a number in brackets, this means that it only applies if the
corresponding species is used.

1. Cno_syncope4 [4, 5]

2. Csuccessive_p_cons

3. Charmonic_triad

4. Charmonic_triad_3rd_species [3]

5. Coctaves

6. Cpenult_thesis_is_fifth5 [2]

7. Cfifths

8. Cborrowed_notes
6

9. Cvariety

10. Cm2_eq_zero
7 [3, 4, 5]

11. Cnot_cambiata
8 [3, 5]

12. Cmotions

13. Cm_degrees
9

14. Cdirect_move_to_p_cons

Some remarks on the proposed order:

• Two costs come even before the harmonic triad cost: the Cno_syncope cost and the
Csuccessive_p_cons cost. Regarding the Cno_syncope cost: this cost is at the heart of the
fourth species, and a fourth species counterpoint without syncopations is not
really a fourth species counterpoint. This is why syncopation is considered even
more important than the harmonic triad. And concerning the Csuccessive_p_cons
cost: when Fux expresses his preference for the harmonic triad, he says that
the harmonic triad should always be used, excepted if there are two successive
perfect consonances (see rule 1.H8). This makes successive perfect consonances
even more important to avoid than not having a harmonic triad.

• The cost of Cpenult_thesis_is_fifth comes before the cost of Cfifths, as it is an exception
to the latter (similar to the interaction explained above in the section between
Charmonic_triad and Cfifths).

• Coff_key was added to its ranking because it is actually an absolute rule not to use
off-key notes, but Fux does use some, and so it was decided to put this cost after
the very important costs to allow off-key notes to happen.

• The costs Cvariety, Cmotions and Cm_degrees were ranked in order from least to most
restrictive. First we say that we would prefer the note to change as much as

3Please have a look at Appendix B to see how the composer can personalise the order.
4The cost of not using a syncope.
5A specific cost for the second species, which applies when a penultimate thesis note does not make

a fifth interval with the lowest stratum.
6The cost of using sharps or flats.
7The cost of having the same note in the downbeat and the upbeat.
8The cost of not using a cambiata. The cambiata can be characterised by the following scheme:

consonance - dissonance - consonance.
9The cost of using big or small melodic intervals.

49

possible (with the variety cost), thenwe indicate our preference for the direction
(with the motion cost), and finally we indicate our preference for the size of the
motion (with the melodic interval cost). This gives the solver as much flexibility
as possible. The other way round would have been more restrictive, since the
solver would have minimised the melodic intervals first, setting them all to one,
which doesn’t leave much room for the motion cost to have an effect, and forcing
the variety cost to be high in any case, as with small intervals the melody tends
to vary only a little.

• Cm2_eq_zero and Cm_degrees were classified right after the variety cost since they are
an in-measure variation of the variety preference.

NB Using the lexicographic order does not notmean that the last costs are not taken
into account, they are minimised too by the solver. It just means that if the solver has
to choose between minimising one cost or another, it will minimise the first one in the
lexicographic order.

4.2.4 Comparison between the three types of costs.
We have now discussed the advantages and disadvantages of each of the three meth-
ods. These are all listed in Table 4.1. As you can see, no one method is definitively
better than another, and the only way to know which method is best in practice is to
test them in practice to find out which of the methods gives the best results.

Table 4.1: Comparison of the three methods — a green cell can be considered a good
feature, a red cell can be considered a bad feature, and an orange cell is a special case

Criteria Linear
combination

Minimising the
maximum

Lexicographic
order

Outstanding costs Yes No Only for minor
costs

Sensitivity10 No Some Yes
One cost might be a

bottleneck
No Yes No

Need to normalise
costs

No Yes No

Possibility to ensure a
preference of one cost

over another

No No Yes

Need for
hierarchisation of costs

No No Yes

Flexibility Medium High Low
Knowing this, one could think about a combination of all the methods to get rid

of their disadvantages. In fact, we could enjoy the advantages of all the methods by
combining them and cleverly designing a lexicographic order search in which the cost
is a linear combination of a maximum minimisation.

4.3 Combining the three types of costs
To experiment whichmethod gives the best results, wewill follow this plan: first com-
pare the result of a linear combination and the result of a purely lexicographic order,

10In the sense that changing one cost has a big impact on the result.

50

using the default preference order as defined in 4.2.3. We then analyse the result by
looking at what could have been done to manage costs more effectively and, where
appropriate, group costs together.

These experiments are carried out using various counterpoint combinations. These
setups will increase in complexity, starting with the basic case of three-part counter-
point (two counterpoints of the first species) and moving on to mixed counterpoint.

The advantage of simple species (first, second and fourth species) is that the search
for a solution is much faster. In fact, the search for an optimal solution can be quite
time-consuming, and this is even more the case when we are talking about complex
species such as the third and the fifth, and when they are combined. This means
that it is more difficult to grasp the impact of the cost method when using a setup
with complex species. What’s more, the vast majority of the costs are related to the
interaction of the voices in the first beat of the measures: the behaviour we want to
observe, i.e. the interaction between the cost method and the resulting composition,
will be just as observable with complex species as with simple ones.

The musical analyses in this section are superficial and do not deal with in-depth
music theory. They will consist of general surface and impression remarks. They are
highly subjective and should not be taken at face value. The aim of this analysis is to
provide an initial critical view of the results offered by the solver.

The selected cantus firmi were chosen from Gradus ad Parnassum.

4.3.1 Comparing the linear combination and the lexicographic order in prac-
tice

First experiment: two first-species counterpoints on two different cantus firmi

For this first experiment, if the search time exceeds 30 seconds, the search is stopped
and the current solution is analysed.

Figure 4.3: Result 1 of the linear combination method with default costs. Click here to
listen.

Figure 4.4: Result 1 of the lexicographic order method with default costs. Click here
to listen.

51

https://youtu.be/w7EQ3b8JHnM
https://youtu.be/ryrpi5QNmf0

Here are the first two results: 4.3 and 4.4. To the average ear, there’s not much
difference between these two solutions.

In more technical terms, here are the cost arrays:

• for the linear combination: [2, 20, 0, 3, 4, 6, 4, 14, 0], with a total sum of 53,

• for the lexicographical order: [0︸︷︷︸
succ_p_cons

, 14︸︷︷︸
h_triad

, 0, 3, 0, 10, 16︸︷︷︸
motions

, 14, 8︸︷︷︸
direct_m_p_cons

],

with a total sum of 65.

As we can see, the difference between the two is exactly what we expected: high
importance costs are prioritised and low importance costs are neglected in the lexi-
cographic order, while the linear combination tries to minimise everything. A good
example of this is the harmonic triads: they are more present in the lexicographic so-
lution than in the linear combination (four versus one). Meanwhile, there are seven
direct motions and two oblique motions in the lexicographic solution and only two
direct motions in the linear combination solution11.

Figure 4.5: Result 2 of the linear combination method with default costs. Click here to
listen.

Figure 4.6: Result 2 of the lexicographic order method with default costs. Click here
to listen.

Let’s look at the second result (obtained with a different cantus firmus), featured in
figures 4.5 and 4.6. Once again, the technical results are fairly as one would expect
them:

• for the linear combination: [0, 20, 4, 0, 4, 12, 11, 8, 8], with a total sum of 67,

• for the lexicographical order: [0, 16, 0, 2, 4, 8, 10, 19︸︷︷︸
melodic_intervals

, 8], with a total sum

of 67.
11Reminder: the motions are computed with respect to the lowest sounding note.

52

https://youtu.be/pnwceQyZd9E
https://youtu.be/-twWU-hNcYI

For the average listener, it is difficult to establish an absolute preference between these
two solutions. We will take this same setting and try to mix the techniques for it in
section 4.3.2.

Second experiment: one fourth-species counterpoint and one first-species counter-
point on a single cantus firmus

If we now go on, here is a result combining the first and the fourth species, and putting
the 4th species at the bottom:

Figure 4.7: Result 3 of the linear combination method with default costs. Click here to
listen.

Figure 4.8: Result 3 of the lexicographic order method with default costs. Click here
to listen.

Looking at the results obtained with this setup (figures 4.7 and 4.8), we come to
the following conclusion: in both cases, themelody is a little dull and lacks dynamism.
There is no drastic change in quality between the solutions provided by the two search
techniques. However, the solution provided by the lexicographic order is somewhat
more exciting, since there ismore tension in it and it usesmore dissonances and resolv-
ings than the linear combination (even if these resolvings are not the most brilliant).

We immediately notice something else with the 4th species on the bass, which is
not related to the costs: there are a few dissonances on the downbeat, as the solver
doesn’t really take into account the harmonic interaction between the notes of the
downbeat of the fourth species and the notes of the downbeat of the other species,
but rather the harmonic interaction between the upbeat of the fourth species and the
downbeat of the others: which leads to a few surprises, aswe can see in these examples
(that tension mentioned above).

As far as the costs are concerned, one thing is clear: not all the notes of the 4th
species obtained with a linear combination are linked, whereas they all are in the so-
lution of the lexicographic order. This is an obvious consequence of using a linear
combination, as this technique is not able to prioritise a cost.

53

https://youtu.be/eunaKHOQ2Nk
https://youtu.be/rh3YdRu62J4

Third experiment: one third-species counterpoint and one second-species counter-
point on a single cantus firmus

Our first cross-species test will involve a counterpoint of the 2nd species and a coun-
terpoint of the 3rd species. The cantus firmus used is the one proposed by Fux in an
example in which he uses exactly these two species. The search was given oneminute,
as the complexity is getting higher than in the previous experiments.

The results are shown in the figures:

Figure 4.9: Result 4 of the linear combination method with default costs. Click here to
listen.

Figure 4.10: Result 4 of the lexicographic order method with default costs. Click here
to listen.

The results are strikingly similar and quite unmelodic. Let’s look at these two
aspects in turn.

The similarity is probably due to two things: the solver doesn’t havemuch room for
manoeuvre, since all the voices are highly constrained, so the costs don’t have much
of an effect in this very setup.

Concerning the lack of melodic quality: it is probably due in part to bad luck (this
cantus firmus is perhaps particularly difficult to handle) and in part to the lack of con-
straints linking the upbeats of the various counterpoints. If you think about it, all the
rules proposed by Fux in his chapter on three-voice composition link the beats of one
voice (all its beats) to the first beat of the other voices. This means that there are con-
straints between the 2nd, 3rd and 4th beats of one voice and the other voices, but never
between these 2nd, 3rd and 4th beats of one voice and the 2nd, 3rd and 4th beats of an-
other voice, always with the 1st beat. Obviously, without rules to ensure that the notes
of these beats concur12, it is more complicated for these beats to concur. Of course, it
would be wrong to say that it depends only on chance that these beats concur, because
that would mean that the beats are independent. Indeed, one might think so at first,
because there are no constraints directly linking them, and yet they are linked by their
own connections with the first beat of the other voices. In other words, although the
third beat of the first counterpoint is not directly linked to the third beat of the second
counterpoint, it is indirectly linked to it through the first beat of the second counter-
point: there are constraints between this third beat of the first counterpoint and the

12Theword ’concur’ is used here in the same sense that Fux uses it: itmeans that the notes are somehow
put in a relationship that makes them sound good together.

54

https://youtu.be/_VrM76hp1v8
https://youtu.be/msY1LOGw3v8

first beat of the second counterpoint, and there are also constraints between the first
beat of the second counterpoint and the third beat of the second counterpoint. There
is therefore a certain dependency and mutual influence between the 3rd beats of the
two counterpoints. However, it would be interesting to see if Fux introduces any rules
on this subject in his chapter on four-part composition, and if not, it would be inter-
esting to think about what these rules might be in order to maximise the concordance
between the notes in the upbeat of the different voices.

Fourth experiment: two fifth-species counterpoints

The fourth experiment is a bit special, as it features two fifth counterpoints with the
same voice range. This is something Fux doesn’t really do inGradus ad Parnassum, butwe
thought it might be interesting to see how the searchmethod behaves in this situation.
Even though Fux doesn’t write counterpoints in the same voice range, they are still
realistic, for example in the case of a double violin concerto, or any other instrument
that has the same voice range and that is played together.

In this experiment, it is interesting to observe how the solver manages the small
margin of manoeuvre it has, given that it has to find two counterpoints in the same
voice range, all when the counterpoints are forbidden to take the same value (i.e. the
same pitch).

The search was run for twominutes, as the fifth species counterpoint is more com-
plex than the others, and a little more time is needed to let the costs have an effect on
the solution. The solutions are those in figures 4.11 and 4.12.

Figure 4.11: Result 5 of the linear combination method with default costs. Click here
to listen.

Figure 4.12: Result 5 of the lexicographic order method with default costs. Click here
to listen.

Just as for the second experiment, some interesting things happen in the compo-
sition found by the lexicographic order. The intervals are more beautiful and the fact
that there are dissonances that sometimes resolve givesmoremeaning towhat’s going
on.

55

https://youtu.be/Lyi2Tv0eto8
https://youtu.be/wYq28XcmpVw

On the other hand, the fact that the penultimate note of the middle voice resolves
on a G instead of a C is a bit frustrating, as the final chord feels like it is not a real
ending, but this is a recurring problem in all solutions. The reason for this is probably
that there is a rule (rule 4.H5) that makes the solver prefer fifths to octaves, and there
is no mention from Fux of deviating from this rule for the last measure.

However, the solver did a surprisingly good job of finding passable solutions with
such a small search field. The solutions obtained are far from high art, but you can see
the musical intuition behind them.

4.3.2 Mixing the technique of maximum minimisation with lexicographic
order

Now what happens when we start to mix the techniques and group some of the costs
in the lexicographic order? At each level of the lexicographic order, we calculate the
maximumof the costs at that level, whichwe then try tominimise. All preferences that
Fux has not explicitely ordered get packed on the same level, i.e. three levels subsist:
the first one, with only the cost for successive perfect consonances, the second one,
with only the cost for not using a harmonic triad, and a third one, with all the other
costs.

Figure 4.13: Result 1 of a mix between lexicographic and maximum minimisation
method. Click here to listen.

Figure 4.14: Result 2 of a mix between lexicographic and maximum minimisation
method. Click here to listen.

Figures 4.13 and 4.14 show the solutions found by mixing the techniques of lexi-
cographic order and maximum minimisation.

Both solutions handle the ending strangely, but this may be a coincidence, as there
is no cost that would obviously cause such an ending.

Itwould be too bold to say that there is a big difference between the results obtained
by this method and those obtained by the others. In other words, to the average ear,
the solutions provided by this search technique are not significantly different from
those provided by the other search methods.

56

https://youtu.be/qJ_mjtz02R0
https://youtu.be/GRGE7NN3jNE

The good news is that the result, far from being excellent, is different. This means
that a composer can set up the tool as theywish andget different results fromone setup
to the next. They can start with the default settings and then change one parameter
after another until they find what suits them best. This is really encouraging, because
it means that the solution is not too limited to a few possibilities, but that once a valid
solution has been found, there is still plenty of room for personalisation.

Note that the predicted bottleneck effect from Section 4.2.2 was indeed observed
in both searches, as the solution stopped improving after only ten seconds of search.
After these ten seconds, the solver stopped finding better solutions because the third
cost level (the one whose maximum was minimised) had already reached its min-
imum maximum, and so the solver could not distinguish between two solutions if
they had the samemaximum, since this search technique doesn’t allow it. Please refer
to Figure 4.2 for a better understanding of the situation.

4.4 Conclusion on the search methods
Aswe have stressed several times in this chapter, there is no bestway of ordering costs.
Each technique has its shortcomings, and it is probably by allowing the composer to
order their costs as they see fit that the tool will be able to reveal its full potential, since
the choice of technique also depends on the musical effect that the composer wishes
to achieve.

Nevertheless, the lexicographic method seems to be able to express more character
than the cost soup of the linear combination method. The intransigent side of the
lexicographic method can be adjusted by combining several costs at the same level
of the lexicographic order. This combination can be achieved using the method of
minimisingmaxima, but it should be noted that this is only possible to a certain extent
if we want to avoid a cost creating a bottleneck on its own. It may also be preferable to
combine costs at one level of the lexicographic order by simple addition, at the risk of
making certain costs explode at that level. The best compromise that has been found
is therefore to give the composer as much choice as possible, by offering them the
three possibilities, as well as the combination between the lexicographical order and
the other two techniques. This allows the composer to compose their counterpoint
iteratively: they make a first attempt that doesn’t work well, adjust the costs to direct
the search, and so on, until they get the result that suits them best. In practice, this
leads to the user interface described in Appendix B, where a composer can choose
their preferred order of importance, and then choose whether they want to combine
the costs in a linear combination or a maximum minimisation fashion.

57

Chapter 5

Musicality of the solutions
This chapter deals with the musicality of the solutions. While the aim of the previous
chapter was to discuss the costs, this chapter is oriented towards a normal use and
what results a composer can achieve. We first look at basic solutions, i.e. compositions
where species are not mixed, as in most of Fux’s examples, then we will have a look
at what happens when we try to leave Fux’s writing style by using preferences, and
finally we discuss a bit about cross-species compositions.

5.1 Combining first species with another species
Composingwith three voices, one of which is the cantus firmus, one of which is a coun-
terpoint of the first species, and the last of which is a counterpoint of any species, is
the basic situation of writing counterpoint, as Fux explains in his teaching of counter-
point. In this first sub-section, therefore, we shall consider five basic counterpoints to
a cantus firmus in C.

Figure 5.1: Simple first species composition with three voices. Click here to listen.

Figure 5.2: Simple second species composition with three voices. Click here to listen.

Looking at all these examples, we can draw the following conclusions:

• Fuxwas right when he said that three-part composition is much richer than two-
part composition (without even having to mix the species). The addition of the
third voice adds depth, dimension and colour, and the problems of monotony

58

https://youtu.be/qIresNFcmWY
https://youtu.be/fiAc3CNdWHo

Figure 5.3: Simple third species composition with three voices. Click here to listen.

Figure 5.4: Simple fourth species composition with three voices. Click here to listen.

Figure 5.5: Simple fifth species composition with three voices. Click here to listen.

that arise in the automation of two-part writing seem to have been partially
solved. With two voices, if one voice repeated itself, the composition as a whole
suffered from repetitiveness. With three voices, if one voice repeats itself, be-
cause the other voices change, this creates variation. In fact, we could say more,
as this is in keeping with the general idea of counterpoint, which is that patterns
repeat and alternate. In this case, of course, the repetitions are due to chance (re-
member that all the rules, except the preference for variety, apply to a maximum
of one measure, so the solver does not have an overall view of the composition),
but in the future we could add rules to encourage these repetitions and varia-
tions, or even to encourage the voices to respond to each other.

• Too often the final chord is not conclusive. This could be solved by an additional
rule to be defined. It is surprising that Fux does not cover this case in his rules.
In fact, the only rules he mentions for the final chord are "no minor third" and
"no tenth", which is apparently not enough.

• It would be difficult to call these compositions masterpieces. However, they
stand up well enough to be used as a basis, and with a few personal improve-
ments on the part of the composer, they can be expanded and improved asmuch
as desired. For example, by changing the few notes that don’t go together well,
by modifying the harmonies or by adding different rhythms. The result of the

59

https://youtu.be/r6MaQHyTLs8
https://youtu.be/gcGoXKLcV_I
https://youtu.be/BSAKEjvFdoo

basic counterpoint is therefore more than satisfactory and can be considered a
success.

5.2 Using preferences to improve musicality
Below is an example of the difference between a counterpoint of the first species, us-
ing Fux’s preferences (more precisely, using a lexicographic search with default pref-
erences as defined in Section 4.2.3), and a counterpoint in which personal preferences
were expressed. These preferences were: to use as few contrary motions as possi-
ble, and as many oblique and direct motions as possible. Prioritising this preference
(placing it first in the lexicographic order), then prioritising melodic intervals (main-
taining a preference for small melodic intervals, as in Gradus ad Parnassum), then pri-
oritising variety, and then placing all the other preferences at the penultimate level of
the lexicographic order, with the exception of the preference for no successive perfect
consonance, which was placed at the very last level.

The search has not been stopped manually; we leave it running until it finds the
best solution according to the defined preferences.

The aim of this experiment is twofold: to show that the preferences can have a big
impact on the resulting solution, giving the composer a lot of room for manoeuvre in
their composition (this was already partially demonstrated in the previous chapter),
and to obtain a solution that differs from Fux’s compositions. In particular, these small
changes in preferences were made to obtain a more monotonous solution, with fewer
twists than the Fux-like solutions (for example, for transitions between two parts of a
composition, for more quiet moments, ...).

The results of this experiment can be found in Figures 5.6 and 5.7.

Figure 5.6: Example of a first species counterpoint in three-part composition with
Fux’s preferences. Click here to listen.

Figure 5.7: Example of a first species counterpoint in three-part composition with cus-
tom preferences. Click here to listen.

The result is striking, as the Fux-like solution simply sounds like... Fux, and the
custom solution is completely in line with its aim, which was to create a composition

60

https://youtu.be/aWmkHdcuook
https://youtu.be/rXGOzidniA0

that is more monotonous and where there is less sense of things happening. This ex-
ample shows something interesting: with the same set of hard constraints (themanda-
tory rules of Fux), it is possible, thanks to preferences, to make a variety of personal
choices that still sound good but deviate from the traditional style of Fux.

5.3 Combining arbitrary species
One thing is clear about multi-species composition: it is a truly unpredictable art.
It has already been discussed in Section 4.1.3 that the different interactions between
species and voice ranges can take more or less time in terms of solver efficiency. This
observation also applies to the quality of the solutions, with cases where the solver
produces perfectly good results and other cases where the solution falls short of ex-
pectations. This lack of musical quality in the solutions was not the case when we
were composing single species counterpoints (without mixing the species), and is
something that emerges when combining species. The most plausible hypothesis is
that the solver is unable to produce a solution that is always beautiful when combin-
ing species precisely because Fux has never given any rules specifying how to combine
species. We can only hope that such rules exist in the 3rd chapter of his book, or else
we’ll have to either extrapolate from existing rules or take inspiration from other au-
thors to create these rules.

Below (Figures 5.8 and 5.9) are two examples of counterpoint generated by FuxCP.
Both combine counterpoint of the second kind and counterpoint of the fifth species.
The search ran for three minutes before being interrupted. The solutions are a good
example of the surprising results that can happen in the second, third and fourth beat.

Figure 5.8: Example of a generated counterpoint using a second species counterpoint
and a fifth species counterpoint, with an A scale. Click here to listen.

Figure 5.9: Example of a generated counterpoint using a second species counterpoint
and a fifth species counterpoint, with a C scale. Click here to listen.

61

https://youtu.be/scifkjh1YZU
https://youtu.be/b64eOMNN8BA

Chapter 6

Known issues and future improvements
This chapter looks at the current state of the FuxCP implementation and the problems
that are currently known to exist. It also discusses possible improvements that should
be considered by anyone wishing to take this work forward.

6.1 Known issues about the current state of the work
• As mentioned in Section 4.1.3, some few combinations of species, voice ranges

and cantus firmi cause the solver to fail to find a solution. The current roundabout
way to "solve" this is to change the voice ranges or some other parameter until a
structural solution is found. These cases are relatively rare and do not prevent
the use of FuxCP.

• If a counterpoint of the fourth species is the lowest stratum, the solver needs
more time to find a solution in which all notes are ligated. This is not a problem
when combining a fourth species counterpoint with a simple species counter-
point (first or second species), but becomes difficult to handle with more com-
plex species (third or fifth species), as the search time before the solver finds a
suitable solution (i.e. with all notes tied) can become very long.

• The current heuristics make the solver branch on the lowest stratum array with a
"select the values smaller than (min+max)/2" policy. For some reason, it always
seems to take the lowest value (or close to it), whichmeans that themelody of the
voice that is the lowest stratum is really redundant, something that even variety
preference doesn’t compensate for on complex species, since the time needed to
find a good solution (i.e. one where the variety cost is low, which again means
that many notes are different) is too high compared to the time needed to find a
passable solution.
This leads to a second problem, which is that since the downbeat of the part,
which is the lowest layer, always consists of the lowest possible note, the follow-
ing notes (e.g. in the upbeat) will necessarily be higher. This is because the note
in the 2nd, 3rd and 4th bars cannot be the same as the note in the 1st bar, but
because the 1st bar is already the lowest possible, the notes in the 2nd, 3rd and
4th bars must be higher.
Figure 6.1 illustrates that the second species of counterpoint, in the bass, is com-
posed exclusively of upbeat notes that are higher than the downbeat notes. This
is a side effect of the heuristic, and a way should be found to resolve it. Note that
in this example the problem is solved very quickly (amatter of seconds) because
in this setting the other counterpoint is a first species counterpoint, which is a
simple setting

62

Figure 6.1: Illustration showing the limitation of current heuristics, as the counterpoint
of the second species always has a higher upbeat than its downbeat. Note that the
composition has been cropped.

6.2 Future improvements
Thework towards fully automated counterpoint composition is progressing, but there
is still a long way to go before we can claim to have finished the job. There are several
ways to improve the current situation for those who want to improve FuxCP. Here are
some ideas for improvement:

1. Solution quality

• Finalise the formalisation of Gradus ad Parnassum – The first obviousway to im-
prove the tool is simply to complete the formalisation of Fux’s work, which
would make it possible to compose in four voices, but also to integrate the
additional rules hementions in his last chapter. Thiswouldmake it possible
to have a complete FuxCP tool, in terms of Fux’s rules, and then to supple-
ment Fux’s rules with additional rules that could come from any influence.
This idea of adding external rules to the Fux rules has already been tested
to some extent in the work of T. Wafflard, and the results were more than
promising. It is therefore clearly a direction to take in the improvement of
the FuxCP tool.

• Relate the notes of the 2nd, 3rd and 4th beats to each other – As mentioned in
one of the preference ordering experiments (see Section 4.3.1), there are no
direct constraints between the 2nd, 3rd and 4th beats of each counterpoint.
The only way they influence each other is through the transitivity of the
constraints: A and B are constrained together, and so are B and C, so A and
C are connected in some way. The reason there are no direct constraints is
that Fux didn’t mention any. Anyway, this leads to some unmelodicity, and
it is definitely a good idea to find some rules (e.g. from other authors) that
could deal with this unmelodicity.

• Allow even more flexibility when setting the costs – The current interface allows
the user to assign an importance to each cost. This importance is used to
sort the costs and perform a lexicographic search on them. If two costs have
the same importance, they can be combined by either linear combination or
maximumminimisation. The choice between linear combination and max-
imumminimisation applies to all importance levels, but the user should be
able to choose which combination to perform for each importance level.

• Address any of the current limitations – Section 6.1 discusses some limitations
and issues with the current state of the work. Solving any of them would
be an improvement for FuxCP.

63

2. Software architecture

• Migrate the project to C++ – Gecode is written in C++, and C++ is a lan-
guage much better suited to managing implementations like FuxCP. GiL
works really well, but has shown its limitations more than once: way too
verbose, hard to manage objects (which are useful for designing FuxCP)
since using Lisp, and lacking some of Gecode’s features. These reasons
alone are a huge incentive to migrate the whole implementation to C++.
This would make it possible to further improve the implementation with
more convenience and efficiency.
Herewe repeat thewords of T.Wafflard, who had already reached the same
conclusion:

“Currently, constraints are added to a species via a long func-
tion that dispatches the constraints, rather than via class inheri-
tance. Ideally, object-oriented inheritance should be used to repre-
sent the different variable arrays and species. All variable arrays
(H, M , P , etc.) have something in common, whether in terms
of their size rel- ative to the cantus firmus, or in terms of the way
certain rules are applied. A relatively abstract class should repre-
sent this type of array to enable these commonalities to be brought
together.

The same applies to species that share common rules and should
have been represented in a class system of their own. It would
be logical for species to be children of the first species. Unfortu-
nately, the scope of this work does not allow for a complete over-
haul of the architecture. Moreover, in the near future, the entire
code may have to be redone in C++ for reasons of performance,
features, maintainability, and so on. Also, GiL has reached its lim-
its, both in terms of ease of programming and in terms of possi-
bilities. The Lisp language is not designed for writing mathemat-
ics, since each operation requires a different function call. Code
readability can become complicated because these calls are all rep-
resented by parentheses. At the same time, it is not possible with
GiL to combine basicmathematical operations to form a larger one.
One has to break down each complex operation into simple inter-
mediate basic operations a bit likewriting assembly, which is unde-
sirable for larger projects. Not to mention that branch-and-bound,
heuristics, and multithreading seem complicated to implement in
GiL.” [1, p.67]

3. Solver performance

• Bettering the heuristics and reorganising the constraints – Obviously, increasing
the speed at which the solver finds solutions increases the speed at which
the solver finds good solutions. It is therefore crucial to continue working
on the heuristics to find better and better solutions. At the same time, once
the globality of Gradus ad Parnassum has been formalised, it might be inter-
esting to rethink the constraints that apply to the composition in an intelli-
gent way, to make the solver’s work easier and to have a set of constraints
that hold together better.
This can also help the solver to find solutions for the difficult settings. For
example, searching for a solutionwith two counterpoints of the fifth species

64

sometimes takes a long time.

4. Intended use of the FuxCP tool

• Throughout the work it is noticeable that all the examples given are quite
short (fourteen bars at most). This is largely due to Fux himself, as the
examples he gives are all of the same length, presumably for pedagogi-
cal purposes. He does not mention this explicitly, but there may also be
a practical reason for considering only such short compositions. Indeed,
these small compositions can be thought of as ’blocks’ which can then be
arranged to form awhole. Figure 6.2 is a rough outline of what such a com-
position would look like. The great advantage of this approach is that the
counterpoints between the blocks can be of different kinds, allowing the
composition to be constantly renewed. A future improvement for FuxCP
could be to handle such small blocks, which would allow for long and re-
newed compositions.

Figure 6.2: Example of what of a composition in blocks could look like

65

Conclusion
It is time to look back at the work that has been done, to highlight the progress that
has been made, but also the shortcomings and gaps that need to be filled by future
improvements. We will now discuss some of the key points that emerge from this
thesis.

This thesis formalises Gradus ad Parnassum by J.J. Fux, a baroque composer who
lived in the 18th century, in order to have an exhaustive record of the rules he imparts
in his work. These rules concern the composition of counterpoint. More specifically,
the aim of this work is to generalise to three voices the existing formalisation for two
voices. Once formalised, these rules are implemented in the form of a constraint solv-
ing problem, which then makes it possible to obtain automatically generated counter-
points. The result of this work is expressed in the form of a highly customisable tool,
in order to provide the user-composer with an easy-to-use tool that can assist them in
their composition of counterpoint.

To be able to express Fux’s rules in formal logic, it was necessary to create new
concepts and variables, and even to change the paradigm: the cantus firmus lost its
place of honour to the lowest stratum, i.e. the collection of the lowest sounding notes at
any moment. We can be pleased that the formalisation for three voices maintains full
compatibilitywith the two-part formalisation, and that the newvariables and concepts
introduced can also be used by the two-part formalised rules.

The implementation, which uses GiL to call the Gecode tool fromLisp, is also func-
tional and allows anyone to generate counterpoints in a matter of seconds. While the
musical results of these generations must be nuanced, as they are not always mas-
terpieces, they are a good basis and the current implementation can be considered
successful. A major drawback of the current implementation is the cases where the
solver has difficulty finding a solution, in which case the waiting time to obtain coun-
terpoints can be long (on the order of several minutes). This is relatively harmless
at the moment, but it could become a problem if we continue to add constraints by
adding voices. With regard to the possibility of customisation by the composer-user, a
great deal of thought has been given to the best way of enabling the constraint solver
to understand human preferences. This reflection has led to the conclusion that each
user must be as free as possible to manage the costs of the search in order to be able to
engage in iterative composition: they make a first attempt, observe the result, adjust
the costs and try again, and so on. The interface reflects this policy and allows the user
to manipulate the costs with great flexibility.

As far as the practical side of the implementation is concerned, a major limitation
in the development of the tool is the restrictive aspect of coding in Lisp a program
that would be much easier to code in object-oriented programming. Coding Gecode
in Lisp is error prone (as it is much more verbose and less clear) and time consuming.
If a potential successor to this work were to change one thing immediately, it would be
to continue directly in C++, to make it easier to maintain high quality code, which in-
directly improves the quality of the tool itself. Other main improvements may include
incorporating four-voice writing and modern counterpoint scholarship to FuxCP, and
exploring how constraint relaxations can generate interestingmutations of Fux’s style.

66

In amore global perspective, we can think about the implications of thiswork for the
future. First of all, last year T.Wafflard demonstrated the relevance of using constraint
programming in the field of musical composition and more specifically in counter-
point. This work confirms this conclusion. Secondly, by following in the footsteps of
previous works on counterpoint, music and constraint programming, and by adding
its own contribution to this long line, thiswork contributes to the creation, perhaps one
day, of a tool perfectly capable of generating highly customisable, multi-voice coun-
terpoints on complete musical compositions. Far from replacing composers, this tool
would be an excellent tool for beginners, giving them a solid base to build on, and a
source of inspiration for the more experienced, who could play with different prefer-
ences to produce innovative compositions.

While there is still a considerable journey ahead, the building is steadily taking
shape, brick by brick.

67

Bibliography
[1] Thibault Wafflard. “FuxCP: a constraint programming based tool formalizing

Fux’s musical theory of counterpoint”. Prom. by Peter Van Roy. MA thesis.
École polytechnique de Louvain, Université catholique de Louvain, 2023. url:
http://hdl.handle.net/2078.1/thesis:40739.

[2] Damien Sprockeels, Thibault Wafflard, Peter Van Roy, and Karim Haddad. “A
Constraint Formalization of Fux’sCounterpoint”. In: Journées d’InformatiqueMu-
sicale (JIM) (2023).

[3] Klaus-Jürgen Sachs and Carl Dahlhaus. Counterpoint. Oxford University Press.
2001. doi: 10.1093/gmo/9781561592630.article.06690. url: https://www.
oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.
001.0001/omo-9781561592630-e-0000006690.

[4] Juliet Hess. “Balancing the counterpoint: Exploring musical contexts and rela-
tions”. In: Action, Criticism & Theory for Music Education 15.2 (2016), p. 50.

[5] RichardKramer. “Gradus adParnassum: Beethoven, Schubert, and the romance
of counterpoint”. In: 19th-Century Music 11.2 (1987), pp. 107–120.

[6] JaimeAltozano.De Pokemon a Bach. Una historia de voces.Language: Spanish. July
2017. url: https://youtu.be/Mr8ICnGutYM?si=6W4XpNx-lTgJtaap.

[7] Heinrich Schenker. Kontrapunkt. German. Vol. 2: iss.1. Vol. 2 of Neue musikalis-
che Theorien und Phantasien. Stuttgart: J.G. Cotta’sche BuchhandlungNachfol-
ger, 1906.

[8] Knud Jeppesen and Glen Haydon. Counterpoint: The Polyphonic Vocal Style of the
Sixteenth Century. English. Englewood Cliffs, N. J.: Prentice-Hall, 1960.

[9] David Gaynor Yearsley. Bach and the Meanings of Counterpoint. English. Cam-
bridge ; New York: Cambridge University Press, 2002.

[10] Bill Schottstaedt. Automatic Species Counterpoint. Research Report STAN-M-19.
Departement ofMusic, StanfordUniversity, 1984.url: https://ccrma.stanford.
edu/files/papers/stanm19.pdf.

[11] JohnPolito, JasonMDaida, andTommaso FBersano-Begey. “Musica exmachina:
Composing 16th-century counterpoint with genetic programming and sym-
biosis”. In: Evolutionary Programming VI: 6th International Conference, EP97 In-
dianapolis, Indiana, USA, April 13–16, 1997 Proceedings 6. Springer. 1997, pp. 113–
123.

[12] Andres Garay Acevedo. “Fugue composition with counterpoint melody gener-
ation using genetic algorithms”. In: International symposium on computer music
modeling and retrieval. Springer. 2004, pp. 96–106.

[13] Gabriel Aguilera et al. “Automated generation of contrapuntal musical com-
positions using probabilistic logic in Derive”. In: Mathematics and Computers in
Simulation 80.6 (2010), pp. 1200–1211. issn: 0378-4754. doi: https://doi.org/
10.1016/j.matcom.2009.04.012.

[14] Dorien Herremans and Kenneth Sörensen. “Composing first species counter-
point with a variable neighbourhood search algorithm”. In: Journal of Mathemat-
ics and the Arts 6.4 (2012), pp. 169–189. doi: 10.1080/17513472.2012.738554.

68

http://hdl.handle.net/2078.1/thesis:40739
https://doi.org/10.1093/gmo/9781561592630.article.06690
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000006690
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000006690
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000006690
https://youtu.be/Mr8ICnGutYM?si=6W4XpNx-lTgJtaap
https://ccrma.stanford.edu/files/papers/stanm19.pdf
https://ccrma.stanford.edu/files/papers/stanm19.pdf
https://doi.org/https://doi.org/10.1016/j.matcom.2009.04.012
https://doi.org/https://doi.org/10.1016/j.matcom.2009.04.012
https://doi.org/10.1080/17513472.2012.738554

[15] Maciej Komosinski andPiotr Szachewicz. “Automatic species counterpoint com-
position bymeans of the dominance relation”. In: Journal ofMathematics andMu-
sic 9.1 (2015), pp. 75–94. doi: https://doi.org/10.1080/17459737.2014.
935816.

[16] Ars Nova Software. Counterpointer. Developed and produced by Ars Nova Soft-
ware. Address: PO Box 3333, Kirkland, WA 98083-3333, USA. Available on Mi-
crosoft Store and Mac App Store. 2019. url: https://www.ars-nova.com/
counterpointer3.html.

[17] Alex Ding, En-Hua Holtz, John Chung, and Orion Bloomfield. Counterpointer.
Project for Brown University’s CSCI 0320 course. 2021. url: https://github.
com/counter-pointer/counterpointer.

[18] Richard L. Crocker. “Discant, Counterpoint, and Harmony”. In: Journal of the
American Musicological Society 15.1 (1962), pp. 1–21. issn: 00030139, 15473848.
url: http://www.jstor.org/stable/830051.

[19] Francesca Rossi, Peter Van Beek, and Toby Walsh. “Constraint programming”.
In: Foundations of Artificial Intelligence 3 (2008), pp. 181–211.

[20] Roman Barták. Constraint Programming. First Edition. 1998.
[21] David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell.

“Branch-and-bound algorithms:A survey of recent advances in searching, branch-
ing, and pruning”. In: Discrete Optimization 19 (2016), pp. 79–102.

[22] IRCAMSTMSLab.OpenMusic. Version 7.2.url: https://openmusic-project.
github.io.

[23] Guido Tack and Mikael Zayenz Lagerkvist. Generic Constraint Development En-
vironment. Version 6.2.0. Gecode. url: https://www.gecode.org/index.html.

[24] James Bielman and Luís Oliveira. CFFI: The Common Foreign Function Interface.
2005. url: https://cffi.common-lisp.dev/.

[25] Baptiste Lapière. “Computer-aided musical composition Constraint program-
ming and music”. Prom. by Peter Van Roy. MA thesis. École polytechnique de
Louvain, Université catholique de Louvain, 2020.

[26] Damien Sprockeels. “Melodizer: AConstraint ProgrammingTool ForComputer-
aided Musical Composition”. Prom. by Peter Van Roy. MA thesis. École poly-
technique de Louvain, Université catholique de Louvain, 2021.

[27] Clément Chardon, Amaury Diels, and Federico Gobbi. “Melodizer 2.0: A Con-
straint Programming Tool For Computer-aided Musical Composition”. Prom.
byPeterVanRoy.MA thesis. École polytechniquedeLouvain,Université catholique
de Louvain, 2022.

[28] Alfred Mann. The Study of Counterpoint. From Johann Joseph Fux’s Gradus ad Par-
nassum. English. Ed. and trans. Latin by Alfred Mann. Revised Edition. 500
Fifth Avenue, New York, N.Y. 10110: W.W. Norton & Company, 1971. isbn: 0-
393-00277-2. url: http://www.opus28.co.uk/Fux_Gradus.pdf.

[29] SimonneChevalier.Gradus ad Parnassum. Johann Joseph Fux. French. Ed. byGabriel
Foucou. Trans. Latin by Simmone Chevalier. 2019. isbn: 978-2-9556093-6-1.

[30] Johann Joseph Fux. Gradus ad Parnassum. French. Trans. by Pierre Denis. Paris:
Diod, Bijoutier, Garnier & Cadet, 1773. url: https://s9.imslp.org/files/
imglnks/usimg/b/b2/IMSLP231222-PMLP187246-fux_traite_de_composition_

1773.pdf.

69

https://doi.org/https://doi.org/10.1080/17459737.2014.935816
https://doi.org/https://doi.org/10.1080/17459737.2014.935816
https://www.ars-nova.com/counterpointer3.html
https://www.ars-nova.com/counterpointer3.html
https://github.com/counter-pointer/counterpointer
https://github.com/counter-pointer/counterpointer
http://www.jstor.org/stable/830051
https://openmusic-project.github.io
https://openmusic-project.github.io
https://www.gecode.org/index.html
https://cffi.common-lisp.dev/
http://www.opus28.co.uk/Fux_Gradus.pdf
https://s9.imslp.org/files/imglnks/usimg/b/b2/IMSLP231222-PMLP187246-fux_traite_de_composition_1773.pdf
https://s9.imslp.org/files/imglnks/usimg/b/b2/IMSLP231222-PMLP187246-fux_traite_de_composition_1773.pdf
https://s9.imslp.org/files/imglnks/usimg/b/b2/IMSLP231222-PMLP187246-fux_traite_de_composition_1773.pdf

[31] Johann Joseph Fux. Gradus ad Parnassum. German. Ed. and trans. by Lorenz
Christoph Mizler. Leipzig: Mizler, 1742. url: https://s9.imslp.org/files/
imglnks/usimg/6/67/IMSLP273867-PMLP187246-gradusadparnassu00fuxj.
pdf.

[32] Johann Joseph Fux. Gradus ad Parnassum. Reprinted in 1966 by Broude Bros.,
New York. Vienna: Johann Peter van Ghelen, 1725. url: https://s9.imslp.
org/files/imglnks/usimg/f/fd/IMSLP91138-PMLP187246-Fux_-_Gradus_

ad_Parnassum.pdf.
[33] Brandon McNair. Understanding Stratum in Geology, Including Types and Exam-

ples. Accessed on December 3, 2023. 2023. url: https://geologybase.com/
stratum/.

[34] Noël Gallon and Marcel Bitsch. Traité De Contrepoint. French. Ed. by Durand et
Cie. Paris, 1964. url: https://artinfuser.com/exercise/md/pdf/Gallon-
Bitsch-Contrepointe.pdf.

[35] Walter Piston. Harmony: Fifth Edition. English. Ed. by Mark DeVoto. 5th. W. W.
Norton & Company, 1987, p. 32.

70

https://s9.imslp.org/files/imglnks/usimg/6/67/IMSLP273867-PMLP187246-gradusadparnassu00fuxj.pdf
https://s9.imslp.org/files/imglnks/usimg/6/67/IMSLP273867-PMLP187246-gradusadparnassu00fuxj.pdf
https://s9.imslp.org/files/imglnks/usimg/6/67/IMSLP273867-PMLP187246-gradusadparnassu00fuxj.pdf
https://s9.imslp.org/files/imglnks/usimg/f/fd/IMSLP91138-PMLP187246-Fux_-_Gradus_ad_Parnassum.pdf
https://s9.imslp.org/files/imglnks/usimg/f/fd/IMSLP91138-PMLP187246-Fux_-_Gradus_ad_Parnassum.pdf
https://s9.imslp.org/files/imglnks/usimg/f/fd/IMSLP91138-PMLP187246-Fux_-_Gradus_ad_Parnassum.pdf
https://geologybase.com/stratum/
https://geologybase.com/stratum/
https://artinfuser.com/exercise/md/pdf/Gallon-Bitsch-Contrepointe.pdf
https://artinfuser.com/exercise/md/pdf/Gallon-Bitsch-Contrepointe.pdf

Appendix A

Software Architecture
This appendix summarises the architecture of the software. The first figure (A.1)
shows how FuxCP is integrated into the tools it uses, and the second figure (A.2)
shows the internal structure of FuxCP.

Figure A.1: Integration of FuxCP within the other tools

71

Figure A.2: Internal structure of FuxCP

72

Appendix B

User Guide
This manual provides an overview of FuxCP, covering the installation process, its use
within OpenMusic and a description of the costs displayed in the interface. Although
FuxCP is designed to be compatiblewith all platforms, it relies onGiL,which currently
only works on MacOS and Linux. Unfortunately, GiL does not support Windows due
to compatibility issues between the 32-bit Lisp licence used by OpenMusic and the
64-bit Gecode Windows version. Although it is technically possible to obtain a 32-bit
version of Gecode for Windows, this is not recommended.

B.1 Installing FuxCP

B.1.1 Prerequisites
To use FuxCP you need to download and install the following tools:

• Gecode : https://www.gecode.org/download.html/

• OpenMusic : https://openmusic-project.github.io/openmusic/

And download the following libraries1:

• GiL : https://github.com/sprockeelsd/GiLv2.0/

• FuxCP : https://github.com/sprockeelsd/Melodizer/

There are other tools available on the latestGitHub, such asMelodizer andMelodizer2.0.
For the purposes of this guide, only the FuxCP folder is needed.

B.1.2 Loading FuxCP in OpenMusic
In order to use the above libraries, OpenMusic must be running. When opening any
workspace, locate the toolbar at the top of the interface. Click on the "Windows" but-
ton, highlighted in the figure B.1, and select "Library" from the drop-down menu.
This will bring up a new window. From the toolbar of this window, select ’File’ and
then ’Add Remote Library’. Navigate through your file system to find the path where
the previously downloaded FuxCP and GiL libraries are stored. Once located, the li-
braries should appear under the "Libraries" folder in the "Library" window, as shown
in Figure B.2. Right click on "fuxcp" and select "Load Library". If no errors occur, the
setup is complete.

However, if an error occurs, it may be a linking problem with the Gecode library.
For MacOS users, a script from the c++ folder of the GiL library can be used. Edit
the path to Gecode within the script to match your system configuration. Linux users
should add the Gecode library to the LD_LIBRARY_PATH variable. Go to the
/etc/ld.so.conf.d folder and create a new .conf file if one does not already exist.

1In case the following links are not working, here is a backup link that contains both FuxCP for three
voices and the matching GiL version: https://github.com/PanoLeRamix/FuxCP3/

73

https://www.gecode.org/download.html/
https://openmusic-project.github.io/openmusic/
https://github.com/sprockeelsd/GiLv2.0/
https://github.com/sprockeelsd/Melodizer/
https://github.com/PanoLeRamix/FuxCP3/

In this file, add the full path to the Gecode library, save it, and run sudo ldconfig to
update the system with the new library. Don’t forget to restart OpenMusic and don’t
lose hope. Following these steps should ensure that FuxCP works properly.

Figure B.1: Opening the "Library" window in OpenMusic.

Figure B.2: Loading the "fuxcp" library in OpenMusic.

B.2 Using FuxCP in OpenMusic

Setup
Using FuxCP in OpenMusic is straightforward. There is a single block that contains
the entire graphical interface of the tool. This block or class is called cp-params.

Using the example patch An example patch, FuxCP_example.omp, is provided in
the ’examples’ folder of FuxCP. This patch is the same as the one shown in the figure
B.3. To use it, right-click anywhere in theOpenMusicworkspace and select ImportFile.
Select the sample patch and double-click to open it. Voilà, ready to use!

74

Setting up your own patch If for some reason the example patch is not available,
you can set up your own patch as follows. Right-click anywhere in the OpenMusic
workspace and select New... → NewPatch. Double-click your patch. Once in your
patch, right-click anywhere in the patch and select Classes → Libraries → FuxCP →
Solver → CP − PARAMS . Alternatively you can just double click anywhere in the
patch, type "fuxcp::cp-params" and press enter. This also works for "poly", "voice"
and "x-append".

Once this block has appeared, all you have to do is bind an OM voice object, repre-
senting the cantus firmus, to the second argument of cp-params as shown in figure B.3.
Don’t forget to block the input voice object and evaluate cp-params so it can detect the
new input. Now cp-params can be blocked too. From now on, you could directly use
the interface and generate counterpoints using the tool. If you want to retrieve the
voice object containing the counterpoint generated by the tool, just bind the third ar-
gument on the output side to a voice object. Once bound, it is then possible to evaluate
the voice object so that it updates.

If you want to get the whole composition in one object, you have to do some fid-
dling with OpenMusic. The simplest way to do this is shown in Figure B.3, and works
as follows: get the POLY object returned by CP-PARAMS on its third output, split this
object in two (the two voices), then get the cantus firmus , which is the second output of
CP-PARAMS, and put all the voices back together in the desired order using x-append
functions.

Figure B.3: View of a patch using fuxcp::cp-params in OpenMusic.

75

Listening to the solution
OpenMusic does not have built-in sound. You will need to use a third party applica-
tion to listen to the result. Here is a solution that works to listen to the music: having
installed TiMidity++2, run the following command before opening OpenMusic:

timidity -iA -B2,8 -Os
Then go to OpenMusic → Preferences → MIDI → Ports setup → Output devices

and select "TiMidity port 0".

Use the interface
But how do you use the interface? Simply double-click on the block to bring it up. The
interface is sorted from left to right, so the preferences are divided into several cate-
gories: "General preferences", "Melodic preferences", "Species-Specific Preferences",
"Solver Configuration" and, in the bottom right corner, "Solver Launcher" (see fig-
ure B.4).

Choose the preferences Youwill notice that there are almost always two settings for
each preference. The first is the importance: it corresponds to the priority the solver
will give to reducing the value of this cost. An importance of 1means that it will be the
absolute priority of the solver, whereas a preference of 14 means that the solver will
minimise this cost if it doesn’t affect the other costs. The second setting is the value:
it determines the actual value of the cost corresponding to the preference. It is very
useful when two preferences are set to have the same importance, in which case their
respective cost valueswill have an effect. For example, if costA and costB both have an
importance of 1, but costA has a very high cost compared toB,Awill affect the quality
of the solution more than B, even though they both have the same importance. If two
costs have the same importance, the yellow panel (bottom left) allows you to choose
how to combine them: either by linear combination or bymaximumminimisation. For
more information, see Chapter 4 of this thesis that explains how costs work in detail.
The default costs are supposed to represent Fux’s preferences.

All costs are explicitly defined in the following section, in Table B.1.

Start the search Pressing the "Next Solution" button will display the solution as a
pop-up. What appears on the screen are the two counterpoints. The cantus firmus
must be added manually by using the ’x-append’ functions. To see the complete com-
position, you must evaluate the ’poly’ object. To do so, right click on it, and click
’evaluate’. Alternatively, you can click on it and press ’v’.

The other option is to press the "Best Solution" button. This will start an infinite
search that will only stop when the best solution has been found (which can take
hours). You can evaluate the output object at any time to see what the best result is
so far, and this will not stop the search, so you can see how the solution improves step
by step, and stop the search when it has produced something you are happy with.

The button "Stop" allows you to stop the search. This button can take up to 5 sec-
onds to actually stop the search. If a search takes too long, we recommend you to stop
the search, change the voice range and start again. Please note that the preferences
do not affect the speed of finding the first solution. The first solution is the first valid
solution and is not affected by the costs. Only the subsequent solutions can be affected
by the preferences.

2TiMidity++ is a software synthesizer that can play MIDI files without a hardware synthesizer, click
here to install.

76

https://timidity.sourceforge.net/

Fi
gu

re
B.
4:

U
se
ri
nt
er
fa
ce

of
th
e
f
u
x
c
p
:
:
c
p
-
p
a
r
a
m
s
cl
as
si
n
O
pe

nM
us

ic
.

77

B.3 Interface Parameters Description
Table B.1 describes all the parameters available in the interface.

78

Name Description Default value

Borrowed notes Preference for borrowed notes outside the diatonic scale. A high cost means as few
borrowed notes as possible. High cost

Harmonic fifths on the
downbeat High cost means as few harmonic fifths on the downbeats as possible. Low cost

Harmonic octaves on
the downbeat High cost means as few harmonic octaves on the downbeats as possible. Low cost

Successive perfect con-
sonances High cost means as few successive perfect consonances as possible. Medium cost

Repeating notes High cost means as few repeating notes as possible, i.e. as many different notes as
possible. This cost corresponds to the variety cost. Medium cost

No harmonic triad High cost means as many harmonic triads as possible. Medium cost
Direct motion to per-
fect consonance High cost means as few direct motions to perfect consonances as possible. Last resort

Direct motion High cost means as few direct motions as possible. Medium cost
Oblique motion High cost means as few oblique motions as possible. Low cost
Contrary motion High cost means as few contrary motions as possible. No cost

Apply specific penulti-
mate note rules

Force all rules on the notes of the penultimate measure. This applies only to two-part
composition and refers to the penultimate note having to be a major sixth or a minor
third.

Yes

Steps High cost means as few steps as possible. No cost
Third skips High cost means as few third skips as possible. Low cost
Fourth leaps High cost means as few fourth leaps as possible. Low cost
Tritone leaps High cost means as few tritone leaps as possible. Forbidden
Fifth leaps High cost means as few fifth leaps as possible. Medium cost
Sixth leaps High cost means as few sixth leaps as possible. Medium cost
Seventh leaps High cost means as few seventh leaps as possible. Medium cost
Octave leaps High cost means as few octave leaps as possible. Low cost
2nd: Penultimate
downbeat note is a
fifth

High cost means trying to ensure that the penultimate downbeat is not a fifth. Last resort

3rd: No cambiatas A high cost means as many cambiatas as possible High cost
3rd: Force contrary
motion after skip Force that a melodic skip or leap is followed by a melodic step in a contrary motion. No

3rd: No harmonic
triad in 2nd/3rd beat High cost means as many harmonic triads as possible on the 2nd and 3rd beat. Medium cost

3rd& 4th: Same note in
downbeat and upbeat
two beats apart

High cost means as many differrent notes in the downbeat and upbeat. Low cost

4th: No ligatures High cost means as few not-ligatured notes, i.e. as many ligatures as possibles. High cost
5th: Many quarters or
many syncopations

Determines the minimum percentage of quarter notes or syncopations in the fifth
species. Pushing the slider all the way to one side is not recommended. <center>

Voice species Determines the type of counterpoint that the tool will generate. 1st and 1st

Voice range Determines around which pitch the counterpoint will be generated depending on the
pitch of the first note of the cantus firmus.

Above and
very far above

Minimum % of skips Determines, depending on the counterpoint size, the percentage of melodic intervals
larger than one step. 0%

Borrowing mode
Type of scale from which notes can be borrowed to generate counterpoint. The first
note of the cantus firmus determines the tonic of this scale. If none is selected, only
natural notes are used. Applies everywhere except the penultimate bar.

Major

Save Config Saves all established preferences and allows you to start a new search for this config-
uration later. -

Next Solution
Starts or continues the search for the previously saved configuration. Displays a new
window with the first better solution found. Displays an error message if no solution
can be found.

-

Stop Pause the search. This may take up to 5 seconds to take effect. -

Best Solution
Starts or continues the search for the previously saved configuration. Does not dis-
play a window, but returns the best solution found so far, accessible by evaluating the
output of cp-params. Displays an error message if no other solution can be found.

-

Linear combination or
maximum minimisa-
tion

Choose whether the equally important costs are combined according to a linear com-
bination or according to amaximumminimisation. More details about it in Chapter 4.

Linear
combination

Table B.1: Description of the parameters of fuxcp::cp-params.79

Appendix C

Complete set of rules for two and three
part compositions
This appendix contains all the constraints for composing counterpoint for two or three
voices. This appendix contains only the formalised equations, the corresponding ex-
planations can be found in the corresponding sections of this thesis and that of T.
Wafflard.

All the rules apply to three-voice compositions, but only the rules for two voices
apply to two-voice compositions. Rules for three-part compositions are indicated by
’3V’ at the beginning of the rule.

Some of the rules are different depending on whether the composition is for two
or three voices. In these cases, the mathematical relationship to be followed for the
rule in question, depending on the situation, is clearly indicated.

Functions
Some rules, formalised by T. Wafflard, use functions that simplify the notation. Here
are those functions:

nextm(x) Returns the number ofmeasure(s) to add in 4/4 time signature depending
on the number of beat x.

nextm(x) =

{
1 + nextm(x− 4) if x ≥ 4

0 otherwise
(C.1)

buildScale(key, scale) Returns the set of notes in the key based on the scale used.
key is a value between 0 and 11 such that 0 ≡ C and 11 ≡ B.

∀x ∈ [−11, 127], ∀δ := key + x ∈ [0, 127]

buildScale(key, scale) =

⋃
δ mod 12∈key+{0,2,4,5,7,9,11} δ if scale = major⋃
δ mod 12∈key+{0,2,3,5,7,8,10} δ if scale = minor⋃
δ mod 12∈key+{0,5,9,11} δ if scale = borrowed

where key ∈ [0, 11], scale ∈ {”major”, ”minor”, ”borrowed”}

(C.2)

N.B.: buildScale(key, ”minor”) ≡ buildScale([key + 3]mod 12, ”major”).

positions(upto) Function that returns the set of non-empty positions or indexes or-
dered depending on the species in such a way that all the positions would follow one
another to represent all the beats of that species on a score in a single list.

80

positions(upto) =
⋃

∀i∈B,∀j∈[0,upto)

[i, j]

s.t. ∀x ∈ [1, 3], ∀y ∈ [1, upto)

[i, j] <s [i+ x, j] <s [i, j + y]

where <s means the sorting order

(C.3)

By extension, ρ+ z >s ρ such that:

∀z ∈ N+, ∀ρ = [i, j] ∈ positions(upto)
ρ+ z = [i+ zd, j + nextm(i+ zd)]

where nextm() is a function that returns the correct number of measure(s) to add.
(C.4)

Implicit General Rules of Counterpoint
G1 Harmonic intervals are always calculated from the lower note.
Already handled by making the difference value absolute for theH variable.

G2 The number of measures of the counterpoint must be the same as the number of mea-
sures of the cantus firmus.

Listing C.1: Definition of N in the first species.
1 (defvar *notes (list nil nil nil nil))
2 ; ...
3 ;; FIRST SPECIES ;;
4 ; setting the first list of *notes with
5 ; integer *cf-len as size
6 ; set *extended-cp-domain as available notes
7 (setf (first *notes)
8 (gil::add-int-var-array-dom *sp* *cf-len *extended-cp-domain))

G3 The counterpoint must have the same time signature and the same tempo as the cantus
firmus.

Listing C.2: Definition of N in the first species.
1 (defvar *notes (list nil nil nil nil))
2 ; ...
3 ;; FIRST SPECIES ;;
4 ; setting the first list of *notes with
5 ; integer *cf-len as size
6 ; set *extended-cp-domain as available notes
7 (setf (first *notes)
8 (gil::add-int-var-array-dom *sp* *cf-len *extended-cp-domain))

G4 The counterpoint must be in the same key as the cantus firmus.

G5 This rule is already handled by the creation of the set N . The example of
the actual rule given above will clarify the explanations. Let k be the value of the
key determined by the key signature, i.e. 60 for C; and t the tonic of the piece, i.e.
N [0] = 65. Then:

81

Nkey = buildScale(k mod 12, ”major”) = {0, 2, 4, 5, 7, 9, 11, 12, . . . , 127}
Nbrw = buildScale(t mod 12, ”borrowed”) = {2, 4, 5, 10, 14, . . . , 125}

∴ Nall = {0, 2, 4, 5, 7, 9, 10, 11, 12, . . . , 127}

To ensure that borrowed notes are used sparingly, they must be given a cost to use.
Let Offkey be the set of notes outside the key and Offkeycosts the list of costs associated
with each note. The cost for a note will be<no cost> or costOffkey (DFLT: <high cost>).

Offkey = [0, 1, 2, . . . , 127] \ Nkey
∀ρ ∈ positions(m)

Offkeycosts[ρ] =

{
costOffkey if N [ρ] ∈ Offkey

0 otherwise

moreover C = C ∪
∑

c∈Offkeycosts

c

(C.5)

G6 The range of the counterpoint must be consistent with the instrument used.
This rule is already handled by the creation of the set NR = N ∩ R. When N is

created its domain is set toNRall as seen in the code sample C.2: *extended-cp-domain
refers to the set NRall.

G7 Chromatic melodies are forbidden.

∀ρ ∈ positions(m− 2)

(Mbrut[ρ] = 1 ∧Mbrut[ρ+ 1] = 1) ⇐⇒ ⊥
(Mbrut[ρ] = −1 ∧Mbrut[ρ+ 1] = −1) ⇐⇒ ⊥

(C.6)

G8 Melodic intervals should be small.

∀ρ ∈ positions(m− 1)

Mdegcosts[ρ] =

costsecondMdeg ifM [ρ] ∈ {0, 1, 2}
costthirdMdeg ifM [ρ] ∈ {3, 4}
costfourthMdeg ifM [ρ] = 5

costtritoneMdeg ifM [ρ] = 6

costfifthMdeg ifM [ρ] = 7

costsixthMdeg ifM [ρ] ∈ {8, 9}
costseventhMdeg ifM [ρ] ∈ {10, 11}
costoctaveMdeg ifM [ρ] = 12

moreover C = C ∪
∑

c∈Mdegcosts

c

(C.7)

G9 3V - The last chord must be composed only of the notes of the harmonic triad.

∀s ∈ {b, c} : H(s)[0,m− 1] ∈ Consh_triad (C.8)

G10 3V - The last chord must have the same fundamental as the one of the scale used
throughout the composition.

N(a)[0,m− 1] mod 12 = N(cf)[0, 0] mod 12 (C.9)

82

Constraints of the First Species

Harmonic Constraints of the First Species
1.H1 All harmonic intervals must be consonances.

∀j ∈ [0,m) H[0, j] ∈ Cons (C.10)

1.H2 The first harmonic interval must be a perfect consonance.

• When dealing with two-part composition:

H[0, 0] ∈ Consp (C.11)

• When dealing with three-part composition: The rule doesn’t exist.

1.H3 The last harmonic intervals must be a perfect consonance.

• When dealing with two-part composition:

H[0,m− 1] ∈ Consp (C.12)

• When dealing with three-part composition: The rule doesn’t exist.

1.H4 The key tone is tuned according to the first note of the cantus firmus.

¬IsCfB [0, 0] =⇒ H[0, 0] = 0

¬IsCfB [0,m− 1] =⇒ H[0,m− 1] = 0
(C.13)

1.H5 The voices cannot play the same note at the same time except in the first and last
measure.

∀p1, p2 ∈ {cf , cp1, cp2},withp1 6= p2∀j ∈ {0, 1, 2, 3}∀j ∈ [1,m− 1) N(p1)[i, j] 6= N(p2)[i, j]
(C.14)

1.H6 Imperfect consonances are preferred to perfect consonances.

∀j ∈ [0,m)

Pconscosts[j] =

{
costPcons if H[0, j] ∈ Consp
0 otherwise

moreover C = C ∪
∑

c∈Pconscosts

c

(C.15)

1.H7 and 1.H8 The harmonic interval of the penultimate note must be a major sixth or
a minor third depending on the cantus firmus pitch. When writing with three voices, the
harmonic interval must be either a minor third, a perfect fifth, a major sixth or an octave.

• When dealing with two-part composition:

ρ := max(positions(m))− 1

H[ρ] =

{
9 if IsCfB [ρ]

3 otherwise
where ρ represents the penultimate index of any counterpoint.

(C.16)

83

• When dealing with three-part composition:

H[0,m− 1] ∈ {0, 3, 7, 9} (C.17)

1.H9 3V -Onemight use sixths or octaves. Asdiscussed in 1.H9, there is no constraint
to add for this rule.

1.H10 3V - Tenths are prohibited in the last chord.

Hbrut[0,m− 1] > 12 =⇒ H[0,m− 1] /∈ {3, 4} (C.18)

1.H11 3V - Octaves should be preferred over unisons. As discussed in 1.H11, there is
no constraint to add for this rule.

1.H12 3V - Last chord cannot include a minor third.

H[0,m− 1] 6= 3 (C.19)

Melodic Constraints of the First Species

1.M1 Tritone melodic intervals are forbidden.

∀ρ ∈ positions(m− 1)

M [ρ] = 6 =⇒ Mdegcosts[ρ] = costtritoneMdeg

(C.20)

1.M2 Melodic intervals cannot exceed a minor sixth interval.

∀j ∈ [0,m− 1) M [0, j] ≤ 8 (C.21)

1.M3 3V - Steps are preferred to skips. This rule is a duplicate of rule G8.

1.M4 3V - The notes of each part should be as diverse as possible.

∀p ∈ {cp1, cp2}, ∀j ∈ [0,m− 1), ∀k ∈ [j + 1,min(j + 3,m− 1)] :

N(p)[0, j] = N(p)[0, j + k] ⇐⇒ costvariety[j +m ∗ k] = 1
(C.22)

1.M5 Each part should stay in its voice range.
This rule is already covered by the definition of the voice ranges, so no constraint

is associated to it.

1.M6 3V - Melodic intervals cannot be greater or equal to a sixth. This rule is only a
restatement of rule 1.M2, saying that melodic intervals cannot exceed a minor sixth
interval.

Motion Constraints of the First Species
1.P1 Perfect consonances cannot be reached by direct motion.

• When dealing with two-part composition:

∀j ∈ [0,m− 1) H[0, j + 1] ∈ Consp =⇒ P [0, j] 6= 2 (C.23)

84

• When dealing with three-part composition:

∀j ∈ [0,m− 2) :

P [0, j] = 2 ∧H[0, j + 1] ∈ Consp
⇐⇒ costdirect_move_to_p_cons[j] = 8

(C.24)

1.P2 Contrary motions are preferred to oblique motions which are preferred to direct mo-
tions.

• costcon
DFLT: <no cost>

• costobl
DFLT: <low cost>

• costdir
DFLT: <medium cost>

∀j ∈ [0,m− 1)

Pcosts[j] =

costcon if P [0, j] = 0

costobl if P [0, j] = 1

costdir if P [0, j] = 2

moreover C = C ∪
∑

c∈Pcosts

c

(C.25)

1.P3 At the start of any measure, an octave cannot be reached by the lower voice going up
and the upper voice going down more than a third skip.

i := max(B),∀j ∈ [0,m− 1)

H[0, j + 1] = 0 ∧ P [i, j] = 0 ∧

{
Mbrut[i, j] < −4 ∧ IsCfB [i, j] ⇐⇒ ⊥
Mcf [i, j] < −4 ∧ ¬IsCfB [i, j] ⇐⇒ ⊥

where i stands for the last beat index in a measure.

(C.26)

1.P4 3V - Successive perfect consonances should be avoided.

∀v1, v2 ∈ {cf , cp1, cp2}, v1 6= v2, ∀j ∈ [0,m− 2) :

(H(v1, v2)[0, j] ∈ Cons) ∧ (H(v1, v2)[0, j + 1] ∈ Consp)
=⇒ Costsucc_p_cons = 2

(C.27)

1.P5 3V - Each part starts distant from the lowest stratum.
This is not a strict rule but an indication to make easier for the composer to have

contrary motions. Since this is neither a requirement nor a preference, it can simply
be added as a heuristic for the solver. This is discussed in section 4.1.2, on heuristics.

1.P6 3V - It is prohibited that all parts move in the same direction.
To prevent this, we need only look at the motions between the parts and the lowest

stratum. If one of their motions is contrary, then it is guaranteed that the three voices
will not go in the same direction (because at least one is contrary). The same applies if
one of the motions is oblique. The problem arises when all the movements are direct,
because this would mean that the three voices are going in the same direction. So it
was forbidden to have all motions direct at the same time.

∀j ∈ [0,m− 2) :∨
p∈{cf ,cp1,cp2}

M(p)[0, j] 6= 2 (C.28)

85

1.P7 3V - It is prohibited to use successive ascending sixths on a direct upwards motion.
Either the harmonic interval is not a sixth in any of both positions, or one of them is
not moving up.

∀j ∈ [1,m− 1), ∀v1, v2 ∈ {cf , cp1, cp2}where v1 6= v2, sixth := {8, 9} :
(H(v1, v2)[0, j − 1] /∈ sixth) ∨ (H(v1, v2)[0, j] /∈ sixth)
∨M(v1)[0, j] > 0 ∨M(v2)[0, j] > 0

(C.29)

Constraints of the Second Species

Harmonic Constraints of the Second Species
2.H1 Thesis harmonies cannot be dissonant.
There is no constraint to add because it would be a duplicate of rule 1.H1.

2.H2 Arsis harmonies cannot be dissonant except if there is a diminution.

∀j ∈ [0,m− 1)

IsDim[j] =

{
> ifM2[0, j] ∈ {3, 4} ∧M1[0, j] ∈ {1, 2} ∧M1[2, j] ∈ {1, 2}
⊥ otherwise

(C.30)

∀j ∈ [0,m− 1) ¬IsCons[2, j] =⇒ IsDim[j] (C.31)

2.H3 and 2.H4 In the penultimate measure the harmonic interval of perfect fifth must be
used for the thesis note if possible. Otherwise, a sixth interval should be used instead.

H[0,m− 2] ∈ {7, 8, 9}

∴ penulthesiscost =

{
costpenulthesis if H[0,m− 2] 6= 7

0 otherwise
moreover C = C ∪ penulthesiscost

(C.32)

2.H5 3V - Major thirds are now allowed in the last chord.
No need to add a new constraint as this rule is already covered by rules 1.H2 and

1.H3 and 1.H8.

2.H6 3V - The half notes must be coherent with respect to the whole notes.
No need to add a new constraint as this is not an actual rule.

Melodic Constraints of the Second Species
2.M1 If the two voices are getting so close that there is no contrary motion possible without

crossing each other, then the melodic interval of the counterpoint can be an octave leap.

∀j ∈ [0,m− 1),∀Mcf [j] 6= 0

M [0, j] = 12 =⇒ (Habs[0, j] ≤ 4) ∧ (IsCfB [j] ⇐⇒ Mcf [j] > 0)
(C.33)

86

2.M2 Two consecutive notes cannot be the same. When writing a three-part composition,
the 4th-to-last, the 3rd-to-last and the 2nd-to-last may be the same.

• When dealing with two-part composition:

∀ρ ∈ positions(m) N [ρ] 6= N [ρ+ 1] (C.34)

• When dealing with three-part composition:

∀j ∈ [1,m− 1), j 6= m− 2 :

((N [2, j − 1] 6= N [0, j]) ∧ (N [0, j] 6= ∧N [2, j]))

∧
((N [2,m− 3] 6= N [0,m− 2]) ∨ (N [0,m− 2] 6= N [2,m− 2]))

(C.35)

Motion Constraints of the Second Species
2.P1 If the melodic interval of the counterpoint between the thesis and the arsis is larger

than a third, then the motion is perceived based on the arsis note.

∀j ∈ [0,m− 1) Preal[j] =

{
P [2, j] ifM [0, j] > 4

P [0, j] otherwise
(C.36)

2.P2 Rule 1.P3 on the battuta octave is adapted such that it focuses on the motion from
the note in arsis. This constraint already had an adapted mathematical notation in the
chapter of the first species. Note that this constraint would indeed use P[2] and not
Preal.

2.P3 3V - Successive fifths on the downbeat are only allowed when they are separated by
a third on the upbeat.

∀p1, p2 ∈ {cf , cp1, cp2}where p1 6= p2, ∀j ∈ [0,m− 2) :

Costsucc_p_cons =

0 if (H(p1, p2)[0, j] /∈ Consp) ∨ (H(p1, p2)[0, j + 1] /∈ Consp)
0 if (H(p1, p2)[0, j] = 5) ∧ (H(p1, p2)[0, j + 1] = 5)

∧(H(p1, p2)[2, j] = 3) ∨ (H(p1, p2)[2, j] = 4)

2 otherwise
(C.37)

Constraints of the Third Species

Harmonic Constraints of the Third Species
3.H1 If five notes follow each other by joint degrees in the same direction, then the harmonic

interval of the third note must be consonant.

∀j ∈ [0,m− 1)(
3∧
i=0

M [i, j] ≤ 2

)
∧

(
3∧
i=0

Mbrut[i, j] > 0 ∨
3∧
i=0

Mbrut[i, j] < 0

)
=⇒ IsCons[2, j]

(C.38)

87

3.H2 If the third harmonic interval of a measure is dissonant then the second and the fourth
interval must be consonant and the third note must be a diminution.

∀j ∈ [0,m− 1)

IsCons[2, j] ∨ (IsCons[1, j] ∧ IsCons[3, j] ∧ IsDim[j])

where IsDim[j] = >when the 3rd note of the measure j is a diminution.
(C.39)

3.H3 It is best to avoid the second and third harmonies of a measure to be consonant with
a one-degree melodic interval between them.

∀j ∈ [0,m− 1)

Cambiatacosts[j] =

{
costCambiata if IsCons[1, j] ∧ IsCons[2, j] ∧M [1, j] ≤ 2

0 otherwise
(C.40)

3.H4 In the penultimate measure, if the cantus firmus is in the upper part, then the har-
monic interval of the first note should be a minor third.

¬IsCfB [m− 2] =⇒ H[0,m− 2] = 3 (C.41)

3.H5 3V - The quarter notes must be coherent with respect to the whole notes. There is
no constraint to add for this rule, which isn’t really a rule.

3.H6 3V - If the harmonic triad could not be used on the downbeat, it should be used on
the second or third beat.

∀j ∈ [0,m− 1) :

(H[1, j] /∈ Consh_triad) ∧ (H[2, j] /∈ Consh_triad)
⇐⇒ costharmonic−triad−3rd−species[j] = 1

(C.42)

Melodic Constraints of the Third Species
3.M1 Each note and its two beats further peer are preferred to be different.

∀ρ ∈ positions(m− 2)

MtwoSamecosts[i, j] =

{
costMtwobSame ifM2[ρ] = 0

0 otherwise
(C.43)

Motion Constraints of the Third Species
3.P1 The motion is perceived based on the fourth note.
This implies that the costs of the motions and the first species constraints on the

motions are deducted from P [3].

88

Constraints of the Fourth Species

Harmonic Constraints of the Fourth Species
4.H1 Arsis harmonies must be consonant.

∀j ∈ [0,m− 1) H[2, j] ∈ Cons (C.44)

4.H2 If the cantus firmus is in the upper part, then no harmonic seventh interval can occur.

∀j ∈ [1,m− 1) ¬IsCfB [j] =⇒ H[0, j] /∈ {10, 11} (C.45)

4.H3 and 4.H4 In the penultimate measure, the harmonic interval of the thesis note must
be a major sixth or a minor third depending on the cantus firmus pitch.

H[0,m− 2] =

{
9 if IsCfB [m− 2]

3 otherwise
(C.46)

4.H4 3V - Imperfect consonances are preferred over fifth intervals, which in turn are pre-
ferred over octaves.

This rule is already covered by rule 1.H6 and by the default costs of the search.

Melodic Constraints of the Fourth Species
4.M1 Arsis half notes should be the same as their next halves in thesis.

∀j ∈ [0,m− 1) NoSynccosts =

{
costNoSync ifM [2, j] 6= 0

0 otherwise
(C.47)

4.M2 Each arsis note and its two measures further peer are preferred to be different.

∀j ∈ [0,m− 1)

MtwomSamecosts =

{
costMtwomSame if N [2, j] = N [2, j + 2]

0 otherwise
(C.48)

Motion Constraints of the Fourth Species
4.P1 Dissonant harmonies must be followed by the next lower consonant harmony.

∀j ∈ [1,m− 1) ¬IsCons[0, j] =⇒ Mbrut[0, j] ∈ {−1,−2} (C.49)

4.P2 If the cantus firmus is in the lower part then no second harmony can be preceded by
a unison/octave harmony.

∀j ∈ [1,m− 1)

IsCfB [j + 1] =⇒ H[2, j] 6= 0 ∧H[0, j + 1] /∈ {1, 2}
(C.50)

89

4.P3 3V - Successive fifths are allowed when using ligatures.

∀v1, v2 ∈ {cf , cp1, cp2}, with v1 6= v2, ∀j ∈ [0,m− 2) :

Costsucc_p_cons =

0 if (H(p1, p2)[0, j] /∈ Consp) ∨ (H(p1, p2)[0, j + 1] /∈ Consp)
0 if (H(p1, p2)[0, j] = 5) ∧ (H(p1, p2)[0, j + 1] = 5)

2 otherwise
(C.51)

4.P4 3V - Resolving to a fifth is preferred over resolving to an octave.
This is already covered by the rule 4.H5 (prefer fifths over octaves), since prefer-

ring fifths over octaves in all cases implies preferring to resolve to a fifth rather than to
an octave.

4.P5 3V - Stationary movement in the bass implies dissonance in the fourth species part.

∀j ∈ [0,m− 1) :

M(a)[0, j] 6= 0 ⇐⇒ H[2, j] ∈ Cons
M(a)[0, j] = 0 ⇐⇒ H[2, j] ∈ Dis

(C.52)

4.P6 3V - A note provoking a hidden fifth gets replaced by a rest.

∀j ∈ [1,m− 1) :

H[0, j] = 7 ∧ P [0, j] = 2 ⇐⇒ N(0, j − 1) = ∅
(C.53)

Constraints of the Fifth Species
The fifth type has a very specific way of working, which cannot be summarised as
easily as the other types, as it requires some additional concepts. We here provide the
main concepts but for a full understanding of this species’ formalisation, please refer
to Chapter 7 of T. Wafflard’s thesis.

Here is the formal definition of S:
∀ρ ∈ positions(m)

S[ρ] =

0 if N [ρ] is not constrained by any species
1 if N [ρ] is constrained by the first species
2 if N [ρ] is constrained by the second species
3 if N [ρ] is constrained by the third species
4 if N [ρ] is constrained by the fourth species

(C.54)

And the formal definition of IsSx:

∀x ∈ {0, 1, 2, 3, 4}, ∀ρ ∈ positions(m)

IsSx[ρ] =

{
> if S[ρ] = x

⊥ otherwise
(C.55)

5.R1 There must always be a note in thesis and in arsis, except the very first thesis and the
very last arsis.

∀j ∈ [0,m)

¬IsS0[0, j] where j 6= 0

¬IsS0[2, j] where j 6= m− 1

(C.56)

90

5.R2 The 4th species can only exist in first and third beat.

∀i ∈ {1, 3}, ∀j ∈ [0,m) ¬IsS4[i, j] (C.57)

5.R3 A 4th species in the third beat necessarily implies a 4th species in the first beat of the
following measure and vice versa. The fourth beat should then have no note.

∀j ∈ [0,m− 1)

IsS4[2, j] ⇐⇒ IsS4[0, j + 1]

IsS4[2, j] =⇒ IsS0[3, j]

(C.58)

5.R4 A 3rd species cannot be followed by no note.

∀ρ ∈ positions(m− 1) IsS3[ρ] =⇒ ¬IsS0[ρ+ 1] (C.59)

5.R5 Only 3rd species and 4th species are used.

∀ρ ∈ positions(m) ¬IsS1[ρ] ∧ ¬IsS2[ρ] (C.60)

5.R6 The first and penultimate measures are linked to the 4th species.

IsS0[0, 0] ∧ IsS0[1, 0] ∧ IsS4[2, 0]
IsS4[0,m− 2] ∧ IsS0[1,m− 2] ∧ IsS4[2,m− 2]

(C.61)

Generalisation of the Species implications

∀x ∈ {3, 4}, ∀cstx ∈ Constraints(x),∀V ∈ V ariables(cstx)(∧
∀v∈V

IsSx[vpos]

)
=⇒ cstx(V)

where Constraints(x) is the set of constraints of the species x,
and V ariables(cstx) is the set of set of variables concerned by the constraint cstx,

and vpos is the position of the v related note in the array N.
(C.62)

Avoiding Multiple Same Final Solutions

∀ρ ∈ positions(m− 1) IsS0[ρ] =⇒ (N [ρ] = N [ρ+ 1]) (C.63)

Formalisation of Inter-species Rules into Constraints

∀j ∈ [1,m− 1)

¬IsCons[0, j] ∧ IsS4[0, j] =⇒ M2
brut[0, j] ∈ {−1,−2} ∧ IsCons[2, j]

(C.64)

Parsing of the Species Array in Rhythm
The fifth species is unique as it is the only one that might have a different rythm in
each beat. To handle this, a parsing is applied after a solution is found to determine
the rhythm of the counterpoint.

This parsing is shown in Figure C.1. The letters correspond to the following: N are
the notes the final counterpoint (the one that is returned), Cp are the notes computed
by the solver (the array used by the solver), R is the rhythm and S is the S array.

91

Figure C.1: Rhythm species parser algorithm diagram, 5th species. A red arrowmeans
the test failed while a blue one means it passed.

92

Appendix D

Code
D.1 FuxCP.lisp

1 (in-package :om)
2

3 (defvar *fuxcp-sources-dir* nil)
4 (setf *fuxcp-sources-dir* (make-pathname :directory (append (pathname-directory *

load-pathname*) ’("sources"))))
5

6 (mapc ’compile&load (list
7 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "

package" :type "lisp")
8 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "utils"

:type "lisp")
9 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "

constraints" :type "lisp")
10 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "1

sp-ctp" :type "lisp")
11 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "2

sp-ctp" :type "lisp")
12 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "3

sp-ctp" :type "lisp")
13 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "4

sp-ctp" :type "lisp")
14 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "5

sp-ctp" :type "lisp")
15 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "3v-ctp

" :type "lisp")
16 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "cf" :

type "lisp")
17 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "

fuxcp-main" :type "lisp")
18 (make-pathname :directory (pathname-directory *fuxcp-sources-dir*) :name "

interface" :type "lisp")
19))
20

21

22 (fill-library ’(
23 ("Solver" nil (fuxcp::cp-params) nil)
24))
25

26 (print "FuxCP Loaded")

D.2 package.lisp

1 (in-package :om)
2

3 (defvar *FuxCP-path* (make-pathname :directory (append (pathname-directory *
load-pathname*) (list "FuxCP"))))

4

5 (require-library "GIL")

93

6

7 (defpackage :fuxcp
8 (:use "COMMON-LISP" "OM" "CL-USER"))

D.3 interface.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard and Anton Lamotte
4 ; Date: June 3, 2023 and January 2024
5 ; This file contains all the cp-params interface.
6 ; That is to say the interface blocks, as well as the global variables updated via

the interface.
7

8 ;;;====================
9 ;;;= cp-params OBJECT =

10 ;;;====================
11

12 (print "Loading cp-params object...")
13

14 (om::defclass! cp-params ()
15 ;attributes
16 (
17 ; ---------- Input cantus firmus ----------
18 (cf-voice :accessor cf-voice :initarg :cf-voice :initform nil :documentation "")
19 ; ---------- Solver parameters ----------
20 (species-param :accessor species-param :initform (list "1st" "1st") :type string

:documentation "")
21 (voice-type-param :accessor voice-type-param :initform (list "Really far above"

"Above") :type string :documentation "")
22 (min-skips-slider-param :accessor min-skips-slider-param :initform 0 :type

integer :documentation "")
23 (borrow-mode-param :accessor borrow-mode-param :initform "Major" :type string :

documentation "")
24 ; ---------- Output & Stop ----------
25 (current-csp :accessor current-csp :initform nil :documentation "")
26 (result-voice :accessor result-voice :initarg :result-voice :initform nil :

documentation "")
27 ; ---------- Cost order --------------
28 (linear-combination :accessor linear-combination :initform "Linear combination"

:type string :documentation "")
29

30)
31 (:icon 225)
32 (:documentation "This class implements FuxCP.
33 FuxCP is a constraints programming based tool aiming to generate counterpoints

based on cantus firmus.")
34)
35

36 ; the editor for the object
37 (defclass params-editor (om::editorview) ())
38

39 (defmethod om::class-has-editor-p ((self cp-params)) t)
40 (defmethod om::get-editor-class ((self cp-params)) ’params-editor)
41

42 (defmethod om::om-draw-contents ((view params-editor))
43 (let* ((object (om::object view)))
44 (om::om-with-focused-view view)
45)
46)
47

94

48 ; this function creates the elements for the main panel
49 (defun make-main-view (editor)
50 ; background colour
51 (om::om-set-bg-color editor om::*om-light-gray-color*)
52)
53

54 ; To access the melodizer object, (om::object self)
55 (defmethod initialize-instance ((self params-editor) &rest args)
56 ;;; do what needs to be done by default
57 (call-next-method) ; start the search by default?
58 (make-interface self)
59)
60

61 (defun make-interface (editor)
62 (let* (
63 (melodic-subcosts ’(
64 (:name "Steps" :value "No cost" :cannot-be-forbidden t :param

m-step-cost)
65 (:name "Third skips" :value "Low cost" :param m-third-cost)
66 (:name "Fourth leaps" :value "Low cost" :param m-fourth-cost)
67 (:name "Tritone leaps" :value "Forbidden" :param m-tritone-cost)
68 (:name "Fifth leaps" :value "Medium cost" :param m-fifth-cost)
69 (:name "Sixth leaps" :value "Medium cost" :param m-sixth-cost)
70 (:name "Seventh leaps" :value "Medium cost" :param m-seventh-cost)
71 (:name "Octave leaps" :value "Low cost" :param m-octave-cost)
72))
73

74 (melodic-preferences ‘(; care it is a special apostrophe here (needed to
evaluate every value that has a comma in this list, and not to take
their symbols)

75 (:section "Melodic Preferences" :name "Melodic cost" :display nil :
importance "13" :value nil :subcosts ,melodic-subcosts :param
m-degrees-cost)

76 ;; Add more cost data as needed
77))
78

79 (motion-subcosts ’(
80 (:name "Direct motion" :value "Medium cost" :cannot-be-forbidden t :

param dir-motion-cost)
81 (:name "Oblique motion" :value "Low cost" :param obl-motion-cost)
82 (:name "Contrary motion" :value "No cost" :cannot-be-forbidden t :param

con-motion-cost)
83))
84

85 (general-preferences ‘(; care it is a special apostrophe here (needed to
evaluate every value that has a comma in this list, and not to take
their symbols)

86 (:section "General preferences" :name "Borrowed notes" :display nil :
importance "8" :value "High cost" :param borrow-cost :
cannot-be-forbidden t)

87 (:section "General preferences" :name "Harmonic fifths on the downbeat"
:display nil :importance "7" :value "Low cost" :param h-fifth-cost :
cannot-be-forbidden t)

88 (:section "General preferences" :name "Harmonic octaves on the downbeat"
:display nil :importance "5" :value "Low cost" :param h-octave-cost
:cannot-be-forbidden t)

89 (:section "General preferences" :name "Successive perfect consonances" :
display nil :importance "2" :value "Medium cost" :param
succ-p-cons-cost :cannot-be-forbidden t)

90 (:section "General preferences" :name "Repeating notes" :display nil :
importance "9" :value "Medium cost" :param variety-cost)

91 (:section "General preferences" :name "No harmonic triad" :display nil :
importance "3" :value "Medium cost" :param h-triad-cost :

95

cannot-be-forbidden t)
92 (:section "General preferences" :name "Direct motion to perf. consonance

" :display nil :importance "14" :value "Last resort" :param
direct-move-to-p-cons-cost :cannot-be-forbidden t)

93 (:section "General preferences" :name "Motion cost" :display nil :
importance "12" :value nil :subcosts ,motion-subcosts :param
motions-cost)

94 (:section "General preferences" :name "Apply specific penultimate note
rules" :value "Yes" :special-range ("Yes" "No") :param
penult-rule-check)

95

96 ;; Add more cost data as needed
97))
98

99 (specific-preferences ‘(; care it is a special apostrophe here (needed to
evaluate every value that has a comma in this list, and not to take
their symbols)

100 (:section "Second species specific pref." :name "Penultimate downbeat
note is a fifth" :importance "6" :value "Last resort" :param
penult-sixth-cost :cannot-be-forbidden t)

101 (:section "Third species specific pref." :name "No cambiatas" :
importance "11" :value "High cost" :param non-cambiata-cost :
cannot-be-forbidden t)

102 (:section "Third species specific pref." :name "Force contrary motion
after skip" :value "No" :special-range ("Yes" "No") :param
con-m-after-skip-check)

103 (:section "Third species specific pref." :name "No hamonic triad in 2nd
/3rd beat" :display nil :importance "4" :value "Medium cost" :param
h-triad-3rd-species-cost)

104 (:section "Third and fourth species specific pref." :name "Same note in
downbeat and upbeat" :importance "10" :value "Low cost" :param
m2-eq-zero-cost)

105 (:section "Fourth species specific pref." :name "No ligatures" :
importance "1" :value "Last resort" :param no-syncopation-cost :
cannot-be-forbidden t)

106 (:section "Fifth species specific pref." :name "Many quarters (left) or
many syncopations (right)" :value 50 :make-slider t :param
pref-species-slider)

107 ;; Add more cost data as needed
108))
109)
110 ;; Add the cost table to the main view
111 (om::om-add-subviews editor (make-cost-panel editor general-preferences #|

x-offset:|# 0 #|y-offset:|# 0 #|size:|# 540 #|colour:|# om::*
azulote*))

112 (om::om-add-subviews editor (make-cost-panel editor melodic-preferences #|
x-offset:|# 526 #|y-offset:|# 0 #|size:|# 350 #|colour:|# om::*
azulito*))

113 (om::om-add-subviews editor (make-cost-panel editor specific-preferences #|
x-offset:|# 1052 #|y-offset:|# 0 #|size:|# 500 #|colour:|# (om::
make-color-255 230 190 165)))

114 (om::om-add-subviews editor (make-explanation-panel editor #|
x-offset:|# 0 #|y-offset:|# 541 #|size:|# 160 #|colour:|# (om::
make-color-255 255 240 120)))

115 (om::om-add-subviews editor (make-search-params-panel editor #|x-offset
:|# 526 #|y-offset:|# 351 #|size:|# 350 #|colour:|# om::*maq-color*))

116 (om::om-add-subviews editor (make-search-buttons editor #|x-offset
:|# 1052 #|y-offset:|# 501 #|size:|# 200 #|colour:|# om::*
workspace-color* melodic-subcosts melodic-preferences motion-subcosts
general-preferences specific-preferences))

117

118)
119

96

120 ;; ... (existing code)
121

122

123 editor ; Return the editor
124)
125

126 (defun make-explanation-panel (editor panel-x-offset panel-y-offset size colour)
127 (let* (
128 ;; Explanation text
129 (explanation-text "First choose the importance of each preference (1 being

the most important and 14 being the least important). The solver will
give priority to the most important preferences. The cost value is taken
into account if two costs have the same importance. ")

130

131 ;; Create a view for the explanation panel
132 (explanation-panel (om::om-make-view ’om::om-view
133 :size (om::om-make-point 525 size)
134 :position (om::om-make-point panel-x-offset

panel-y-offset)
135 :bg-color colour))
136

137 ;; Create a text element for the explanation
138 (explanation-label (om::om-make-dialog-item ’om::om-static-text
139 (om::om-make-point 10 10) (om::om-make-point 500

800)
140 explanation-text
141))
142)
143

144 ;; Add the text element to the explanation panel
145 (om::om-add-subviews explanation-panel explanation-label)
146

147 (om::om-add-subviews explanation-panel
148 (om::om-make-dialog-item
149 ’om::om-static-text
150 (om::om-make-point 10 100)
151 (om::om-make-point 400 20)
152 "If two costs are ranked the same, perform between them a:"
153)
154 (om::om-make-dialog-item
155 ’om::pop-up-menu
156 (om::om-make-point 215 120)
157 (om::om-make-point 280 20)
158 "Linear combination"
159 :range (list "Linear combination" "Maximum minimisation")
160 :value (linear-combination (om::object editor))
161 :di-action #’(lambda (cost)
162 (setf (linear-combination (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list
cost)))

163)
164)
165)
166

167 ;; Add the explanation panel to the main view
168 explanation-panel
169)
170)
171

172 (defun make-cost-panel (editor cost-data panel-x-offset panel-y-offset y-size colour
)

173 (let* (
174 (cost-table (om::om-make-view ’om::om-view

97

175 :size (om::om-make-point 525 y-size)
176 :position (om::om-make-point panel-x-offset panel-y-offset)
177 :bg-color colour))
178

179 (importance-column (om::om-make-dialog-item ’om::om-static-text
180 (om::om-make-point 275 0) (om::om-make-point 150 20)

"Importance"
181 :font om::*om-default-font2b*
182))
183

184 (value-column (om::om-make-dialog-item ’om::om-static-text
185 (om::om-make-point 400 0) (om::om-make-point 150 20) "

Value"
186 :font om::*om-default-font2b*
187))
188)
189

190 ;; Add header columns to the cost table
191 (om::om-add-subviews cost-table importance-column value-column)
192

193 ;; Populate the cost data dynamically
194 (let (
195 (current-section nil)
196 (y-offset 0)
197)
198 (loop for index from 0 below (length cost-data)
199 do
200 (let* ((cost (nth index cost-data))
201 (section (getf cost :section))
202 (y-position (+ y-offset (* 45 index)))
203 (name (if (getf cost :display) (getf cost :display) (getf cost :

name)))
204 (importance (getf cost :importance))
205 (value (getf cost :value))
206 (is-new-section (not (string= current-section section)))
207)
208

209 ;; Add subsection header if it’s a new section
210 (when is-new-section
211 (let ((section-label (om::om-make-dialog-item ’om::

om-static-text
212 (om::om-make-point 15 y-position) (om::

om-make-point 300 20) section
213 :font om::*om-default-font2b*)))
214 (om::om-add-subviews cost-table section-label))
215 (setf current-section section)
216 (incf y-offset 35)
217 (incf y-position 35)
218)
219 ;; Add the row to the cost table
220 (let* (
221 (name-label (om::om-make-dialog-item ’om::om-static-text
222 (om::om-make-point 25 y-position) (om::om-make-point

500 20) name))
223 (importance-popup (om::om-make-dialog-item ’om::pop-up-menu
224 (om::om-make-point 275 (- y-position 7)) (om

::om-make-point 70 20)
225 (format nil "~A" importance)
226 :value importance
227 :range (importance-range)
228 :di-action #’(lambda (x)
229 (setf (getf cost :importance) (nth (om::

om-get-selected-item-index x) (om::

98

om-get-item-list x)))
230 (print (getf cost :importance))
231)
232)
233)
234 (value-popup (if (getf cost :make-slider)
235 (make-slider cost y-position)
236 (om::om-make-dialog-item ’om::pop-up-menu
237 (om::om-make-point 345 (- y-position 7)) (om::

om-make-point 150 20)
238 (format nil "~A" value)
239 :value value
240 :range (if (getf cost :special-range)
241 (getf cost :special-range)
242 (value-range (getf cost :cannot-be-forbidden

))
243)
244 :di-action #’(lambda (x)
245 (setf (getf cost :value) (nth (om::

om-get-selected-item-index x) (om::
om-get-item-list x)))

246 (print (getf cost :value))
247)
248)
249))
250)
251 (cond
252 ((and value importance) (om::om-add-subviews cost-table

name-label importance-popup value-popup))
253 (value (om::om-add-subviews cost-table name-label

value-popup))
254 (importance (om::om-add-subviews cost-table name-label

importance-popup))
255)
256) ; end of row
257 (print (getf cost :subcosts))
258 (print (length (getf cost :subcosts)))
259 (if (getf cost :subcosts)
260 (loop for index from 0 below (length (getf cost :subcosts))
261 do
262 (let* ((cost (nth index (getf cost :subcosts)))
263 (y-position (+ y-position (* 35 (+ 1 index))))
264 (name (concatenate ’string "|---" (getf cost :name))

)
265 (value (getf cost :value))
266)
267 (incf y-offset 35)
268 ;; Add the row to the cost table
269 (let* (
270 (name-label (om::om-make-dialog-item ’om::

om-static-text
271 (om::om-make-point 50 y-position) (om::

om-make-point 250 20) name))
272 (value-popup (om::om-make-dialog-item ’om::

pop-up-menu
273 (om::om-make-point 345 (- y-position

7)) (om::om-make-point 150 20)
274 (format nil "~A" value)
275 :value value
276 :range (value-range (getf cost :

cannot-be-forbidden))
277 :di-action #’(lambda (x)

99

278 (setf (getf cost :value) (nth (
om::
om-get-selected-item-index x
) (om::om-get-item-list x)))

279 (print (getf cost :value))
280)
281)
282)
283)
284 (om::om-add-subviews cost-table name-label

value-popup)
285) ; end of subcost row
286) ; end of subcost
287) ; end of subcost loop
288)
289) ; end of cost
290) ; end of loop
291)
292 cost-table
293))
294

295 (defun make-search-params-panel (editor panel-x-offset panel-y-offset y-size colour)
296 (let* (
297 (search-params-panel (om::om-make-view ’om::om-view
298 :size (om::om-make-point 525 y-size)
299 :position (om::om-make-point panel-x-offset panel-y-offset)
300 :bg-color colour))
301)
302 (om::om-add-subviews
303 search-params-panel
304 (om::om-make-dialog-item
305 ’om::om-static-text
306 (om::om-make-point 15 0)
307 (om::om-make-point 200 20)
308 "Solver Configuration"
309 :font om::*om-default-font2b*
310)
311

312 (om::om-make-dialog-item
313 ’om::om-static-text
314 (om::om-make-point 25 30)
315 (om::om-make-point 150 20)
316 "First voice species"
317)
318

319 (om::om-make-dialog-item
320 ’om::pop-up-menu
321 (om::om-make-point 275 25)
322 (om::om-make-point 220 20)
323 "First voice species"
324 :range (list "1st" "2nd" "3rd" "4th" "5th")
325 :value (first (species-param (om::object editor)))
326 :di-action #’(lambda (cost)
327 (setf (first (species-param (om::object editor))) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
328)
329)
330

331 (om::om-make-dialog-item
332 ’om::om-static-text
333 (om::om-make-point 25 80)
334 (om::om-make-point 150 20)
335 "First voice range"

100

336)
337

338 (om::om-make-dialog-item
339 ’om::pop-up-menu
340 (om::om-make-point 275 75)
341 (om::om-make-point 220 20)
342 "Voice range"
343 :range (list "Really far above" "Far above" "Above" "Same range" "Below"

"Far below" "Really far below")
344 :value (first (voice-type-param (om::object editor)))
345 :di-action #’(lambda (cost)
346 (setf (first (voice-type-param (om::object editor))) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
347)
348)
349

350 (om::om-make-dialog-item
351 ’om::om-static-text
352 (om::om-make-point 25 130)
353 (om::om-make-point 150 20)
354 "Second voice species"
355)
356

357 (om::om-make-dialog-item
358 ’om::pop-up-menu
359 (om::om-make-point 275 125)
360 (om::om-make-point 220 20)
361 "Second voice species"
362 :range (list "None" "1st" "2nd" "3rd" "4th" "5th")
363 :value (second (species-param (om::object editor)))
364 :di-action #’(lambda (cost)
365 (setf (second (species-param (om::object editor))) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
366)
367)
368

369 (om::om-make-dialog-item
370 ’om::om-static-text
371 (om::om-make-point 25 180)
372 (om::om-make-point 150 20)
373 "Second voice range"
374)
375

376 (om::om-make-dialog-item
377 ’om::pop-up-menu
378 (om::om-make-point 275 175)
379 (om::om-make-point 220 20)
380 "Second voice range"
381 :range (list "Really far above" "Far above" "Above" "Same range" "Below"

"Far below" "Really far below")
382 :value (second (voice-type-param (om::object editor)))
383 :di-action #’(lambda (cost)
384 (setf (second (voice-type-param (om::object editor))) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
385)
386)
387

388 (om::om-make-dialog-item
389 ’om::om-static-text
390 (om::om-make-point 25 230)
391 (om::om-make-point 150 20)
392 "Borrowing mode"
393)

101

394

395 (om::om-make-dialog-item
396 ’om::pop-up-menu
397 (om::om-make-point 275 225)
398 (om::om-make-point 220 20)
399 "Borrowing mode"
400 :range (list "None" "Major" "Minor")
401 :value (borrow-mode-param (om::object editor))
402 :di-action #’(lambda (cost)
403 (setf (borrow-mode-param (om::object editor)) (nth (om::

om-get-selected-item-index cost) (om::om-get-item-list cost)))
404)
405)
406

407 (om::om-make-dialog-item
408 ’om::om-static-text
409 (om::om-make-point 25 280)
410 (om::om-make-point 150 20)
411 "Minimum % of skips"
412)
413

414 (om::om-make-dialog-item
415 ’om::om-slider
416 (om::om-make-point 275 275)
417 (om::om-make-point 220 20)
418 "Minimum % of skips"
419 :range ’(0 100)
420 :increment 1
421 :value (min-skips-slider-param (om::object editor))
422 :di-action #’(lambda (s)
423 (setf (min-skips-slider-param (om::object editor)) (om::

om-slider-value s))
424)
425)
426)
427 search-params-panel
428)
429)
430

431 (defun make-search-buttons (editor panel-x-offset panel-y-offset y-size colour
melodic-subcosts melodic-preferences motion-subcosts general-preferences
specific-preferences)

432 (let* (
433 (search-buttons (om::om-make-view ’om::om-view
434 :size (om::om-make-point 525 y-size)
435 :position (om::om-make-point panel-x-offset panel-y-offset)
436 :bg-color colour))
437)
438 (om::om-add-subviews
439 search-buttons
440 (om::om-make-dialog-item
441 ’om::om-static-text
442 (om::om-make-point 187 25)
443 (om::om-make-point 150 20)
444 "Solver Launcher"
445 :font om::*om-default-font3b*
446)
447

448 (om::om-make-dialog-item
449 ’om::om-button
450 (om::om-make-point 97 60) ; position (horizontal, vertical)
451 (om::om-make-point 160 20) ; size (horizontal, vertical)
452 "Save Config"

102

453 :di-action #’(lambda (b)
454 (if (null (cf-voice (om::object editor))); if the problem is not

initialized
455 (error "No voice has been given to the solver. Please set a

cantus firmus into the second input and try again.")
456)
457

458 (set-global-cf-variables
459 (cf-voice (om::object editor))
460 (borrow-mode-param (om::object editor))
461)
462 (defparameter *params* (make-hash-table))
463 ;; set melodic parameters
464 (dolist (subcost melodic-subcosts)
465 (setparam-cost (getf subcost :param) (getf subcost :value))
466)
467

468 ;; set general costs
469 (dolist (cost general-preferences)
470 (if (equal (getf cost :param) ’motions-cost)
471 nil ; motions-cost is treated by the subcosts
472 (if (equal (getf cost :param) ’penult-rule-check)
473 (setparam-yes-no (getf cost :param) (getf cost :value))

; penult-rule-check is a yes no
474 (setparam-cost (getf cost :param) (getf cost :value)) ;

else
475)
476)
477)
478

479 ;; set motions costs
480 (dolist (subcost motion-subcosts)
481 (setparam-cost (getf subcost :param) (getf subcost :value))
482)
483

484 ;; set species specific costs
485 (dolist (cost specific-preferences)
486 (if (equal (getf cost :param) ’pref-species-slider)
487 (setparam-slider (getf cost :param) (getf cost :value)) ; it

is a slider
488 (if (equal (getf cost :param) ’con-m-after-skip-check)
489 (setparam-yes-no (getf cost :param) (getf cost :value))

; it is a yes-no
490 (setparam-cost (getf cost :param) (getf cost :value)) ;

else
491)
492)
493)
494

495 ;; set search parameters
496 (setparam-slider ’min-skips-slider (min-skips-slider-param (om::

object editor)))
497 (setparam ’borrow-mode (borrow-mode-param (om::object editor)))
498

499

500 ;; preferences for the cost order
501 (defparameter *cost-preferences* (make-hash-table))
502 (dolist (current-list (list general-preferences specific-preferences

melodic-preferences))
503 (dolist (cost current-list)
504 (if (getf cost :importance)
505 (setf (gethash (getf cost :param) *cost-preferences*) (

getf cost :importance))

103

506)
507)
508)
509

510 (if (string= "Linear combination" (linear-combination (om::object
editor)))

511 (setf *linear-combination t)
512 (setf *linear-combination nil)
513)
514

515

516 (setf species-integer-list (convert-to-species-integer-list (
species-param (om::object editor))))

517 (setf *voices-types (convert-to-voice-integer-list (voice-type-param
(om::object editor))))

518 (setf (current-csp (om::object editor)) (fux-cp species-integer-list
))

519)
520)
521

522 (om::om-make-dialog-item
523 ’om::om-button
524 (om::om-make-point 97 100) ; position
525 (om::om-make-point 160 20) ; size
526 "Next Solution"
527 :di-action #’(lambda (b)
528 (if (typep (current-csp (om::object editor)) ’null); if the problem

is not initialized
529 (error "The problem has not been initialized. Please set the

input and press Start.")
530)
531 (print "Searching for the next solution")
532 ;reset the boolean because we want to continue the search
533 (setparam ’is-stopped nil)
534 ;get the next solution
535 (mp:process-run-function ; start a new thread for the execution of

the next method
536 "solver-thread" ; name of the thread, not necessary but useful

for debugging
537 nil ; process initialization keywords, not needed here
538 (lambda () ; function to call
539 (setf
540 (result-voice (om::object editor))
541 (search-next-fux-cp (current-csp (om::object editor)))
542)
543 (om::openeditorframe ; open a voice window displaying the

solution
544 (om::omNG-make-new-instance (result-voice (om::object

editor)) "Current solution")
545)
546)
547)
548)
549)
550

551 (om::om-make-dialog-item
552 ’om::om-button
553 (om::om-make-point 262 100) ; position
554 (om::om-make-point 160 20) ; size
555 "Best Solution"
556 :di-action #’(lambda (b)
557 (if (typep (current-csp (om::object editor)) ’null); if the problem

is not initialized

104

558 (error "The problem has not been initialized. Please set the
input and press Start.")

559)
560 (print "Searching for the best solution")
561 ;reset the boolean because we want to continue the search
562 (setparam ’is-stopped nil)
563 ;get the next solution
564 (mp:process-run-function ; start a new thread for the execution of

the next method
565 "solver-thread" ; name of the thread, not necessary but useful

for debugging
566 nil ; process initialization keywords, not needed here
567 (lambda () ; function to call
568 (let ((check 1) (result nil))
569 (loop while check do
570 (setf result (search-next-fux-cp (current-csp (om::

object editor))))
571 (if result (setf (result-voice (om::object editor))

result) (setf check nil))
572)
573)
574 ;(om::openeditorframe ; open a voice window displaying the

solution
575 ; (om::omNG-make-new-instance (result-voice (om::object

editor)) "Current solution")
576 ;)
577)
578)
579)
580)
581

582 (om::om-make-dialog-item
583 ’om::om-button
584 (om::om-make-point 262 60) ; position (horizontal, vertical)
585 (om::om-make-point 160 20) ; size (horizontal, vertical)
586 "Stop"
587 :di-action #’(lambda (b)
588 (setparam ’is-stopped t)
589)
590)
591)
592 search-buttons
593)
594)
595

596 (defun make-slider (cost y-position)
597 (om::om-make-dialog-item
598 ’om::om-slider
599 (om::om-make-point 350 (- y-position 3))
600 (om::om-make-point 150 20)
601 "5th: Preference to a lot of quarters [left] OR a lot of syncopations [right]"
602 :range ’(0 100)
603 :increment 1
604 :value (getf cost :value)
605 :di-action #’(lambda (s)
606 (setf (getf cost :value) (om::om-slider-value s))
607 (print (getf cost :value))
608)
609)
610)
611

612 ; return the list of available costs for the preferences
613 ; @is-required: if true, "Forbidden" is removed

105

614 (defun value-range (&optional (is-required nil))
615 (let (
616 (costs (list "No cost" "Low cost" "Medium cost" "High cost" "Last resort" "

Cost prop. to length" "Forbidden"))
617)
618 (if is-required
619 (butlast costs)
620 costs
621)
622)
623)
624

625 (defun importance-range ()
626 (mapcar #’(lambda (x) (format nil "~A" x)) (loop for i from 1 to 14 collect i))
627)
628

629 ; set the value @v in the hash table @h with key @k
630 (defun seth (h k v)
631 (setf (gethash k h) v)
632)
633

634 ; set the value @v in the parameters with key @k
635 (defun setparam (k v)
636 (seth *params* k v)
637)
638

639 (defun setparam-yes-no (k v)
640 (let ((converted (if (string= "Yes" v)
641 t
642 nil)))
643 (setparam k converted)
644)
645)
646

647 ; set the cost-converted value @of v in the parameters with key @k
648 (defun setparam-cost (k v)
649 (setparam k (convert-to-cost-integer v))
650)
651

652 ; set the species-converted value @of v in the parameters with key @k
653 (defun setparam-species (k v)
654 (setparam k (convert-to-species-integer v))
655)
656

657 ; set the slider-converted value @of v in the parameters with key @k
658 (defun setparam-slider (k v)
659 (setparam k (convert-to-percent v))
660)
661

662 ; convert a cost to an integer
663 (defun convert-to-cost-integer (param)
664 (cond
665 ((equal param "No cost") 0)
666 ((equal param "Low cost") 1)
667 ((equal param "Medium cost") 2)
668 ((equal param "High cost") 4)
669 ((equal param "Last resort") 8)
670 ((equal param "Cost prop. to length") (* 2 *cf-len))
671 ((equal param "Forbidden") (* 64 *cf-len))
672)
673)
674

675 ; convert a species to an integer

106

676 (defun convert-to-species-integer-list (param-list)
677 (let (
678 (species-list ’())
679)
680 (dolist (param param-list)
681 (progn
682 (cond
683 ((equal param "1st") (setf species-list (append species-list ’(1))))
684 ((equal param "2nd") (setf species-list (append species-list ’(2))))
685 ((equal param "3rd") (setf species-list (append species-list ’(3))))
686 ((equal param "4th") (setf species-list (append species-list ’(4))))
687 ((equal param "5th") (setf species-list (append species-list ’(5))))
688 ((equal param "None") nil)
689)
690))
691 (setq *N-COUNTERPOINTS (length species-list))
692 (setq *N-PARTS (+ 1 (length species-list)))
693 species-list
694)
695)
696

697 ;; convert the string for the voice type to an integer
698 ;; belong to {"Really far above" "Far above" "Above" "Same range" "Below" "Far below

" "Really far below"}
699 ;; convert to {-3 -2 -1 0 1 2 3}
700 (defun convert-to-voice-integer-list (params)
701 (let ((integer-list (make-list *N-COUNTERPOINTS :initial-element nil))) (loop

for i from 0 below *N-COUNTERPOINTS do
702 (cond
703 ((equal (nth i params) "Really far above") (setf (nth i integer-list) 3)

)
704 ((equal (nth i params) "Far above") (setf (nth i integer-list) 2))
705 ((equal (nth i params) "Above") (setf (nth i integer-list) 1))
706 ((equal (nth i params) "Same range") (setf (nth i integer-list) 0))
707 ((equal (nth i params) "Below") (setf (nth i integer-list) -1))
708 ((equal (nth i params) "Far below") (setf (nth i integer-list) -2))
709 ((equal (nth i params) "Really far below") (setf (nth i integer-list)

-3))
710)
711)
712 integer-list
713)
714)
715

716 ; convert a slider value to a percentage
717 (defun convert-to-percent (param)
718 (float (/ param 100))
719)
720

721 ; convert a mode to an integer
722 (defun convert-to-mode-integer (param tone)
723 (cond
724 ((equal param "Major") (mod tone 12))
725 ((equal param "Minor") (mod (+ tone 3) 12))
726 ((equal param "None") nil)
727)
728)
729

730 ; define all the global variables
731 (defun set-global-cf-variables (cantus-firmus borrow-mode)
732 (defparameter *prev-sol-check nil)
733 (defparameter rythmic+pitches nil)
734 (defparameter rythmic-om nil)

107

735 (defparameter pitches-om nil)
736 ; get the tonalite of the cantus firmus
737 (defparameter *tonalite-offset (get-tone-offset cantus-firmus))
738 ; get the *scale of the cantus firmus
739 (defparameter *scale (build-scaleset (get-scale) *tonalite-offset))
740 ; *chromatic *scale
741 (defparameter *chromatic-scale (build-scaleset (get-scale "chromatic") *

tonalite-offset))
742 ; get the first note of each chord of the cantus firmus
743 (defparameter *cf (mapcar #’first (to-pitch-list (om::chords cantus-firmus))))
744 ; get the tempo of the cantus firmus
745 (defparameter *cf-tempo (om::tempo cantus-firmus))
746 ; get the first note of the cantus firmus ;; just used for the moment
747 (defparameter *tone-pitch-cf (first *cf))
748 ; get the borrowed scale of the cantus firmus, i.e. some notes borrowed from the

natural scale of the tone (useful for modes)
749 (setq mode-param (convert-to-mode-integer borrow-mode *tone-pitch-cf))
750 (if mode-param
751 (defparameter *borrowed-scale (build-scaleset (get-scale "borrowed")

mode-param))
752 (defparameter *borrowed-scale (list))
753)
754 ; get notes that are not in the natural scale of the tone
755 (defparameter *off-scale (set-difference *chromatic-scale *scale))
756 ; length of the cantus firmus
757 (defparameter *cf-len (length *cf))
758 ; *cf-last-index is the number of melodic intervals in the cantus firmus
759 (defparameter *cf-last-index (- *cf-len 1))
760 ; *cf-penult-index is the number of larger (n -> n+2) melodic intervals in the

cantus firmus
761 (defparameter *cf-penult-index (- *cf-len 2))
762 ; COST_UB is the upper bound of the cost function
763 (defparameter COST_UB (* *cf-len 20))
764 ; *N-COUNTERPOINTS is the number of counterpoints in the counterpoint
765 (defparameter *N-COUNTERPOINTS -1) ; will be defined when parsing the input
766)

D.4 fuxcp-main.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard and Anton Lamotte
4 ; Date: June 3, 2023 and January 2024
5 ; This file contains the functions that:
6 ; - dispatch to the right species functions
7 ; - set the global variables of the CSP
8 ; - manage the search for solutions
9

10 (print "Loading fux-cp...")
11

12 ; get the value at key @k in the hash table @h as a list
13 (defun geth-dom (h k)
14 (list (gethash k h))
15)
16

17 ; get the value at key @k in the parameters table as a list
18 (defun getparam-val (k)
19 (geth-dom *params* k)
20)
21

22 ; get the value at key @k in the parameters table as a domain

108

23 (defun getparam-dom (k)
24 (list 0 (getparam k))
25)
26

27 ; get the value at key @k in the parameters table
28 (defun getparam (k)
29 (gethash k *params*)
30)
31

32 ; get if borrow-mode param is allowed
33 (defun is-borrow-allowed ()
34 (not (equal (getparam ’borrow-mode) "None"))
35)
36

37

38 ; define all the constants that are going to be used
39 (defun define-global-constants ()
40 ; Number of costs added
41 (defparameter *n-cost-added 0)
42

43 ;; CONSTANTS
44 ; Motion types
45 (defparameter DIRECT 2)
46 (defparameter OBLIQUE 1)
47 (defparameter CONTRARY 0)
48

49 ; Integer constants (to represent costs or intervals)
50 ; 0 in IntVar
51 (defparameter ZERO (gil::add-int-var-dom *sp* (list 0)))
52 ; 1 in IntVar
53 (defparameter ONE (gil::add-int-var-dom *sp* (list 1)))
54 ; 3 in IntVar (minor third)
55 (defparameter THREE (gil::add-int-var-dom *sp* (list 3)))
56 ; 9 in IntVar (major sixth)
57 (defparameter NINE (gil::add-int-var-dom *sp* (list 9)))
58

59 (defparameter CANTUS_FIRMUS (gil::add-int-var-array *sp* *cf-len 0 120))
60 (dotimes (i *cf-len)
61 (gil::g-rel *sp* (nth i CANTUS_FIRMUS) gil::IRT_EQ (nth i *cf))
62)
63

64 ; Boolean constants
65 ; 0 in BoolVar
66 (defparameter FALSE (gil::add-bool-var *sp* 0 0))
67 ; 1 in BoolVar
68 (defparameter TRUE (gil::add-bool-var *sp* 1 1))
69

70 ; Intervals constants
71 ; perfect consonances intervals
72 (defparameter P_CONS (list 0 7))
73 ; imperfect consonances intervals
74 (defparameter IMP_CONS (list 3 4 8 9))
75 ; all consonances intervals
76 (defparameter ALL_CONS (union P_CONS IMP_CONS))
77 ; harmonic triad intervals
78 (defparameter H_TRIAD (list 0 3 4 7))
79 ; major harmonic triad intervals
80 (defparameter MAJ_H_TRIAD (list 0 4 7))
81 ; dissonances intervals
82 (defparameter DIS (list 1 2 5 6 10 11))
83 ; penultimate intervals, i.e. minor third and major sixth
84 (defparameter PENULT_CONS (list 0 3 9))
85 ; penultimate thesis intervals, i.e. perfect fifth and sixth

109

86 (defparameter PENULT_THESIS (list 0 7 8 9))
87 ; penultimate 1st quarter note intervals, i.e. minor third, major sixth and

octave/unisson
88 (defparameter PENULT_1Q (list 0 3 8))
89 ; penultimate syncope intervals, i.e. seconds and sevenths
90 (defparameter PENULT_SYNCOPE (list 0 1 2 10 11))
91 ; penultimate intervals for three parts, i.e. minor third and major sixth + the

perfect consonances
92 (defparameter PENULT_CONS_3P (list 0 3 7 9))
93

94 ; P_CONS in IntVar
95 (defparameter P_CONS_VAR (gil::add-int-var-const-array *sp* P_CONS))
96 ; IMP_CONS in IntVar
97 (defparameter IMP_CONS_VAR (gil::add-int-var-const-array *sp* IMP_CONS))
98 ; ALL_CONS in IntVar
99 (defparameter ALL_CONS_VAR (gil::add-int-var-const-array *sp* ALL_CONS))

100 ; H_TRIAD in IntVar
101 (defparameter H_TRIAD_VAR (gil::add-int-var-const-array *sp* H_TRIAD))
102 ; MAJ_H_TRIAD in IntVar
103 (defparameter MAJ_H_TRIAD_VAR (gil::add-int-var-const-array *sp* MAJ_H_TRIAD))
104 ; DIS in IntVar
105 (defparameter DIS_VAR (gil::add-int-var-const-array *sp* DIS))
106 ; PENULT_CONS in IntVar
107 (defparameter PENULT_CONS_VAR (gil::add-int-var-const-array *sp* PENULT_CONS))
108 ; PENULT_THESIS in IntVar
109 (defparameter PENULT_THESIS_VAR (gil::add-int-var-const-array *sp* PENULT_THESIS

))
110 ; PENULT_1Q in IntVar
111 (defparameter PENULT_1Q_VAR (gil::add-int-var-const-array *sp* PENULT_1Q))
112 ; PENULT_SYNCOPE in IntVar
113 (defparameter PENULT_SYNCOPE_VAR (gil::add-int-var-const-array *sp*

PENULT_SYNCOPE))
114 ; PENULT_CONS_3P in IntVar
115 (defparameter PENULT_CONS_3P_VAR (gil::add-int-var-const-array *sp*

PENULT_CONS_3P))
116

117 ; *cf-brut-intervals is the list of brut melodic intervals in the cantus firmus
118 (setq *cf-brut-m-intervals (gil::add-int-var-array *sp* *cf-last-index -127 127)

)
119 ; array representing the brut melodic intervals of the cantus firmus
120 (create-cf-brut-m-intervals *cf *cf-brut-m-intervals)
121

122 ;; COSTS
123 ;; Melodic costs
124 (defparameter *m-step-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m-step-cost)))
125 (defparameter *m-third-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m-third-cost)))
126 (defparameter *m-fourth-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m-fourth-cost)))
127 (defparameter *m-tritone-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m-tritone-cost)))
128 (defparameter *m-fifth-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m-fifth-cost)))
129 (defparameter *m-sixth-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m-sixth-cost)))
130 (defparameter *m-seventh-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m-seventh-cost)))
131 (defparameter *m-octave-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m-octave-cost)))
132

133 ;; General costs

110

134 (defparameter *borrow-cost* (gil::add-int-var-dom *sp* (getparam-val ’
borrow-cost)))

135 (defparameter *h-fifth-cost* (gil::add-int-var-dom *sp* (getparam-val ’
h-fifth-cost)))

136 (defparameter *h-octave-cost* (gil::add-int-var-dom *sp* (getparam-val ’
h-octave-cost)))

137 (defparameter *con-motion-cost* (gil::add-int-var-dom *sp* (getparam-val ’
con-motion-cost)))

138 (defparameter *obl-motion-cost* (gil::add-int-var-dom *sp* (getparam-val ’
obl-motion-cost)))

139 (defparameter *dir-motion-cost* (gil::add-int-var-dom *sp* (getparam-val ’
dir-motion-cost)))

140 ; 3v general costs
141 (defparameter *succ-p-cons-cost* (gil::add-int-var-dom *sp* (getparam-val ’

succ-p-cons-cost)))
142 (defparameter *variety-cost* (gil::add-int-var-dom *sp* (getparam-val ’

variety-cost)))
143 (defparameter *h-triad-cost* (gil::add-int-var-dom *sp* (getparam-val ’

h-triad-cost)))
144 (defparameter *direct-move-to-p-cons-cost* (gil::add-int-var-dom *sp* (

getparam-val ’direct-move-to-p-cons-cost)))
145 ;; Species specific costs
146 (defparameter *penult-sixth-cost* (gil::add-int-var-dom *sp* (getparam-val ’

penult-sixth-cost)))
147 (defparameter *non-cambiata-cost* (gil::add-int-var-dom *sp* (getparam-val ’

non-cambiata-cost)))
148 (defparameter *m2-eq-zero-cost* (gil::add-int-var-dom *sp* (getparam-val ’

m2-eq-zero-cost)))
149 (defparameter *no-syncopation-cost* (gil::add-int-var-dom *sp* (getparam-val ’

no-syncopation-cost)))
150 ; 3v species specific costs
151 (defparameter *h-triad-3rd-species-cost* (gil::add-int-var-dom *sp* (

getparam-val ’h-triad-3rd-species-cost)))
152

153 ;; Params domains
154 (defparameter *motions-domain* ; equal to all possible values of the motions

cost, plus zero
155 (remove-duplicates (append
156 (mapcar (lambda (x) (getparam x))
157 (list ’con-motion-cost ’obl-motion-cost ’dir-motion-cost)
158)
159 (list 0)
160))
161)
162

163 ; To make the code more readable
164 (defparameter 3v-1sp 6)
165 (defparameter 3v-2sp 7)
166 (defparameter 3v-3sp 8)
167 (defparameter 3v-4sp 9)
168 (defparameter 3v-5sp 10)
169)
170

171 (defclass stratum-class () (
172 ; represents a stratum, it is a simplified part-class
173 (solution-array :accessor solution-array :initarg :solution-array :initform nil)
174 (solution-len :accessor solution-len :initarg :solution-len :initform nil)
175

176 (notes :accessor notes :initarg :notes :initform
177 (list
178 (gil::add-int-var-array *sp* *cf-len 0 120)
179 (gil::add-int-var-array *sp* *cf-len 0 120)
180 (gil::add-int-var-array *sp* *cf-len 0 120)

111

181 (gil::add-int-var-array *sp* *cf-len 0 120)
182)
183) ; represents the notes of the counterpoint
184 (h-intervals :accessor h-intervals :initarg :h-intervals :initform
185 (list
186 (gil::add-int-var-array *sp* *cf-len 0 11)
187 (gil::add-int-var-array *sp* *cf-len 0 11)
188 (gil::add-int-var-array *sp* *cf-len 0 11)
189 (gil::add-int-var-array *sp* *cf-len 0 11)
190)
191)
192 (is-p-cons-arr :accessor is-p-cons-arr :initarg :is-p-cons-arr :initform nil)
193 (m-intervals :accessor m-intervals :initarg :m-intervals :initform (list (gil::

add-int-var-array *sp* *cf-last-index 0 12) nil nil nil))
194 (m-intervals-brut :accessor m-intervals-brut :initarg :m-intervals-brut :

initform (list (gil::add-int-var-array *sp* *cf-last-index -12 12) nil nil
nil))

195 ;(m-intervals-brut :accessor m-intervals-brut :initarg :m-intervals-brut :
initform (list nil nil nil nil))

196 ;(m-intervals :accessor m-intervals :initarg :m-intervals :initform (list nil
nil nil nil))

197 (motions :accessor motions :initarg :motions :initform (list nil nil nil nil))
198 (motions-cost :accessor motions-cost :initarg :motions-cost :initform (list nil

nil nil nil))
199 (m2-intervals-brut :accessor m2-intervals-brut :initarg :m2-intervals-brut :

initform nil)
200 (m2-intervals :accessor m2-intervals :initarg :m2-intervals :initform nil)
201 (cf-brut-m-intervals :accessor cf-brut-m-intervals :initarg :cf-brut-m-intervals

:initform nil)
202 (is-cp-off-key-arr :accessor is-cp-off-key-arr :initarg :is-cp-off-key-arr :

initform nil)
203 (p-cons-cost :accessor p-cons-cost :initarg :p-cons-cost :initform nil)
204 (fifth-cost :accessor fifth-cost :initarg :fifth-cost :initform nil)
205 (octave-cost :accessor octave-cost :initarg :octave-cost :initform nil)
206 (m-degrees-cost :accessor m-degrees-cost :initarg :m-degrees-cost :initform nil)
207 (m-degrees-type :accessor m-degrees-type :initarg :m-degrees-type :initform nil)
208 (off-key-cost :accessor off-key-cost :initarg :off-key-cost :initform nil)
209 (m-all-intervals :accessor m-all-intervals :initarg :m-all-intervals :initform

nil)
210

211 (h-intervals-abs :accessor h-intervals-abs :initarg :h-intervals-abs :initform (
list nil nil nil nil))

212 (h-intervals-brut :accessor h-intervals-brut :initarg :h-intervals-brut :
initform (list nil nil nil nil))

213))
214

215 (defclass part-class () (
216 ; represents a part, i.e. a counterpoint or a cantus firmus
217 ; species
218 (species :accessor species :initarg :species :initform nil) ; 0 for cf, 1 for 1

st, 2 for 2nd, 3 for 3rd, 4 for 4th, 5 for 5th
219

220 ; solution-array
221 (solution-array :accessor solution-array :initarg :solution-array :initform nil)

; contains the whole array of notes for this part, all merged together in
the good order

222 (solution-len :accessor solution-len :initarg :solution-len :initform nil) ;
number of note in this part

223

224 ; voice variables
225 (cp-range :accessor cp-range :initarg :cp-range :initform nil)
226 (cp-domain :accessor cp-domain :initarg :cp-domain :initform nil)

112

227 (chromatic-cp-domain :accessor chromatic-cp-domain :initarg :chromatic-cp-domain
:initform nil)

228 (extended-cp-domain :accessor extended-cp-domain :initarg :extended-cp-domain :
initform nil)

229 (off-domain :accessor off-domain :initarg :off-domain :initform nil)
230 (voice-type :accessor voice-type :initarg :voice-type :initform nil)
231

232 ; 1st species variables
233 (notes :accessor notes :initarg :notes :initform (list nil nil nil nil)) ;

represents the notes of the counterpoint; (first notes) are all the notes of
the first beat, (second notes) of the second etc

234 (h-intervals :accessor h-intervals :initarg :h-intervals :initform (list nil nil
nil nil)) ; h-intervals to the lowest stratum

235 (m-intervals-brut :accessor m-intervals-brut :initarg :m-intervals-brut :
initform (list

236 (gil::add-int-var-array *sp* *cf-last-index -12 12)
237 (gil::add-int-var-array *sp* *cf-last-index -12 12)
238 (gil::add-int-var-array *sp* *cf-last-index -12 12)
239 (gil::add-int-var-array *sp* *cf-last-index -12 12))) ; this variable is set

before the others because we need it earlier
240 (m-intervals :accessor m-intervals :initarg :m-intervals :initform (list nil nil

nil nil)) ; melodic intervals
241 (motions :accessor motions :initarg :motions :initform (list nil nil nil nil))
242 (motions-cost :accessor motions-cost :initarg :motions-cost :initform (list nil

nil nil nil))
243 (is-cf-lower-arr :accessor is-cf-lower-arr :initarg :is-cf-lower-arr :initform (

list nil nil nil nil)) ; true if the cf is lower
244 (m2-intervals-brut :accessor m2-intervals-brut :initarg :m2-intervals-brut :

initform nil)
245 (m2-intervals :accessor m2-intervals :initarg :m2-intervals :initform nil)
246 (cf-brut-m-intervals :accessor cf-brut-m-intervals :initarg :cf-brut-m-intervals

:initform nil)
247 (is-p-cons-arr :accessor is-p-cons-arr :initarg :is-p-cons-arr :initform nil)
248 (is-cp-off-key-arr :accessor is-cp-off-key-arr :initarg :is-cp-off-key-arr :

initform nil)
249 (p-cons-cost :accessor p-cons-cost :initarg :p-cons-cost :initform nil)
250 (fifth-cost :accessor fifth-cost :initarg :fifth-cost :initform nil)
251 (octave-cost :accessor octave-cost :initarg :octave-cost :initform nil)
252 (m-degrees-cost :accessor m-degrees-cost :initarg :m-degrees-cost :initform nil)
253 (m-degrees-type :accessor m-degrees-type :initarg :m-degrees-type :initform nil)
254 (off-key-cost :accessor off-key-cost :initarg :off-key-cost :initform nil)
255 (m-all-intervals :accessor m-all-intervals :initarg :m-all-intervals :initform

nil)
256

257 ; 2nd species variables
258 (h-intervals-abs :accessor h-intervals-abs :initarg :h-intervals-abs :initform (

list nil nil nil nil))
259 (h-intervals-brut :accessor h-intervals-brut :initarg :h-intervals-brut :

initform (list nil nil nil nil))
260 (m-succ-intervals :accessor m-succ-intervals :initarg :m-succ-intervals :

initform (list nil nil nil nil))
261 (m-succ-intervals-brut :accessor m-succ-intervals-brut :initarg :

m-succ-intervals-brut :initform (list nil nil nil nil))
262 (m2-len :accessor m2-len :initarg :m2-len :initform nil)
263 (total-m-len :accessor total-m-len :initarg :total-m-len :initform nil)
264 (m-all-intervals-brut :accessor m-all-intervals-brut :initarg :

m-all-intervals-brut :initform nil)
265 (real-motions :accessor real-motions :initarg :real-motions :initform nil)
266 (real-motions-cost :accessor real-motions-cost :initarg :real-motions-cost :

initform nil)
267 (is-ta-dim-arr :accessor is-ta-dim-arr :initarg :is-ta-dim-arr :initform nil)
268 (is-nbour-arr :accessor is-nbour-arr :initarg :is-nbour-arr :initform nil)

113

269 (penult-thesis-cost :accessor penult-thesis-cost :initarg :penult-thesis-cost :
initform nil)

270

271 ; 3rd species variables
272 (is-5qn-linked-arr :accessor is-5qn-linked-arr :initarg :is-5qn-linked-arr :

initform nil)
273 (is-not-cambiata-arr :accessor is-not-cambiata-arr :initarg :is-not-cambiata-arr

:initform nil)
274 (not-cambiata-cost :accessor not-cambiata-cost :initarg :not-cambiata-cost :

initform nil)
275 (m2-eq-zero-cost :accessor m2-eq-zero-cost :initarg :m2-eq-zero-cost :initform

nil)
276 (is-cons-arr :accessor is-cons-arr :initarg :is-cons-arr :initform (list nil nil

nil nil))
277 (cons-cost :accessor cons-cost :initarg :cons-cost :initform (list nil nil nil

nil))
278

279 ; 4th species variables
280 (is-no-syncope-arr :accessor is-no-syncope-arr :initarg :is-no-syncope-arr :

initform nil)
281 (no-syncope-cost :accessor no-syncope-cost :initarg :no-syncope-cost :initform

nil)
282

283 ; 5th species variables
284 (species-arr :accessor species-arr :initarg :species-arr :initform nil) ; 0: no

constraint, 1: first species, 2: second species, 3: third species, 4: fourth
species

285 (sp-arr :accessor sp-arr :initarg :sp-arr :initform nil) ; represents *
species-arr by position in the measure

286 (is-nth-species-arr :accessor is-nth-species-arr :initarg :is-nth-species-arr :
initform (list nil nil nil nil nil)) ; if *species-arr is n, then *
is-nth-species-arr is true

287 (is-3rd-species-arr :accessor is-3rd-species-arr :initarg :is-3rd-species-arr :
initform (list nil nil nil nil)) ; if *species-arr is 3, then *
is-3rd-species-arr is true

288 (is-4th-species-arr :accessor is-4th-species-arr :initarg :is-4th-species-arr :
initform (list nil nil nil nil)) ; if *species-arr is 4, then *
is-4th-species-arr is true

289 (is-2nd-or-3rd-species-arr :accessor is-2nd-or-3rd-species-arr :initarg :
is-2nd-or-3rd-species-arr :initform nil) ; if *species-arr is 2 or 3, then *
is-2nd-or-3rd-species-arr is true

290 (m-ta-intervals :accessor m-ta-intervals :initarg :m-ta-intervals :initform nil)
; represents the m-intervals between the thesis note and the arsis note of
the same measure

291 (m-ta-intervals-brut :accessor m-ta-intervals-brut :initarg :m-ta-intervals-brut
:initform nil) ; same but without the absolute reduction

292 (is-mostly-3rd-arr :accessor is-mostly-3rd-arr :initarg :is-mostly-3rd-arr :
initform nil) ; true if second, third and fourth notes are from the 3rd
species

293 (is-constrained-arr :accessor is-constrained-arr :initarg :is-constrained-arr :
initform nil) ; represents !(*is-0th-species-arr) i.e. there are species
constraints

294 (is-cst-arr :accessor is-cst-arr :initarg :is-cst-arr :initform (list nil nil
nil nil)) ; represents *is-constrained-arr for all beats of the measure

295

296 ; 3v variables
297 (variety-cost :accessor variety-cost :initarg :variety-cost :initform nil)
298 (is-not-lowest :accessor is-not-lowest :initarg :is-not-lowest :initform nil) ;

represents if the current part is not the lowest stratum
299 (h-intervals-to-cf :accessor h-intervals-to-cf :initarg :h-intervals-to-cf :

initform (list nil nil nil nil))
300))
301

114

302 (defun init-cantus-firmus ()
303 ; init a cantus-firmus class "object"
304 (let (
305 (cantus-firmus-notes (gil::add-int-var-array *sp* *cf-len 0 120))
306)
307 (dotimes (i *cf-len) (gil::g-rel *sp* (nth i cantus-firmus-notes) gil::

IRT_EQ (nth i *cf)))
308 (make-instance ’part-class
309 :species 0 ; value 0 = cantus firmus
310 :notes (list cantus-firmus-notes nil nil nil) ; no notes in the

second, third and fourth beat
311)
312)
313)
314

315 (defun init-counterpoint (voice-type species)
316 ; initialise a counterpoint ’object’
317 (let (
318 ; Lower bound and upper bound related to the cantus firmus pitch
319 (range-upper-bound (+ 12 (* 6 voice-type)))
320 (range-lower-bound (+ -6 (* 6 voice-type)))
321)
322 (let (
323 ; set the pitch range of the counterpoint
324 (cp-range (range (+ *tone-pitch-cf range-upper-bound) :min (+ *

tone-pitch-cf range-lower-bound))) ; arbitrary range
325)
326 (let (
327 ; set counterpoint pitch domain
328 (cp-domain (intersection cp-range *scale))
329 ; penultimate (first *cp) note domain
330 (chromatic-cp-domain (intersection cp-range *chromatic-scale))
331 ; set counterpoint extended pitch domain
332 (extended-cp-domain (intersection cp-range (union *scale *

borrowed-scale)))
333 ; set the domain of the only barrowed notes
334 (off-domain (intersection cp-range *off-scale))
335)
336 ; create the instance, by passing it the arguments
337 (setf counterpoint (make-instance ’part-class
338 :cp-range cp-range
339 :cp-domain cp-domain
340 :chromatic-cp-domain

chromatic-cp-domain
341 :extended-cp-domain

extended-cp-domain
342 :off-domain off-domain
343 :voice-type voice-type
344 :species species
345))
346 (case species
347 ((1 2 3) (progn
348 ; set the first beats of all measures of the counterpoints

to be in the extended-cp-domain
349 (setf (first (notes counterpoint)) (gil::

add-int-var-array-dom *sp* *cf-len (extended-cp-domain
counterpoint)))

350 ; then treat the case where species = 1, 2, or 3
351 (case species
352 (1 (if (is-borrow-allowed)
353 ; then add to the penultimate note more

possibilities

115

354 (setf (nth *cf-penult-index (first (notes
counterpoint))) (gil::add-int-var-dom *sp* (
chromatic-cp-domain counterpoint)))

355))
356 (2 (progn
357 ; add the arsis counterpoint array (of [*cf-len - 1]

length) to the space with the domain cp-domain
358 (setf (third (notes counterpoint)) (gil::

add-int-var-array-dom *sp* *cf-last-index (
extended-cp-domain counterpoint)))

359 ; add to the penultimate note more possibilities
360 (if (is-borrow-allowed)
361 (setf (nth *cf-penult-index (third (notes

counterpoint))) (gil::add-int-var-dom *sp* (
chromatic-cp-domain counterpoint)))

362)
363))
364 (3 (progn
365 (loop for i from 1 to 3 do
366 ; add all quarter notes to the space with the

domain (cp-domain counterpoint)
367 (setf (nth i (notes counterpoint)) (gil::

add-int-var-array-dom *sp* *cf-last-index (
extended-cp-domain counterpoint)))

368

369 (if (and (eq i 3) (is-borrow-allowed))
370 ; then add to the penultimate note more

possibilities
371 (setf (nth *cf-penult-index (nth i (notes

counterpoint))) (gil::add-int-var-dom *
sp* (chromatic-cp-domain counterpoint)))

372)
373)
374))
375)
376))
377 (4 (progn
378 ; add the arsis counterpoint array (of [*cf-len - 1] length)

to the space with the domain (cp-domain counterpoint)
379 (setf (third (notes counterpoint)) (gil::

add-int-var-array-dom *sp* *cf-last-index (
extended-cp-domain counterpoint)))

380 (setf (first (notes counterpoint)) (gil::
add-int-var-array-dom *sp* *cf-last-index (
extended-cp-domain counterpoint)))

381 ; add to the penultimate note more possibilities
382 (if (and (is-borrow-allowed) (/= *N-PARTS 1))
383 (progn
384 (setf (nth *cf-penult-index (third (notes counterpoint))

) (gil::add-int-var-dom *sp* (chromatic-cp-domain
counterpoint)))

385 (setf (nth *cf-penult-index (first (notes counterpoint))
) (gil::add-int-var-dom *sp* (chromatic-cp-domain
counterpoint)))

386)
387)
388))
389 (5 (progn
390 (loop for i from 0 to 3 do
391 (if (eq i 0)
392 (progn
393 ; add all quarter notes to the space with the

domain (notes counterpoint)-domain

116

394 (setf (nth i (notes counterpoint)) (gil::
add-int-var-array-dom *sp* *cf-len (
extended-cp-domain counterpoint)))

395 ; then add to the penultimate note more
possibilities

396 (if (is-borrow-allowed)
397 (setf (nth *cf-penult-index (nth i (notes

counterpoint))) (gil::add-int-var-dom *
sp* (chromatic-cp-domain counterpoint)))

398)
399)
400 (progn
401 ; same as above but 1 note shorter
402 (setf (nth i (notes counterpoint)) (gil::

add-int-var-array-dom *sp* *cf-last-index (
extended-cp-domain counterpoint)))

403 (if (is-borrow-allowed)
404 (setf (nth *cf-penult-index (nth i (notes

counterpoint))) (gil::add-int-var-dom *
sp* (chromatic-cp-domain counterpoint)))

405)
406)
407)
408)
409 (setf (third (m-intervals-brut counterpoint)) (gil::

add-int-var-array *sp* *cf-last-index -16 16))
410))
411)
412 ; 3 voices specific
413 (if (eq *N-PARTS 3) (let (; if re-mi-la-si is the last cf note then

you can use a major third even if it’s not in the harmony
414 (tonal (mod (car (last *cf)) 12))
415)
416 (case tonal ((2 4 9 10)
417 ; using the chromatic domain as it is going to be

constrained to the harmonic triad by a later constraint
418 (setf (car (last (first (notes counterpoint)))) (gil::

add-int-var-dom *sp* (chromatic-cp-domain counterpoint))
)

419)))
420)
421 counterpoint
422)
423)
424)
425)
426

427 (defun fux-cp (species-list)
428 "Dispatches the counterpoint generation to the appropriate function according to

the species."
429 (print (list "Chosen species for the counterpoints: " species-list))
430 ; THE CSP SPACE
431 (defparameter *sp* (gil::new-space))
432

433 ; re/set global variables
434 (define-global-constants)
435 (setq *species-list species-list) ; corresponds to the species of the

counterpoints (1 5) means one ctp of 1st sp. and one ctp of 5th sp.
436 (setq *cost-indexes (make-hash-table)) ; a hashmap recording which cost is at

which position in the cost-factors list
437 (setq *cost-factors (set-cost-factors)) ; the cost-factors list, contains all

the individual costs
438

117

439 ;; CREATE THE PARTS
440 (setq counterpoints (make-list *N-COUNTERPOINTS :initial-element nil)) ; list

containing the counterpoints
441 (dotimes (i *N-COUNTERPOINTS) (setf (nth i counterpoints) (init-counterpoint (

nth i *voices-types) (nth i species-list)))) ; init the counterpoints-
442 (setq *cantus-firmus (init-cantus-firmus)) ; init the part ’object’ for the

cantus-firmus
443 (setq *parts (cons *cantus-firmus counterpoints)) ; list containing all the

parts in this order: (cf, cp1, cp2)
444

445

446 ;; CREATE THE STRATA
447 (setq *upper (make-list *N-COUNTERPOINTS :initial-element nil)) ; list

containing the upper strata (the middle and the uppermost strata)
448 (dotimes (i *N-COUNTERPOINTS) (setf (nth i *upper) (make-instance ’stratum-class

))) ; declare the upper strata
449 (setq *lowest (make-instance ’stratum-class)) ; declare the lowest stratum
450 (setf (first (notes *lowest)) (gil::add-int-var-array *sp* *cf-len 0 120))
451 (create-strata-arrays *parts) ; create the strata arrays
452

453 (case *N-COUNTERPOINTS
454 (1 (progn
455 (fux-cp-cf (first *parts)) ; apply the constraints wrt. the cantus

firmus
456 (case (first species-list) ; in this case len(species-list) = 1
457 (1 (fux-cp-1st (second *parts)))
458 (2 (fux-cp-2nd (second *parts)))
459 (3 (fux-cp-3rd (second *parts)))
460 (4 (fux-cp-4th (second *parts)))
461 (5 (fux-cp-5th (second *parts)))
462 (otherwise (error "Species ~A not implemented" species))
463)
464))
465 (2 (fux-cp-3v species-list *parts)) ; 3v dispatcher
466 (otherwise (error "Only two additional voices are implemented up to now. You

asked for ~A." (length species)))
467)
468)
469

470 (defun fux-search-engine (the-cp &optional (species ’(1)) (voice-type 0))
471 (let (se tstop sopts)
472 (print (list "Starting fux-search-engine with species = " species))
473 ;; COST
474 (reorder-costs)
475 (gil::g-cost *sp* *cost-factors) ; set the cost function
476

477 ;; SPECIFY SOLUTION VARIABLES
478 ; (print "Specifying solution variables...")
479 (gil::g-specify-sol-variables *sp* the-cp)
480 (gil::g-specify-percent-diff *sp* 0)
481

482 ;; BRANCHING
483 ; (print "Branching...")
484 (setq var-branch-type gil::INT_VAR_DEGREE_MAX)
485 (setq val-branch-type gil::INT_VAL_SPLIT_MIN)
486

487 (gil::g-branch *sp* (first (notes *lowest)) gil::INT_VAR_DEGREE_MAX gil::
INT_VAL_SPLIT_MIN)

488 (dotimes (i *N-COUNTERPOINTS) (progn
489 ; 5th species specific
490 (if (eq (nth i species) 5) ; otherwise there is no species array
491 (gil::g-branch *sp* (species-arr (nth i counterpoints))

var-branch-type gil::INT_VAL_RND)

118

492)
493

494 ; 5th species specific
495 (if (eq (nth i species) 5) (progn ; otherwise there is no species array
496 (gil::g-branch *sp* (no-syncope-cost (nth i counterpoints))

var-branch-type val-branch-type)
497 (gil::g-branch *sp* (not-cambiata-cost (nth i counterpoints))

var-branch-type val-branch-type)
498))
499

500 (if (eq (nth i species) 4)
501 (gil::g-branch *sp* (no-syncope-cost (nth i counterpoints))

var-branch-type gil::INT_VAL_MIN)
502)
503))
504

505 ;; Solution variables branching
506 (gil::g-branch *sp* the-cp gil::INT_VAR_DEGREE_MAX gil::INT_VAL_RND) ;

the-cp is all the solution arrays merged together
507

508 ; time stop
509 (setq tstop (gil::t-stop)); create the time stop object
510 (setq timeout 5)
511 (gil::time-stop-init tstop (* timeout 1000)); initialize it (time is

expressed in ms)
512

513 ; search options
514 (setq sopts (gil::search-opts)); create the search options object
515 (gil::init-search-opts sopts); initialize it
516 ; (gil::set-n-threads sopts 1)
517 (gil::set-time-stop sopts tstop); set the timestop object to stop the search

if it takes too long
518

519 ;; SEARCH ENGINE
520 (print "Search engine...")
521 (setq se (gil::search-engine *sp* (gil::opts sopts) gil::BAB));
522 (print se)
523

524 (print "CSP constructed")
525 (list se the-cp tstop sopts)
526)
527)
528

529

530

531 ; SEARCH-NEXT-SOLUTION
532 ; <l> is a list containing in that order the search engine for the problem, the

variables
533 ; this function finds the next solution of the CSP using the search engine given as

an argument
534 (defun search-next-fux-cp (l)
535 (print "Searching next solution...")
536 (let (
537 (se (first l))
538 (the-cp (second l))
539 (tstop (third l))
540 (sopts (fourth l))
541 (species-list (fifth l))
542 (check t)
543 sol sol-pitches sol-species
544)
545

546 (time (om::while check :do

119

547 ; reset the tstop timer before launching the search
548 (gil::time-stop-reset tstop)
549 ; try to find a solution
550 (time (setq sol (try-find-solution se)))
551 (if (null sol)
552 ; then check if there are solutions left and if the user wishes to

continue searching
553 (stopped-or-ended (gil::stopped se) (getparam ’is-stopped))
554 ; else we have found a solution so break fthe loop
555 (setf check nil)
556)
557))
558

559 ; print the solution from GiL
560 (print "Solution: ")
561 (handler-case
562 (progn
563 (print (list "*cost-factors" (gil::g-values sol *cost-factors)))
564 (print (list "sum of all costs = " (reduce #’+ (gil::g-values sol *

cost-factors) :initial-value 0)))
565)
566 (error (c)
567 (dotimes (i *N-COST-FACTORS)
568 (handler-case (gil::g-values sol (nth i *cost-factors)) (error (

c) (print (list "Cost" i "had a problem."))))
569)
570 (error "All costs are not set correctly. Correct this problem before

trying to find a solution.")
571)
572)
573

574 (print (list "species = " species-list))
575

576 (print "The solution can now be retrieved by evaluating the third output of
cp-params.")

577 (setq sol-pitches (gil::g-values sol the-cp)) ; store the values of the
solution

578 (let (
579 (basic-rythmics (get-basic-rythmics species-list *cf-len sol-pitches

counterpoints sol))
580 (sol-voices (make-list *N-COUNTERPOINTS :initial-element nil))
581)
582

583 (loop for i from 0 below *N-COUNTERPOINTS do (progn
584 (setq rythmic+pitches (nth i basic-rythmics)) ; get the rythmic

correpsonding to the species
585 (setq rythmic-om (first rythmic+pitches))
586 (setq pitches-om (second rythmic+pitches))
587)
588

589 (setf (nth i sol-voices) (make-instance ’voice :chords (to-midicent
pitches-om) :tree (om::mktree rythmic-om ’(4 4)) :tempo *
cf-tempo))

590)
591 (make-instance ’poly :voices sol-voices)
592)
593)
594)
595

596 ; try to find a solution, catch errors from GiL and Gecode and restart the search
597 (defun try-find-solution (se)
598 (handler-case

120

599 (gil::search-next se) ; search the next solution, sol is the space of the
solution

600 (error (c)
601 (print "A search was already running. Please start over by saving the

configuration and starting the search.")
602 ;(try-find-solution se)
603)
604)
605)
606

607 ; determines if the search has been stopped by the solver because there are no more
solutions or if the user has stopped the search

608 (defun stopped-or-ended (stopped-se stop-user)
609 (print (list "stopped-se" stopped-se "stop-user" stop-user))
610 (if (= stopped-se 0); if the search has not been stopped by the TimeStop object,

there is no more solutions
611 (error "The search was stopped because no more solution was found. Either

the best solution was found or none exist.")
612)
613 ;otherwise, check if the user wants to keep searching or not
614 (if stop-user
615 (error "The search was stopped. Press next to continue the search.")
616)
617)
618

619 (defun reorder-costs ()
620 ; this function serves to put the costs in the order asked by the user and

combines them using either a linear combination or a maximum minimisation
621 ; in the interface the user selects an "importance" for each cost: it is the

order in which the costs are being sorted.
622 ; advice if someone wants to continue with the implementation: in a OOP language

just define the order directly in a dictionary or somewhat so there is no
need to reorder at some point

623

624 ; at the end of this function, ’cost-names-by-order’
625 (setf costs-names-by-order (make-list 14 :initial-element nil)) ; there are

fourteen types of cost
626 ; take the costs in *cost-preferences* and sort them according to the user

preferences in list ’costs-names-by-order’
627 (maphash #’(lambda (key value)
628 (setf value (- (parse-integer value) 1))
629 (setf (nth value costs-names-by-order) (append (nth value

costs-names-by-order) (list key)))
630)
631 *cost-preferences*)
632 ; now ’costs-names-by-order looks like this (python notation) [[cost1, cost2], [

cost3], [cost4], [cost5, cost6]]
633 ; which means first level for the lexicographic order are cost1 and cost2
634 ; cost3 comes on the second level, cost4 on the third, and cost5 and cost6 are

together on the fourth level
635

636 ; reverse the cost order because when passing them between GiL and C++ they are
reversed again

637 (setq costs-names-by-order (reverse costs-names-by-order))
638 (print "Order of the costs, in reversed order:")
639 (let (
640 (i 0)
641 (n-different-costs 0) ; the amount of cost types that have been encountered;

not all the costs will be encountered, as some are species-specific (
like the cost for no syncopation, that occurs only with a 4th species
ctp)

642 (reordered-costs (make-list *N-COST-FACTORS :initial-element nil))
643)

121

644 (assert costs-names-by-order () "costs-names-by-order is nil, which means no
preferences were passed. This is an implementation bug.")

645 ; for each level of the ordered cost names (i.e. for each sublist in [[cost1
, cost2], [cost3], [cost4], [cost5, cost6]])

646 (dolist (preference-level costs-names-by-order)
647 (let
648 (
649 (current-cost-array ’()) ; the array of the actual values of the

costs in the preference-level
650 (current-cost-sum (gil::add-int-var *sp* 0 1000)) ; a variable

representing the combination of the costs of this level
651)
652 ; for each cost name in the level
653 (dolist (cost preference-level)
654 (let ((index (gethash cost *cost-indexes)))
655 (if index (progn
656 (loop for index in (gethash cost *cost-indexes) do (

progn
657 ; get the value of the cost and put in into the

current array of cost values
658 (push (nth index *cost-factors) current-cost-array)
659))
660)
661 ; if index is nil (i.e. if this cost doesn’t exist in

this species)
662 ; it is not a problem, it is the normal way of working

since some costs don’t exist in some species
663 #| debug |# ; (print (list "Cost " cost " was not found

in this configuration."))
664)
665)
666)
667 (if current-cost-array (progn ; if there was at least one cost on

this level
668 (if *linear-combination
669 ; if the user asked for linear combination then perform a

linear combination
670 (gil::g-sum *sp* current-cost-sum current-cost-array)
671 ; else perform a maximum minimisation (take the maximum and

the solver will minimise it)
672 (gil::g-lmax *sp* current-cost-sum current-cost-array)
673)
674 ; put our linear combination or maximum minimisation into our

global cost array
675 (setf (nth n-different-costs reordered-costs) current-cost-sum)
676 (print (list n-different-costs "th cost = " preference-level)) ;

print the index at which the cost was added, please
remember that it is reverted wrt. user preferences, as it
will be reverted again when passing to GiL->C++

677 (incf n-different-costs)
678))
679)
680)
681 ; if some costs are on the same level, then not all slots were used, get rid

of them
682 (setf reordered-costs (subseq reordered-costs 0 n-different-costs))
683 ; verify that no index of the newly created cost array is nil
684 (dolist (cost reordered-costs) (assert cost () "A cost is nil. Ordered costs

= ~A. This is an implementation bug." reordered-costs))
685

686 ; set the global variable to now be the reordered-costs
687 (setf *cost-factors reordered-costs)
688)

122

689)

D.5 3v-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Anton Lamotte
4 ; Date: January 2024
5 ; This file contains the function that dispatches the counterpoints to thei

respective functions and adds all the necessary constraints for having 3 voices
species.

6

7 ;;===================================#
8 ;; Three voices counterpoint handler #
9 ;;===================================#

10 (defun fux-cp-3v (species-list parts)
11 (print "######### 3 VOICES ##########")
12

13 (setf cantus-firmus (first parts))
14 (setf counterpoint-1 (second parts))
15 (setf counterpoint-2 (third parts))
16

17 ;
==;

18 ; APPLYING THE PART-SPECIFIC RULES
;

19 ;
==;

20 ; for each part
21 (dotimes (i *N-PARTS)
22 (case (species (nth i parts))
23 (0 (fux-cp-cf (nth i parts))) ; dispatch to the cantus firmus function
24 (1 (fux-cp-1st (nth i parts) 3v-1sp)) ; dispatch to the first species

function
25 (2 (fux-cp-2nd (nth i parts) 3v-2sp)) ; dispatch to the second species

function
26 (3 (fux-cp-3rd (nth i parts) 3v-3sp)) ; dispatch to the third species

function
27 (4 (fux-cp-4th (nth i parts) 3v-4sp)) ; dispatch to the fourth species

function
28 (5 (fux-cp-5th (nth i parts) 3v-5sp)) ; dispatch to the fifth species

function
29 (otherwise (error "Unexpected value in the species list, when calling

fux-cp-3v."))
30)
31)
32

33

34 ;
==;

35 ; CREATING SOME ADDITIONAL VARIABLES
;

36 ;
==;

37 (setf solution-array (append (solution-array counterpoint-1) (solution-array
counterpoint-2))) ; the final array with both counterpoints

38

123

39 (dotimes (i *N-COUNTERPOINTS)
40 (create-h-intervals (first (notes (nth i *upper))) (first (notes *lowest)) (

first (h-intervals (nth i *upper))))
41 (setf (h-intervals-abs (nth i *upper)) (gil::add-int-var-array *sp* *cf-len

-127 127))
42 (setf (h-intervals-brut (nth i *upper)) (gil::add-int-var-array *sp* *cf-len

-127 127))
43 (create-intervals (first (notes *lowest)) (first (notes (nth i *upper))) (

h-intervals-abs (nth i *upper)) (h-intervals-brut (nth i *upper)))
44)
45

46 ;
==;

47 ; CONSTRAINTS
;

48 ;
==;

49 (loop
50 ; for each possible pair or parts
51 ; for example if we have (cf, cp1 and c2), take (cf and cp1), (cf and cp2)

and (cp1 and cp2)
52 for v1 in parts
53 for i from 0
54 do (loop for v2 in (nthcdr (1+ i) parts)
55 do (progn
56 ; no unison between the voices
57 (print "No unison between the voices")
58 (dotimes (i 4) (if (eq i 0)
59 ; first beat can be the same on first and last measure
60 (add-no-unison-cst (nth i (notes v1)) (nth i (notes v2)))
61 ; other beats must always be different
62 (add-no-unison-at-all-cst (nth i (notes v1)) (nth i (notes v2)))
63))
64))
65)
66

67 ; it is not allowed to have two direct motions
68 (print "No together move")
69 (add-no-together-move-cst (list (first (motions counterpoint-1)) (first (motions

counterpoint-2)) (first (motions cantus-firmus))))
70

71 (print "Last chord cannot be minor")
72 (dotimes (i *N-COUNTERPOINTS)
73 (add-no-minor-third-cst (lastone (first (h-intervals (nth i *upper)))))
74)
75

76 (print "Last chord cannot include a tenth")
77 (dotimes (i *N-COUNTERPOINTS)
78 (add-no-tenth-in-last-chord-cst (first (h-intervals (nth i *upper))) (

h-intervals-brut (nth i *upper)))
79)
80

81 (print "Last chord must be a harmonic triad")
82 (add-last-chord-h-triad-cst (first (h-intervals (first *upper))) (first (

h-intervals (second *upper))))
83

84 (print "The last lowest note must be the same as the root note of the key")
85 (last-lowest-note-same-as-root-note-cst)
86

87 ; two fifth species counterpoints only
88 (if (equal species-list ’(5 5)) (progn

124

89 (print "The rhythms of the two fifth-species counterpoints must be as
different as possible")

90 (add-make-fifth-species-different-cst parts)
91))
92

93 ;
==;

94 ; COSTS
;

95 ;
==;

96 ; Cost #1 : no successive perfect consonances
97 (setf succ-p-cons-cost (gil::add-int-var-array-dom *sp* (* 3 *cf-last-index) (

append ’(0) (getparam-val ’succ-p-cons-cost))))
98 (setf succ-p-cons-cost-index 0)
99 (loop

100 ; for each possible pair or parts
101 ; for example if we have (cf, cp1 and c2), take (cf and cp1), (cf and cp2)

and (cp1 and cp2)
102 for v1 in parts
103 for i from 0
104 do (loop for v2 in (nthcdr (1+ i) parts)
105 do (progn
106 (print "As few successive perfect consonances as possible")
107 (let (
108 (h-intervals-1-2 (gil::add-int-var-array *sp* *cf-len 0 11)) ; the

h-intervals between p1 and p2
109 (is-p-cons-arr-1-2 (gil::add-bool-var-array *sp* *cf-len 0 1)) ; the

is h-intervals-1-2 a perfect consonance
110 (current-cost (subseq succ-p-cons-cost succ-p-cons-cost-index)) ;

succ-p-cons-cost is a long array of size 3m, each slice of m
being dedicated for the costs between a pair of parts

111)
112 (incf succ-p-cons-cost-index *cf-last-index) ; set the index to the

next slice
113

114 (if (member 4 (list (species v1) (species v2)))
115 (progn ; first case, we have a fourth species counterpoint in

the composition
116 (if (eq (species v1) 4)
117 (if (eq (species v2) 4)
118 ; both are of fourth species, compute using the

third beat for each
119 (create-h-intervals (third (notes v1)) (third (notes

v2)) h-intervals-1-2)
120 ; only the first is of fourth species, compute using

the third beat for it
121 (create-h-intervals (third (notes v1)) (first (notes

v2)) h-intervals-1-2)
122)
123 ; only the second is of fourth species, compute using

the third beat for it
124 (create-h-intervals (first (notes v1)) (third (notes v2)

) h-intervals-1-2)
125)
126 ; if one voice is of the fourth species the last chord was

not created yet, due to the delaying of the fourth
species

127 (create-h-intervals (last (first (notes v1))) (last (first (
notes v2))) (last h-intervals-1-2))

128)

125

129 (progn ; "normal" case: compute using the first beat for all the
parts

130 (create-h-intervals (first (notes v1)) (first (notes v2))
h-intervals-1-2)

131)
132)
133

134 (create-is-p-cons-arr h-intervals-1-2 is-p-cons-arr-1-2)
135 (cond
136 ((and (/= 2 (species v1)) (/= 2 (species v2)) (/= 4 (species v1)

) (/= 4 (species v2))) ; if both voices are not from the 2nd
nor from the 4th species

137 (add-no-successive-p-cons-cst is-p-cons-arr-1-2 current-cost
) ; for all species except the fourth and the second,
successive perfect consonances are avoided

138)
139 ((= 2 (species v1))
140 (add-no-successive-p-cons-2nd-species-cst is-p-cons-arr-1-2

h-intervals-1-2 (first (m-succ-intervals v1))
current-cost) ; for the second species, successive
fifths are allowed if there is a third in between

141)
142 ((= 2 (species v2))
143 (add-no-successive-p-cons-2nd-species-cst is-p-cons-arr-1-2

h-intervals-1-2 (first (m-succ-intervals v2))
current-cost) ; for the second species, successive
fifths are allowed if there is a third in between

144)
145 ((or (eq 4 (species v1)) (eq 4 (species v2)))
146 (add-no-successive-p-cons-4th-species-cst is-p-cons-arr-1-2

h-intervals-1-2 current-cost) ; for the fourth species,
successive fifths are allowed, but no other successive
perfect consonances

147)
148)
149)
150)
151))
152 (add-cost-to-factors succ-p-cons-cost ’succ-p-cons-cost)
153

154 (dolist (part parts) (progn
155 (print "As few direct motion to reach a perfect consonance as possible")
156 ; Cost #2: as few direct motion to reach a perfect consonance as possible
157 (if (eq (species part) 4)
158 nil ; if species=4 then pass, this cost doesn’t apply to 4th species
159 ; else apply the cost:
160 (let ((direct-move-to-p-cons-cost (gil::add-int-var-array-dom *sp* *

cf-last-index (append ’(0) (getparam-val ’direct-move-to-p-cons-cost
)))))

161 (case (species part)
162 ; the direct motion must be computed from the last note in the

measure
163 ((0 1) (compute-no-direct-move-to-p-cons-costs-cst (first (

motions part)) direct-move-to-p-cons-cost (is-p-cons-arr
part)))

164 (2 (compute-no-direct-move-to-p-cons-costs-cst (real-motions
part) direct-move-to-p-cons-cost (is-p-cons-arr part)))

165 (3 (compute-no-direct-move-to-p-cons-costs-cst (fourth (motions
part)) direct-move-to-p-cons-cost (is-p-cons-arr part)))

166 (5 (compute-no-direct-move-to-p-cons-costs-cst
167 (fourth (motions part)) direct-move-to-p-cons-cost (

collect-bot-array (is-p-cons-arr part) (fourth (
is-3rd-species-arr part))) nil

126

168))
169)
170 (add-cost-to-factors direct-move-to-p-cons-cost ’

direct-move-to-p-cons-cost)
171)
172)
173

174 ; Cost #3: as many different notes as possible
175 (print "As many different notes as possible")
176 (if (eq (species part) 0)
177 nil ; this cost has no sense for the cantus firmus as its notes are

already fixed
178 (let (; for all the counterpoints
179 (variety-cost (gil::add-int-var-array-dom *sp* (* 3 (- (length (

first (notes part))) 2)) (append ’(0)(getparam-val ’variety-cost
))))

180)
181 (compute-variety-cost (first (notes part)) variety-cost)
182 (add-cost-to-factors variety-cost ’variety-cost)
183)
184)
185))
186

187 ; Cost #4
188 (print "Prefer the use of the harmonic triad")
189 (if (member 4 species-list)
190 (progn ; first case, we have a fourth species counterpoint in the

composition
191 (setq h-triad-cost (gil::add-int-var-array-dom *sp* *cf-last-index (

append ’(0) (getparam-val ’h-triad-cost)))) ; length of the cost is
m-1 because there is m-1 notes on the third beat

192 (if (eq (species counterpoint-1) 4)
193 (if (eq (species counterpoint-2) 4)
194 ; both are of fourth species, compute using the third beat for

each
195 (compute-h-triad-cost (third (h-intervals counterpoint-1)) (

third (h-intervals counterpoint-2)) h-triad-cost)
196 ; only the first is of fourth species, compute using the third

beat for it
197 (compute-h-triad-cost (third (h-intervals counterpoint-1)) (

first (h-intervals counterpoint-2)) h-triad-cost)
198)
199 ; only the second is of fourth species, compute using the third beat

for it
200 (compute-h-triad-cost (first (h-intervals counterpoint-1)) (third (

h-intervals counterpoint-2)) h-triad-cost)
201)
202)
203 (progn ; "normal" case: compute using the first beat for all the parts
204 (setq h-triad-cost (gil::add-int-var-array-dom *sp* *cf-len (append ’(0)

(getparam-val ’h-triad-cost)))) ; length is m as usual
205 (compute-h-triad-cost (first (h-intervals counterpoint-1)) (first (

h-intervals counterpoint-2)) h-triad-cost)
206)
207)
208 (add-cost-to-factors h-triad-cost ’h-triad-cost)
209

210 (dotimes (i *N-PARTS)
211 ; Cost #5, only for 3rd species: if harmonic triad isn’t achieved on the

downbeat, it shall be on the second or third one
212 (if (or (eq (species (nth i parts)) 3) (eq (species (nth i parts)) 5)) (let
213 (

127

214 (h-triad-3rd-species-cost (gil::add-int-var-array-dom *sp* (* *
cf-last-index 2) (append ’(0) (getparam-val ’
h-triad-3rd-species-cost))))

215)
216 (dotimes (j 2) (progn
217 (compute-h-triad-3rd-species-cost
218 (nth (+ j 1) (h-intervals (nth i parts))) ; 2nd or 3rd beat (=j)
219 (subseq h-triad-3rd-species-cost (* j *cf-last-index) (* (+ j 1)

*cf-last-index))) ; these are the costs corresponding to
the 2nd or 3rd beat (=j)

220))
221 (add-cost-to-factors h-triad-3rd-species-cost ’h-triad-3rd-species-cost)
222))
223)
224

225 ;
==;

226 ; RETURN
;

227 ;
==;

228 (append (fux-search-engine solution-array species-list) (list species-list))
229)

D.6 cf.lisp

1 (in-package :fuxcp)
2

3 ; Author: Anton Lamotte
4 ; Date: January 2024
5 ; This file contains the function that adds all the necessary constraints to link

the cantus firmus to the lowest stratum.
6

7 ;;==========================#
8 ;; CANTUS FIRMUS #
9 ;;==========================#

10 (defun fux-cp-cf (cantus-firmus &optional (species 0))
11 (print "########## CANTUS FIRMUS RULES ##########")
12 "Create the CSP for the cantus-firmus."
13

14 ;== CREATING GIL ARRAYS
=============================

15 ;; initialize the variables
16 (print "Initializing variables...")
17

18 ; creating harmonic intervals array
19 (print "Creating harmonic intervals array...")
20

21 ; array of IntVar representing the absolute intervals % 12 between the cantus
firmus and the cantus-firmus

22 (setf (first (h-intervals cantus-firmus)) (gil::add-int-var-array *sp* *cf-len 0
11))

23 (create-h-intervals (first (notes cantus-firmus)) (first (notes *lowest)) (first
(h-intervals cantus-firmus)))

24

25 ; creating melodic intervals array
26 (print "Creating melodic intervals array...")
27 ; array of IntVar representing the absolute intervals between two notes in a row

of the cantus-firmus

128

28 (setf (first (m-intervals cantus-firmus)) (gil::add-int-var-array *sp* *
cf-last-index 0 12))

29 ;(setf (first (m-intervals-brut cantus-firmus)) (gil::add-int-var-array *sp* *
cf-last-index -12 12))

30 (create-m-intervals-self (first (notes cantus-firmus)) (first (m-intervals
cantus-firmus)) (first (m-intervals-brut cantus-firmus)))

31

32 ; creating perfect consonances boolean array
33 (print "Creating perfect consonances boolean array...")
34 ; array of BoolVar representing if the interval between the cantus firmus and

the cantus-firmus is a perfect consonance
35 (setf (is-p-cons-arr cantus-firmus) (gil::add-bool-var-array *sp* *cf-len 0 1))
36 (create-is-p-cons-arr (first (h-intervals cantus-firmus)) (is-p-cons-arr

cantus-firmus))
37

38

39 ; creating motion array
40 (print "Creating motion array...")
41 (setf (first (motions cantus-firmus)) (gil::add-int-var-array *sp* *

cf-last-index -1 2)) ; 0 = contrary, 1 = oblique, 2 = direct/parallel
42 (setf (first (motions-cost cantus-firmus)) (gil::add-int-var-array-dom *sp* *

cf-last-index *motions-domain*))
43 (create-motions (first (m-intervals-brut cantus-firmus)) (first (

m-intervals-brut *lowest)) (first (motions cantus-firmus)) (first (
motions-cost cantus-firmus)) (is-not-lowest cantus-firmus))

44 ;== HARMONIC CONSTRAINTS
============================

45 (print "Posting constraints...")
46

47 ; for all intervals between the cantus firmus and the cantus-firmus, the
interval must be a consonance

48 (print "Harmonic consonances...")
49 (add-h-cons-cst *cf-len *cf-penult-index (first (h-intervals cantus-firmus)))
50

51 (if (= *N-PARTS 2) (progn
52 ; must start with a perfect consonance
53 (print "Perfect consonance at the beginning...")
54 (add-p-cons-start-cst (first (h-intervals cantus-firmus)))
55

56 ; must end with a perfect consonance
57 (print "Perfect consonance at the end...")
58 (add-p-cons-end-cst (first (h-intervals cantus-firmus)))
59

60 (print "Penultimate measure...")
61 (add-penult-cons-1sp-and-cf-cst (penult (is-not-lowest cantus-firmus)) (

penult (first (h-intervals cantus-firmus))) 0)
62)
63 ; else (if 3 parts)
64 (progn
65 (print "Penultimate measure...")
66 (gil::g-member *sp* PENULT_CONS_3P_VAR (penult (first (h-intervals

cantus-firmus))))
67)
68)
69

70 ;==================================== MELODIC CONSTRAINTS
===========================

71 ; There are no melodic constraints for the cantus firmus, as its notes are
already fixed

72

73 ;==================================== MOTION CONSTRAINTS
============================

74 (print "Motion constraints...")

129

75 (if (= *N-PARTS 2)
76 (add-no-direct-move-to-p-cons-cst (first (motions cantus-firmus)) (

is-p-cons-arr cantus-firmus) (is-not-lowest cantus-firmus))
77)
78

79 ;== COST FACTORS
====================================

80 (print "Cost function...")
81

82 ; 1, 2) imperfect consonances are preferred to perfect consonances
83 (print "Imperfect consonances are preferred to perfect consonances...")
84 (add-p-cons-cost-cst (h-intervals cantus-firmus) (is-not-lowest cantus-firmus))
85 ; 3) motion costs
86 (print "add motion costs")
87 (add-cost-to-factors (first (motions-cost cantus-firmus)) ’motions-cost)
88)

D.7 1sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard, adapted by Anton Lamotte
4 ; Date: June 3, 2023, adapted January 2024
5 ; This file contains the function that adds all the necessary constraints to the

first species.
6

7 ;;==========================#
8 ;; FIRST SPECIES #
9 ;;==========================#

10 (defun fux-cp-1st (counterpoint &optional (species 1))
11 (print "########## FIRST SPECIES ##########")
12 "Create the CSP for the first species of Fux’s counterpoint."
13

14 ;== CREATING GIL ARRAYS
=============================

15 ;; initialize the variables
16 (print "Initializing variables...")
17

18 ; creating harmonic intervals array
19 (print "Creating harmonic intervals array...")
20

21 ; array of IntVar representing the absolute intervals % 12 between the cantus
firmus and the counterpoint

22 (setf (first (h-intervals counterpoint)) (gil::add-int-var-array *sp* *cf-len 0
11))

23 (create-h-intervals (first (notes counterpoint)) (first (notes *lowest)) (first
(h-intervals counterpoint)))

24

25 ; creating melodic intervals array
26 (print "Creating melodic intervals array...")
27 ; array of IntVar representing the absolute intervals between two notes in a row

of the counterpoint
28 (setf (first (m-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 12))
29

30 #| next line defined in init-counterpoint |#
31 ; (setf (first (m-intervals-brut counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index -12 12))
32 (create-m-intervals-self (first (notes counterpoint)) (first (m-intervals

counterpoint)) (first (m-intervals-brut counterpoint)))
33

130

34 (case species ((1 3v-1st) ; only for the first species
35 ; then
36 (progn
37 ; creating melodic intervals array between the note n and n+2
38 (setf (m2-intervals counterpoint) (gil::add-int-var-array *sp* *

cf-penult-index 0 12))
39 (setf (m2-intervals-brut counterpoint) (gil::add-int-var-array *sp* *

cf-penult-index -12 12))
40 (create-m2-intervals (first (notes counterpoint)) (m2-intervals

counterpoint) (m2-intervals-brut counterpoint))
41

42 ; creating boolean is counterpoint off key array
43 (print "Creating is counterpoint off key array...")
44 (setf (is-cp-off-key-arr counterpoint) (gil::add-bool-var-array *sp* *

cf-len 0 1))
45 (create-is-member-arr (first (notes counterpoint)) (is-cp-off-key-arr

counterpoint) (off-domain counterpoint))
46)
47))
48

49 ; creating perfect consonances boolean array
50 (print "Creating perfect consonances boolean array...")
51 ; array of BoolVar representing if the interval between the cantus firmus and

the counterpoint is a perfect consonance
52 (setf (is-p-cons-arr counterpoint) (gil::add-bool-var-array *sp* *cf-len 0 1))
53 (create-is-p-cons-arr (first (h-intervals counterpoint)) (is-p-cons-arr

counterpoint))
54

55

56 ; creating order/role of pitch array (if cantus firmus is higher or lower than
counterpoint)

57 ; 0 for being the bass, 1 for being above
58 (print "Creating order of pitch array...")
59 (setf (first (is-cf-lower-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-len 0 1))
60 (create-is-cf-lower-arr (first (notes counterpoint)) *cf (first (is-cf-lower-arr

counterpoint)))
61

62

63 ; creating motion array
64 (print "Creating motion array...")
65 (setf (first (motions counterpoint)) (gil::add-int-var-array *sp* *cf-last-index

-1 2)) ; 0 = contrary, 1 = oblique, 2 = direct/parallel
66 (setf (first (motions-cost counterpoint)) (gil::add-int-var-array-dom *sp* *

cf-last-index *motions-domain*))
67 (create-motions (first (m-intervals-brut counterpoint)) (first (m-intervals-brut

*lowest)) (first (motions counterpoint)) (first (motions-cost counterpoint)
) (is-not-lowest counterpoint))

68

69

70 ;== HARMONIC CONSTRAINTS
============================

71 (print "Posting constraints...")
72

73 ; for all intervals between the cantus firmus and the counterpoint, the interval
must be a consonance

74 (print "Harmonic consonances...")
75 (case species
76 ((1 3v-1sp) (add-h-cons-cst *cf-len *cf-penult-index (first (h-intervals

counterpoint))))
77 ((2 3v-2sp) (add-h-cons-cst *cf-len *cf-penult-index (first (h-intervals

counterpoint)) PENULT_THESIS_VAR))

131

78 ((3 3v-3sp) (add-h-cons-cst *cf-len *cf-penult-index (first (h-intervals
counterpoint)) PENULT_1Q_VAR))

79)
80

81 ; no unison between the cantus firmus and the counterpoint unless it is the
first note or the last note

82 (print "No unison...")
83 (add-no-unison-cst (first (notes counterpoint)) *cf)
84

85 (case species ((1 2)
86 ; then
87 (progn
88 ; must start with a perfect consonance
89 (print "Perfect consonance at the beginning...")
90 (add-p-cons-start-cst (first (h-intervals counterpoint)))
91

92 ; must end with a perfect consonance
93 (print "Perfect consonance at the end...")
94 (add-p-cons-end-cst (first (h-intervals counterpoint)))
95)
96))
97

98 ; if penultimate measure, a major sixth or a minor third must be used
99 ; depending if the cantus firmus is at the bass or on the top part

100 (print "Penultimate measure...")
101 (case species
102 ((1) (add-penult-cons-1sp-and-cf-cst (penult (is-not-lowest counterpoint)) (

penult (first (h-intervals counterpoint))) 1))
103 ((3v-1sp) (gil::g-member *sp* PENULT_CONS_3P_VAR (penult (first (h-intervals

counterpoint)))))
104)
105 ;== MELODIC CONSTRAINTS

=============================
106 ; NOTE: with the degree iii in penultimate *cf measure -> no solution bc there

is a *tritone between I#(minor third) and V.
107 (print "Melodic constraints...")
108 (case species ((1 3v-1sp)
109 ; then
110 (progn
111 ; no more than minor sixth melodic interval
112 (print "No more than minor sixth...")
113 (add-no-m-jump-cst (first (m-intervals counterpoint)))
114

115 ; no chromatic motion between three consecutive notes
116 (print "No chromatic motion...")
117 (add-no-chromatic-m-cst (first (m-intervals-brut counterpoint)) (

m2-intervals-brut counterpoint))
118

119 ;==================================== MOTION CONSTRAINTS
============================

120 (print "Motion constraints...")
121 (if (eq species 1) ; for the 3v-1st species, it isn’t a constraint but a

cost
122 ; no direct motion to reach a perfect consonance
123 (progn
124 (print "No direct motion to reach a perfect consonance...")
125 (add-no-direct-move-to-p-cons-cst (first (motions counterpoint))

(is-p-cons-arr counterpoint) (is-not-lowest counterpoint))
126)
127)
128 ; no battuta kind of motion
129 ; i.e. contrary motion to an *octave, lower voice up, higher voice down,

counterpoint melodic interval < -4

132

130 (print "No battuta kind of motion...")
131 (add-no-battuta-cst (first (motions counterpoint)) (first (h-intervals

counterpoint)) (first (m-intervals-brut counterpoint)) (
is-not-lowest counterpoint))

132)
133))
134

135 ;== COST FACTORS
====================================

136 (print "Cost function...")
137

138 (case species ((1 3v-1st)
139 ; then
140 (progn
141 (setf (m-all-intervals counterpoint) (first (m-intervals counterpoint)))
142 ; 1, 2) imperfect consonances are preferred to perfect consonances
143 (print "Imperfect consonances are preferred to perfect consonances...")
144 (add-p-cons-cost-cst (h-intervals counterpoint) (is-not-lowest

counterpoint))
145

146 ; 3, 4) add off-key cost, m-degrees cost and tritons cost
147 (print "add off-key cost, m-degrees cost and tritons cost")
148 (set-general-costs-cst counterpoint *cf-len)
149

150 ; 5) motion costs
151 (print "add motion costs")
152 (add-cost-to-factors (first (motions-cost counterpoint)) ’motions-cost)
153)
154))
155

156 (setf (solution-array counterpoint) (first (notes counterpoint)))
157 (setf (solution-len counterpoint) *cf-len)
158

159 ; RETURN
160 (case species
161 (1 (append (fux-search-engine (solution-array counterpoint)) (list (list 1))

))
162 (otherwise nil) ; if 3v don’t return a search engine, just apply the

constraints
163)
164)

D.8 2sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard, adapted by Anton Lamotte
4 ; Date: June 3, 2023, adapted January 2024
5 ; This file contains the function that adds all the necessary constraints to the

second species.
6

7 ;;==========================#
8 ;; SECOND SPECIES #
9 ;;==========================#

10 ;; Note: fux-cp-2nd execute the first species algorithm without some constraints.
11 ;; In this function, all the variable names without the arsis-suffix refers to

thesis notes AKA the first species notes.
12 ;; All the variable names with the arsis-suffix refers to arsis notes AKA notes on

the upbeat.
13 (defun fux-cp-2nd (counterpoint &optional (species 2))

133

14 "Create the CSP for the 2nd species of Fux’s counterpoint, with the cantus
firmus as input"

15 (print "########## SECOND SPECIES ##########")
16

17 ;; ADD FIRST SPECIES CONSTRAINTS
18 (fux-cp-1st counterpoint species)
19 ;== CREATION OF GIL ARRAYS

==========================
20 (print "Initializing variables...")
21

22 ; merging cp and cp-arsis into one array
23 (setf (solution-len counterpoint) (+ *cf-len *cf-last-index))
24 (setf (solution-array counterpoint) (gil::add-int-var-array *sp* (solution-len

counterpoint) 0 127)) ; array of IntVar representing thesis and arsis notes
combined

25 (merge-cp (list (first (notes counterpoint)) (third (notes counterpoint))) (
solution-array counterpoint)) ; merge the two counterpoint arrays into one

26

27 ; creating harmonic intervals array
28 (print "Creating harmonic intervals array...")
29 ; array of IntVar representing the absolute intervals % 12 between the cantus

firmus and the counterpoint (arsis notes)
30 (setf (third (h-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 11))
31 (create-h-intervals (third (notes counterpoint)) (butlast (first (notes *lowest)

)) (third (h-intervals counterpoint)))
32 ; array of IntVar representing the absolute intervals (not % 12) and brut (just

p - q)
33 ; between the cantus firmus and the counterpoint (thesis notes)
34 (setf (h-intervals-abs counterpoint) (gil::add-int-var-array *sp* *cf-len 0 127)

)
35 (setf (h-intervals-brut counterpoint) (gil::add-int-var-array *sp* *cf-len -127

127))
36 (create-intervals (first (notes *lowest)) (first (notes counterpoint)) (

h-intervals-abs counterpoint) (h-intervals-brut counterpoint))
37

38

39 ; creating melodic intervals array
40 (print "Creating melodic intervals array...")
41 ; array of IntVar representing the melodic intervals between arsis note and next

thesis note of the counterpoint
42 (setf (third (m-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 12))
43 #| next line defined in init-counterpoint |#
44 ;(setf (third (m-intervals-brut counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index -12 12)) ; same without absolute reduction
45 (create-m-intervals-next-meas (third (notes counterpoint)) (first (notes

counterpoint)) (third (m-intervals counterpoint)) (third (m-intervals-brut
counterpoint)))

46 ; array of IntVar representing the melodic intervals between a thesis and an
arsis note of the same measure the counterpoint

47 (setf (first (m-succ-intervals counterpoint)) (gil::add-int-var-array *sp* *
cf-last-index 0 12))

48 (setf (first (m-succ-intervals-brut counterpoint)) (gil::add-int-var-array *sp*
*cf-last-index -12 12))

49 (create-m-intervals-in-meas (first (notes counterpoint)) (third (notes
counterpoint)) (first (m-succ-intervals counterpoint)) (first (
m-succ-intervals-brut counterpoint)))

50

51

52 ; creating melodic intervals array between the note n and n+2 for the whole
counterpoint

134

53 (setf (m2-len counterpoint) (- (* *cf-last-index 2) 1)) ; number of melodic
intervals between n and n+2 for thesis and arsis notes combined

54 (setf (m2-intervals counterpoint) (gil::add-int-var-array *sp* (m2-len
counterpoint) 0 12))

55 (setf (m2-intervals-brut counterpoint) (gil::add-int-var-array *sp* (m2-len
counterpoint) -12 12))

56 (create-m2-intervals (solution-array counterpoint) (m2-intervals counterpoint) (
m2-intervals-brut counterpoint))

57

58 ; creating melodic intervals array between the note n and n+1 for the whole
counterpoint

59 (setf (total-m-len counterpoint) (* *cf-last-index 2)) ; number of melodic
intervals between n and n+1 for thesis and arsis notes combined

60 (setf (m-all-intervals counterpoint) (gil::add-int-var-array *sp* (total-m-len
counterpoint) 0 12))

61 (setf (m-all-intervals-brut counterpoint) (gil::add-int-var-array *sp* (
total-m-len counterpoint) -12 12))

62 (create-m-intervals-self (solution-array counterpoint) (m-all-intervals
counterpoint) (m-all-intervals-brut counterpoint))

63

64 ; creating motion array
65 ; 0 = contrary, 1 = oblique, 2 = direct/parallel
66 (print "Creating motion array...")
67 (setf (third (motions counterpoint)) (gil::add-int-var-array *sp* *cf-last-index

-1 2))
68 (setf (third (motions-cost counterpoint)) (gil::add-int-var-array-dom *sp* *

cf-last-index *motions-domain*))
69 (setf (real-motions counterpoint) (gil::add-int-var-array *sp* *cf-last-index -1

2))
70 (setf (real-motions-cost counterpoint) (gil::add-int-var-array-dom *sp* *

cf-last-index *motions-domain*))
71 (create-motions (third (m-intervals-brut counterpoint)) (first (m-intervals-brut

*lowest)) (third (motions counterpoint)) (third (motions-cost counterpoint)
) (is-not-lowest counterpoint))

72 (create-real-motions (first (m-succ-intervals counterpoint)) (first (motions
counterpoint)) (third (motions counterpoint)) (real-motions counterpoint) (
first (motions-cost counterpoint)) (third (motions-cost counterpoint)) (
real-motions-cost counterpoint))

73

74 ; creating boolean diminution array
75 (print "Creating diminution array...")
76 ; Note: a diminution is the intermediate note that exists between two notes

separated by a jump of a third
77 ; i.e. E -> D (dim) -> C
78 (setf (is-ta-dim-arr counterpoint) (gil::add-bool-var-array *sp* *cf-last-index

0 1))
79 (create-is-ta-dim-arr (first (m-succ-intervals counterpoint)) (first (

m-intervals counterpoint)) (third (m-intervals counterpoint)) (is-ta-dim-arr
counterpoint))

80

81 ; creating boolean is cantus firmus bass array
82 (print "Creating is cantus firmus bass array...")
83 ; array of BoolVar representing if the cantus firmus is lower than the arsis

counterpoint
84 (setf (third (is-cf-lower-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
85 (create-is-cf-lower-arr (third (notes counterpoint)) (butlast *cf) (third (

is-cf-lower-arr counterpoint)))
86

87 ; creating boolean is cantus firmus neighboring the counterpoint array
88 (print "Creating is cantus firmus neighboring array...")
89 (setf (is-nbour-arr counterpoint) (gil::add-bool-var-array *sp* *cf-last-index 0

1))

135

90 (create-is-nbour-arr (h-intervals-abs counterpoint) (is-not-lowest counterpoint)
(first (m-intervals-brut *lowest)) (is-nbour-arr counterpoint))

91

92 ; creating boolean is counterpoint off key array
93 (print "Creating is counterpoint off key array...")
94 (setf (is-cp-off-key-arr counterpoint) (gil::add-bool-var-array *sp* (

solution-len counterpoint) 0 1))
95 (create-is-member-arr (solution-array counterpoint) (is-cp-off-key-arr

counterpoint) (off-domain counterpoint))
96

97

98 ;== HARMONIC CONSTRAINTS
============================

99 (print "Posting constraints...")
100

101 (print "Harmonic consonances...")
102

103 ; for all harmonic intervals between the cantus firmus and the arsis notes, the
interval must be a consonance

104 ; unless the arsis note is a diminution
105 (print "No dissonance unless diminution for arsis notes...")
106 (add-h-cons-arsis-cst *cf-len *cf-penult-index (third (h-intervals counterpoint)

) (is-ta-dim-arr counterpoint))
107

108 ; Fux does not follow this rule so deactivate ?
109 ; no unison between the cantus firmus and the arsis counterpoint
110 ; (print "No unison at all...")
111 ; (add-no-unison-at-all-cst (third (notes counterpoint)) (butlast (cf

counterpoint)))
112

113 (if (eq *N-PARTS 2) (progn
114 ; if penultimate measure, a major sixth or a minor third must be used
115 ; depending if the cantus firmus is at the bass or on the top part
116 (print "Penultimate measure...")
117 (add-penult-cons-cst (lastone (third (is-cf-lower-arr counterpoint))) (

lastone (third (h-intervals counterpoint))))
118))
119

120 (if (eq *N-PARTS 3) (progn
121 (print "Penultimate measure...")
122 (gil::g-member *sp* PENULT_CONS_3P_VAR (lastone (third (h-intervals

counterpoint))))
123))
124

125

126 ;== MELODIC CONSTRAINTS
=============================

127 (print "Melodic constraints...")
128

129 ; no more than minor sixth melodic interval between thesis and arsis notes
UNLESS:

130 ; - the interval between the cantus firmus and the thesis note <= major third
131 ; - the cantus firmus is getting closer to the thesis note
132 (print "No more than minor sixth melodic interval between thesis and arsis notes

unless...")
133 (add-m-inter-arsis-cst (first (m-succ-intervals counterpoint)) (is-nbour-arr

counterpoint))
134

135 ; Fux does not follow this rule, deactivate ?
136 ; (print "No more than minor sixth melodic interval between arsis and thesis

notes...")
137 ; (add-no-m-jump-cst (third (m-intervals counterpoint)))
138

136

139 ; no *chromatic motion between three consecutive notes
140 (print "No chromatic motion...")
141 (add-no-chromatic-m-cst (m-all-intervals-brut counterpoint) (m2-intervals-brut

counterpoint))
142

143 ; no unison between two consecutive notes
144 (print "No unison between two consecutive notes...")
145 (case species
146 (2 (add-no-unison-at-all-cst (solution-array counterpoint) (rest (

solution-array counterpoint))))
147 ; @completely new or reworked
148 ; ========= 2 counterpoints specific
149 (3v-2st (progn
150 ; when there is more than one counterpoint, unison can occur between the

fourth-to-last and third-to-last note
151 (if (member 3 *species-list) (progn
152 ; when used in combination with a third species counterpoint, unison

can also occurr between the third-to-last and the
second-to-last

153 (add-no-unison-at-all-cst (butlast (solution-array counterpoint) 3)
(rest (butlast (solution-array counterpoint) 3))) ; no unison
until fourth-to-last

154 (add-no-unison-at-all-cst (last (solution-array counterpoint) 2) (
rest (last (solution-array counterpoint) 2))) ; no unison in the
two last ones

155 (gil::g-rel *sp* (first (last (solution-array counterpoint) 4)) gil
::IRT_NQ (first (last (solution-array counterpoint) 2))) ; but
the three of them cannot be a unison

156) (progn
157 ; when used in combination with another counterpoint (that is not of

third species)
158 (add-no-unison-at-all-cst (butlast (solution-array counterpoint) 3)

(rest (butlast (solution-array counterpoint) 3))) ; no unison
until fourth-to-last

159 (add-no-unison-at-all-cst (last (solution-array counterpoint) 3) (
rest (last (solution-array counterpoint) 3))) ; no unison in the
three last ones

160))
161))
162 ; =========
163)
164

165

166 ;== MOTION CONSTRAINTS
============================

167 (print "Motion constraints...")
168 ; no direct motion to reach a perfect consonance
169 (print "No direct motion to reach a perfect consonance...")
170 (if (eq species 2) (add-no-direct-move-to-p-cons-cst (real-motions counterpoint)

(is-p-cons-arr counterpoint) (is-not-lowest counterpoint)))
171 ; no battuta kind of motion
172 ; i.e. contrary motion to an *octave, lower voice up, higher voice down,

counterpoint melodic interval < -4
173 (print "No battuta kind of motion...")
174 (add-no-battuta-cst (third (motions counterpoint)) (first (h-intervals

counterpoint)) (third (m-intervals-brut counterpoint)) (third (
is-cf-lower-arr counterpoint)))

175

176

177

178 ;== COST FACTORS
====================================

179 ; 1, 2) imperfect consonances are preferred to perfect consonances

137

180 (print "Imperfect consonances are preferred to perfect consonances...")
181 (add-p-cons-cost-cst (h-intervals counterpoint) (is-not-lowest counterpoint))
182

183 ; 3, 4) add off-key cost, m-degrees cost
184 (set-general-costs-cst counterpoint (solution-len counterpoint))
185

186 ; 5) contrary motion is preferred
187 (add-cost-to-factors (real-motions-cost counterpoint) ’motions-cost)
188

189

190 ; 6) the penultimate thesis note is not a fifth
191 (print "Penultimate thesis note is not a fifth...")
192 ; *penult-thesis-cost = *cf-len (big cost) if penultimate *h-interval /= 7
193 (setf (penult-thesis-cost counterpoint) (gil::add-int-var-dom *sp* (getparam-dom

’penult-sixth-cost)))
194 (add-single-cost-cst (penult (first (h-intervals counterpoint))) gil::IRT_NQ 7 (

penult-thesis-cost counterpoint) *penult-sixth-cost*)
195 (add-cost-to-factors (penult-thesis-cost counterpoint) ’penult-thesis-cost nil)
196

197 ;== COST FUNCTION
===================================

198 (print "Cost function...")
199

200 (case species
201 (2 (append (fux-search-engine (solution-array counterpoint) ’(2)) (list (

list 2))))
202 (3v-2sp nil) ; if 3v don’t return a search engine, just apply the

constraints
203)
204)

D.9 3sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard, adapted by Anton Lamotte
4 ; Date: June 3, 2023, adapted January 2024
5 ; This file contains the function that adds all the necessary constraints to the

third species.
6

7 ;;==========================#
8 ;; THIRD SPECIES #
9 ;;==========================#

10 ;; Note: fux-cp-3rd execute the first species algorithm without some constraints.
11 ;; In this function, 4 quarter notes by measure are assumed.
12 (defun fux-cp-3rd (counterpoint &optional (species 3))
13 "Create the CSP for the 3rd species of Fux’s counterpoint, with the cantus

firmus as input"
14 (print "########## THIRD SPECIES ##########")
15 (print "Creating the CSP for the 3rd species of Fux’s counterpoint...")
16

17 ;; ADD FIRST SPECIES CONSTRAINTS
18 (fux-cp-1st counterpoint species)
19 ;== CREATION OF GIL ARRAYS

==========================
20 (print "Initializing variables...")
21

22

23 (loop for i from 1 to 3 do
24 (setq i-1 (- i 1))
25 ; creating harmonic intervals array

138

26 ; array of IntVar representing the absolute intervals % 12 between the
cantus firmus and the counterpoint

27 (setf (nth i (h-intervals counterpoint)) (gil::add-int-var-array *sp* *
cf-last-index 0 11))

28 (create-h-intervals (nth i (notes counterpoint)) (butlast (first (notes *
lowest))) (nth i (h-intervals counterpoint)))

29

30 (setf (nth i (h-intervals-to-cf counterpoint)) (gil::add-int-var-array *sp*
*cf-last-index 0 11))

31 (create-h-intervals (nth i (notes counterpoint)) (butlast *cf) (nth i (
h-intervals-to-cf counterpoint)))

32

33 ; array of IntVar representing the absolute intervals between a thesis and
an arsis note of the same measure the counterpoint

34 (setf (nth i-1 (m-succ-intervals counterpoint)) (gil::add-int-var-array *sp*
*cf-last-index 1 12))

35 (setf (nth i-1 (m-succ-intervals-brut counterpoint)) (gil::add-int-var-array

sp *cf-last-index -12 12))
36 (create-intervals (nth i-1 (notes counterpoint)) (nth i (notes counterpoint)

) (nth i-1 (m-succ-intervals counterpoint)) (nth i-1 (
m-succ-intervals-brut counterpoint)))

37)
38

39 ; merging cp and cp-arsis into one array
40 (print "Mergin cps...")
41 (setf (solution-len counterpoint) (+ *cf-len (* *cf-last-index 3))) ; total

length of the counterpoint array
42 (setf (solution-array counterpoint) (gil::add-int-var-array *sp* (solution-len

counterpoint) 0 127)) ; array of IntVar representing thesis and arsis notes
combined

43 (merge-cp (notes counterpoint) (solution-array counterpoint)) ; merge the four
counterpoint arrays into one

44 ; creating melodic intervals array
45 (print "Creating melodic intervals array...")
46 ; array of IntVar representing the absolute intervals
47 ; between the last note of measure m and the first note of measure m+1 of the

counterpoint
48 (setf (fourth (m-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 1 12))
49 #| next line defined in init-counterpoint |#
50 ; (setf (fourth (m-intervals-brut counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index -12 12)) ; same without absolute reduction
51 (create-m-intervals-next-meas (fourth (notes counterpoint)) (first (notes

counterpoint)) (fourth (m-intervals counterpoint)) (fourth (m-intervals-brut
counterpoint)))

52

53 ; creating melodic intervals array between the note n and n+2 for the whole
counterpoint

54 (setf (m2-len counterpoint) (- (* *cf-last-index 4) 1)) ; number of melodic
intervals between n and n+2 for the total counterpoint

55 (setf (m2-intervals counterpoint) (gil::add-int-var-array *sp* (m2-len
counterpoint) 0 12))

56 (setf (m2-intervals-brut counterpoint) (gil::add-int-var-array *sp* (m2-len
counterpoint) -12 12))

57 (create-m2-intervals (solution-array counterpoint) (m2-intervals counterpoint) (
m2-intervals-brut counterpoint))

58

59 ; creating melodic intervals array between the note n and n+1 for the whole
counterpoint

60 (setf (total-m-len counterpoint) (* *cf-last-index 4)) ; number of melodic
intervals between n and n+1 for the total counterpoint

61 (setf (m-all-intervals counterpoint) (gil::add-int-var-array *sp* (total-m-len
counterpoint) 0 12))

139

62 (setf (m-all-intervals-brut counterpoint) (gil::add-int-var-array *sp* (
total-m-len counterpoint) -12 12))

63 (create-m-intervals-self (solution-array counterpoint) (m-all-intervals
counterpoint) (m-all-intervals-brut counterpoint))

64 ; creating motion array
65 ; 0 = contrary, 1 = oblique, 2 = direct/parallel
66 (print "Creating motion array...")
67 (setf (fourth (motions counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index -1 2))
68 (setf (fourth (motions-cost counterpoint)) (gil::add-int-var-array-dom *sp* *

cf-last-index *motions-domain*))
69 (create-motions (fourth (m-intervals-brut counterpoint)) (first (

m-intervals-brut *lowest)) (fourth (motions counterpoint)) (fourth (
motions-cost counterpoint)) (is-not-lowest counterpoint))

70

71 ; creating boolean is cantus firmus bass array
72 (print "Creating is cantus firmus bass array...")
73 ; array of BoolVar representing if the cantus firmus is lower than the arsis

counterpoint
74 (setf (fourth (is-cf-lower-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
75 (create-is-cf-lower-arr (fourth (notes counterpoint)) (butlast *cf) (fourth (

is-cf-lower-arr counterpoint)))
76

77 ; creating boolean are five consecutive notes by joint degree array
78 (print "Creating are five consecutive notes by joint degree array...")
79 ; array of BoolVar representing if the five consecutive notes are by joint

degree
80 (setf (is-5qn-linked-arr counterpoint) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
81 (create-is-5qn-linked-arr (m-all-intervals counterpoint) (m-all-intervals-brut

counterpoint) (is-5qn-linked-arr counterpoint))
82

83 ; creating boolean diminution array
84 (print "Creating diminution array...")
85 ; Note: a diminution is the intermediate note that exists between two notes

separated by a jump of a third
86 ; i.e. E -> D (dim) -> C
87 (setf (is-ta-dim-arr counterpoint) (gil::add-bool-var-array *sp* *cf-last-index

0 1))
88 (create-is-ta-dim-arr (second (m-succ-intervals counterpoint)) (collect-by-4 (

m2-intervals counterpoint) 1 T) (third (m-succ-intervals counterpoint)) (
is-ta-dim-arr counterpoint))

89

90 ; creating boolean is consonant array
91 (print "Creating is consonant array...")
92 (loop for i from 0 to 3 do
93 ; array of BoolVar representing if the interval is consonant
94 (if (eq i 0)
95 (setf (nth i (is-cons-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-len 0 1))
96 (setf (nth i (is-cons-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
97)
98 (create-is-member-arr (nth i (h-intervals counterpoint)) (nth i (is-cons-arr

counterpoint)))
99)

100

101

102 ; creating boolean is not cambiata array
103 (print "Creating is not cambiata array...")
104 (setf (is-not-cambiata-arr counterpoint) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))

140

105 (create-is-not-cambiata-arr (second (is-cons-arr counterpoint)) (third (
is-cons-arr counterpoint)) (second (m-succ-intervals counterpoint)) (
is-not-cambiata-arr counterpoint))

106

107 ; creating boolean is counterpoint off key array
108 (print "Creating is counterpoint off key array...")
109 (setf (is-cp-off-key-arr counterpoint) (gil::add-bool-var-array *sp* (

solution-len counterpoint) 0 1))
110 (create-is-member-arr (solution-array counterpoint) (is-cp-off-key-arr

counterpoint) (off-domain counterpoint))
111

112

113 ;== HARMONIC CONSTRAINTS
============================

114 (print "Posting constraints...")
115 (if (eq *N-PARTS 2) (progn
116 ; must start with a perfect consonance
117 (print "Perfect consonance at the beginning...")
118 (add-p-cons-start-cst (first (h-intervals counterpoint)))
119

120 ; must end with a perfect consonance
121 (print "Perfect consonance at the end...")
122 (add-p-cons-end-cst (first (h-intervals counterpoint)))
123

124 ; if penultimate measure, a major sixth or a minor third must be used
125 ; depending if the cantus firmus is at the bass or on the top part
126 (print "Penultimate measure...")
127 (add-penult-cons-cst (lastone (fourth (is-cf-lower-arr counterpoint))) (

lastone (fourth (h-intervals-to-cf counterpoint))))
128))
129

130 (if (eq *N-PARTS 3) (progn
131 (print "Penultimate measure...")
132 (gil::g-member *sp* PENULT_CONS_3P_VAR (lastone (fourth (h-intervals

counterpoint))))
133))
134

135 ; the third note of the penultimate measure must be below the fourth one.
136 (gil::g-rel *sp* (lastone (third (m-succ-intervals-brut counterpoint))) gil::

IRT_GR 1)
137 ; the second note and the third note of the penultimate measure must be distant

by greater than 1 semi-tone from the fourth note
138 (gil::g-rel *sp* (penult (m2-intervals counterpoint)) gil::IRT_NQ 1)
139

140

141 ; five consecutive notes by joint degree implies that the first and the third
note are consonants

142 (print "Five consecutive notes by joint degree...")
143 (add-linked-5qn-cst (third (is-cons-arr counterpoint)) (is-5qn-linked-arr

counterpoint))
144

145 ; any dissonant note implies that it is surrounded by consonant notes
146 (print "Any dissonant note...")
147 (add-h-dis-or-cons-3rd-cst (second (is-cons-arr counterpoint)) (third (

is-cons-arr counterpoint)) (fourth (is-cons-arr counterpoint)) (
is-ta-dim-arr counterpoint))

148

149 ;== MELODIC CONSTRAINTS
=============================

150 (print "Melodic constraints...")
151

152 ; no melodic interval between 9 and 11
153 (loop for m in (m-succ-intervals counterpoint) do

141

154 (add-no-m-jump-extend-cst m)
155)
156 (add-no-m-jump-extend-cst (fourth (m-intervals counterpoint)))
157

158 ; no *chromatic motion between three consecutive notes
159 (print "No chromatic motion...")
160 (add-no-chromatic-m-cst (m-all-intervals-brut counterpoint) (m2-intervals-brut

counterpoint))
161

162 ; Marcel’s rule: contrary melodic step after skip
163 (print "Marcel’s rule...")
164 (add-contrary-step-after-skip-cst (m-all-intervals counterpoint) (

m-all-intervals-brut counterpoint))
165

166 ;== MOTION CONSTRAINTS
============================

167 (print "Motion constraints...")
168

169 ; no direct motion to reach a perfect consonance
170 (print "No direct motion to reach a perfect consonance...")
171 (if (eq *N-PARTS 2) (add-no-direct-move-to-p-cons-cst (fourth (motions

counterpoint)) (is-p-cons-arr counterpoint) (is-not-lowest counterpoint)))
172 ; no battuta kind of motion
173 ; i.e. contrary motion to an *octave, lower voice up, higher voice down,

counterpoint melodic interval < -4
174 (print "No battuta kind of motion...")
175 (add-no-battuta-cst (fourth (motions counterpoint)) (first (h-intervals-to-cf

counterpoint)) (fourth (m-intervals-brut counterpoint)) (fourth (
is-cf-lower-arr counterpoint)))

176 ;== COST FACTORS
====================================

177 ; 1, 2) imperfect consonances are preferred to perfect consonances
178 (print "Imperfect consonances are preferred to perfect consonances...")
179 (add-p-cons-cost-cst (h-intervals counterpoint) (is-not-lowest counterpoint))
180

181 ; 3, 4) add off-key cost, m-degrees cost and tritons cost
182 (set-general-costs-cst counterpoint (solution-len counterpoint))
183

184 ; 5) contrary motion is preferred
185 (add-cost-to-factors (fourth (motions-cost counterpoint)) ’motions-cost)
186

187 ; 6) cambiata notes are preferred (cons - dis - cons > cons - cons - cons)
188 (print "Cambiata notes are preferred...")
189 ; IntVar array representing the cost to have cambiata notes
190 (setf (not-cambiata-cost counterpoint) (gil::add-int-var-array-dom *sp* *

cf-last-index (getparam-dom ’non-cambiata-cost)))
191 (add-cost-bool-cst (is-not-cambiata-arr counterpoint) (not-cambiata-cost

counterpoint) *non-cambiata-cost*)
192 (add-cost-to-factors (not-cambiata-cost counterpoint) ’not-cambiata-cost)
193

194 ; 7) intervals between notes n and n+2 are prefered greater than zero
195 (print "Intervals between notes n and n+2 are prefered different than zero...")
196 ; IntVar array representing the cost to have intervals between notes n and n+2

equal to zero
197 (setf (m2-eq-zero-cost counterpoint) (gil::add-int-var-array-dom *sp* (m2-len

counterpoint) (getparam-dom ’m2-eq-zero-cost)))
198 (add-cost-cst (m2-intervals counterpoint) gil::IRT_EQ 0 (m2-eq-zero-cost

counterpoint) *m2-eq-zero-cost*)
199 (add-cost-to-factors (m2-eq-zero-cost counterpoint) ’m2-eq-zero-cost)
200

201

202 ;== COST FUNCTION
===================================

142

203 (print "Cost function...")
204

205 (case species
206 (3 (append (fux-search-engine (solution-array counterpoint) ’(3)) (list (

list 3))))
207 (3v-3sp nil) ; if 3v don’t return a search engine, just apply the

constraints
208)
209)

D.10 4sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard, adapted by Anton Lamotte
4 ; Date: June 3, 2023, adapted January 2024
5 ; This file contains the function that adds all the necessary constraints to the

fourth species.
6

7 ;;==========================#
8 ;; FOURTH SPECIES #
9 ;;==========================#

10 ;; Note: fux-cp-4th execute the first species algorithm without some constraints.
11 ;; In this function, the first notes are in Arsis because of the syncopation.
12 (defun fux-cp-4th (counterpoint &optional (species 4))
13 "Create the CSP for the 2nd species of Fux’s counterpoint, with the cantus

firmus as input"
14

15 (print "########## FOURTH SPECIES ##########")
16

17 ;== CREATION OF GIL ARRAYS
==========================

18 (print "Initializing variables...")
19

20

21 ; merging cp and cp-arsis into one array
22 (setf (solution-len counterpoint) (* *cf-last-index 2))
23 (setf (solution-array counterpoint) (gil::add-int-var-array *sp* (solution-len

counterpoint) 0 127)) ; array of IntVar representing thesis and arsis notes
combined

24 (merge-cp-same-len (list (third (notes counterpoint)) (first (notes counterpoint
))) (solution-array counterpoint)) ; merge the two counterpoint arrays into
one

25

26 ; creating harmonic intervals array
27 (print "Creating harmonic intervals array...")
28 ; array of IntVar representing the absolute intervals % 12 between the cantus

firmus and the counterpoint (arsis notes)
29 (setf (third (h-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 11))
30 (setf (first (h-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 11))
31 (create-h-intervals (third (notes counterpoint)) (butlast (first (notes *lowest)

)) (third (h-intervals counterpoint)))
32 (create-h-intervals (first (notes counterpoint)) (rest (first (notes *lowest)))

(first (h-intervals counterpoint)))
33

34 (setf (third (h-intervals-to-cf counterpoint)) (gil::add-int-var-array *sp* *
cf-last-index 0 11))

35 (create-h-intervals (third (notes counterpoint)) (butlast *cf) (third (
h-intervals-to-cf counterpoint)))

143

36

37

38 ; creating melodic intervals array
39 (print "Creating melodic intervals array...")
40 ; array of IntVar representing the melodic intervals between arsis and next

thesis note of the counterpoint
41 (setf (third (m-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 8))
42

43 #| next line defined in init-counterpoint |#
44 ; (setf (third (m-intervals-brut counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index -12 12)) ; same without absolute reduction
45 (create-intervals (third (notes counterpoint)) (first (notes counterpoint)) (

third (m-intervals counterpoint)) (third (m-intervals-brut counterpoint)))
46 ; array of IntVar representing the melodic intervals between a thesis and an

arsis note of the same measure the counterpoint
47 (setf (first (m-succ-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-penult-index 1 12))
48 (setf (first (m-succ-intervals-brut counterpoint)) (gil::add-int-var-array *sp*

*cf-penult-index -12 12))
49 (create-m-intervals-in-meas (first (notes counterpoint)) (rest (third (notes

counterpoint))) (first (m-succ-intervals counterpoint)) (first (
m-succ-intervals-brut counterpoint)))

50

51

52 ; creating melodic intervals array between the note n and n+2 for the whole
counterpoint

53 (setf (m2-len counterpoint) (- (* *cf-last-index 2) 2)) ; number of melodic
intervals between n and n+2 for thesis and arsis notes combined

54 (setf (m2-intervals counterpoint) (gil::add-int-var-array *sp* (m2-len
counterpoint) 0 12))

55 (setf (m2-intervals-brut counterpoint) (gil::add-int-var-array *sp* (m2-len
counterpoint) -12 12))

56 (create-m2-intervals (solution-array counterpoint) (m2-intervals counterpoint) (
m2-intervals-brut counterpoint))

57

58 ; creating melodic intervals array between the note n and n+1 for the whole
counterpoint

59 (setf (total-m-len counterpoint) (- (* *cf-last-index 2) 1)) ; number of melodic
intervals between n and n+1 for thesis and arsis notes combined

60 (setf (m-all-intervals counterpoint) (gil::add-int-var-array *sp* (total-m-len
counterpoint) 0 12))

61 (setf (m-all-intervals-brut counterpoint) (gil::add-int-var-array *sp* (
total-m-len counterpoint) -12 12))

62 (create-m-intervals-self (solution-array counterpoint) (m-all-intervals
counterpoint) (m-all-intervals-brut counterpoint))

63

64 ; creating perfect consonances boolean array
65 (print "Creating perfect consonances boolean array...")
66 ; array of BoolVar representing if the interval between the cantus firmus and

the counterpoint is a perfect consonance
67 (setf (is-p-cons-arr counterpoint) (gil::add-bool-var-array *sp* *cf-len 0 1))
68 (create-is-p-cons-arr (first (h-intervals counterpoint)) (is-p-cons-arr

counterpoint))
69

70 ; creating boolean is cantus firmus bass array
71 (print "Creating is cantus firmus bass array...")
72 ; array of BoolVar representing if the cantus firmus is lower than the arsis

counterpoint
73 (setf (third (is-cf-lower-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
74 (create-is-cf-lower-arr (third (notes counterpoint)) (butlast *cf) (third (

is-cf-lower-arr counterpoint)))

144

75

76 ; creating boolean is counterpoint off key array
77 (print "Creating is counterpoint off key array...")
78 (setf (is-cp-off-key-arr counterpoint) (gil::add-bool-var-array *sp* (

solution-len counterpoint) 0 1))
79 (create-is-member-arr (solution-array counterpoint) (is-cp-off-key-arr

counterpoint) (off-domain counterpoint))
80

81 ; creating boolean is consonant array
82 (print "Creating is consonant array...")
83 ; array of BoolVar representing if the interval is consonant
84 (setf (first (is-cons-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
85 (create-is-member-arr (first (h-intervals counterpoint)) (first (is-cons-arr

counterpoint)))
86

87 ; creation boolean is no syncope array
88 (print "Creating is no syncope array...")
89 ; array of BoolVar representing if the thesis note is note related to the

previous one
90 (setf (is-no-syncope-arr counterpoint) (gil::add-bool-var-array *sp* *

cf-penult-index 0 1))
91 (create-is-no-syncope-arr (third (m-intervals counterpoint)) (is-no-syncope-arr

counterpoint))
92

93

94 ;== HARMONIC CONSTRAINTS
============================

95 (print "Posting constraints...")
96

97 ; for all harmonic intervals between the cantus firmus and the thesis notes, the
interval must be a consonance

98 (print "Harmonic consonances...")
99 ; here the penultimate thesis note must be a seventh or a second and the arsis

note must be a major sixth or a minor third
100 ;(add-penult-dom-cst (penult (first (h-intervals counterpoint)))

PENULT_SYNCOPE_VAR)
101

102 (add-h-cons-cst *cf-last-index *cf-penult-index (third (h-intervals counterpoint
)) PENULT_CONS_VAR 4 (is-not-lowest counterpoint))

103 (add-no-sync-h-cons (first (h-intervals counterpoint)) (is-no-syncope-arr
counterpoint))

104

105 ; no seventh dissonance if the cantus firmus is at the top
106 (print "No seventh dissonance if the cantus firmus is at the top...")
107 (add-no-seventh-cst (first (h-intervals counterpoint)) (is-not-lowest

counterpoint))
108

109 (if (eq *N-PARTS 2) (progn
110 ; must start with a perfect consonance
111 (print "Perfect consonance at the beginning...")
112 (add-p-cons-start-cst (third (h-intervals counterpoint)))
113

114 ; must end with a perfect consonance
115 (print "Perfect consonance at the end...")
116 (add-p-cons-end-cst (first (h-intervals counterpoint)))
117

118 ; if penultimate measure, a major sixth or a minor third must be used
119 ; depending if the cantus firmus is at the bass or on the top part
120 (print "Penultimate measure...")
121 (add-penult-cons-cst (lastone (third (is-cf-lower-arr counterpoint))) (

lastone (third (h-intervals-to-cf counterpoint))))
122))

145

123

124 (if (eq *N-PARTS 3) (progn
125 (print "Penultimate measure...")
126 (gil::g-member *sp* PENULT_SYNCOPE_VAR (lastone (third (h-intervals

counterpoint))))
127))
128

129 ;== MELODIC CONSTRAINTS
=============================

130 (print "Melodic constraints...")
131

132 ; melodic intervals cannot be greater than a minor sixth expect the octave
133 (print "No more than minor sixth melodic interval between arsis and thesis notes

...")
134 (add-no-m-jump-extend-cst (first (m-succ-intervals counterpoint)))
135

136 ; no *chromatic motion between three consecutive notes
137 (print "No chromatic motion...")
138 (add-no-chromatic-m-cst (m-all-intervals-brut counterpoint) (m2-intervals-brut

counterpoint))
139

140

141 ;== MOTION CONSTRAINTS
============================

142 (print "Motion constraints...")
143

144 ; dissonant notes must be followed by the consonant note below
145 (print "Dissonant notes must be followed by the consonant note below...")
146

147 (add-h-dis-imp-cons-below-cst (first (m-succ-intervals-brut counterpoint)) (
first (is-cons-arr counterpoint)))

148

149 ; no second dissonance if the cantus firmus is at the bass and a octave/unison
precedes it

150 (print "No second dissonance if the cantus firmus is at the bass...")
151 (add-no-second-cst (third (h-intervals counterpoint)) (first (h-intervals

counterpoint)) (is-not-lowest counterpoint))
152

153

154 ;== COST FACTORS
====================================

155 (print "Cost factors...")
156 ; 1, 2) imperfect consonances are preferred to perfect consonances
157 (add-p-cons-cost-cst (h-intervals counterpoint) (is-not-lowest counterpoint) t)
158

159 ; 3, 4) add off-key cost, m-degrees cost and tritons cost
160 (set-general-costs-cst counterpoint (solution-len counterpoint))
161

162 ; 5) add no syncopation cost
163 (print "No syncopation cost...")
164 (setf (no-syncope-cost counterpoint) (gil::add-int-var-array-dom *sp* *

cf-penult-index (getparam-dom ’no-syncopation-cost)))
165 (add-cost-cst (butlast (third (m-intervals counterpoint))) gil::IRT_NQ 0 (

no-syncope-cost counterpoint) *no-syncopation-cost*)
166 (add-cost-to-factors (no-syncope-cost counterpoint) ’no-syncope-cost)
167

168 ; 6) add m2-intervals equal to 0 cost
169 (print "Monotonia...")
170 (setf (m2-eq-zero-cost counterpoint) (gil::add-int-var-array-dom *sp* (- *cf-len

3) (getparam-dom ’m2-eq-zero-cost)))
171 (add-cost-multi-cst (third (notes counterpoint)) gil::IRT_EQ (cddr (third (notes

counterpoint))) (m2-eq-zero-cost counterpoint) *m2-eq-zero-cost*)
172 (add-cost-to-factors (m2-eq-zero-cost counterpoint) ’m2-eq-zero-cost)

146

173

174 ;== COST FUNCTION
===================================

175 (print "Cost function...")
176

177 ; RETURN
178 (if (eq species 4)
179 ; then create the search engine
180 (append (fux-search-engine (solution-array counterpoint) ’(4)) (list (list

4)))
181 ; else if 3v
182 nil
183)
184)

D.11 5sp-ctp.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard, adapted by Anton Lamotte
4 ; Date: June 3, 2023, adapted January 2024
5 ; This file contains the function that adds all the necessary constraints to the

fifth species.
6

7 ;;==========================#
8 ;; FIFTH SPECIES #
9 ;;==========================#

10 ;; Note: fux-cp-5th execute the first species algorithm without some constraints.
11 ;; In this function, 4 notes by measure are assumed.
12 (defun fux-cp-5th (counterpoint &optional (species 5))
13 "Create the CSP for the 3rd species of Fux’s counterpoint, with the cantus

firmus as input"
14 (print "Creating the CSP for the 3rd species of Fux’s counterpoint...")
15

16 ;; CLEANING PREVIOUS SOLUTIONS
17 (setq *prev-sol-check nil)
18 (setq rythmic+pitches nil)
19 (setq rythmic-om nil)
20 (setq pitches-om nil)
21

22 (print "########## FIFTH SPECIES ##########")
23

24 ;== CREATION OF BOOLEAN SPECIES ARRAYS
==============

25 (print "Creation of boolean species arrays...")
26 ; total length of the counterpoint array
27 (setf (solution-len counterpoint) (+ *cf-len (* *cf-last-index 3)))
28 ; array representing the species type [0: no constraint, 1: 1st species, 2: 2nd

species, 3: 3rd species, 4: 4th species]
29 (setf (species-arr counterpoint) (gil::add-int-var-array *sp* (solution-len

counterpoint) 0 4))
30 (create-species-arr (species-arr counterpoint) (solution-len counterpoint))
31 ; arrays representing if a note is constraint by a species
32 (setf (nth 0 (is-nth-species-arr counterpoint)) (gil::add-bool-var-array *sp* (

solution-len counterpoint) 0 1))
33 (create-simple-boolean-arr (species-arr counterpoint) gil::IRT_EQ 0 (nth 0 (

is-nth-species-arr counterpoint)))
34 (setf (nth 1 (is-nth-species-arr counterpoint)) (gil::add-bool-var-array *sp* (

solution-len counterpoint) 0 1))
35 (create-simple-boolean-arr (species-arr counterpoint) gil::IRT_EQ 1 (nth 1 (

is-nth-species-arr counterpoint)))

147

36 (setf (nth 2 (is-nth-species-arr counterpoint)) (gil::add-bool-var-array *sp* (
solution-len counterpoint) 0 1))

37 (create-simple-boolean-arr (species-arr counterpoint) gil::IRT_EQ 2 (nth 2 (
is-nth-species-arr counterpoint)))

38 (setf (nth 3 (is-nth-species-arr counterpoint)) (gil::add-bool-var-array *sp* (
solution-len counterpoint) 0 1))

39 (create-simple-boolean-arr (species-arr counterpoint) gil::IRT_EQ 3 (nth 3 (
is-nth-species-arr counterpoint)))

40 (setf (nth 4 (is-nth-species-arr counterpoint)) (gil::add-bool-var-array *sp* (
solution-len counterpoint) 0 1))

41 (create-simple-boolean-arr (species-arr counterpoint) gil::IRT_EQ 4 (nth 4 (
is-nth-species-arr counterpoint)))

42

43 ; creating boolean is constrained array
44 (print "Creating is constrained array...")
45 ; array of BoolVar representing if the interval is constrained
46 (setf (is-constrained-arr counterpoint) (collect-not-array (nth 0 (

is-nth-species-arr counterpoint))))
47

48

49 ;== CREATION OF GIL ARRAYS
==========================

50 (print "Initializing variables...")
51

52 (loop for i from 0 to 3 do
53 (if (eq i 0)
54 (progn
55 ; creating harmonic intervals array
56 (print "Creating harmonic intervals array...")
57 ; array of IntVar representing the absolute intervals % 12 between

the cantus firmus and the counterpoint
58 (setf (nth i (h-intervals counterpoint)) (gil::add-int-var-array *sp

* *cf-len 0 11))
59 (create-h-intervals (nth i (notes counterpoint)) (first (notes *

lowest)) (nth i (h-intervals counterpoint)))
60

61 (setf (nth i (h-intervals-to-cf counterpoint)) (gil::
add-int-var-array *sp* *cf-len 0 11))

62 (create-h-intervals (nth i (notes counterpoint)) *cf (nth i (
h-intervals-to-cf counterpoint)))

63)
64 (progn
65 ; same as above but 1 note shorter
66 (setf (nth i (h-intervals counterpoint)) (gil::add-int-var-array *sp

* *cf-last-index 0 11))
67 (create-h-intervals (nth i (notes counterpoint)) (butlast (first (

notes *lowest))) (nth i (h-intervals counterpoint)))
68

69 (setf (nth i (h-intervals-to-cf counterpoint)) (gil::
add-int-var-array *sp* *cf-last-index 0 11))

70 (create-h-intervals (nth i (notes counterpoint)) (butlast *cf) (nth
i (h-intervals-to-cf counterpoint)))

71

72)
73)
74)
75

76 (loop for i from 0 to 2 do
77 (setq i+1 (+ i 1))
78 (setf (nth i (m-succ-intervals-brut counterpoint)) (gil::add-int-var-array *

sp* *cf-last-index -12 12))
79 (if (eq i 1)

148

80 ; then melodic interval could be 0 if there was a dissonant syncope
before (see that later)

81 (setf (nth i (m-succ-intervals counterpoint)) (gil::add-int-var-array *
sp* *cf-last-index 0 12))

82 ; else no melodic interval of 0
83 (setf (nth i (m-succ-intervals counterpoint)) (gil::add-int-var-array *

sp* *cf-last-index 0 12))
84)
85 (create-intervals (nth i (notes counterpoint)) (nth i+1 (notes counterpoint)

) (nth i (m-succ-intervals counterpoint)) (nth i (m-succ-intervals-brut
counterpoint)))

86)
87

88

89 ; merging all cp arrays into one
90 (print "Merging cps...")
91 (setf (solution-array counterpoint) (gil::add-int-var-array *sp* (solution-len

counterpoint) 0 127)) ; array of IntVar representing thesis and arsis notes
combined

92 (merge-cp (notes counterpoint) (solution-array counterpoint)) ; merge the four
counterpoint arrays into one

93

94 ; creating melodic intervals array
95 (print "Creating melodic intervals array...")
96 ; array of IntVar representing the melodic intervals between arsis and next

thesis note of the counterpoint
97 (setf (third (m-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 16))
98 ;(setf (third (m-intervals-brut counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index -16 16)) ; same without absolute reduction
99 (create-m-intervals-next-meas (third (notes counterpoint)) (first (notes

counterpoint)) (third (m-intervals counterpoint)) (third (m-intervals-brut
counterpoint)))

100 ; array of IntVar representing the absolute intervals
101 ; between the last note of measure m and the first note of measure m+1 of the

counterpoint
102 (setf (fourth (m-intervals counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 12)) ; can be 0 if this is replace by 2 eight note
103

104 #| next line defined in init-counterpoint |#
105 ; (setf (fourth (m-intervals-brut counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index -12 12)) ; same without absolute reduction
106 (create-m-intervals-next-meas (fourth (notes counterpoint)) (first (notes

counterpoint)) (fourth (m-intervals counterpoint)) (fourth (m-intervals-brut
counterpoint)))

107

108 ; array of IntVar representing the melodic intervals between the thesis note and
the arsis note of the same measure

109 (setf (m-ta-intervals counterpoint) (gil::add-int-var-array *sp* *cf-last-index
0 16))

110 (setf (m-ta-intervals-brut counterpoint) (gil::add-int-var-array *sp* *
cf-last-index -16 16)) ; same without absolute reduction

111 (create-intervals (first (notes counterpoint)) (third (notes counterpoint)) (
m-ta-intervals counterpoint) (m-ta-intervals-brut counterpoint))

112

113 ; creating melodic intervals array between the note n and n+2 for the whole
counterpoint

114 (setf (m2-len counterpoint) (- (* *cf-last-index 4) 1)) ; number of melodic
intervals between n and n+2 for the total counterpoint

115 (setf (m2-intervals counterpoint) (gil::add-int-var-array *sp* (m2-len
counterpoint) 0 16))

116 (setf (m2-intervals-brut counterpoint) (gil::add-int-var-array *sp* (m2-len
counterpoint) -16 16))

149

117 (create-m2-intervals (solution-array counterpoint) (m2-intervals counterpoint) (
m2-intervals-brut counterpoint))

118

119 ; creating melodic intervals array between the note n and n+1 for the whole
counterpoint

120 (setf (total-m-len counterpoint) (* *cf-last-index 4)) ; number of melodic
intervals between n and n+1 for the total counterpoint

121 (setf (m-all-intervals counterpoint) (gil::add-int-var-array *sp* (total-m-len
counterpoint) 0 12))

122 (setf (m-all-intervals-brut counterpoint) (gil::add-int-var-array *sp* (
total-m-len counterpoint) -12 12))

123 (create-m-intervals-self (solution-array counterpoint) (m-all-intervals
counterpoint) (m-all-intervals-brut counterpoint) (is-constrained-arr
counterpoint))

124

125 ; creating motion array
126 ; 0 = contrary, 1 = oblique, 2 = direct/parallel
127 (print "Creating motion array...")
128 (setf (fourth (motions counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index -1 2))
129 (setf (fourth (motions-cost counterpoint)) (gil::add-int-var-array-dom *sp* *

cf-last-index *motions-domain*))
130 (create-motions (fourth (m-intervals-brut counterpoint)) (first (

m-intervals-brut *lowest)) (fourth (motions counterpoint)) (fourth (
motions-cost counterpoint)) (is-not-lowest counterpoint))

131

132 ; creating boolean is cantus firmus bass array
133 (print "Creating is cantus firmus bass array...")
134 ; array of BoolVar representing if the cantus firmus is lower than the arsis

counterpoint
135 (setf (first (is-cf-lower-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-len 0 1))
136 (create-is-cf-lower-arr (first (notes counterpoint)) (rest *cf) (first (

is-cf-lower-arr counterpoint))) ; 5th
137 (setf (third (is-cf-lower-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
138 (create-is-cf-lower-arr (third (notes counterpoint)) (butlast *cf) (third (

is-cf-lower-arr counterpoint))) ; 5th
139 (setf (fourth (is-cf-lower-arr counterpoint)) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
140 (create-is-cf-lower-arr (fourth (notes counterpoint)) (butlast *cf) (fourth (

is-cf-lower-arr counterpoint)))
141

142 ; creating boolean are five consecutive notes by joint degree array
143 (print "Creating are five consecutive notes by joint degree array...")
144 ; array of BoolVar representing if the five consecutive notes are by joint

degree
145 (setf (is-5qn-linked-arr counterpoint) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
146 (create-is-5qn-linked-arr (m-all-intervals counterpoint) (m-all-intervals-brut

counterpoint) (is-5qn-linked-arr counterpoint))
147 (setf (is-mostly-3rd-arr counterpoint) (gil::add-bool-var-array *sp* *

cf-last-index 0 1)) ; 5th
148 (create-is-mostly-3rd-arr (nth 3 (is-nth-species-arr counterpoint)) (

is-mostly-3rd-arr counterpoint))
149

150 ; creating boolean is consonant array + species array
151 (print "Creating is consonant array and species array...")
152 (loop for i from 0 to 3 do
153 ; array of BoolVar representing if the interval is consonant
154 (if (eq i 0)
155 (progn

150

156 (setf (nth i (is-cons-arr counterpoint)) (gil::add-bool-var-array *
sp* *cf-len 0 1))

157 (setf (nth i (is-3rd-species-arr counterpoint)) (gil::
add-bool-var-array *sp* *cf-len 0 1))

158 (setf (nth i (is-4th-species-arr counterpoint)) (gil::
add-bool-var-array *sp* *cf-len 0 1))

159 (setf (nth i (is-cst-arr counterpoint)) (gil::add-bool-var-array *sp

* *cf-len 0 1))
160)
161 (progn
162 (setf (nth i (is-cons-arr counterpoint)) (gil::add-bool-var-array *

sp* *cf-last-index 0 1))
163 (setf (nth i (is-3rd-species-arr counterpoint)) (gil::

add-bool-var-array *sp* *cf-last-index 0 1))
164 (setf (nth i (is-4th-species-arr counterpoint)) (gil::

add-bool-var-array *sp* *cf-last-index 0 1))
165 (setf (nth i (is-cst-arr counterpoint)) (gil::add-bool-var-array *sp

* *cf-last-index 0 1))
166)
167)
168 (create-is-member-arr (nth i (h-intervals counterpoint)) (nth i (is-cons-arr

counterpoint)))
169 (create-by-4 (nth 3 (is-nth-species-arr counterpoint)) (nth i (

is-3rd-species-arr counterpoint)) i)
170 (create-by-4 (nth 4 (is-nth-species-arr counterpoint)) (nth i (

is-4th-species-arr counterpoint)) i)
171 (create-by-4 (is-constrained-arr counterpoint) (nth i (is-cst-arr

counterpoint)) i)
172)
173

174 ; creating boolean diminution array
175 (print "Creating diminution array...")
176 ; Note: a diminution is the intermediate note that exists between two notes

separated by a jump of a third
177 ; i.e. E -> D (dim) -> C
178 (setf (is-ta-dim-arr counterpoint) (gil::add-bool-var-array *sp* *cf-last-index

0 1))
179 (create-is-ta-dim-arr (second (m-succ-intervals counterpoint)) (collect-by-4 (

m2-intervals counterpoint) 1 T) (third (m-succ-intervals counterpoint)) (
is-ta-dim-arr counterpoint))

180

181 ; creating boolean is not cambiata array
182 (print "Creating is not cambiata array...")
183 (setf (is-not-cambiata-arr counterpoint) (gil::add-bool-var-array *sp* *

cf-last-index 0 1))
184 (create-is-not-cambiata-arr (second (is-cons-arr counterpoint)) (third (

is-cons-arr counterpoint)) (second (m-succ-intervals counterpoint)) (
is-not-cambiata-arr counterpoint))

185

186 ; creating boolean is counterpoint off key array
187 (print "Creating is counterpoint off key array...")
188 (setf (is-cp-off-key-arr counterpoint) (gil::add-bool-var-array *sp* (

solution-len counterpoint) 0 1))
189 (create-is-member-arr (solution-array counterpoint) (is-cp-off-key-arr

counterpoint) (off-domain counterpoint))
190

191 ; creating perfect consonances boolean array
192 (print "Creating perfect consonances boolean array...")
193 ; array of BoolVar representing if the interval between the cantus firmus and

the counterpoint is a perfect consonance
194 (setf (is-p-cons-arr counterpoint) (gil::add-bool-var-array *sp* *cf-len 0 1))
195 (create-is-p-cons-arr (first (h-intervals counterpoint)) (is-p-cons-arr

counterpoint))

151

196

197 ; creation boolean is no syncope array
198 (print "Creating is no syncope array...")
199 ; array of BoolVar representing if the thesis note is note related to the

previous one
200 (setf (is-no-syncope-arr counterpoint) (gil::add-bool-var-array *sp* *

cf-penult-index 0 1))
201 (create-is-no-syncope-arr (third (m-intervals counterpoint)) (is-no-syncope-arr

counterpoint))
202

203

204 ;== HARMONIC CONSTRAINTS
============================

205 (print "Posting constraints...")
206

207 ; one possible value for non-constrained notes
208 (print "One possible value for non-constrained notes...")
209 (add-one-possible-value-cst (solution-array counterpoint) (nth 0 (

is-nth-species-arr counterpoint)))
210

211 (if (eq *N-PARTS 2) (progn
212 ; perfect consonances should be used at the start and at the end of the

piece
213 (print "Perfect consonances at the start and at the end...")
214 ; if first note is constrained then it must be a perfect consonance
215 (add-p-cons-cst-if (first (first (h-intervals counterpoint))) (first (

is-constrained-arr counterpoint)))
216 ; if first note is not constrained then the third note must be a perfect

consonance
217 (add-p-cons-cst-if (first (third (h-intervals counterpoint))) (first (nth 0

(is-nth-species-arr counterpoint))))
218 ; no matter what species it is, the last harmonic interval must be a perfect

consonance
219 (add-p-cons-end-cst (first (h-intervals counterpoint)))
220

221 ; if penultimate measure, a major sixth or a minor third must be used
222 ; depending if the cantus firmus is at the bass or on the top part
223 (print "Penultimate measure...")
224 (add-penult-cons-cst (lastone (fourth (is-cf-lower-arr counterpoint))) (

lastone (fourth (h-intervals-to-cf counterpoint)))
225 (penult (nth 3 (is-nth-species-arr counterpoint)))
226) ; 3rd species
227))
228 ; the third note of the penultimate measure must be below the fourth one. (3rd

species)
229 (gil::g-rel-reify *sp* (lastone (third (m-succ-intervals-brut counterpoint)))

gil::IRT_GR 1
230 (penult (nth 3 (is-nth-species-arr counterpoint))) gil::RM_IMP
231) ; 3rd species
232 ; the second note and the third note of the penultimate measure must be
233 ; distant by greater than 1 semi-tone from the fourth note (3rd species)
234 (gil::g-rel-reify *sp* (penult (m2-intervals counterpoint)) gil::IRT_NQ 1
235 (nth (total-index *cf-penult-index 1) (nth 3 (is-nth-species-arr

counterpoint))) gil::RM_IMP
236) ; 3rd species
237 (if (eq *N-PARTS 2) (progn
238 ; for the 4th species, the thesis note must be a seventh or a second and the

arsis note must be a major sixth or a minor third
239 ; major sixth or minor third
240 (add-penult-cons-cst (lastone (third (is-cf-lower-arr counterpoint))) (

lastone (third (h-intervals-to-cf counterpoint)))
241 (penult (butlast (nth 4 (is-nth-species-arr counterpoint))))
242) ; 4th species

152

243 ; seventh or second
244 ; (note: a => !b <=> !(a ^ b)), so here we use the negation of the

conjunction
245))
246

247 (if (eq *N-PARTS 3) (progn
248 (print "Penultimate measure...")
249 (gil::g-member *sp* PENULT_CONS_3P_VAR (lastone (third (h-intervals

counterpoint))))
250))
251

252 (setf is-penult-cons-to-cf (gil::add-bool-var *sp* 0 1))
253 (add-is-member-cst (penult (first (h-intervals-to-cf counterpoint)))

ALL_CONS_VAR is-penult-cons-to-cf)
254 (gil::g-op *sp* (penult (first (is-4th-species-arr counterpoint))) gil::BOT_AND

is-penult-cons-to-cf 0) ; 4th species
255

256 ; every thesis note should be consonant if it does not belong to the fourth
species (or not constrained at all)

257 (print "Every thesis note should be consonant...")
258 (add-h-cons-cst-if (first (is-cons-arr counterpoint)) (collect-by-4 (nth 1 (

is-nth-species-arr counterpoint)))) ; 1st species
259 (add-h-cons-cst-if (first (is-cons-arr counterpoint)) (collect-by-4 (nth 2 (

is-nth-species-arr counterpoint)))) ; 2nd species
260 (add-h-cons-cst-if (first (is-cons-arr counterpoint)) (first (is-3rd-species-arr

counterpoint))) ; 3rd species
261 (add-h-cons-cst-if (third (is-cons-arr counterpoint)) (third (is-4th-species-arr

counterpoint))) ; 4th species
262 (add-h-cons-cst-if (first (is-cons-arr counterpoint)) (collect-bot-array (rest (

first (is-4th-species-arr counterpoint))) (is-no-syncope-arr counterpoint)))
; 4th species

263

264 ; five consecutive notes by joint degree implies that the first and the third
note are consonants

265 (print "Five consecutive notes by joint degree...") ; 3rd species
266 (add-linked-5qn-cst (third (is-cons-arr counterpoint)) (collect-bot-array (

is-5qn-linked-arr counterpoint) (is-mostly-3rd-arr counterpoint)))
267

268 ; any dissonant note implies that it is surrounded by consonant notes
269 (print "Any dissonant note...") ; 3rd species
270 (add-h-dis-or-cons-3rd-cst
271 (second (is-cons-arr counterpoint))
272 (collect-t-or-f-array (third (is-cons-arr counterpoint)) (third (

is-3rd-species-arr counterpoint)))
273 (fourth (is-cons-arr counterpoint))
274 (is-ta-dim-arr counterpoint)
275)
276

277 ; no seventh dissonance if the cantus firmus is at the top
278 (print "No seventh dissonance if the cantus firmus is at the top...")
279 (add-no-seventh-cst (first (h-intervals counterpoint)) (is-not-lowest

counterpoint) (first (is-4th-species-arr counterpoint))) ; 4th species
280

281

282 ;== MELODIC CONSTRAINTS
=============================

283 (print "Melodic constraints...")
284

285 ; no melodic interval between 9 and 11
286 (add-no-m-jump-extend-cst (m-all-intervals counterpoint) (collect-bot-array (

butlast (is-constrained-arr counterpoint)) (rest (is-constrained-arr
counterpoint))))

287

153

288 ; no unison between two consecutive notes
289 ; exept for in the second part or the fourth part of the measure
290 (print "No unison between two consecutive notes...")
291 ; if 1st note and 2nd note exists (it means it belongs to a species)
292 (add-no-unison-at-all-cst
293 (first (notes counterpoint)) (second (notes counterpoint))
294 (collect-bot-array (first (is-cst-arr counterpoint)) (second (is-cst-arr

counterpoint)))
295) ; 5th
296 (add-no-unison-at-all-cst
297 (third (notes counterpoint)) (fourth (notes counterpoint))
298 (collect-bot-array (third (is-cst-arr counterpoint)) (fourth (is-cst-arr

counterpoint)))
299) ; 5th
300

301 ; melodic intervals between thesis and arsis note from the same measure
302 ; can’t be greater than a minor sixth expect the octave (just for the fourth

species)
303 (print "No more than minor sixth melodic interval between arsis and thesis notes

...")
304 ; only applied if the the second note is not constrained
305 (add-no-m-jump-extend-cst (m-ta-intervals counterpoint) (collect-by-4 (nth 0 (

is-nth-species-arr counterpoint)) 1)) ; 4th species
306

307 ; no same syncopation if 4th species
308 (add-no-same-syncopation-cst (first (notes counterpoint)) (third (notes

counterpoint)) (collect-bot-array (first (is-4th-species-arr counterpoint))
(third (is-cst-arr counterpoint))))

309

310

311 ;== MOTION CONSTRAINTS
============================

312 (print "Motion constraints...")
313

314 ; no direct motion to reach a perfect consonance
315 (print "No direct motion to reach a perfect consonance...")
316 (if (eq species 5) (add-no-direct-move-to-p-cons-cst (fourth (motions

counterpoint)) (collect-bot-array (is-p-cons-arr counterpoint) (fourth (
is-3rd-species-arr counterpoint))) (is-not-lowest counterpoint) nil)) ; 3rd
species

317

318 ; no battuta kind of motion
319 ; i.e. contrary motion to an *octave, lower voice up, higher voice down,

counterpoint melodic interval < -4
320 (print "No battuta kind of motion...")
321 (add-no-battuta-cst
322 (fourth (motions counterpoint)) (first (h-intervals counterpoint)) (fourth (

m-intervals-brut counterpoint)) (fourth (is-cf-lower-arr counterpoint))
(fourth (is-3rd-species-arr counterpoint))

323) ; 3rd species
324

325 ; dissonant notes must be followed by the consonant note below
326 (print "Dissonant notes must be followed by the consonant note below...")
327 (add-h-dis-imp-cons-below-cst (m-ta-intervals-brut counterpoint) (first (

is-cons-arr counterpoint)) (first (is-4th-species-arr counterpoint))) ; TODO
4th species

328

329 ; no second dissonance if the cantus firmus is at the bass and a octave/unison
precedes it

330 (print "No second dissonance if the cantus firmus is at the bass...")
331 (add-no-second-cst
332 (third (h-intervals counterpoint)) (rest (first (h-intervals counterpoint)))

(rest (is-not-lowest counterpoint))

154

333 (rest (first (is-4th-species-arr counterpoint)))
334) ; TODO 4th species
335

336 ; Marcel’s rule
337 (add-contrary-step-after-skip-cst (m-all-intervals counterpoint) (

m-all-intervals-brut counterpoint))
338

339

340 ;== COST FACTORS
====================================

341 (print "Imperfect consonances are preferred to perfect consonances...")
342 (setf (fifth-cost counterpoint) (gil::add-int-var-array-dom *sp* *cf-len (

getparam-dom ’h-fifth-cost))) ; IntVar array representing the cost to have
fifths

343 (setf (octave-cost counterpoint) (gil::add-int-var-array-dom *sp* *cf-len (
getparam-dom ’h-octave-cost))) ; IntVar array representing the cost to have
octaves

344 (add-cost-cst-if (first (h-intervals counterpoint)) gil::IRT_EQ 7 (first (
is-cst-arr counterpoint)) (fifth-cost counterpoint) *h-fifth-cost*) ; (
fifth-cost counterpoint) = 1 if *h-interval == 7

345 (let ((is-cst-and-not-bass-arr (gil::add-bool-var-array *sp* *cf-len 0 1)))
346 (dotimes (i *cf-len)
347 (gil::g-op *sp* (nth i (first (is-cst-arr counterpoint))) gil::BOT_AND (

nth i (is-not-lowest counterpoint)) (nth i is-cst-and-not-bass-arr))
348)
349 (add-cost-cst-if (first (h-intervals counterpoint)) gil::IRT_EQ 0

is-cst-and-not-bass-arr (octave-cost counterpoint) *h-octave-cost*) ; (
octave-cost counterpoint) = 1 if *h-interval == 0

350)
351 (add-cost-to-factors (fifth-cost counterpoint) ’fifth-cost)
352 (add-cost-to-factors (octave-cost counterpoint) ’octave-cost)
353

354 ; 3, 4) add off-key cost, m-degrees cost and tritons cost
355 (set-general-costs-cst counterpoint (solution-len counterpoint) (

is-constrained-arr counterpoint) (collect-bot-array (butlast (
is-constrained-arr counterpoint)) (rest (is-constrained-arr counterpoint))))

356

357 ; 5) contrary motion is preferred
358 (add-cost-to-factors (fourth (motions-cost counterpoint)) ’motions-cost)
359

360 ; 6) cambiata notes are preferred (cons - dis - cons > cons - cons - cons)
361 (print "Cambiata notes are preferred...")
362 ; IntVar array representing the cost to have cambiata notes
363 (setf (not-cambiata-cost counterpoint) (gil::add-int-var-array-dom *sp* *

cf-last-index (getparam-dom ’non-cambiata-cost)))
364 (add-cost-bool-cst-if (is-not-cambiata-arr counterpoint) (is-mostly-3rd-arr

counterpoint) (not-cambiata-cost counterpoint) *non-cambiata-cost*)
365 (add-cost-to-factors (not-cambiata-cost counterpoint) ’non-cambiata-cost)
366

367 ; 7) intervals between notes n and n+2 are prefered greater than zero
368 (print "Intervals between notes n and n+2 are prefered different than zero...")
369 ; IntVar array representing the cost to have intervals between notes n and n+2

equal to zero
370 (setf (m2-eq-zero-cost counterpoint) (gil::add-int-var-array-dom *sp* (m2-len

counterpoint) (getparam-dom ’m2-eq-zero-cost)))
371 (add-cost-cst-if
372 (m2-intervals counterpoint) gil::IRT_EQ 0
373 (collect-bot-array (butlast (butlast (is-constrained-arr counterpoint))) (

rest (rest (is-constrained-arr counterpoint))))
374 (m2-eq-zero-cost counterpoint) *m2-eq-zero-cost*
375)
376 (add-cost-to-factors (m2-eq-zero-cost counterpoint) ’m2-eq-zero-cost)
377

155

378 ; 8) add no syncopation cost
379 (setf (no-syncope-cost counterpoint) (gil::add-int-var-array-dom *sp* *

cf-penult-index (getparam-dom ’no-syncopation-cost)))
380 (add-cost-cst-if
381 (butlast (third (m-intervals counterpoint))) gil::IRT_NQ 0
382 (third (is-4th-species-arr counterpoint))
383 (no-syncope-cost counterpoint)
384 *no-syncopation-cost*
385)
386 (add-cost-to-factors (no-syncope-cost counterpoint) ’no-syncope-cost)
387

388

389 ;== COST FUNCTION
===================================

390 (print "Cost function...")
391

392 (loop for i from 0 to 3 do
393 (setf (nth i (cons-cost counterpoint)) (gil::add-int-var-array *sp* *

cf-last-index 0 1)) ; IntVar representing the cost to have a consonance
394 (add-cost-bool-cst (nth i (is-cons-arr counterpoint)) (nth i (cons-cost

counterpoint))) ; (cons-cost counterpoint) = 1 if (is-cons-arr
counterpoint) == 1

395)
396

397 ; RETURN
398 (if (eq species 5)
399 ; then create the search engine
400 (append (fux-search-engine (solution-array counterpoint) ’(5)) (list (list

5)) (voice-type counterpoint))
401 ; else if 3v
402 nil
403)
404)

D.12 constraints.lisp

1 (in-package :fuxcp)
2

3 ; Author: Thibault Wafflard, adapted by Anton Lamotte
4 ; Date: June 3, 2023, adapted January 2024
5 ; This file contains all the functions adding constraints to the CSP.
6 ; They are all called from the different species.
7

8

9 ;== CP CONSTRAINTS UTILS
============================

10

11

12 ; add a single cost regarding if the relation rel-type(tested, cst-val) is true
13 (defun add-single-cost-cst (tested rel-type cst-val cost &optional (cost-value ONE))
14 (let (
15 (b (gil::add-bool-var *sp* 0 1)) ; to store the result of the test
16)
17 (gil::g-rel-reify *sp* tested rel-type cst-val b) ; test the relation
18 (gil::g-ite *sp* b cost-value ZERO cost) ; add the cost if the test is true
19)
20)
21

22 ; add a cost regarding if the relation rel-type(tested-var, cst-val) is true
23 (defun add-cost-cst (tested-var-arr rel-type cst-val costs &optional (cost-value ONE

))

156

24 (loop
25 for cost in costs
26 for tested in tested-var-arr
27 do
28 (add-single-cost-cst tested rel-type cst-val cost cost-value)
29)
30)
31

32 ; add a cost regarding if the relation rel-type(tested-var, cst-val) is true
33 ; NOTE: the difference with add-cost-cst is that the cst-val is an array
34 (defun add-cost-multi-cst (tested-var-arr rel-type cst-val-arr costs &optional (

cost-value ONE))
35 (loop
36 for cost in costs
37 for tested in tested-var-arr
38 for cst-val in cst-val-arr
39 do
40 (add-single-cost-cst tested rel-type cst-val cost cost-value)
41)
42)
43

44 ; add a cost regarding if the relation rel-type(tested-var, cst-val) is true AND
is-cst is true

45 (defun add-cost-cst-if (tested-var-arr rel-type cst-val is-cst-arr costs &optional (
cost-value ONE))

46 (loop
47 for cost in costs
48 for tested in tested-var-arr
49 for is-cst in is-cst-arr
50 do
51 (add-single-cost-cst-if tested rel-type cst-val is-cst cost cost-value)
52)
53)
54

55 (defun add-single-cost-cst-if (tested rel-type cst-val is-cst cost cost-value)
56 (let (
57 (b (gil::add-bool-var *sp* 0 1)) ; to store the result of the test
58 (b-and (gil::add-bool-var *sp* 0 1)) ; b and cst
59)
60 (gil::g-rel-reify *sp* tested rel-type cst-val b)
61 (gil::g-op *sp* b gil::BOT_AND is-cst b-and) ; b-and = b and cst
62 (gil::g-ite *sp* b-and cost-value ZERO cost) ; add the cost if the test is

true
63)
64)
65

66 ; add a cost regarding if the booleans are true in bool-arr
67 (defun add-cost-bool-cst (bool-arr costs &optional (cost-value ONE))
68 (loop
69 for b in bool-arr
70 for cost in costs
71 do
72 (gil::g-ite *sp* b cost-value ZERO cost)
73)
74)
75

76 ; add a cost regarding if the booleans are true in bool-arr AND if is-cst is true in
is-cst-arr

77 (defun add-cost-bool-cst-if (bool-arr is-cst-arr costs &optional (cost-value ONE))
78 (loop
79 for b in bool-arr
80 for cst in is-cst-arr
81 for cost in costs

157

82 do
83 (add-single-cost-bool-cst-if b cst cost cost-value)
84)
85)
86

87 ; add a cost regarding if b is true AND if cst is true
88 (defun add-single-cost-bool-cst-if (b cst cost cost-value)
89 (let (
90 (b-and (gil::add-bool-var *sp* 0 1)) ; b and cst
91)
92 (gil::g-op *sp* b gil::BOT_AND cst b-and) ; b-and = b and cst
93 (gil::g-ite *sp* b-and cost-value ZERO cost) ; add the cost if the test is

true
94)
95)
96

97 ; add a cost regarding only if b AND cst are true (do not force ZERO if false)
98 (defun add-single-cost-bool-cst-eqv (b cst cost cost-value)
99 (let (

100 (b-and (gil::add-bool-var *sp* 0 1)) ; b and cst
101)
102 (gil::g-op *sp* b gil::BOT_AND cst b-and) ; b-and = b and cst
103 (gil::g-rel-reify *sp* cost gil::IRT_EQ cost-value b-and gil::RM_IMP) ; add

the cost if the test is true
104)
105)
106

107 ; add constraints such that costs =
108 ; - 0 if m-degree in [0, 1, 2]
109 ; - 1 if m-degree in [3, 4, 12]
110 ; - 2 otherwise
111 ; @m-all-intervals: all the melodic intervals of cp in a row
112 ; @m-degrees-cost: the cost of each melodic interval
113 (defun add-m-degrees-cost-cst (m-all-intervals m-degrees-cost m-degrees-type &

optional (is-cst-arr nil))
114 (loop
115 for m in m-all-intervals
116 for c in m-degrees-cost
117 for d in m-degrees-type
118 do
119 (let (
120 (b-l3 (gil::add-bool-var *sp* 0 1)) ; true if m < 3
121 (b-3 (gil::add-bool-var *sp* 0 1)) ; true if m == 3
122 (b-4 (gil::add-bool-var *sp* 0 1)) ; true if m == 4
123 (b-34 (gil::add-bool-var *sp* 0 1)) ; true if m in [3, 4]
124 (b-5 (gil::add-bool-var *sp* 0 1)) ; true if m == 5
125 (b-6 (gil::add-bool-var *sp* 0 1)) ; true if m == 6
126 (b-7 (gil::add-bool-var *sp* 0 1)) ; true if m == 7
127 (b-8 (gil::add-bool-var *sp* 0 1)) ; true if m == 8
128 (b-9 (gil::add-bool-var *sp* 0 1)) ; true if m == 9
129 (b-89 (gil::add-bool-var *sp* 0 1)) ; true if m in [8, 9]
130 (b-10 (gil::add-bool-var *sp* 0 1)) ; true if m == 10
131 (b-11 (gil::add-bool-var *sp* 0 1)) ; true if m == 11
132 (b-1011 (gil::add-bool-var *sp* 0 1)) ; true if m in [10, 11]
133 (b-12 (gil::add-bool-var *sp* 0 1)) ; true if m == 12
134)
135 (gil::g-rel-reify *sp* m gil::IRT_LE 3 b-l3) ; m < 3
136 (gil::g-rel-reify *sp* m gil::IRT_EQ 3 b-3) ; m = 3
137 (gil::g-rel-reify *sp* m gil::IRT_EQ 4 b-4) ; m = 4
138 (gil::g-op *sp* b-3 gil::BOT_OR b-4 b-34) ; m in [3, 4]
139 (gil::g-rel-reify *sp* m gil::IRT_EQ 5 b-5) ; m = 5
140 (gil::g-rel-reify *sp* m gil::IRT_EQ 6 b-6) ; m = 6
141 (gil::g-rel-reify *sp* m gil::IRT_EQ 7 b-7) ; m = 7

158

142 (gil::g-rel-reify *sp* m gil::IRT_EQ 8 b-8) ; m = 8
143 (gil::g-rel-reify *sp* m gil::IRT_EQ 9 b-9) ; m = 9
144 (gil::g-op *sp* b-8 gil::BOT_OR b-9 b-89) ; m in [8, 9]
145 (gil::g-rel-reify *sp* m gil::IRT_EQ 10 b-10) ; m = 10
146 (gil::g-rel-reify *sp* m gil::IRT_EQ 11 b-11) ; m = 11
147 (gil::g-op *sp* b-10 gil::BOT_OR b-11 b-1011) ; m in [10, 11]
148 (gil::g-rel-reify *sp* m gil::IRT_EQ 12 b-12) ; m = 12
149 ; set costs
150 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-step-cost* b-l3 gil::RM_IMP)
151 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-third-cost* b-34 gil::RM_IMP)
152 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-fourth-cost* b-5 gil::RM_IMP)
153 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-tritone-cost* b-6 gil::RM_IMP)
154 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-fifth-cost* b-7 gil::RM_IMP)
155 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-sixth-cost* b-89 gil::RM_IMP)
156 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-seventh-cost* b-1011 gil::RM_IMP

)
157 (gil::g-rel-reify *sp* c gil::IRT_EQ *m-octave-cost* b-12 gil::RM_IMP)
158 ; set types
159 (gil::g-rel-reify *sp* d gil::IRT_EQ 2 b-l3 gil::RM_IMP)
160 (gil::g-rel-reify *sp* d gil::IRT_EQ 3 b-34 gil::RM_IMP)
161 (gil::g-rel-reify *sp* d gil::IRT_EQ 4 b-5 gil::RM_IMP)
162 (gil::g-rel-reify *sp* d gil::IRT_EQ 1 b-6 gil::RM_IMP)
163 (gil::g-rel-reify *sp* d gil::IRT_EQ 5 b-7 gil::RM_IMP)
164 (gil::g-rel-reify *sp* d gil::IRT_EQ 6 b-89 gil::RM_IMP)
165 (gil::g-rel-reify *sp* d gil::IRT_EQ 7 b-1011 gil::RM_IMP)
166 (gil::g-rel-reify *sp* d gil::IRT_EQ 8 b-12 gil::RM_IMP)
167)
168)
169)
170

171 ; add cost constraints such that a cost is added when a fifth or an octave is
present in the 1st beat

172 ; except for the 4th species where it is the 3rd beat
173 ; @is-sync: true means it is the 4th species
174 (defun add-p-cons-cost-cst (h-intervals is-not-lowest &optional (is-sync nil))
175 (setq fifth-cost (gil::add-int-var-array-dom *sp* *cf-penult-index (

getparam-dom ’h-fifth-cost))) ; IntVar array representing the cost to have
fifths

176 (setq octave-cost (gil::add-int-var-array-dom *sp* *cf-penult-index (
getparam-dom ’h-octave-cost))) ; IntVar array representing the cost to have
octaves

177 (if is-sync
178 ; then 4th species
179 (add-h-inter-cost-cst (rest (third h-intervals)) fifth-cost octave-cost (

rest is-not-lowest))
180 ; else
181 (add-h-inter-cost-cst (restbutlast (first h-intervals)) fifth-cost

octave-cost (restbutlast is-not-lowest))
182)
183 (add-cost-to-factors fifth-cost ’h-fifth-cost)
184 (add-cost-to-factors octave-cost ’h-octave-cost)
185)
186

187 ; add cost constraints such that a cost is added when a fifth or an octave is
present in @h-intervals

188 (defun add-h-inter-cost-cst (h-intervals fifth-cost octave-cost is-not-lowest)
189 (add-cost-cst h-intervals gil::IRT_EQ 7 fifth-cost *h-fifth-cost*) ; *

fifth-cost = 1 if *h-interval == 7
190 (add-cost-cst-if h-intervals gil::IRT_EQ 0 is-not-lowest octave-cost *

h-octave-cost*) ; *octave-cost = 1 if *h-interval == 0
191)
192

159

193 ; Get the minimum cost possible for a counterpoint depending on the costs of the
melodic intervals

194 ; @m-len: number of melodic intervals
195 (defun get-min-m-cost (m-len)
196 ; get the minimum cost for skips
197 (setq min-skip-cost (min
198 (getparam ’m-third-cost)
199 (getparam ’m-fourth-cost)
200 (getparam ’m-tritone-cost)
201 (getparam ’m-fifth-cost)
202 (getparam ’m-sixth-cost)
203 (getparam ’m-seventh-cost)
204 (getparam ’m-octave-cost)
205))
206 ; get the minimum number of skips
207 (setq int-min-skip (ceiling (* (getparam ’min-skips-slider) m-len)))
208 ; return the minimum cost
209 (+
210 (* int-min-skip min-skip-cost)
211 (* (- m-len int-min-skip) (min (getparam ’m-step-cost) min-skip-cost))
212)
213)
214

215 ; Initializes the cost factors, accordingly to the species and the number of voices
216 (defun set-cost-factors ()
217 (setq *N-COST-FACTORS 3)
218 (case *N-PARTS
219 (2 (case (first *species-list)
220 (1 (incf *N-COST-FACTORS 5))
221 (2 (incf *N-COST-FACTORS 6))
222 (3 (incf *N-COST-FACTORS 7))
223 (4 (incf *N-COST-FACTORS 6))
224 (5 (incf *N-COST-FACTORS 8))
225))
226 (3 (progn
227 (incf *N-COST-FACTORS 7)
228 (dolist (species *species-list)
229 (case species
230 (1 (incf *N-COST-FACTORS 5))
231 (2 (incf *N-COST-FACTORS 6))
232 (3 (incf *N-COST-FACTORS 8)) ; + 7 from fux-cp-3rd and + 1 from

fux-cp-3v
233 (4 (incf *N-COST-FACTORS 5)) ; + 6 from fux-cp-4th and -1 not

used in fux-cp-3v
234 (5 (incf *N-COST-FACTORS 9)) ; + 7 from fux-cp-5th and + 1 from

fux-cp-3v
235 (otherwise (error "Unexpected value in the species list (~A), when

setting the costs." species))
236)
237)
238))
239)
240 (gil::add-int-var-array *sp* *N-COST-FACTORS 0 100)
241)
242

243 ; add general costs for most of the species
244 (defun set-general-costs-cst (counterpoint cp-len &optional (is-cst-arr1 nil) (

is-cst-arr2 nil))
245 (let (
246 (m-len (- cp-len 1))
247)
248 ; 2) sharps and flats should be used sparingly
249 (print "Sharps and flats should be used sparingly...")

160

250 (setf (off-key-cost counterpoint) (gil::add-int-var-array-dom *sp* cp-len (
getparam-dom ’borrow-cost))) ; IntVar array representing the cost to
have off-key notes

251 (if (null is-cst-arr1)
252 ; then
253 (add-cost-bool-cst (is-cp-off-key-arr counterpoint) (off-key-cost

counterpoint) *borrow-cost*)
254 ; else
255 (add-cost-bool-cst-if (is-cp-off-key-arr counterpoint) is-cst-arr1 (

off-key-cost counterpoint) *borrow-cost*)
256)
257 ; sum of the cost of the off-key notes
258 (add-cost-to-factors (off-key-cost counterpoint) ’borrow-cost)
259

260 ; 3) melodic intervals should be as small as possible
261 (print "Melodic intervals should be as small as possible...")
262 ; IntVar array representing the cost to have melodic large intervals
263 (setq degrees-cost-domain
264 (remove-duplicates (mapcar (lambda (x) (getparam x))
265 (list ’m-step-cost ’m-third-cost ’m-fourth-cost ’m-tritone-cost ’

m-fifth-cost ’m-sixth-cost ’m-seventh-cost ’m-octave-cost)
266))
267)
268 (setf (m-degrees-cost counterpoint) (gil::add-int-var-array-dom *sp* m-len

degrees-cost-domain))
269 (setf (m-degrees-type counterpoint) (gil::add-int-var-array *sp* m-len 1 8))
270 (add-m-degrees-cost-cst (m-all-intervals counterpoint) (m-degrees-cost

counterpoint) (m-degrees-type counterpoint) is-cst-arr2)
271 (add-cost-to-factors (m-degrees-cost counterpoint) ’m-degrees-cost)
272 (gil::g-count *sp* (m-degrees-type counterpoint) 2 gil::IRT_LQ (floor (* (-

1 (getparam ’min-skips-slider)) m-len)))
273)
274)
275

276 ; merge lists intermittently such that the first element of the first list is
followed by the first element of the second list, etc.

277 ; attention: cp-len is lenght of the first list in cp-list and it should be 1 more
than the lenght of the other lists

278 (defun merge-cp (cp-list total-cp)
279 (let (
280 (cp-len-1 (- (length (first cp-list)) 1))
281 (n-list (length cp-list))
282)
283 (loop
284 for i from 0 below cp-len-1
285 do
286 (loop for j from 0 below n-list do
287 (setf (nth (+ (* i n-list) j) total-cp) (nth i (nth j cp-list)))
288)
289)
290 (gil::g-rel *sp* (lastone total-cp) gil::IRT_EQ (lastone (first cp-list)))
291)
292)
293

294 ; merge lists intermittently such that the first element of the first list is
followed by the first element of the second list, etc.

295 ; attention: lengths should be the same
296 (defun merge-cp-same-len (cp-list total-cp)
297 (let (
298 (cp-len (length (first cp-list)))
299 (n-list (length cp-list))
300)
301 (loop

161

302 for i from 0 below cp-len
303 do
304 (loop for j from 0 below n-list do
305 (setf (nth (+ (* i n-list) j) total-cp) (nth i (nth j cp-list)))
306)
307)
308)
309)
310

311 ; create the harmonic intervals between @cp and @cf in @h-intervals
312 (defun create-h-intervals (cp cf h-intervals)
313 (loop
314 for p in cp
315 for q in cf
316 for i in h-intervals do
317 (inter-eq-cst *sp* p q i) ; add a constraint to *sp* such that i = |p -

q| % 12
318)
319)
320

321 ; create the intervals between @line1 and @line2 in @intervals and @brut-intervals
322 (defun create-intervals (line1 line2 intervals brut-intervals)
323 (loop
324 for p in line1
325 for q in line2
326 for i in intervals
327 for ib in brut-intervals
328 do
329 (inter-eq-cst-brut *sp* q p ib i) ; add a constraint to *sp* such that

ib = p - q and i = |ib|
330)
331)
332

333 ; create the intervals between @line1 and @line2 in @intervals and @brut-intervals
where @is-cst-arr is true

334 (defun create-intervals-for-cst (line1 line2 intervals brut-intervals is-cst-arr)
335 (loop
336 for p in line1
337 for q in line2
338 for i in intervals
339 for ib in brut-intervals
340 for is-cst in is-cst-arr
341 do
342 (inter-eq-cst-brut-for-cst *sp* q p ib i is-cst) ; add a constraint to *

sp* such that ib = p - q and i = |ib|
343)
344)
345

346 ; create the melodic intervals of @cp in @m-intervals and @m-intervals-brut
347 ; @is-cst-arr is a list of booleans indicating whether the melodic interval is

constrained or not
348 (defun create-m-intervals-self (cp m-intervals m-intervals-brut &optional (

is-cst-arr nil))
349 (if is-cst-arr
350 ; then
351 (create-intervals-for-cst (butlast cp) (rest cp) m-intervals

m-intervals-brut is-cst-arr)
352 ; else
353 (create-intervals (butlast cp) (rest cp) m-intervals m-intervals-brut)
354)
355)
356

162

357 ; create an array of IntVar with the melodic interval between each arsis and its
following thesis

358 (defun create-m-intervals-next-meas (cp-arsis cp m-intervals-arsis
m-intervals-arsis-brut)

359 (create-intervals cp-arsis (rest cp) m-intervals-arsis m-intervals-arsis-brut)
360)
361

362 ; create the melodic intervals two positions apart of @cp in @m2-intervals and
@m2-intervals-brut

363 (defun create-m2-intervals (cp m2-intervals m2-intervals-brut)
364 (create-intervals (butlast (butlast cp)) (rest (rest cp)) m2-intervals

m2-intervals-brut)
365)
366

367 ; create the melodic intervals between the thesis of @cp and the arsis of @cp-arsis
in @m-intervals and @m-intervals-brut

368 (defun create-m-intervals-in-meas (cp cp-arsis ta-intervals ta-intervals-brut)
369 (create-intervals (butlast cp) cp-arsis ta-intervals ta-intervals-brut)
370)
371

372 ; create the brut melodic intervals of @cf in @cf-brut-m-intervals
373 (defun create-cf-brut-m-intervals (cf cf-brut-m-intervals)
374 (loop
375 for p in (butlast cf)
376 for q in (rest cf)
377 for i in cf-brut-m-intervals do
378 (let (
379 (ib (inter q p t))
380)
381 (gil::g-rel *sp* i gil::IRT_EQ ib)
382)
383)
384)
385

386 ; create the boolean array @is-p-cons-arr indicating if the interval is a perfect
consonance or not

387 (defun create-is-p-cons-arr (h-intervals is-p-cons-arr)
388 (loop
389 for i in h-intervals
390 for p in is-p-cons-arr
391 do
392 (let (
393 (b-7 (gil::add-bool-var *sp* 0 1))
394 (b-0 (gil::add-bool-var *sp* 0 1))
395)
396 (gil::g-rel-reify *sp* i gil::IRT_EQ 7 b-7) ; b-7 = (i == 7) -> the

interval is a fifth
397 (gil::g-rel-reify *sp* i gil::IRT_EQ 0 b-0) ; b-0 = (i == 0) -> the

interval is an octave
398 (gil::g-op *sp* b-0 gil::BOT_OR b-7 p) ; p = b-7 || b-0
399)
400)
401)
402

403 ;; Initialises the strata arrays, so that there is a bijection between each part (cf
, cp1 and cp2) and each strata (lowest, middle, highest)

404 (defun create-strata-arrays (parts)
405 (setf cantus-firmus (first parts))
406 (setq sorted-voices (make-list *cf-len :initial-element nil))
407 (dotimes (i *N-PARTS) (setf (is-not-lowest (nth i parts)) (gil::

add-bool-var-array *sp* *cf-len 0 1))) ; is-not-lowest represents if the
part is not the lowest stratum

408 (dotimes (i *cf-len) ; the ith measure

163

409 (setf voices (gil::add-int-var-array *sp* *N-PARTS 0 120)) ; the notes to
sort

410 (dotimes (j *N-PARTS) ; the jth counterpoint
411 (if (eq (species (nth j parts)) 4)
412 (if (< i *cf-last-index)
413 (gil::g-rel *sp* (nth j voices) gil::IRT_EQ (nth i (third (notes

(nth j parts))))) ; if fourth species consider the third
beat

414 (gil::g-rel *sp* (nth j voices) gil::IRT_EQ (nth *
cf-penult-index (first (notes (nth j parts))))) ; else
consider the first

415)
416 (gil::g-rel *sp* (nth j voices) gil::IRT_EQ (nth i (first (notes (

nth j parts))))) ; for the last index consider the first index
no matter what: the last note is always on the first beat

417)
418)
419 (setf order (gil::add-int-var-array *sp* *N-PARTS 0 (- *N-PARTS 1))) ;

contains the order of the parts, from the lowest note to the highest
420

421 (setf (nth i sorted-voices) (gil::add-int-var-array *sp* *N-PARTS 0 120)) ;
the sorted notes

422 (gil::g-sorted *sp* voices (nth i sorted-voices) order) ; sort the notes and
register their order

423

424 (gil::g-rel *sp* (nth i (first (notes *lowest))) gil::IRT_EQ (first (nth i
sorted-voices))) ; the lowest stratum is the first in the sorted

425 (dotimes (j *N-COUNTERPOINTS) ; the jth voice
426 (gil::g-rel *sp* (nth i (first (notes (nth j *upper)))) gil::IRT_EQ (nth

(+ j 1) (nth i sorted-voices))) ; the upper strata are the
following

427)
428

429 (let (
430 (cf-is-lowest (gil::add-bool-var *sp* 0 1)) ; boolean representing

whether the cf is the lowest stratum or not
431 (cp1-is-lowest (gil::add-bool-var *sp* 0 1)) ; boolean representing

whether the cp1 is the lowest stratum or not
432 (cp2-is-lowest (gil::add-bool-var *sp* 0 1)) ; boolean representing

whether the cp2 is the lowest stratum or not
433 (cp1-equals-bass (gil::add-bool-var *sp* 0 1)) ; boolean representing

whether the cp1 EQUALS the lowest stratum or not (not the same, it
can be the same value but be the middle stratum, since there is a
bijection between the two concepts)

434)
435

436 ; the following lines compute the bijection and set the is-not-lowest
variable for each part

437 ; if two parts compete for being the lowest stratum there is a priority:
first the cf, then the cp1, then the cp2

438 ; e.g. if both cf and cp1 equal the value of the lowest stratum, cf will
BE the lowest stratum and cp1 will not

439 ; e.g. if both cp1 and cp2 equal the value of the lowest stratum, cp1
will BE the lowest stratum and cp2 will not

440

441 ; if cf==lowest -> cf is lowest <-> if cf!=lowest -> cf is not lowest
442 (gil::g-rel-reify *sp* (nth i (first (notes *lowest))) gil::IRT_NQ (nth

i (first (notes cantus-firmus))) (nth i (is-not-lowest cantus-firmus
)))

443

444

445 ; if cp1==lowest AND cf!=lowest -> cp1 is lowest <-> to know if cp1 is
not lowest we take the following truth table

164

446 ; cp1==lowest cf is lowest cp is notlow
447 ; 1 1 1
448 ; 1 0 0
449 ; 0 1 1
450 ; 0 0 1
451 ; which is an implication, so cp1==lowest -> cf-is-lowest =

cp1-is-not-lowest
452 (if (eq (species (second parts)) 4)
453 (if (< i *cf-last-index)
454 (gil::g-rel-reify *sp* (nth i (first (notes *lowest))) gil::

IRT_EQ (nth i (third (notes (second parts))))
cp1-equals-bass)

455 (gil::g-rel-reify *sp* (nth i (first (notes *lowest))) gil::
IRT_EQ (nth *cf-penult-index (first (notes (second parts))))
cp1-equals-bass)

456)
457 (gil::g-rel-reify *sp* (nth i (first (notes *lowest))) gil::IRT_EQ (

nth i (first (notes (second parts)))) cp1-equals-bass)
458)
459 (gil::g-op *sp* cp1-equals-bass gil::BOT_IMP cf-is-lowest (nth i (

is-not-lowest (second parts))))
460

461 ; if both cf and cp1 are not the lowest then cp2 is the lowest
462 (if (eq *N-COUNTERPOINTS 2) (gil::g-op *sp* (nth i (is-not-lowest

cantus-firmus)) gil::BOT_XOR (nth i (is-not-lowest (second parts)))
(nth i (is-not-lowest (third parts)))))

463

464 ; computing the "is-lowest" for each part
465 (gil::g-op *sp* cf-is-lowest gil::BOT_XOR (nth i (is-not-lowest

cantus-firmus)) 1)
466 (gil::g-op *sp* cp1-is-lowest gil::BOT_XOR (nth i (is-not-lowest (second

parts))) 1)
467 (if (eq *N-COUNTERPOINTS 2) (gil::g-op *sp* cp2-is-lowest gil::BOT_XOR (

nth i (is-not-lowest (third parts))) 1))
468

469 (if (> i 0) (let
470 (
471 (corresponding-m-intervals (make-list *N-PARTS :initial-element

nil)) ; the last melodic interval of each measure for each
part

472)
473 (dotimes (j *N-PARTS)
474 (case (species (nth j parts))
475 (0 (setf (nth j corresponding-m-intervals) (first (

m-intervals-brut (nth j parts))))) ; last melodic
interval is between the first beat of the measure and
the next measure

476 (1 (setf (nth j corresponding-m-intervals) (first (
m-intervals-brut (nth j parts))))) ; last melodic
interval is between the first beat of the measure and
the next measure

477 (2 (setf (nth j corresponding-m-intervals) (third (
m-intervals-brut (nth j parts))))) ; last melodic
interval is between the third beat of the measure and
the next measure

478 (3 (setf (nth j corresponding-m-intervals) (fourth (
m-intervals-brut (nth j parts))))) ; last melodic
interval is between the fourth beat of the measure and
the next measure

479 (4 (setf (nth j corresponding-m-intervals) (third (
m-intervals-brut (nth j parts))))) ; last melodic
interval is between the third beat of the measure and
the next measure

165

480 (5 (setf (nth j corresponding-m-intervals) (third (
m-intervals-brut (nth j parts))))) ; last melodic
interval is between the third beat of the measure and
the next measure

481)
482)
483

484 ; setting the melodic interval of the corresponding part to be the
melodic interval of the lowest stratum

485 (gil::g-rel-reify *sp* (nth (- i 1) (nth 0 corresponding-m-intervals
)) gil::IRT_EQ (nth (- i 1) (first (m-intervals-brut *lowest)))
cf-is-lowest)

486 (gil::g-rel-reify *sp* (nth (- i 1) (nth 1 corresponding-m-intervals
)) gil::IRT_EQ (nth (- i 1) (first (m-intervals-brut *lowest)))
cp1-is-lowest)

487 (if (eq *N-COUNTERPOINTS 2) (gil::g-rel-reify *sp* (nth (- i 1) (nth
2 corresponding-m-intervals)) gil::IRT_EQ (nth (- i 1) (first (
m-intervals-brut *lowest))) cp2-is-lowest))

488))
489)
490)
491)
492

493

494 ; create the boolean array @is-cf-lower-arr indicating if the cantus firmus is the
bass or not

495 (defun create-is-cf-lower-arr (cp cf is-cf-lower-arr)
496 (loop
497 for p in cp
498 for q in cf
499 for b in is-cf-lower-arr
500 do
501 (gil::g-rel-reify *sp* p gil::IRT_GQ q b) ; b = (p >= q)
502)
503)
504

505 ; create an array of BoolVar such that is-ta-dim-arr is true if the note is a
diminution:

506 ; 1 -> inter(thesis, arsis) == 1 or 2 && inter(thesis, thesis + 1) == 3 or 4 &&
inter(arsis, thesis + 1) == 1 or 2

507 ; @m-intervals-ta: the melodic interval between each thesis and its following arsis
508 ; @m-intervals: the melodic interval between each thesis and its following thesis
509 ; @m-intervals-arsis: the melodic interval between each arsis and its following

thesis
510 ; @is-ta-dim-arr: the array of BoolVar to fill
511 (defun create-is-ta-dim-arr (m-intervals-ta m-intervals m-intervals-arsis

is-ta-dim-arr)
512 (loop
513 for mta in m-intervals-ta ; inter(thesis, arsis)
514 for mtt in m-intervals ; inter(thesis, thesis + 1)
515 for mat in m-intervals-arsis ; inter(arsis, thesis + 1)
516 for b in is-ta-dim-arr ; the BoolVar to create
517 do
518 (let (
519 (btt3 (gil::add-bool-var *sp* 0 1)) ; for mtt == 3
520 (btt4 (gil::add-bool-var *sp* 0 1)) ; for mtt == 4
521 (bta-second (gil::add-bool-var *sp* 0 1)) ; for mat <= 2
522 (btt-third (gil::add-bool-var *sp* 0 1)) ; for mtt == 3 or 4
523 (bat-second (gil::add-bool-var *sp* 0 1)) ; for mta <= 2
524 (b-and (gil::add-bool-var *sp* 0 1)) ; temporary BoolVar
525)
526 (gil::g-rel-reify *sp* mtt gil::IRT_EQ 3 btt3) ; btt3 = (mtt == 3)
527 (gil::g-rel-reify *sp* mtt gil::IRT_EQ 4 btt4) ; btt4 = (mtt == 4)

166

528 (gil::g-rel-reify *sp* mta gil::IRT_LQ 2 bta-second) ; bta2 = (mta
<= 2)

529 (gil::g-rel-reify *sp* mat gil::IRT_LQ 2 bat-second) ; bat1 = (mat
<= 2)

530 (gil::g-op *sp* btt3 gil::BOT_OR btt4 btt-third) ; btt-third = btt3
|| btt4

531 (gil::g-op *sp* bta-second gil::BOT_AND btt-third b-and) ; temporay
operation

532 (gil::g-op *sp* b-and gil::BOT_AND bat-second b) ; b = bta-second &&
btt-third && bat-second

533)
534)
535)
536

537 ; create an array of BoolVar
538 ; 1 -> inter(cp, cf) <= 4 && cf getting closer to cp
539 (defun create-is-nbour-arr (h-intervals-abs is-cf-lower-arr cf-brut-m-intervals

is-nbour-arr)
540 (loop
541 for hi in (butlast h-intervals-abs)
542 for bass in (butlast is-cf-lower-arr)
543 for mi in cf-brut-m-intervals
544 for n in is-nbour-arr
545 do
546 (let (
547 (b-hi (gil::add-bool-var *sp* 0 1)) ; for (hi <= 4)
548 (b-cfu (gil::add-bool-var *sp* 0 1)) ; for cf going up
549 (b-cfgc (gil::add-bool-var *sp* 0 1)) ; for cf getting closer to cp
550)
551 (gil::g-rel-reify *sp* hi gil::IRT_LQ 4 b-hi) ; b-hi = (hi <= 4)
552 (gil::g-rel-reify *sp* mi gil::IRT_GQ 0 b-cfu) ; b-cfu = (mi >= 0)
553 (gil::g-op *sp* bass gil::BOT_EQV b-cfu b-cfgc) ; b-cfgc = (bass ==

b-cfu)
554 (gil::g-op *sp* b-hi gil::BOT_AND b-cfgc n) ; n = b-hi && b-cfgc
555)
556)
557)
558

559 ; TODO: new version below should be used instead of this one
560 ; create an array of BoolVar
561 ; 1 -> 5 quarter notes strictly ups or downs and are linked by joint degrees
562 ; Note: the rule is applied measure by measure
563 (defun create-is-5qn-linked-arr (m-all-intervals m-all-intervals-brut

is-5qn-linked-arr)
564 (loop
565 for i from 0 to (- (length m-all-intervals) 3)
566 for m1 in m-all-intervals
567 for m2 in (rest m-all-intervals)
568 for m3 in (rest (rest m-all-intervals))
569 for m4 in (rest (rest (rest m-all-intervals)))
570 for mb1 in m-all-intervals-brut
571 for mb2 in (rest m-all-intervals-brut)
572 for mb3 in (rest (rest m-all-intervals-brut))
573 for mb4 in (rest (rest (rest m-all-intervals-brut)))
574 for b in is-5qn-linked-arr
575 do
576 (if (eq (mod i 4) 0)
577 ; then
578 (let (
579 (b1 (gil::add-bool-var *sp* 0 1)) ; (m1 <= 2)
580 (b2 (gil::add-bool-var *sp* 0 1)) ; (m2 <= 2)
581 (b3 (gil::add-bool-var *sp* 0 1)) ; (m3 <= 2)
582 (b4 (gil::add-bool-var *sp* 0 1)) ; (m4 <= 2)

167

583 (bb1 (gil::add-bool-var *sp* 0 1)) ; (mb1 > 0)
584 (bb2 (gil::add-bool-var *sp* 0 1)) ; (mb2 > 0)
585 (bb3 (gil::add-bool-var *sp* 0 1)) ; (mb3 > 0)
586 (bb4 (gil::add-bool-var *sp* 0 1)) ; (mb4 > 0)
587 (b-and1 (gil::add-bool-var *sp* 0 1)) ; (b1 && b2)
588 (b-and2 (gil::add-bool-var *sp* 0 1)) ; (b3 && b4)
589 (b-and3 (gil::add-bool-var *sp* 0 1)) ; (b-and1 && b-and2)
590 (b-eq1 (gil::add-bool-var *sp* 0 1)) ; (mb1 == mb2)
591 (b-eq2 (gil::add-bool-var *sp* 0 1)) ; (mb3 == mb3)
592 (b-eq3 (gil::add-bool-var *sp* 0 1)) ; (b-eq1 == b-eq2)
593)
594 (gil::g-rel-reify *sp* m1 gil::IRT_LQ 2 b1) ; b1 = (m1 <= 2)
595 (gil::g-rel-reify *sp* m2 gil::IRT_LQ 2 b2) ; b2 = (m2 <= 2)
596 (gil::g-rel-reify *sp* m3 gil::IRT_LQ 2 b3) ; b3 = (m3 <= 2)
597 (gil::g-rel-reify *sp* m4 gil::IRT_LQ 2 b4) ; b4 = (m4 <= 2)
598 (gil::g-rel-reify *sp* mb1 gil::IRT_GQ 0 bb1) ; bb1 = (mb1 > 0)
599 (gil::g-rel-reify *sp* mb2 gil::IRT_GQ 0 bb2) ; bb2 = (mb2 > 0)
600 (gil::g-rel-reify *sp* mb3 gil::IRT_GQ 0 bb3) ; bb3 = (mb3 > 0)
601 (gil::g-rel-reify *sp* mb4 gil::IRT_GQ 0 bb4) ; bb4 = (mb4 > 0)
602 (gil::g-op *sp* b1 gil::BOT_AND b2 b-and1) ; b-and1 = b1 && b2
603 (gil::g-op *sp* b3 gil::BOT_AND b4 b-and2) ; b-and2 = b3 && b4
604 (gil::g-op *sp* b-and1 gil::BOT_AND b-and2 b-and3) ; b-and3 = b-and1

&& b-and2
605 (gil::g-op *sp* bb1 gil::BOT_EQV bb2 b-eq1) ; b-eq1 = (bb1 == bb2)
606 (gil::g-op *sp* bb3 gil::BOT_EQV bb4 b-eq2) ; b-eq2 = (bb3 == bb4)
607 (gil::g-op *sp* b-eq1 gil::BOT_EQV b-eq2 b-eq3) ; b-eq3 = (b-eq1 ==

b-eq2)
608 (gil::g-op *sp* b-and3 gil::BOT_AND b-eq3 b) ; b = b-and3 && b-eq3
609)
610)
611)
612)
613

614 ; create an array of BoolVar representing if the second note is not cambiata
615 (defun create-is-not-cambiata-arr (is-cons-arr2 is-cons-arr3 m-intervals

is-not-cambiata-arr)
616 (loop
617 for b2 in is-cons-arr2
618 for b3 in is-cons-arr3
619 for m in m-intervals
620 for b in is-not-cambiata-arr
621 do
622 (let (
623 (b-m (gil::add-bool-var *sp* 0 1)) ; (m <= 2)
624 (b-and (gil::add-bool-var *sp* 0 1)) ; (b2 && b3)
625)
626 (gil::g-op *sp* b2 gil::BOT_AND b3 b-and) ; b-and = b2 && b3
627 (gil::g-rel-reify *sp* m gil::IRT_LQ 2 b-m) ; b-m = (m <= 2)
628 (gil::g-op *sp* b-and gil::BOT_AND b-m b) ; b = b-and && b-m
629)
630)
631)
632

633 ; create an array of BoolVar representing if there is no syncopation
634 (defun create-is-no-syncope-arr (m-intervals is-no-syncope-arr)
635 (loop
636 for m in (butlast m-intervals)
637 for b in is-no-syncope-arr
638 do
639 (gil::g-rel-reify *sp* m gil::IRT_NQ 0 b)
640)
641)
642

168

643 ; add constraints such that @b-member is true iff @candidate is a member of
@member-list

644 (defun add-is-member-cst (candidate member-list b-member)
645 (let (
646 (results (gil::add-int-var-array *sp* (length member-list) 0 1)) ; where

candidate == m
647 (sum (gil::add-int-var *sp* 0 (length member-list))) ; sum(results)
648)
649 (loop
650 for m in member-list
651 for r in results
652 do
653 (let (
654 (b1 (gil::add-bool-var *sp* 0 1)) ; b1 = (candidate == m)
655)
656 (gil::g-rel-reify *sp* candidate gil::IRT_EQ m b1) ; b1 = (candidate

== m)
657 (gil::g-ite *sp* b1 ONE ZERO r) ; r = (b1 ? 1 : 0)
658)
659)
660 (gil::g-sum *sp* sum results) ; sum = sum(results)
661 (gil::g-rel-reify *sp* sum gil::IRT_GR 0 b-member) ; b-member = (sum >= 1)
662)
663)
664

665 ; create an array of BoolVar
666 ; 1 -> the harmonic interval is member of the set (consonances set by default)
667 (defun create-is-member-arr (h-intervals cons-arr &optional (cons-set ALL_CONS))
668 (loop
669 for h in h-intervals
670 for b in cons-arr
671 do
672 (add-is-member-cst h cons-set b)
673)
674)
675

676 ; add the constraint such that the harmonies in @h-intervals are consonances expect
the penultimate note (specific rule). the fourth species also follows specific
rules

677 ; @len: the length of the counterpoint
678 ; @cf-penult-index: the index of penultimate note in the counterpoint
679 ; @h-intervals: the array of harmonic intervals
680 ; @penult-dom-var: the domain of the penultimate note
681 ; @species: the species of the counterpoint
682 ; @is-not-lowest: boolean array to know whether the counterpoint is the lowest

stratum
683 (defun add-h-cons-cst (len cf-penult-index h-intervals &optional (penult-dom-var

PENULT_CONS_VAR) (species 0) (is-not-lowest nil))
684 (loop for i from 0 below len do
685 (if (/= species 4)
686 ; if not 4th species (normal case)
687 (if (eq i *cf-last-index) ; if it is the last note
688 ; then add only harmonic triad options
689 (gil::g-member *sp* MAJ_H_TRIAD_VAR (nth i h-intervals))
690 (if (eq i *cf-penult-index) ; if penult note
691 ; add penult options
692 (gil::g-member *sp* penult-dom-var (nth i h-intervals))
693 ; else add all consonances
694 (gil::g-member *sp* ALL_CONS_VAR (nth i h-intervals))
695)
696)
697 ; if 4th species (if the lowest stratum doesn’t move then dissonance,

else consonance)

169

698 (case i
699 (0 (gil::g-member *sp* ALL_CONS_VAR (nth i h-intervals))) ; first

measure
700 (*cf-penult-index (gil::g-member *sp* penult-dom-var (nth i

h-intervals))) ; penult measure
701 (*cf-last-index (gil::g-member *sp* MAJ_H_TRIAD_VAR (nth i

h-intervals))) ; last measure
702 (otherwise (let
703 (
704 (lower-stays (gil::add-bool-var *sp* 0 1)) ; if the lowest

stratum doesn’t move
705 (is-not-lowest-and-lower-stays (gil::add-bool-var *sp* 0 1))

; if the ctp is not the lowest and the lowest doesn’t
move

706 (lower-not-stays (gil::add-bool-var *sp* 0 1)) ; if the
lowest stratum moves

707 (is-not-lowest-and-lower-not-stays (gil::add-bool-var *sp* 0
1)) ; if the ctp is not the lowest and the lowest moves

708 (h-dis (gil::add-int-var *sp* 0 11)) ; temp
709 (h-cons (gil::add-int-var *sp* 0 11)) ; temp
710)
711 (gil::g-rel-reify *sp* (nth (- i 1) (first (m-intervals-brut *

lowest))) gil::IRT_EQ 0 lower-stays) ; lower-stays := (
m-intervals lowest = 0)

712 (gil::g-op *sp* lower-stays gil::BOT_AND (nth i is-not-lowest)
is-not-lowest-and-lower-stays) ;
is-not-lowest-and-lower-stays := is-not-lowest AND
lowest-stays

713 (gil::g-rel-reify *sp* (nth (- i 1) (first (m-intervals-brut *
lowest))) gil::IRT_NQ 0 lower-not-stays) ; lower-stays := (
m-intervals lowest = 0)

714 (gil::g-op *sp* lower-not-stays gil::BOT_AND (nth i
is-not-lowest) is-not-lowest-and-lower-not-stays) ;
is-not-lowest-and-lower-stays := is-not-lowest AND
lowest-not-stays

715

716 (gil::g-member *sp* DIS_VAR h-dis) ; temporary is member of DIS
717 (gil::g-member *sp* ALL_CONS_VAR h-cons) ; temporary is member

of CONS
718 (gil::g-rel-reify *sp* h-dis gil::IRT_EQ (nth i h-intervals)

is-not-lowest-and-lower-stays) ;
is-not-lowest-and-lower-stays <-> h-interval is member of
DIS

719 (gil::g-rel-reify *sp* h-cons gil::IRT_EQ (nth i h-intervals)
is-not-lowest-and-lower-not-stays) ;
is-not-lowest-and-lower-not-stays <-> h-interval is member
of CONS

720))
721)
722)
723)
724)
725

726

727 ; add the constraint such that the penultimate note belongs to the domain
@penult-dom-var

728 (defun add-penult-dom-cst (h-interval penult-dom-var)
729 (if (getparam ’penult-rule-check)
730 (gil::g-member *sp* penult-dom-var h-interval)
731)
732)
733

734

170

735 ; add the constraint such that is-cst-arr[i] => is-cons-arr[i] is true
736 ; -is-cons-arr: array of BoolVar, 1 -> the harmonic interval is a consonance
737 ; -is-cst-arr: array of BoolVar, 1 -> the note is constrained by a species
738 (defun add-h-cons-cst-if (is-cons-arr is-cst-arr)
739 (loop
740 for is-cons in is-cons-arr
741 for is-cst in is-cst-arr
742 do
743 (gil::g-op *sp* is-cst gil::BOT_IMP is-cons 1) ; (is-cst => is-cons) = 1
744)
745)
746

747 ; add the constraint such that h-intervals[i] belongs to ALL_CONS_VAR
is-no-syncope-arr[i] is true

748 ; in other words, if there is no syncopation the note cannot be dissonant
749 (defun add-no-sync-h-cons (h-intervals is-no-syncope-arr)
750 (loop
751 for h in h-intervals
752 for b in is-no-syncope-arr
753 do
754 (loop for d in DIS do
755 (gil::g-rel-reify *sp* h gil::IRT_NQ d b gil::RM_IMP) ; b => (h != d)
756)
757)
758)
759

760 ; for future work: should use not(nth i is-cons-arr) instead of add a constraint for
each dissonance in DIS

761 ; -len: length of the harmonic array
762 ; -cf-penult-index: index of the penultimate note in the counterpoint
763 ; -h-intervals-arsis: harmonic intervals of the arsis of the counterpoint
764 ; -is-ta-dim-arr: array of BoolVar, 1 -> the note in arsis is a diminution
765 ; -penult-dom-var: domain of the penultimate note
766 (defun add-h-cons-arsis-cst (len cf-penult-index h-intervals-arsis is-ta-dim-arr &

optional (penult-dom-var PENULT_CONS_VAR))
767 (loop
768 for i from 0 below len
769 for b in is-ta-dim-arr
770 do
771 (if (eq i cf-penult-index) ; if it is the penultimate note
772 ; then add major sixth + minor third
773 (add-penult-dom-cst (nth i h-intervals-arsis) penult-dom-var)
774 ; else dissonance implies there is a diminution
775 (loop for d in DIS do
776 (gil::g-rel-reify *sp* (nth i h-intervals-arsis) gil::IRT_EQ d b gil

::RM_PMI)
777)
778)
779)
780)
781

782 ; add the constraint such that (c3 OR (c2 AND c4)) AND (c3 OR dim) is true,
783 ; where : - cn represents if the nth note of the measure is consonant
784 ; - dim represents if the 3rd note is a diminution
785 (defun add-h-dis-or-cons-3rd-cst (is-cons-2nd is-cons-3rd is-cons-4th is-dim &

optional (is-cst-arr nil))
786 (loop
787 for b-c2nd in is-cons-2nd
788 for b-c3rd in is-cons-3rd
789 for b-c4th in is-cons-4th
790 for b-dim in is-dim
791 do
792 (let (

171

793 (b-and1 (gil::add-bool-var *sp* 0 1)) ; s.f. b-c2nd AND b-c4th
794)
795 (gil::g-op *sp* b-c2nd gil::BOT_AND b-c4th b-and1) ; b-and1 = b-c2nd AND

b-c4th
796 (gil::g-op *sp* b-c3rd gil::BOT_OR b-dim 1) ; b-and2 = b-c2nd AND b-c4th

AND b-dim
797)
798)
799)
800

801 ; add constraints such that
802 ; any dissonant note implies that it is followed by the next consonant note below
803 ; @m-succ-intervals-brut: list of IntVar, s.f. brut melodic intervals between thesis

and arsis
804 ; @is-cons-arr: list of BoolVar, s.f. 1 -> the note is consonant
805 ; @is-cst-arr: list of BoolVar, s.f. 1 -> the note is constrained by a species
806 (defun add-h-dis-imp-cons-below-cst (m-succ-intervals-brut is-cons-arr &optional (

is-cst-arr nil))
807 (loop
808 for m in m-succ-intervals-brut
809 for b in is-cons-arr
810 for i from 0 below (length m-succ-intervals-brut)
811 do
812 (let (
813 (b-not (gil::add-bool-var *sp* 0 1)) ; s.f. !b (dissonance)
814 (is-cst (true-if-null is-cst-arr i)) ; s.f. is-cst = 1 -> the note is

constrained by a species
815 (b-and (gil::add-bool-var *sp* 0 1)) ; s.f. b-not && is-cst
816)
817 (gil::g-op *sp* b gil::BOT_EQV FALSE b-not) ; b-not = !b (dissonance)
818 (gil::g-op *sp* b-not gil::BOT_AND is-cst b-and) ; b-and = b-not &&

is-cst
819 (gil::g-rel-reify *sp* m gil::IRT_LE 0 b-and gil::RM_IMP) ; b-and => m <

0
820 (gil::g-rel-reify *sp* m gil::IRT_GQ -2 b-and gil::RM_IMP) ; b-and => m

>= -2
821)
822)
823)
824

825 ; add constraints such that if a melodic interval is greater than one step (2)
826 ; then the next melodic interval should be one step and in the opposite direction
827 (defun add-contrary-step-after-skip-cst (m-all-intervals m-all-intervals-brut)
828 (if (not (getparam ’con-m-after-skip-check))
829 (return-from add-contrary-step-after-skip-cst)
830)
831 (loop
832 for m in m-all-intervals
833 for m+1 in (rest m-all-intervals)
834 for mb in m-all-intervals-brut
835 for mb+1 in (rest m-all-intervals-brut)
836 do
837 (let (
838 (b-skip (gil::add-bool-var *sp* 0 1)) ; m > 2
839 (b-mb-up (gil::add-bool-var *sp* 0 1)) ; mb > 0
840 (b-mb+1-down (gil::add-bool-var *sp* 0 1)) ; mb+1 < 0
841 (b-contrary (gil::add-bool-var *sp* 0 1)) ; b-mb-up <=> b-mb+1-down
842)
843 (gil::g-rel-reify *sp* m gil::IRT_GR 2 b-skip) ; b-skip := m > 2
844 (gil::g-rel-reify *sp* mb gil::IRT_GR 0 b-mb-up) ; b-mb-up := mb > 0
845 (gil::g-rel-reify *sp* mb+1 gil::IRT_LE 0 b-mb+1-down) ; b-mb+1-down :=

mb+1 < 0

172

846 (gil::g-op *sp* b-mb-up gil::BOT_EQV b-mb+1-down b-contrary) ;
b-contrary := b-mb-up <=> b-mb+1-down

847 (gil::g-rel-reify *sp* m+1 gil::IRT_LQ 2 b-skip gil::RM_IMP) ; b-skip =>
m+1 <= 2

848 (gil::g-op *sp* b-skip gil::BOT_IMP b-contrary 1) ; b-skip => b-contrary
849)
850)
851)
852

853 ; is-5qn-linked-arr implies that is-cons-arr1 (supposed to always be true) and
is-cons-arr3 are true

854 (defun add-linked-5qn-cst (is-cons-arr3 is-5qn-linked-arr)
855 (loop
856 ; for b1 in is-cons-arr1
857 for b3 in is-cons-arr3
858 for b in is-5qn-linked-arr
859 do
860 (gil::g-op *sp* b gil::BOT_IMP b3 1) ; b => b3
861)
862)
863

864 ; add the constraint such that there cp is never equal to cf
865 (defun add-no-unison-at-all-cst (cp cf &optional (is-cst-arr nil))
866 (loop
867 for p in cp
868 for q in cf
869 for i from 0 below (length cp)
870 do
871 (if (and p q)
872 (rel-reify-if p gil::IRT_NQ q (nth i is-cst-arr))
873)
874)
875)
876

877 ; add the constraint such that there is no unison unless it is the first or last
note

878 (defun add-no-unison-cst (cp cf)
879 (add-no-unison-at-all-cst (restbutlast cp) (restbutlast cf))
880)
881

882

883 ; add the constraint that the three voices go in different directions
884 ; i.e. that there are no two direct motions
885 ; i.e. that there can be only one part moving in direct motion (since one part has

motion=-1 (bc it is the lowest stratum), and if the two other parts have motion=
direct then all voices go in the same direction)

886 ; WARNING: this function needs to be scaled before implementing a fourth voice, it
currently works by restricting the number of direct motions to max. 1

887 (defun add-no-together-move-cst (motions)
888 (loop
889 ; for each possible pair or motions
890 ; for example if we have (m1, m2 and m3), take (m1 and m2), (m1 and m3) and

(m2 and m3)
891 for motions1 in motions
892 for i from 0
893 do (loop for motions2 in (nthcdr (1+ i) motions)
894 do
895 (loop for m1 in motions1 for m2 in motions2 do
896 (let (
897 (m1-direct (gil::add-bool-var *sp* 0 1))
898 (m2-direct (gil::add-bool-var *sp* 0 1))
899)

173

900 (gil::g-rel-reify *sp* m1 gil::IRT_EQ 2 m1-direct) ; m1-direct := (
motion1 == 2)

901 (gil::g-rel-reify *sp* m2 gil::IRT_EQ 2 m2-direct) ; m2-direct := (
motion2 == 2)

902 (gil::g-op *sp* m1-direct gil::BOT_AND m2-direct 0) ; NOT (m1-direct AND
m2-direct) (not both at the same time)

903))
904))
905)
906 ; add the constraint such that the first harmonic interval is a perfect consonance
907 (defun add-p-cons-start-cst (h-intervals)
908 (gil::g-member *sp* P_CONS_VAR (first h-intervals))
909)
910

911 ; add the constraint such that the last harmonic interval is a perfect consonance
912 (defun add-p-cons-end-cst (h-intervals)
913 (gil::g-member *sp* P_CONS_VAR (lastone h-intervals))
914)
915

916 ; add the constraint that there cannot be a minor third in the last chord
917 (defun add-no-minor-third-cst (h-interval)
918 (gil::g-rel *sp* h-interval gil::IRT_NQ 3)
919)
920

921 ; add the constraint that there cannot be a tenth in the last chord
922 (defun add-no-tenth-in-last-chord-cst (h-intervals h-intervals-brut)
923 (let (
924 (h (lastone h-intervals))
925 (hbrut (lastone h-intervals-brut))
926 (is-hbrut-not-third (gil::add-bool-var *sp* 0 1))
927)
928 (gil::g-rel-reify *sp* hbrut gil::IRT_NQ 4
929 is-hbrut-not-third) ; if the hbrut is not a third
930 (gil::g-rel-reify *sp* h gil::IRT_NQ 4 is-hbrut-not-third) ; then there can

be no third (as it would mean that the third would be a tenth)
931

932 ; There is no need to do the same for 3 (minor third) as minor thirds are
prohibited altogether in the last chord

933)
934)
935

936 ; add the constraint that the chord shall be a harmonic triad ((1-3-5) or (1-5-8) or
(1-3-8))

937 (defun add-last-chord-h-triad-cst (h-intervals-1 h-intervals-2)
938 (let (
939 (h-triad (gil::add-int-var-const-array *sp* (list 0 3 4 7)))
940)
941 (gil::g-member *sp* h-triad (lastone h-intervals-1))
942 (gil::g-member *sp* h-triad (lastone h-intervals-2))
943)
944)
945

946 ; computes the harmonic triad cost
947 ; for each chord not being a harmonic triad, cost = *h-triad-cost*
948 (defun compute-h-triad-cost (h-intervals-1 h-intervals-2 costs)
949 (loop
950 for h1 in h-intervals-1
951 for h2 in h-intervals-2
952 for c in costs
953 do
954 (let (
955 (is-h1-3 (gil::add-bool-var *sp* 0 1))
956 (is-h1-4 (gil::add-bool-var *sp* 0 1))

174

957 (is-h1-third (gil::add-bool-var *sp* 0 1))
958 (is-h1-7 (gil::add-bool-var *sp* 0 1))
959 (is-h2-3 (gil::add-bool-var *sp* 0 1))
960 (is-h2-4 (gil::add-bool-var *sp* 0 1))
961 (is-h2-third (gil::add-bool-var *sp* 0 1))
962 (is-h2-7 (gil::add-bool-var *sp* 0 1))
963 (is-harmonic-triad-1st-possibility (gil::add-bool-var *sp* 0 1))
964 (is-harmonic-triad-2nd-possibility (gil::add-bool-var *sp* 0 1))
965 (is-harmonic-triad (gil::add-bool-var *sp* 0 1))
966 (is-not-h-triad (gil::add-bool-var *sp* 0 1))
967)
968 (gil::g-rel-reify *sp* h1 gil::IRT_EQ 3 is-h1-3)
969 (gil::g-rel-reify *sp* h1 gil::IRT_EQ 4 is-h1-4)
970 (gil::g-rel-reify *sp* h2 gil::IRT_EQ 7 is-h2-7)
971 (gil::g-op *sp* is-h1-3 gil::BOT_OR is-h1-4 is-h1-third)
972 (gil::g-op *sp* is-h1-third gil::BOT_AND is-h2-7

is-harmonic-triad-1st-possibility)
973

974 (gil::g-rel-reify *sp* h2 gil::IRT_EQ 3 is-h2-3)
975 (gil::g-rel-reify *sp* h2 gil::IRT_EQ 4 is-h2-4)
976 (gil::g-rel-reify *sp* h1 gil::IRT_EQ 7 is-h1-7) ;
977 (gil::g-op *sp* is-h2-3 gil::BOT_OR is-h2-4 is-h2-third)
978 (gil::g-op *sp* is-h2-third gil::BOT_AND is-h1-7

is-harmonic-triad-2nd-possibility)
979

980 (gil::g-op *sp* is-harmonic-triad-1st-possibility gil::BOT_OR
is-harmonic-triad-1st-possibility is-harmonic-triad)

981

982 (gil::g-op *sp* is-harmonic-triad gil::BOT_XOR is-not-h-triad 1) ;
is-harmonic-triad = NOT is-not-h-triad

983 (gil::g-rel-reify *sp* c gil::IRT_EQ 0 is-harmonic-triad gil::RM_IMP) ;
it costs 0 to be a harmonic triad

984 (gil::g-rel-reify *sp* c gil::IRT_EQ *h-triad-cost* is-not-h-triad gil::
RM_IMP) ; it costs *h-triad-cost* not to be a harmonic triad

985)
986)
987)
988

989 ; computes the harmonic triad cost for the 3rd species, i.e. 2nd and 3rd beat
990 ; for each chord not being a harmonic triad, cost = *h-triad-cost*
991 (defun compute-h-triad-3rd-species-cost (h-intervals costs)
992 (loop
993 for h-interval in h-intervals
994 for cost in costs
995 do
996 (let (
997 (not-minor-third (gil::add-bool-var *sp* 0 1))
998 (not-major-third (gil::add-bool-var *sp* 0 1))
999 (not-third (gil::add-bool-var *sp* 0 1))
1000 (not-major-fifth (gil::add-bool-var *sp* 0 1))
1001 (not-in-h-triad (gil::add-bool-var *sp* 0 1))
1002)
1003 (gil::g-rel-reify *sp* h-interval gil::IRT_NQ 3 not-minor-third)
1004 (gil::g-rel-reify *sp* h-interval gil::IRT_NQ 4 not-major-third)
1005 (gil::g-rel-reify *sp* h-interval gil::IRT_NQ 7 not-major-fifth)
1006 (gil::g-op *sp* not-minor-third gil::BOT_AND not-major-third not-third)
1007 (gil::g-op *sp* not-third gil::BOT_AND not-major-fifth not-in-h-triad)
1008 (gil::g-rel-reify *sp* cost gil::IRT_EQ *h-triad-3rd-species-cost*

not-in-h-triad)
1009)
1010)
1011)
1012

175

1013 ; add the constraint such that the first and last harmonic interval are 0 if cp is
at the bass

1014 ; not(is-cf-bass[0, 0]) => h-interval[0, 0] = 0
1015 ; not(is-cf-bass[-1, -1]) => h-interval[-1, -1] = 0
1016 ; @h-interval: the harmonic interval array
1017 ; @is-cf-lower-arr: boolean variables indicating if cf is lower than the given ctp
1018 (defun add-tonic-tuned-cst (h-interval is-cf-lower-arr)
1019 (let (
1020 (bf-not (gil::add-bool-var *sp* 0 1)) ; for !(first is-cf-lower-arr)
1021 (bl-not (gil::add-bool-var *sp* 0 1)) ; for !(lastone is-cf-lower-arr)
1022)
1023 (gil::g-op *sp* (first is-cf-lower-arr) gil::BOT_EQV FALSE bf-not) ; bf-not

= !(first is-cf-lower-arr)
1024 (gil::g-op *sp* (lastone is-cf-lower-arr) gil::BOT_EQV FALSE bl-not) ;

bl-not = !(lastone is-cf-lower-arr)
1025 (gil::g-rel-reify *sp* (first h-interval) gil::IRT_EQ 0 bf-not gil::RM_IMP)

; bf-not => h-interval[0, 0] = 0
1026 (gil::g-rel-reify *sp* (lastone h-interval) gil::IRT_EQ 0 bl-not gil::RM_IMP

) ; bl-not => h-interval[-1, -1] = 0
1027)
1028)
1029

1030 ; add the constraint such that the harmonic interval is a perfect consonance if it
is constrained by a species

1031 (defun add-p-cons-cst-if (h-inter is-cst)
1032 (let (
1033 (b-fifth (gil::add-bool-var *sp* 0 1)) ; b-fifth = h-inter is a fifth
1034 (b-octave (gil::add-bool-var *sp* 0 1)) ; b-octave = h-inter is an octave
1035 (b-p-cons (gil::add-bool-var *sp* 0 1)) ; b-p-cons = h-inter is a perfect

consonance
1036)
1037 (gil::g-rel-reify *sp* h-inter gil::IRT_EQ 7 b-fifth) ; b-fifth = h-inter is

a fifth
1038 (gil::g-rel-reify *sp* h-inter gil::IRT_EQ 0 b-octave) ; b-octave = h-inter

is an octave
1039 (gil::g-op *sp* b-fifth gil::BOT_OR b-octave b-p-cons) ; b-p-cons = b-fifth

or b-octave
1040 (gil::g-op *sp* is-cst gil::BOT_IMP b-p-cons 1) ; is-cst => b-p-cons
1041)
1042)
1043

1044 ; adds the constraint that if the cf is above the ctp, the interval must be a third,
and if below then a sixth (to the cantus firmus)

1045 (defun add-penult-cons-1sp-and-cf-cst (is-not-lowest h-interval species)
1046 (case species
1047 (0 (if (getparam ’penult-rule-check) ; if the cantus firmus is not the

lowest use a minor third
1048 (gil::g-rel-reify *sp* h-interval gil::IRT_EQ THREE is-not-lowest

gil::RM_IMP)
1049))
1050 (1 (if (getparam ’penult-rule-check) ; if the cantus firmus is the lowest

use a major sixth
1051 (gil::g-rel-reify *sp* h-interval gil::IRT_EQ NINE is-not-lowest gil

::RM_IMP)
1052))
1053)
1054

1055)
1056

1057 ; adds the constraint that if the cf is above the ctp, the interval must be a third,
and if below then a sixth (to the lowest stratum)

1058 (defun add-penult-cons-cst (b-bass h-interval &optional (and-cond nil))
1059 (if (getparam ’penult-rule-check)

176

1060 (if (null and-cond)
1061 (gil::g-ite *sp* b-bass NINE THREE h-interval)
1062 (and-ite b-bass NINE THREE h-interval and-cond)
1063)
1064)
1065)
1066

1067 ; adds a constraint so that the last bass notes is the fundamental note of the key
1068 (defun last-lowest-note-same-as-root-note-cst ()
1069 (let (
1070 (TWELVE (gil::add-int-var-dom *sp* ’(12))) ; the IntVar just used to store

12
1071 (CF-MODULO (gil::add-int-var-dom *sp* (list (mod (first *cf) 12)))) ; the

value of the first note of the cf modulo 12
1072)
1073 (gil::g-mod *sp* (lastone (first (notes *lowest))) TWELVE CF-MODULO) ; the

last note of the lowest stratum % 12 = CF-MODULO
1074)
1075)
1076

1077 ; add a constraint such that there is no seventh harmonic interval if cf is at the
top

1078 (defun add-no-seventh-cst (h-intervals is-cf-lower-arr &optional (is-cst-arr nil))
1079 (loop
1080 for h in h-intervals
1081 for b in is-cf-lower-arr
1082 for i from 0 below (length h-intervals)
1083 do
1084 (let (
1085 (b-not (gil::add-bool-var *sp* 0 1)) ; b-not = !b
1086 (is-cst (nth i is-cst-arr)) ; is-cst = is-cst-arr[i]
1087 (b-and (gil::add-bool-var *sp* 0 1)) ; b-and = b-not and is-cst
1088)
1089 (gil::g-op *sp* b gil::BOT_EQV FALSE b-not) ; b-not = !b
1090 (if (null is-cst)
1091 (gil::g-op *sp* b-not gil::BOT_AND TRUE b-and) ; b-and = b-not
1092 (gil::g-op *sp* b-not gil::BOT_AND is-cst b-and) ; b-and = b-not and

is-cst
1093)
1094 (gil::g-rel-reify *sp* h gil::IRT_NQ 10 b-and gil::RM_IMP) ; b-and => h

!= 10
1095 (gil::g-rel-reify *sp* h gil::IRT_NQ 11 b-and gil::RM_IMP) ; b-and => h

!= 11
1096)
1097)
1098)
1099

1100 ; add a constraint such that there is no second harmonic interval if:
1101 ; - cf is at the bass AND
1102 ; - octave/unison harmonic interval precedes it
1103 (defun add-no-second-cst (h-intervals-arsis h-intervals-thesis is-cf-lower-arr &

optional (is-cst-arr nil))
1104 (loop
1105 for ia in h-intervals-arsis
1106 for it in h-intervals-thesis
1107 for b in is-cf-lower-arr
1108 for i from 0 below (length h-intervals-arsis)
1109 do
1110 (let (
1111 (b-uni (gil::add-bool-var *sp* 0 1)) ; b-uni = (ia == 0)
1112 (b-and (gil::add-bool-var *sp* 0 1)) ; b-and = b AND b-uni
1113 (is-cst (true-if-null is-cst-arr i)) ; is-cst = is-cst-arr[i] or TRUE
1114 (b-and-cst (gil::add-bool-var *sp* 0 1)) ; b-and-cst = b-and AND is-cst

177

1115)
1116 (gil::g-rel-reify *sp* ia gil::IRT_EQ 0 b-uni) ; b-uni = (ia == 0)
1117 (gil::g-op *sp* b gil::BOT_AND b-uni b-and) ; b-and = b AND b-uni
1118 (gil::g-op *sp* b-and gil::BOT_AND is-cst b-and-cst) ; b-and-cst = b-and

AND is-cst
1119 (gil::g-rel-reify *sp* it gil::IRT_NQ 1 b-and-cst gil::RM_IMP)
1120 (gil::g-rel-reify *sp* it gil::IRT_NQ 2 b-and-cst gil::RM_IMP)
1121)
1122)
1123)
1124

1125 ; add a constraint such that there is no melodic interval greater than @jump (8,
minor 6th by default)

1126 (defun add-no-m-jump-cst (m-intervals &optional (jump 8))
1127 (gil::g-rel *sp* m-intervals gil::IRT_LQ jump)
1128)
1129

1130 ; add a constraint such that m-intervals does not belong to [9, 10, 11]
1131 (defun add-no-m-jump-extend-cst (m-intervals &optional (is-cst-arr nil))
1132 (if (null is-cst-arr)
1133 ; then
1134 (progn
1135 (gil::g-rel *sp* m-intervals gil::IRT_NQ 9)
1136 (gil::g-rel *sp* m-intervals gil::IRT_NQ 10)
1137 (gil::g-rel *sp* m-intervals gil::IRT_NQ 11)
1138)
1139 ; else
1140 (progn
1141 (loop
1142 for m in m-intervals
1143 for b in is-cst-arr
1144 do
1145 (gil::g-rel-reify *sp* m gil::IRT_NQ 9 b gil::RM_IMP)
1146 (gil::g-rel-reify *sp* m gil::IRT_NQ 10 b gil::RM_IMP)
1147 (gil::g-rel-reify *sp* m gil::IRT_NQ 11 b gil::RM_IMP)
1148)
1149)
1150)
1151)
1152

1153 ; add melodic interval constraints such that:
1154 ; - minor sixth intervals and octave intervals implies that is-nbour is true
1155 ; - no seventh intervals
1156 (defun add-m-inter-arsis-cst (m-intervals-ta is-nbour-arr)
1157 (loop
1158 for m in m-intervals-ta
1159 for n in is-nbour-arr
1160 do
1161 (let (
1162 (b-maj-six (gil::add-bool-var *sp* 0 1)) ; for (m = 9)
1163 (b-min-sev (gil::add-bool-var *sp* 0 1)) ; for (m == 10)
1164 (b-maj-sev (gil::add-bool-var *sp* 0 1)) ; for (m == 11)
1165 (b-or (gil::add-bool-var *sp* 0 1)) ; temporary variable for (

b-min-sev or b-maj-sev)
1166)
1167 (gil::g-rel-reify *sp* m gil::IRT_EQ 12 n gil::RM_PMI) ; m == 12

implies n is true
1168 (gil::g-rel-reify *sp* m gil::IRT_EQ 9 b-maj-six) ; b-maj-six = (m

== 9)
1169 (gil::g-rel-reify *sp* m gil::IRT_EQ 10 b-min-sev) ; b-min-sev = (m

== 10)
1170 (gil::g-rel-reify *sp* m gil::IRT_EQ 11 b-maj-sev) ; b-maj-sev = (m

== 11)

178

1171 (gil::g-op *sp* b-min-sev gil::BOT_OR b-maj-sev b-or) ; b-or = (
b-min-sev or b-maj-sev)

1172 (gil::g-op *sp* b-or gil::BOT_OR b-maj-six 0) ; not (b-min-sev ||
b-maj-sev)

1173)
1174)
1175)
1176

1177 ; add melodic interval constraints such that there is no chromatic interval:
1178 ; - no m1 == 1 and m2 == 2 OR
1179 ; - no m1 == -1 and m2 == -2
1180 (defun add-no-chromatic-m-cst (m-intervals-brut m2-intervals-brut)
1181 (loop
1182 for m1 in (rest m-intervals-brut)
1183 for m2 in m2-intervals-brut do
1184 (let (
1185 (b1 (gil::add-bool-var *sp* 0 1)) ; for (m1 == 1)
1186 (b2 (gil::add-bool-var *sp* 0 1)) ; for (m2 == 2)
1187 (b3 (gil::add-bool-var *sp* 0 1)) ; for (m1 == -1)
1188 (b4 (gil::add-bool-var *sp* 0 1)) ; for (m2 == -2)
1189)
1190 (gil::g-rel-reify *sp* m1 gil::IRT_EQ 1 b1) ; b1 = (m1 == 1)
1191 (gil::g-rel-reify *sp* m2 gil::IRT_EQ 2 b2) ; b2 = (m2 == 2)
1192 (gil::g-op *sp* b1 gil::BOT_AND b2 0) ; not(b1 and b2)
1193 (gil::g-rel-reify *sp* m1 gil::IRT_EQ -1 b3) ; b3 = (m1 == -1)
1194 (gil::g-rel-reify *sp* m2 gil::IRT_EQ -2 b4) ; b4 = (m2 == -2)
1195 (gil::g-op *sp* b3 gil::BOT_AND b4 0) ; not(b3 and b4)
1196)
1197)
1198)
1199

1200 ; add melodic interval constraints such that there is no chromatic interval:
1201 ; - no m1 == 1 and m2 == 1 OR
1202 ; - no m1 == -1 and m2 == -1
1203 ; @m-intervals-brut: list of all the melodic intervals
1204 (defun add-no-chromatic-allm-cst (m-intervals-brut)
1205 (loop
1206 for m1 in m-intervals-brut
1207 for m2 in (rest m-intervals-brut) do
1208 (let (
1209 (b1 (gil::add-bool-var *sp* 0 1)) ; for (m1 == 1)
1210 (b2 (gil::add-bool-var *sp* 0 1)) ; for (m2 == 1)
1211 (b3 (gil::add-bool-var *sp* 0 1)) ; for (m1 == -1)
1212 (b4 (gil::add-bool-var *sp* 0 1)) ; for (m2 == -1)
1213)
1214 (gil::g-rel-reify *sp* m1 gil::IRT_EQ 1 b1) ; b1 = (m1 == 1)
1215 (gil::g-rel-reify *sp* m2 gil::IRT_EQ 1 b2) ; b2 = (m2 == 1)
1216 (gil::g-op *sp* b1 gil::BOT_AND b2 0) ; not(b1 and b2)
1217 (gil::g-rel-reify *sp* m1 gil::IRT_EQ -1 b3) ; b3 = (m1 == -1)
1218 (gil::g-rel-reify *sp* m2 gil::IRT_EQ -1 b4) ; b4 = (m2 == -1)
1219 (gil::g-op *sp* b3 gil::BOT_AND b4 0) ; not(b3 and b4)
1220)
1221)
1222)
1223

1224 ; create the motions array based on the melodic intervals of the melodic intervals
it is given

1225 (defun create-motions (m-intervals-brut cf-brut-m-intervals motions costs
is-not-lowest-arr)

1226 (loop
1227 for p in m-intervals-brut
1228 for q in cf-brut-m-intervals
1229 for m in motions

179

1230 for c in costs
1231 for is-not-lowest in (rest is-not-lowest-arr)
1232 do
1233 (let (
1234 ; boolean variables
1235 (b-pu (gil::add-bool-var *sp* 0 1)) ; boolean p up
1236 (b-qu (gil::add-bool-var *sp* 0 1)) ; boolean q up
1237 (b-ps (gil::add-bool-var *sp* 0 1)) ; boolean p stays
1238 (b-qs (gil::add-bool-var *sp* 0 1)) ; boolean q stays
1239 (b-pd (gil::add-bool-var *sp* 0 1)) ; boolean p down
1240 (b-qd (gil::add-bool-var *sp* 0 1)) ; boolean q down
1241 ; direct motion
1242 (b-both-up (gil::add-bool-var *sp* 0 1)) ; boolean both up
1243 (b-both-stays (gil::add-bool-var *sp* 0 1)) ; boolean both stays
1244 (b-both-down (gil::add-bool-var *sp* 0 1)) ; boolean both down
1245 (dm-or1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1246 (dm-or2 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1247 (is-direct (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1248 ; oblique motion
1249 (b-pu-qs (gil::add-bool-var *sp* 0 1)) ; boolean p up and q stays
1250 (b-pd-qs (gil::add-bool-var *sp* 0 1)) ; boolean p down and q stays
1251 (b-ps-qu (gil::add-bool-var *sp* 0 1)) ; boolean p stays and q up
1252 (b-ps-qd (gil::add-bool-var *sp* 0 1)) ; boolean p stays and q down
1253 (om-or1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1254 (om-or2 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1255 (om-or3 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1256 (is-oblique (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1257 ; contrary motion
1258 (b-pu-qd (gil::add-bool-var *sp* 0 1)) ; boolean p up and q down
1259 (b-pd-qu (gil::add-bool-var *sp* 0 1)) ; boolean p down and q up
1260 (cm-or1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1261 (is-contrary (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1262 ; is lowest
1263 (is-lowest (gil::add-bool-var *sp* 0 1))
1264)
1265 (gil::g-rel-reify *sp* p gil::IRT_LE 0 b-pd) ; b-pd = (p < 0)
1266 (gil::g-rel-reify *sp* p gil::IRT_EQ 0 b-ps) ; b-ps = (p == 0)
1267 (gil::g-rel-reify *sp* p gil::IRT_GR 0 b-pu) ; b-pu = (p > 0)
1268 (gil::g-rel-reify *sp* q gil::IRT_LE 0 b-qd) ; b-qd = (q < 0)
1269 (gil::g-rel-reify *sp* q gil::IRT_EQ 0 b-qs) ; b-qs = (q == 0)
1270 (gil::g-rel-reify *sp* q gil::IRT_GR 0 b-qu) ; b-qu = (q > 0)
1271 ; direct motion
1272 (gil::g-op *sp* b-pu gil::BOT_AND b-qu b-both-up) ; b-both-up = (

b-pu and b-qu)
1273 (gil::g-op *sp* b-ps gil::BOT_AND b-qs b-both-stays) ; b-both-stays

= (b-ps and b-qs)
1274 (gil::g-op *sp* b-pd gil::BOT_AND b-qd b-both-down) ; b-both-down =

(b-pd and b-qd)
1275 (gil::g-op *sp* b-both-up gil::BOT_OR b-both-stays dm-or1) ; dm-or1

= (b-both-up or b-both-stays)
1276 (gil::g-op *sp* dm-or1 gil::BOT_OR b-both-down dm-or2) ; dm-or2 = (

dm-or1 or b-both-down)
1277 (gil::g-op *sp* dm-or2 gil::BOT_AND is-not-lowest is-direct)
1278 (gil::g-rel-reify *sp* m gil::IRT_EQ DIRECT is-direct) ; m = 1 if

dm-or2
1279 (gil::g-rel-reify *sp* c gil::IRT_EQ *dir-motion-cost* is-direct gil

::RM_IMP) ; add the cost of direct motion
1280 ; oblique motion
1281 (gil::g-op *sp* b-pu gil::BOT_AND b-qs b-pu-qs) ; b-pu-qs = (b-pu

and b-qs)
1282 (gil::g-op *sp* b-pd gil::BOT_AND b-qs b-pd-qs) ; b-pd-qs = (b-pd

and b-qs)

180

1283 (gil::g-op *sp* b-ps gil::BOT_AND b-qu b-ps-qu) ; b-ps-qu = (b-ps
and b-qu)

1284 (gil::g-op *sp* b-ps gil::BOT_AND b-qd b-ps-qd) ; b-ps-qd = (b-ps
and b-qd)

1285 (gil::g-op *sp* b-pu-qs gil::BOT_OR b-pd-qs om-or1) ; om-or1 = (
b-pu-qs or b-pd-qs)

1286 (gil::g-op *sp* om-or1 gil::BOT_OR b-ps-qu om-or2) ; om-or2 = (
om-or1 or b-ps-qu)

1287 (gil::g-op *sp* om-or2 gil::BOT_OR b-ps-qd om-or3) ; om-or3 = (
om-or2 or b-ps-qd)

1288 (gil::g-op *sp* om-or3 gil::BOT_AND is-not-lowest is-oblique)
1289 (gil::g-rel-reify *sp* m gil::IRT_EQ OBLIQUE is-oblique) ; m = 0 if

om-or3
1290 (gil::g-rel-reify *sp* c gil::IRT_EQ *obl-motion-cost* is-oblique

gil::RM_IMP) ; add the cost of oblique motion
1291 ; contrary motion
1292 (gil::g-op *sp* b-pu gil::BOT_AND b-qd b-pu-qd) ; b-pu-qd = (b-pu

and b-qd)
1293 (gil::g-op *sp* b-pd gil::BOT_AND b-qu b-pd-qu) ; b-pd-qu = (b-pd

and b-qu)
1294 (gil::g-op *sp* b-pu-qd gil::BOT_OR b-pd-qu cm-or1) ; cm-or1 = (

b-pu-qd or b-pd-qu)
1295 (gil::g-op *sp* cm-or1 gil::BOT_AND is-contrary is-contrary)
1296 (gil::g-rel-reify *sp* m gil::IRT_EQ CONTRARY is-contrary) ; m = -1

if cm-or1
1297 (gil::g-rel-reify *sp* c gil::IRT_EQ *con-motion-cost* is-contrary

gil::RM_IMP) ; add the cost of contrary motion
1298 ; is bass (no motion)
1299 (gil::g-op *sp* is-not-lowest gil::BOT_XOR is-lowest 1)
1300 (gil::g-rel-reify *sp* m gil::IRT_EQ -1 is-lowest) ;
1301 (gil::g-rel-reify *sp* c gil::IRT_EQ 0 is-lowest gil::RM_IMP) ;
1302)
1303)
1304)
1305

1306 ; create the motion list variable as it is perceived by the human ear,
1307 ; i.e. if the interval between the thesis and the arsis note is greater than a third

,
1308 ; then the motion is perceived from the arsis note and not from the thesis note
1309 ; @m-intervals-ta: melodic intervals between the thesis and the arsis note
1310 ; @motions: motions perceived from the thesis note
1311 ; @motions-arsis: motions perceived from the arsis note
1312 ; @real-motions: motions perceived by the human ear
1313 (defun create-real-motions (m-intervals-ta motions motions-arsis real-motions

motions-costs motions-arsis-costs real-motions-costs)
1314 (loop
1315 for tai in m-intervals-ta
1316 for t-move in motions
1317 for a-move in motions-arsis
1318 for r-move in real-motions
1319 for t-c in motions-costs
1320 for a-c in motions-arsis-costs
1321 for r-c in real-motions-costs
1322 do
1323 (let (
1324 (b (gil::add-bool-var *sp* 0 1)) ; for (tai > 4)
1325)
1326 (gil::g-rel-reify *sp* tai gil::IRT_GR 4 b) ; b = (tai > 4)
1327 (gil::g-ite *sp* b a-move t-move r-move) ; r-move = (b ? a-move :

t-move)
1328 (gil::g-ite *sp* b a-c t-c r-c) ; r-c = (b ? a-c : t-c)
1329)
1330)

181

1331)
1332

1333 ; add the constraint such that there is no perfect consonance in thesis that is
reached by direct motion

1334 (defun add-no-direct-move-to-p-cons-cst (motions is-p-cons-arr is-not-lowest-arr &
optional (r t))

1335 (loop
1336 for m in motions
1337 for b in (rest-if is-p-cons-arr r)
1338 for is-not-lowest in (rest-if is-not-lowest-arr r)
1339 do
1340 (let
1341 (
1342 (is-p-cons-and-is-not-lowest (gil::add-bool-var *sp* 0 1))
1343)
1344 (gil::g-op *sp* is-not-lowest gil::BOT_AND b

is-p-cons-and-is-not-lowest)
1345 (gil::g-rel-reify *sp* m gil::IRT_NQ DIRECT

is-p-cons-and-is-not-lowest gil::RM_IMP) ; if it is a p-cons and
not the lowest stratum then prohibit a direct move

1346 ; of course nothing happens if it is the lowest stratum
1347)
1348)
1349)
1350

1351

1352 ; add the costs such that there if a perfect consonance is reached by direct motion
a cost is set

1353 (defun compute-no-direct-move-to-p-cons-costs-cst (motions cost-array is-p-cons-arr
&optional (r t))

1354 (loop
1355 for m in motions
1356 for c in cost-array
1357 for is-p-cons in (rest-if is-p-cons-arr r)
1358 do (let (
1359 (is-direct-move (gil::add-bool-var *sp* 0 1))
1360 (is-direct-move-to-p-cons (gil::add-bool-var *sp* 0 1))
1361 (is-not-direct-move-to-p-cons (gil::add-bool-var *sp* 0 1))
1362)
1363 (gil::g-rel-reify *sp* m gil::IRT_EQ DIRECT is-direct-move) ;

is-direct-move = (m = direct)
1364 (gil::g-op *sp* is-direct-move gil::BOT_AND is-p-cons

is-direct-move-to-p-cons) ; is-direct-move-to-p-cons = (
is-direct-move AND is-p-cons)

1365 (gil::g-op *sp* is-direct-move-to-p-cons gil::BOT_XOR
is-not-direct-move-to-p-cons 1)

1366

1367 (gil::g-rel-reify *sp* c gil::IRT_EQ *direct-move-to-p-cons-cost*
is-direct-move-to-p-cons gil::RM_IMP) ; if
is-direct-move-to-p-cons then cost is set

1368 (gil::g-rel-reify *sp* c gil::IRT_EQ 0 is-not-direct-move-to-p-cons
gil::RM_IMP) ; else it is equal to 0

1369)
1370)
1371)
1372

1373 ; add the constraint that there cannot be two ascending sixths
1374 (defun add-no-ascending-sixths-cst (h-intervals cp)
1375 (dotimes (i *cf-last-index)
1376 (let (
1377 (first-is-sixth (gil::add-bool-var *sp* 0 1))
1378 (first-h-equals-8 (gil::add-bool-var *sp* 0 1))
1379 (first-h-equals-9 (gil::add-bool-var *sp* 0 1))

182

1380 (second-is-sixth (gil::add-bool-var *sp* 0 1))
1381 (second-h-equals-8 (gil::add-bool-var *sp* 0 1))
1382 (second-h-equals-9 (gil::add-bool-var *sp* 0 1))
1383 (both-h-are-sixths (gil::add-bool-var *sp* 0 1))
1384 (is-ascending (gil::add-bool-var *sp* 0 1))
1385)
1386 (gil::g-rel-reify *sp* (nth i h-intervals) gil::IRT_EQ 8 first-h-equals-8)
1387 (gil::g-rel-reify *sp* (nth i h-intervals) gil::IRT_EQ 9 first-h-equals-9)
1388 (gil::g-op *sp* first-h-equals-8 gil::BOT_OR first-h-equals-9 first-is-sixth

)
1389 (gil::g-rel-reify *sp* (nth (+ i 1) h-intervals) gil::IRT_EQ 8

second-h-equals-8)
1390 (gil::g-rel-reify *sp* (nth (+ i 1) h-intervals) gil::IRT_EQ 9

second-h-equals-9)
1391 (gil::g-op *sp* second-h-equals-8 gil::BOT_OR second-h-equals-9

second-is-sixth)
1392 (gil::g-op *sp* first-is-sixth gil::BOT_AND second-is-sixth

both-h-are-sixths)
1393 (gil::g-rel-reify *sp* (nth i cp) gil::IRT_LE (nth (+ i 1) cp) is-ascending)
1394 (gil::g-op *sp* both-h-are-sixths gil::BOT_AND is-ascending 0) ; prohibit

that we have ascending sixths
1395)
1396)
1397)
1398

1399 ; add the cost of having two successive perfect consonances between two voices
1400 (defun add-no-successive-p-cons-cst (is-p-cons-array successive-p-cons-cost)
1401 (loop
1402 for i from 0 to (- (length is-p-cons-array) 2)
1403 do (let ((successive-p-cons (gil::add-bool-var *sp* 0 1)))
1404 (gil::g-op *sp* (nth i is-p-cons-array) gil::BOT_AND (nth (+ i 1)

is-p-cons-array) successive-p-cons)
1405 (gil::g-rel-reify *sp* (nth i successive-p-cons-cost) gil::IRT_EQ *

succ-p-cons-cost* successive-p-cons)
1406))
1407)
1408

1409 ; add the cost of having two successive perfect consonances between two voices - 4th
species -> successive FIFTHS are allowed

1410 (defun add-no-successive-p-cons-4th-species-cst (is-p-cons-array h-intervals
successive-p-cons-cost)

1411 (dotimes (i (- (length h-intervals) 1))
1412 (let (
1413 (first-not-fifth (gil::add-bool-var *sp* 0 1))
1414 (second-not-fifth (gil::add-bool-var *sp* 0 1))
1415 (not-successive-fifths (gil::add-bool-var *sp* 0 1))
1416

1417 (successive-p-cons (gil::add-bool-var *sp* 0 1))
1418 (successive-p-cons-and-not-successive-fifths (gil::add-bool-var *sp* 0

1))
1419)
1420

1421 (gil::g-rel-reify *sp* (nth i h-intervals) gil::IRT_NQ 7 first-not-fifth
)

1422 (gil::g-rel-reify *sp* (nth (+ 1 i) h-intervals) gil::IRT_NQ 7
second-not-fifth)

1423 (gil::g-op *sp* first-not-fifth gil::BOT_OR second-not-fifth
not-successive-fifths)

1424

1425 (gil::g-op *sp* (nth i is-p-cons-array) gil::BOT_AND (nth (+ i 1)
is-p-cons-array) successive-p-cons)

1426 (gil::g-op *sp* successive-p-cons gil::BOT_AND not-successive-fifths
successive-p-cons-and-not-successive-fifths)

183

1427 (gil::g-rel-reify *sp* (nth i successive-p-cons-cost) gil::IRT_EQ *
succ-p-cons-cost* successive-p-cons-and-not-successive-fifths) ;
successive p cons and not successive fifths -> set the cost

1428)
1429)
1430)
1431

1432 ; add the cost of having two successive perfect consonances between two voices - 2nd
species -> successive FIFTHS are allowed IF there is a third in between

1433 (defun add-no-successive-p-cons-2nd-species-cst (is-p-cons-array h-intervals
m-succ-intervals successive-p-cons-cost)

1434 (loop
1435 for i from 0 to (- (length is-p-cons-array) 2)
1436 do (let (
1437 ; 1st case
1438 (first-not-fifth (gil::add-bool-var *sp* 0 1))
1439 (second-not-fifth (gil::add-bool-var *sp* 0 1))
1440 (not-successive-fifths (gil::add-bool-var *sp* 0 1))
1441

1442 (successive-p-cons (gil::add-bool-var *sp* 0 1))
1443 (successive-p-cons-and-not-successive-fifths (gil::add-bool-var *sp* 0

1))
1444

1445 ; 2nd case
1446 (m-is-not-third-1 (gil::add-bool-var *sp* 0 1))
1447 (m-is-not-third-2 (gil::add-bool-var *sp* 0 1))
1448 (m-is-not-third (gil::add-bool-var *sp* 0 1))
1449

1450 (first-is-fifth (gil::add-bool-var *sp* 0 1))
1451 (second-is-fifth (gil::add-bool-var *sp* 0 1))
1452 (successive-fifths (gil::add-bool-var *sp* 0 1))
1453 (successive-fifths-and-not-third (gil::add-bool-var *sp* 0 1))
1454

1455 ; finally
1456 (apply-the-cost (gil::add-bool-var *sp* 0 1)) ; true if the cost must be

applied, else false
1457)
1458 ; first case : the successive perfect consonances are not successive fifths
1459 (gil::g-rel-reify *sp* (nth i h-intervals) gil::IRT_NQ 7 first-not-fifth)
1460 (gil::g-rel-reify *sp* (nth (+ 1 i) h-intervals) gil::IRT_NQ 7

second-not-fifth)
1461 (gil::g-op *sp* first-not-fifth gil::BOT_OR second-not-fifth

not-successive-fifths)
1462

1463 (gil::g-op *sp* (nth i is-p-cons-array) gil::BOT_AND (nth (+ i 1)
is-p-cons-array) successive-p-cons)

1464 (gil::g-op *sp* successive-p-cons gil::BOT_AND not-successive-fifths
successive-p-cons-and-not-successive-fifths)

1465

1466 ; second case : the successive perfect consonants are fifths
1467 (gil::g-rel-reify *sp* (nth i m-succ-intervals) gil::IRT_NQ 3

m-is-not-third-1)
1468 (gil::g-rel-reify *sp* (nth i m-succ-intervals) gil::IRT_NQ 4

m-is-not-third-2)
1469 (gil::g-op *sp* m-is-not-third-1 gil::BOT_AND m-is-not-third-2

m-is-not-third)
1470

1471 (gil::g-rel-reify *sp* (nth i h-intervals) gil::IRT_EQ 7 first-is-fifth)
1472 (gil::g-rel-reify *sp* (nth (+ 1 i) h-intervals) gil::IRT_EQ 7

second-is-fifth)
1473 (gil::g-op *sp* first-is-fifth gil::BOT_AND second-is-fifth

successive-fifths)

184

1474 (gil::g-op *sp* m-is-not-third gil::BOT_AND successive-fifths
successive-fifths-and-not-third)

1475

1476 ; finally
1477 (gil::g-op *sp* successive-p-cons-and-not-successive-fifths gil::BOT_OR

successive-fifths-and-not-third apply-the-cost)
1478 (gil::g-rel-reify *sp* (nth i successive-p-cons-cost) gil::IRT_EQ *

succ-p-cons-cost* apply-the-cost)
1479))
1480)
1481

1482 ; computes the variety cost, i.e. the number of times a note repeats itself in a
frame of 7 measures

1483 (defun compute-variety-cost (cp variety-cost)
1484 (let (
1485 (k 0)
1486)
1487 (loop
1488 for i from 0 below (length cp)
1489 do (loop
1490 ; for each note in the three following
1491 for j from (+ i 1) to (min (+ i 3) (- (length cp) 1))
1492 do(let (
1493 (is-equal (gil::add-bool-var *sp* 0 1))
1494 (is-not-equal (gil::add-bool-var *sp* 0 1))
1495)
1496 (gil::g-rel-reify *sp* (nth i cp) gil::IRT_EQ (nth j cp) is-equal)
1497 (gil::g-rel-reify *sp* (nth i cp) gil::IRT_NQ (nth j cp)

is-not-equal)
1498 (gil::g-rel-reify *sp* (nth k variety-cost) gil::IRT_EQ *

variety-cost* is-equal gil::RM_IMP) ; if it is equal set the
cost

1499 (gil::g-rel-reify *sp* (nth k variety-cost) gil::IRT_EQ 0
is-not-equal gil::RM_IMP)

1500

1501 (setf k (+ 1 k))
1502)
1503)
1504)
1505)
1506)
1507

1508

1509 ; return the rest of the list if the boolean is true, else return the list
1510 (defun rest-if (l b)
1511 (if b
1512 (rest l)
1513 l
1514)
1515)
1516

1517 ; TODO pass to new version function below
1518 ; add the constraint such that there is no battuta kind of motion, i.e.:
1519 ; - contrary motion
1520 ; - skip in the upper voice
1521 ; - lead to an octave
1522 (defun add-no-battuta-cst (motions h-intervals m-intervals-brut is-cf-lower-arr &

optional (is-cst-arr nil))
1523 (loop
1524 for move in motions
1525 for hi in (rest h-intervals)
1526 for mi in m-intervals-brut
1527 for b in (butlast is-cf-lower-arr)

185

1528 for i from 0 below *cf-last-index
1529 do
1530 (let (
1531 (is-cm (gil::add-bool-var *sp* 0 1)) ; is contrary motion
1532 (is-oct (gil::add-bool-var *sp* 0 1)) ; is moving to octave
1533 (is-cp-down (gil::add-bool-var *sp* 0 1)) ; is counterpoint going down
1534 (b-and1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1535 (b-and2 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1536 (b-and3 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1537)
1538 (gil::g-rel-reify *sp* move gil::IRT_EQ CONTRARY is-cm) ; is-cm = (m ==

-1)
1539 (gil::g-rel-reify *sp* hi gil::IRT_EQ 0 is-oct) ; is-oct = (hi == 0)
1540 (gil::g-rel-reify *sp* mi gil::IRT_LE -4 is-cp-down) ; is-cp-down = (mi

< -4)
1541 (gil::g-op *sp* is-cm gil::BOT_AND is-oct b-and1) ; b-and1 = (is-cm and

is-oct)
1542 (gil::g-op *sp* b-and1 gil::BOT_AND is-cp-down b-and2) ; b-and2 = (

b-and1 and is-cp-down)
1543 (if (null is-cst-arr)
1544 ; then constraint is always added
1545 (gil::g-op *sp* b-and2 gil::BOT_AND b 0) ; (is-cm and is-oct and

is-cp-down and b) = FALSE
1546 ; else constraint is added only if the current note is constrained
1547 (progn
1548 (gil::g-op *sp* b-and2 gil::BOT_AND b b-and3) ; b-and3 = (b-and2

and b)
1549 ; is-cst => (b-and3 == 0) can be written as not (is-cst and

b-and3)
1550 (gil::g-op *sp* (nth i is-cst-arr) gil::BOT_AND b-and3 0)
1551)
1552)
1553)
1554)
1555)
1556

1557 ; TEST new version
1558 ; add the constraint such that there is no battuta kind of motion, i.e.:
1559 ; - contrary motion
1560 ; - skip in the upper voice
1561 ; - lead to an octave
1562 (defun add-no-battuta-bis-cst (motions h-intervals m-intervals-brut

cf-brut-m-intervals is-cf-lower-arr &optional (is-cst-arr nil))
1563 (loop
1564 for move in motions
1565 for hi in (rest h-intervals)
1566 for mi in m-intervals-brut
1567 for cf-mi in cf-brut-m-intervals
1568 for b in (butlast is-cf-lower-arr)
1569 for i from 0 below *cf-last-index
1570 do
1571 (let (
1572 (is-cm (gil::add-bool-var *sp* 0 1)) ; is contrary motion
1573 (is-oct (gil::add-bool-var *sp* 0 1)) ; is moving to octave
1574 (is-cp-down (gil::add-bool-var *sp* 0 1)) ; is counterpoint going down

more than 4 semi-tones
1575 (is-cf-down (gil::add-bool-var *sp* 0 1)) ; is cantus firmus going down

more than 4 semi-tones
1576 (b-not (gil::add-bool-var *sp* 0 1)) ; !b = cantus firmus is not the

bass
1577 (b-and1 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1578 (b-and2 (gil::add-bool-var *sp* 0 1)) ; temporary boolean
1579 (b-and3 (gil::add-bool-var *sp* 0 1)) ; temporary boolean

186

1580)
1581 (gil::g-rel-reify *sp* move gil::IRT_EQ CONTRARY is-cm) ; is-cm = (m ==

0)
1582 (gil::g-rel-reify *sp* hi gil::IRT_EQ 0 is-oct) ; is-oct = (hi == 0)
1583 (gil::g-rel-reify *sp* mi gil::IRT_LE -4 is-cp-down) ; is-cp-down = (mi

< -4)
1584 (gil::g-rel-reify *sp* cf-mi gil::IRT_LE -4 is-cf-down) ; is-cf-down = (

cf-mi < -4)
1585 (gil::g-op *sp* b gil::BOT_EQV FALSE b-not) ; b-not = !b
1586 (gil::g-op *sp* is-cm gil::BOT_AND is-oct b-and1) ; b-and1 = (is-cm and

is-oct)
1587 (gil::g-op *sp* b gil::BOT_AND is-cp-down b-and2) ; b-and2 = (b-and1 and

is-cp-down)
1588 (gil::g-op *sp* b-not gil::BOT_AND is-cf-down b-and3) ; b-and3 = (b-not

and is-cf-down)
1589

1590 (if (null is-cst-arr)
1591 ; then constraint is always added
1592 (progn
1593 ; first case: (is-cm and is-oct and b and is-cp-down) = FALSE
1594 (gil::g-op *sp* b-and1 gil::BOT_AND b-and2 0)
1595 ; second case: (is-cm and is-oct and b-not and is-cf-down) =

FALSE
1596 (gil::g-op *sp* b-and1 gil::BOT_AND b-and3 0)
1597)
1598 ; else constraint is added only if the current note is constrained
1599 (progn (let (
1600 (b-and4 (gil::add-bool-var *sp* 0 1)) ; first case
1601 (b-and5 (gil::add-bool-var *sp* 0 1)) ; second case
1602)
1603 (gil::g-op *sp* b-and1 gil::BOT_AND b-and2 b-and4) ; first case:

b-and4 = (b-and1 and b-and2)
1604 (gil::g-op *sp* b-and1 gil::BOT_AND b-and3 b-and5) ; second case

: b-and5 = (b-and1 and b-and3)
1605 ; is-cst => (b-and == 0) can be written as not (is-cst and b-and

)
1606 (gil::g-op *sp* (nth i is-cst-arr) gil::BOT_AND b-and4 0) ;

first case
1607 (gil::g-op *sp* (nth i is-cst-arr) gil::BOT_AND b-and5 0) ;

second case
1608))
1609)
1610)
1611)
1612)
1613

1614 ;; 5th species methods
1615 ; add the constraint such that the selected notes are the same as the midi-selected

notes
1616 (defun add-selected-notes-cst (selected midi-selected cp)
1617 (print "Adding selected notes constraint")
1618 (print selected)
1619 (print midi-selected)
1620 (loop
1621 for i in selected
1622 for ms in midi-selected
1623 do
1624 (setq i+1 (+ i 1))
1625 (gil::g-rel *sp* (nth i cp) gil::IRT_EQ (first ms))
1626 (gil::g-rel *sp* (nth i+1 cp) gil::IRT_EQ (second ms))
1627)
1628)
1629

187

1630 ; add constraints such that the boolean array is true if the simple constraint is
respected

1631 (defun create-simple-boolean-arr (candidate-arr rel-type cst b-arr)
1632 (loop
1633 for c in candidate-arr
1634 for b in b-arr
1635 do
1636 (gil::g-rel-reify *sp* c rel-type cst b)
1637)
1638)
1639

1640 ; do the gil::g-ite constraint but only if and-cond is true
1641 (defun and-ite (test then else var and-cond)
1642 (let (
1643 (b-and-then (gil::add-bool-var *sp* 0 1)) ; b-and-then = test and and-cond
1644 (test-not (gil::add-bool-var *sp* 0 1)) ; test-not = !test
1645 (b-and-else (gil::add-bool-var *sp* 0 1)) ; b-and-else = !test and and-cond
1646)
1647 (gil::g-op *sp* test gil::BOT_AND and-cond b-and-then) ; b-and-then = test

and and-cond
1648 (gil::g-op *sp* test gil::BOT_EQV FALSE test-not) ; test-not = !test
1649 (gil::g-op *sp* test-not gil::BOT_AND and-cond b-and-else) ; b-and-else = !

test and and-cond
1650 (gil::g-rel-reify *sp* var gil::IRT_EQ then b-and-then gil::RM_IMP) ;

b-and-then => var = then
1651 (gil::g-rel-reify *sp* var gil::IRT_EQ else b-and-else gil::RM_IMP) ;

b-and-else => var = else
1652)
1653)
1654

1655 ; merge the boolean arrays with the and operator
1656 (defun bot-merge-array (b-arr1 b-arr2 b-collect-arr &optional (bot gil::BOT_AND))
1657 (loop
1658 for b1 in b-arr1
1659 for b2 in b-arr2
1660 for b in b-collect-arr
1661 do
1662 (gil::g-op *sp* b1 bot b2 b)
1663)
1664)
1665

1666 ; merge the boolean arrays with the or operator and just return it
1667 (defun collect-bot-array (b-arr1 b-arr2 &optional (bot gil::BOT_AND))
1668 (let (
1669 (b-collect-arr (gil::add-bool-var-array *sp* (length b-arr1) 0 1))
1670)
1671 (loop
1672 for b1 in b-arr1
1673 for b2 in b-arr2
1674 for b in b-collect-arr
1675 do
1676 (gil::g-op *sp* b1 bot b2 b)
1677)
1678 b-collect-arr
1679)
1680)
1681

1682

1683 (defun collect-t-or-f-array (yes-arr no-arr)
1684 (collect-bot-array
1685 yes-arr
1686 (collect-not-array no-arr)
1687 gil::BOT_OR

188

1688)
1689)
1690

1691 (defun collect-not-array (arr)
1692 (collect-bot-array arr (gil::add-bool-var-array *sp* (length arr) 0 0) gil::

BOT_EQV)
1693)
1694

1695 ; do the gil::g-rel-reify constraint but use the condition that (b AND and-cond) is
true

1696 (defun bot-reify (var rel-type cst b and-cond &optional (bot gil::BOT_AND) (mode gil
::RM_EQV))

1697 (let (
1698 (b-and (gil::add-bool-var *sp* 0 1)) ; b-and = b and and-cond
1699)
1700 (gil::g-op *sp* b bot and-cond b-and) ; b-and = b and and-cond
1701 (gil::g-rel-reify *sp* var rel-type cst b-and mode) ; b-and == var rel-type

cst
1702)
1703)
1704

1705 ; return the index of a note as all the notes are in a row,
1706 ; i.e. return the total index of the note at the given measure at the given beat

assuming that we are in 4 4 time
1707 ; the index is 0-based, same for measure and beat
1708 (defun total-index (measure beat)
1709 (+ (* measure 4) beat)
1710)
1711

1712 ; is-mostly-3rd is true if second, third and fourth notes are from 3rd species
1713 ; note that is-mostly-3rd-arr have a length 4 times shorter than is-3rd-species-arr
1714 (defun create-is-mostly-3rd-arr (is-3rd-species-arr is-mostly-3rd-arr)
1715 (loop
1716 for meas from 0 below (length is-mostly-3rd-arr)
1717 do
1718 (let (
1719 (b-23 (gil::add-bool-var *sp* 0 1)) ; b-23 = is-3rd-species-arr[meas][1]

AND is-3rd-species-arr[meas][2]
1720)
1721 ; b-23
1722 (gil::g-op *sp* (nth (total-index meas 1) is-3rd-species-arr) gil::

BOT_AND (nth (total-index meas 2) is-3rd-species-arr) b-23)
1723 ; b-23 and "b-4" are stocked in is-mostly-3rd-arr[meas]
1724 (gil::g-op *sp* b-23 gil::BOT_AND (nth (total-index meas 3)

is-3rd-species-arr) (nth meas is-mostly-3rd-arr))
1725)
1726)
1727)
1728

1729 ; collect elements all the 4 elements of the array, i.e. n, n+4, n+8, n+12, etc.
1730 ; note: n is the offset
1731 (defun collect-by-4 (arr &optional (offset 0) (b nil) (up-bound 4))
1732 (setq len (if (eq offset 0) *cf-len *cf-last-index))
1733 (if (null b)
1734 ; then make a boolean array
1735 (setq ret (gil::add-bool-var-array *sp* len 0 1))
1736 ; else make a integer array
1737 (setq ret (gil::add-int-var-array *sp* len 0 up-bound))
1738)
1739 (loop
1740 for i from offset below (length arr) by 4
1741 for j from 0 below len
1742 do

189

1743 (gil::g-rel *sp* (nth i arr) gil::IRT_EQ (nth j ret))
1744)
1745 ret
1746)
1747

1748 ; create an array for one beat from the entire array
1749 (defun create-by-4 (arr-from arr-to &optional (offset 0))
1750 (loop
1751 for i from offset below (length arr-from) by 4
1752 for j in arr-to
1753 do
1754 (gil::g-rel *sp* (nth i arr-from) gil::IRT_EQ j)
1755)
1756)
1757

1758 ; add a reify constraint if @b is not nil, else add a rel constraint
1759 (defun rel-reify-if (var rel-type cst &optional (b nil) (rm gil::RM_IMP))
1760 (if (null b)
1761 (gil::g-rel *sp* var rel-type cst)
1762 (gil::g-rel-reify *sp* var rel-type cst b rm)
1763)
1764)
1765

1766 ; return BoolVar true if nil element
1767 (defun true-if-null (arr i)
1768 (if (null arr)
1769 ; then
1770 TRUE
1771 ; else
1772 (nth i arr)
1773)
1774)
1775

1776 ; add the constraint such that if sp3 is 4th species, then sp4 is 0 and the next sp1
is 4th species

1777 ; and vice versa (cannot have 4th species in first position without 4th species in
third position)

1778 ; - sp-arr3: array of IntVar for species at the third position
1779 ; - sp-arr4: array of IntVar for species at the fourth position
1780 ; - sp-arr1: array of IntVar for species at the first position
1781 (defun add-4th-rythmic-cst (sp-arr3 sp-arr4 sp-arr1)
1782 (loop
1783 for sp3 in sp-arr3
1784 for sp4 in sp-arr4
1785 for sp1 in (rest sp-arr1)
1786 do
1787 (let (
1788 (b-34 (gil::add-bool-var *sp* 0 1)) ; b-34 = sp3 == 4th species
1789 (b-14 (gil::add-bool-var *sp* 0 1)) ; b-14 = sp1 == 4th species
1790)
1791 (gil::g-rel-reify *sp* sp3 gil::IRT_EQ 4 b-34) ; b-34 = sp3 == 4th

species
1792 (gil::g-rel-reify *sp* sp1 gil::IRT_EQ 4 b-14) ; b-14 = sp1 == 4th

species
1793 (gil::g-rel-reify *sp* sp4 gil::IRT_EQ 0 b-34 gil::RM_IMP) ; b-34 => sp4

== 0
1794 (gil::g-op *sp* b-34 gil::BOT_EQV b-14 1) ; b-34 <=> b-14
1795)
1796)
1797)
1798

1799 ; add the constraint such that if n belongs to @species, then n+m have to exist (not
0)

190

1800 ; by default, the constraint is added for the third species
1801 ; - species-arr: array of IntVar for species
1802 ; - spec: species to check
1803 ; - offset: offset to check
1804 (defun add-no-silence-cst (species-arr &key (spec 3) (offset 1))
1805 (loop
1806 for n in species-arr
1807 for n+m in (nthcdr offset species-arr)
1808 do
1809 (let (
1810 (b (gil::add-bool-var *sp* 0 1)) ; b = (n == species)
1811)
1812 (gil::g-rel-reify *sp* n gil::IRT_EQ spec b) ; b = (n == spec)
1813 (gil::g-rel-reify *sp* n+m gil::IRT_NQ 0 b gil::RM_IMP) ; b => (n+m !=

0)
1814)
1815)
1816)
1817

1818 ; add the constraint such that there is maximum 2 consecutive measures without 4th
species

1819 (defun add-min-syncope-cst (third-sp-arr)
1820 (loop
1821 for sp1 in (nthcdr 1 third-sp-arr)
1822 for sp2 in (nthcdr 2 third-sp-arr)
1823 for sp3 in (nthcdr 3 third-sp-arr)
1824 do
1825 (let (
1826 (b1-not-4 (gil::add-bool-var *sp* 0 1)) ; b1-not-4 = sp1 != 4
1827 (b2-not-4 (gil::add-bool-var *sp* 0 1)) ; b2-not-4 = sp2 != 4
1828 (b-and (gil::add-bool-var *sp* 0 1)) ; b-and = b1-not-4 && b2-not-4
1829)
1830 (gil::g-rel-reify *sp* sp1 gil::IRT_NQ 4 b1-not-4) ; b1-not-4 = sp1 != 4
1831 (gil::g-rel-reify *sp* sp2 gil::IRT_NQ 4 b2-not-4) ; b2-not-4 = sp2 != 4
1832 (gil::g-op *sp* b1-not-4 gil::BOT_AND b2-not-4 b-and) ; b-and = b1-not-4

&& b2-not-4
1833 (gil::g-rel-reify *sp* sp3 gil::IRT_EQ 4 b-and gil::RM_IMP) ; b-and =>

sp3 == 4
1834)
1835)
1836)
1837

1838 ; add all constraints to create a rythmic and select what species to use
1839 ; mandatory rules are:
1840 ; - 4th species is only used in third and first position
1841 ; - 4th species in third position is followed by a 0 (no note/constraint) and then a

4th species
1842 ; - no 3rd species followed by 0
1843 ; classic rules are:
1844 ; - first and penultimate measure are 4th species
1845 ; - only 3rd and 4th species are used
1846 ; - 3rd species should represent at least 1/3 of the notes
1847 ; - 4th species should represent at least 1/4 of the notes
1848 (defun create-species-arr (species-arr solution-len &key (min-3rd-pc (* (- 1 (

getparam ’pref-species-slider)) 0.66)) (min-4th-pc (* (getparam ’
pref-species-slider) 0.5)))

1849 (print "Create species array...")
1850 (let* (
1851 (count-3rd (gil::add-int-var-array *sp* solution-len 0 1))
1852 (count-4th (gil::add-int-var-array *sp* solution-len 0 1))
1853 (n-3rd-int (floor (* solution-len min-3rd-pc))) ; minimum number of 3rd

species

191

1854 (n-4th-int (floor (* solution-len min-4th-pc))) ; minimum number of 4th
species

1855 (sum-3rd (gil::add-int-var *sp* n-3rd-int solution-len)) ; set the bounds of
sum-3rd

1856 (sum-4th (gil::add-int-var *sp* n-4th-int solution-len)) ; set the bounds of
sum-4th

1857)
1858 (setq *sp-arr (list
1859 (collect-by-4 species-arr 0 t)
1860 (collect-by-4 species-arr 1 t)
1861 (collect-by-4 species-arr 2 t)
1862 (collect-by-4 species-arr 3 t)
1863))
1864

1865 (print "Counting 3rd and 4th species...")
1866 ; count the number of 3rd and 4th species
1867 (add-cost-cst species-arr gil::IRT_EQ 3 count-3rd)
1868 (add-cost-cst species-arr gil::IRT_EQ 4 count-4th)
1869 ; sum the number of 3rd and 4th species
1870 (gil::g-sum *sp* sum-3rd count-3rd)
1871 (gil::g-sum *sp* sum-4th count-4th)
1872

1873 ; 4th species is only used in third and first position
1874 (gil::g-rel *sp* (second *sp-arr) gil::IRT_NQ 4) ; second position not 4th

species
1875 (gil::g-rel *sp* (fourth *sp-arr) gil::IRT_NQ 4) ; fourth position not 4th

species
1876

1877 ; 4th species in third position is followed by a 0 (no note/constraint) and
then a 4th species

1878 (add-4th-rythmic-cst (third *sp-arr) (fourth *sp-arr) (first *sp-arr))
1879

1880 ; only 3rd and 4th species are used
1881 (gil::g-rel *sp* species-arr gil::IRT_NQ 1) ; not 1st species
1882 (gil::g-rel *sp* species-arr gil::IRT_NQ 2) ; not 2nd species
1883

1884 ; first and penultimate measure are 4th species
1885 ; first measure = [0 0 4 0]
1886 (gil::g-rel *sp* (first (first *sp-arr)) gil::IRT_EQ 0) ; first note is

silent
1887 (gil::g-rel *sp* (first (second *sp-arr)) gil::IRT_EQ 0) ; second note is

silent
1888 (gil::g-rel *sp* (first (third *sp-arr)) gil::IRT_EQ 4) ; third note is 4th

species
1889 ; penultimate measure = [4 0 4 0]
1890 (gil::g-rel *sp* (penult (first *sp-arr)) gil::IRT_EQ 4) ; first note is 4th

species
1891 (gil::g-rel *sp* (lastone (second *sp-arr)) gil::IRT_EQ 0) ; second note

does not exist
1892 (gil::g-rel *sp* (lastone (third *sp-arr)) gil::IRT_EQ 4) ; third note is 4

th species
1893

1894 ; no silence after 3rd species notes
1895 (add-no-silence-cst species-arr)
1896

1897 ; no silence after 4th species notes in n+4 position
1898 (add-no-silence-cst species-arr :spec 4 :offset 4)
1899

1900 ; maximum two consecutive measures without 4th species
1901 (add-min-syncope-cst (third *sp-arr))
1902)
1903)
1904

192

1905 ; add constraints such that the non-constrained notes have only one possible value
1906 (defun add-one-possible-value-cst (cp is-not-cst-arr)
1907 (loop
1908 for p in cp
1909 for p+1 in (nthcdr 1 cp)
1910 for b-not-cst in is-not-cst-arr
1911 do
1912 (gil::g-rel-reify *sp* p gil::IRT_EQ p+1 b-not-cst gil::RM_IMP) ; TODO the

value of the note
1913)
1914)
1915

1916 ; add constraints such that consecutives syncopations cannot be the same
1917 ; depending on @is-syncope-arr which is true if the note is a syncopation
1918 (defun add-no-same-syncopation-cst (cp-thesis cp-arsis is-syncope-arr)
1919 (loop
1920 for th in (rest cp-thesis)
1921 for ar in (rest cp-arsis)
1922 for b in (rest is-syncope-arr)
1923 do
1924 (gil::g-rel-reify *sp* th gil::IRT_NQ ar b gil::RM_IMP)
1925)
1926)
1927

1928 ; add the constraint that the species arrays from two fifth-species parts must be at
least 50% different

1929 (defun add-make-fifth-species-different-cst (parts)
1930 ; the fifth species attributes to each note a species between 1 and 4. when

composing with two fifth-species, only half the notes can be of the same
species at the same time -> if not, there is a lot of redundancy between the
two fifth-species voices

1931 (let (
1932 (is-same-species (gil::add-bool-var-array *sp* (solution-len (second

parts)) 0 1))
1933 (is-same-species-int (gil::add-int-var-array *sp* (solution-len (second

parts)) 0 1))
1934 (percentage-same-species (gil::add-int-var *sp* 0 (solution-len (second

parts))))
1935)
1936 (dotimes (i (solution-len (second parts)))
1937 (gil::g-rel-reify *sp* (nth i (species-arr (second parts))) gil::IRT_EQ

(nth i (species-arr (third parts))) (nth i is-same-species))
1938 (gil::g-rel-reify *sp* (nth i is-same-species-int) gil::IRT_EQ 1 (nth i

is-same-species))
1939)
1940 (gil::g-sum *sp* percentage-same-species is-same-species-int)
1941 (gil::g-rel *sp* percentage-same-species gil::IRT_LE (floor (/ (solution-len

(second parts)) 2)))
1942)
1943)
1944

1945 ; find the next @type note in the borrowed scale,
1946 ; if there is no note in the range then return the note of the other @type
1947 ; - note: integer for the current note
1948 ; - type: atom [lower | higher] for the type of note to find
1949 ; note: this function has noting to do with GECODE
1950 (defun find-next-note (note type extended-cp-domain)
1951 (let (
1952 ; first sort the scale corresponding to the type
1953 (sorted-scale (if (eq type ’lower)
1954 (sort extended-cp-domain #’>)
1955 (sort extended-cp-domain #’<)
1956))

193

1957)
1958 (if (eq type ’lower)
1959 ; then we search the first note in the sorted scale that is lower than

the current note
1960 (progn
1961 (loop for n in sorted-scale do
1962 (if (< n note) (return-from find-next-note n))
1963)
1964 ; no note so we return the penultimate element of the sorted scale
1965 (penult sorted-scale)
1966)
1967 ; else we search the first note in the sorted scale that is higher than

the current note
1968 (progn
1969 (loop for n in sorted-scale do
1970 (if (> n note) (return-from find-next-note n))
1971)
1972 ; no note so we return the penultimate element of the sorted scale
1973 (penult sorted-scale)
1974)
1975)
1976)
1977)
1978

1979 ; parse the species array to get the corresponding rythmic pattern for open music
1980 ; - species-arr: array of integer for species (returned by the next-solution

algorithm)
1981 ; - cp-arr: array of integer for counterpoint notes (returned by the next-solution

algorithm)
1982 ; note: this function has noting to do with GECODE
1983 (defun parse-species-to-om-rythmic (species-arr cp-arr extended-cp-domain)
1984 ; replace the last element of the species array by 1
1985 (setf (first (last species-arr)) 1)
1986 (build-rythmic-pattern species-arr cp-arr nil nil extended-cp-domain)
1987)
1988

1989 ; build the rythmic pattern for open music from the species array
1990 ; - species-arr: array of integer for species
1991 ; - cp-arr: array of integer for counterpoint notes
1992 ; - rythmic-arr: array of integer for the rythmic (supposed to be nil and then

filled by the recursive function)
1993 ; - notes-arr: array of interger for notes (supposed to be nil and then filled by

the recursive function)
1994 ; - b-debug: boolean to print debug info
1995 ; note: this function has noting to do with GECODE
1996 (defun build-rythmic-pattern (species-arr cp-arr &optional (rythmic-arr nil) (

notes-arr nil) (extended-cp-domain nil) (b-debug nil))
1997 ; print debug info
1998 (if b-debug
1999 (progn
2000 (print "Current species and notes:")
2001 (print species-arr)
2002 (print cp-arr)
2003 (print "Current answer:")
2004 (print rythmic-arr)
2005 (print notes-arr)
2006)
2007)
2008 ; base case
2009 (if (null species-arr)
2010 ; then return the rythmic pattern
2011 (list rythmic-arr notes-arr)
2012)

194

2013

2014 (let (
2015 (sn (first species-arr)) ; current species
2016 (sn+1 (second species-arr)) ; next species
2017 (sn+2 (third species-arr)) ; next next species
2018 (sn+3 (fourth species-arr)) ; next next next species
2019 (cn (first cp-arr)) ; current counterpoint note
2020 (cn+1 (second cp-arr)) ; next counterpoint note
2021 (cn+2 (third cp-arr)) ; next next counterpoint note
2022 (cn+3 (fourth cp-arr)) ; next next next counterpoint note
2023)
2024 ; replace all nil by -1 for the species
2025 (if (null sn) (setf sn -1))
2026 (if (null sn+1) (setf sn+1 -1))
2027 (if (null sn+2) (setf sn+2 -1))
2028 (if (null sn+3) (setf sn+3 -1))
2029 ; replace all nil by -1 for the counterpoint
2030 (if (null cn) (setf cn -1))
2031 (if (null cn+1) (setf cn+1 -1))
2032 (if (null cn+2) (setf cn+2 -1))
2033 (if (null cn+3) (setf cn+3 -1))
2034

2035 (if b-debug
2036 (progn
2037 (print (format nil "sn: ~a, sn+1: ~a, sn+2: ~a, sn+3: ~a" sn sn+1 sn+2

sn+3))
2038 (print (format nil "cn: ~a, cn+1: ~a, cn+2: ~a, cn+3: ~a" cn cn+1 cn+2

cn+3))
2039)
2040)
2041

2042 (cond
2043 ; 1 if it is the last note [1 -1 ...]
2044 ((and (eq sn 1) (eq sn+1 -1))
2045 (list (append rythmic-arr (list 1)) (append notes-arr (list cn)))
2046)
2047

2048 ; if [4 0 4 ...] -> which syncope ?
2049 ((and (eq sn 4) (eq sn+1 0) (eq sn+2 4))
2050 (if (/= cn cn+2) ; syncopation but different notes ?
2051 ; then same as half note
2052 (if (eq sn+3 3)
2053 ; then 1/2 + 1/4 if [4 0 4 3] (syncopation catch up by a quarter

note)
2054 (build-rythmic-pattern
2055 (nthcdr 3 species-arr)
2056 (nthcdr 3 cp-arr)
2057 (append rythmic-arr (list 1/2 1/4))
2058 (append notes-arr (list cn cn+2))
2059 extended-cp-domain
2060)
2061 ; else 1/2 + 1/2 if [4 0 4 0] (basic syncopation)
2062 (build-rythmic-pattern
2063 (nthcdr 4 species-arr)
2064 (nthcdr 4 cp-arr)
2065 (append rythmic-arr (list 1/2 1/2))
2066 (append notes-arr (list cn cn+2))
2067 extended-cp-domain
2068)
2069)
2070 ; else same as full note syncopated
2071 (if (eq sn+3 3)
2072 ; then 3/4 if [4 0 4 3] (syncopation catch up by a quarter note)

195

2073 (build-rythmic-pattern
2074 (nthcdr 3 species-arr)
2075 (nthcdr 3 cp-arr)
2076 (append rythmic-arr (list 3/4))
2077 (append notes-arr (list cn))
2078 extended-cp-domain
2079)
2080 ; else 1 if [4 0 4 0] (basic syncopation)
2081 (build-rythmic-pattern
2082 (nthcdr 4 species-arr)
2083 (nthcdr 4 cp-arr)
2084 (append rythmic-arr (list 1))
2085 (append notes-arr (list cn))
2086 extended-cp-domain
2087)
2088)
2089))
2090

2091 ; 1/8 note (croche) if cn == cn+1 AND [!0 (3 or 4) ...]
2092 ((and (eq cn cn+1) (/= sn 0) (or (eq sn+1 3) (eq sn+1 4)))
2093 (if (>= (lastone notes-arr) cn)
2094 ; then eighth note with the next lower note
2095 (build-rythmic-pattern
2096 (nthcdr 1 species-arr)
2097 (nthcdr 1 cp-arr)
2098 (append rythmic-arr (list 1/8 1/8))
2099 (append notes-arr (list cn (find-next-note cn ’lower

extended-cp-domain)))
2100 extended-cp-domain
2101)
2102 ; else eighth note with the next higher note
2103 (build-rythmic-pattern
2104 (nthcdr 1 species-arr)
2105 (nthcdr 1 cp-arr)
2106 (append rythmic-arr (list 1/8 1/8))
2107 (append notes-arr (list cn (find-next-note cn ’higher

extended-cp-domain)))
2108 extended-cp-domain
2109)
2110)
2111)
2112

2113 ; silence if [0 0 ...]
2114 ((and (eq sn 0) (eq sn+1 0))
2115 (build-rythmic-pattern
2116 (nthcdr 2 species-arr)
2117 (nthcdr 2 cp-arr)
2118 (append rythmic-arr (list -1/2))
2119 notes-arr
2120 extended-cp-domain
2121)
2122)
2123

2124 ; 1 if [1 0 0 0] (full note)
2125 ((and (eq sn 1) (eq sn+1 0) (eq sn+2 0) (eq sn+3 0))
2126 (build-rythmic-pattern
2127 (nthcdr 4 species-arr)
2128 (nthcdr 4 cp-arr)
2129 (append rythmic-arr (list 1))
2130 (append notes-arr (list cn))
2131 extended-cp-domain
2132)
2133)

196

2134

2135 ; 1/2 if [2 0 ...] (half note)
2136 ((and (eq sn 2) (eq sn+1 0))
2137 (build-rythmic-pattern
2138 (nthcdr 2 species-arr)
2139 (nthcdr 2 cp-arr)
2140 (append rythmic-arr (list 1/2))
2141 (append notes-arr (list cn))
2142 extended-cp-domain
2143)
2144)
2145

2146 ; 1/4 if [3 ...] (quarter note)
2147 ((eq sn 3)
2148 (build-rythmic-pattern
2149 (nthcdr 1 species-arr)
2150 (nthcdr 1 cp-arr)
2151 (append rythmic-arr (list 1/4))
2152 (append notes-arr (list cn))
2153 extended-cp-domain
2154)
2155)
2156

2157 ; 1/2 if [4 0 1 ...] (penultimate note for the 4th species)
2158 ((and (eq sn 4) (eq sn+1 0) (eq sn+2 1))
2159 (build-rythmic-pattern
2160 (nthcdr 2 species-arr)
2161 (nthcdr 2 cp-arr)
2162 (append rythmic-arr (list 1/2))
2163 (append notes-arr (list cn))
2164 extended-cp-domain
2165)
2166)
2167)
2168)
2169)
2170

2171 ; get the basic rythmic pattern and the corresponding notes the given species
2172 ; - species-list: the species [1 2 3 4]
2173 ; - len: the length of the cantus-firmus
2174 ; - sol-pitches: the whole solution array
2175 ; - counterpoints: the counterpoints we are working with (only useful for the 5th

species as it needs the extended-cp-domain)
2176 ; - sol: the solutino space (only useful for the 5th species)
2177 ; return format = ’(’(rythmics-1 pitches-1) ’(rythmics-2 pitches-2) ... ’(rythmics-n

pitches-n))
2178 ; examples:
2179 ; ((1) 5) -> (((1 1 1 1 1) (60 62 64 65 60)))
2180 ; ((1 2) 5) -> (((1 1 1 1 1) (60 62 64 65 60)) ((1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1)

(60 62 64 65 64 62 60 62 60)))
2181 ; ((2) 5) -> ((1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 (pitches))
2182 ; ((3) 5) -> ((1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1 (

pitches))
2183 ; ((4) 5) -> ~((-1/2 1 1 1 1/2 1/2 1 (pitches)) depending on the counterpoint
2184

2185 (defun get-basic-rythmics (species-list len sol-pitches counterpoints sol)
2186 (setq len-1 (- len 1))
2187 (setq len-2 (- len 2))
2188 (let (
2189 (rythmic+pitches (make-list *N-COUNTERPOINTS :initial-element nil))
2190)
2191 (loop for i from 0 below *N-COUNTERPOINTS do (progn
2192 (case (nth i species-list)

197

2193 (1 (progn
2194 (setf (nth i rythmic+pitches) (list
2195 ; rythm
2196 (make-list len :initial-element 1)
2197 ; pitches
2198 (subseq sol-pitches 0 len)
2199))
2200 (setf sol-pitches (subseq sol-pitches len))
2201))
2202 (2 (let (
2203 (rythmic (append (make-list (* 2 len-1) :initial-element

1/2) ’(1)))
2204 (pitches (subseq sol-pitches 0 (- (* 2 len) 1)))
2205)
2206 (if (eq (car (last pitches 4)) (car (last pitches 3))) (

progn ; if the first note in the penult bar is the same
as the last in the 2nd-to last

2207 ; then ligature them
2208 (setf rythmic (append (butlast rythmic 4) ’(1) (last

rythmic 2)))
2209 (loop
2210 for i from (- (length pitches) 4) below (- (length

pitches) 1)
2211 do (setf (nth i pitches) (nth (+ i 1) pitches))
2212)
2213))
2214 (if (eq (car (last pitches 3)) (car (last pitches 2))) (

progn ; same but for 3rd-to-last and 2nd-to-last
2215 (setf rythmic (append (butlast rythmic 3) ’(1) (last

rythmic 1)))
2216 (loop
2217 for i from (- (length pitches) 3) below (- (length

pitches) 1)
2218 do (setf (nth i pitches) (nth (+ i 1) pitches))
2219)
2220))
2221 (setf (nth i rythmic+pitches) (list
2222 rythmic
2223 pitches
2224))
2225 ; remove all the notes we’ve just considered from

sol-pitches
2226 (setf sol-pitches (subseq sol-pitches (length pitches)))
2227)
2228)
2229 (3 (progn
2230 (setf (nth i rythmic+pitches) (list
2231 ; rhythm
2232 (append (make-list (* 4 len-1) :initial-element 1/4) ’(1))
2233 ; pitches
2234 (subseq sol-pitches 0 (- (* 4 len) 3))
2235))
2236 ; remove all the notes we’ve just considered from sol-pitches
2237 (setf sol-pitches (subseq sol-pitches (- (* 4 len) 3)))
2238))
2239 (4 (progn
2240 (setf (nth i rythmic+pitches) (build-rythmic-pattern
2241 (get-4th-species-array len-2)
2242 (get-4th-notes-array (subseq sol-pitches 0 (* 2 len-1)) (+

(* 4 len-1) 1))
2243))
2244 (setf j 0)
2245 (dotimes (k *cf-penult-index)

198

2246 (setf j (+ j 2))
2247 ; if we have a note that creates a hidden fifth (direct

motion to a fifth), then remove the note
2248 (if (and
2249 (eq 7 (nth (+ 1 j) (gil::g-values sol (first (

h-intervals (nth i counterpoints))))))
2250 (eq DIRECT (nth j (gil::g-values sol (first (motions (

nth i counterpoints))))))
2251)
2252 (setf (nth j (first (nth i rythmic+pitches))) -1/2)
2253)
2254)
2255 (setf sol-pitches (subseq sol-pitches (* 2 len-1)))
2256))
2257 (5 (let (
2258 (sol-species (gil::g-values sol (species-arr (nth i

counterpoints)))) ; store the values of the solution
2259)
2260 (setf (nth i rythmic+pitches)
2261 (parse-species-to-om-rythmic sol-species sol-pitches (

extended-cp-domain (nth i counterpoints)))
2262)
2263 (setf sol-pitches (subseq sol-pitches (solution-len (nth i

counterpoints))))
2264))
2265)
2266))
2267 (assert (eql sol-pitches nil) (sol-pitches) "Assertion failed: sol-pitches

should be nil at the end of function get-basic-rythmics.")
2268 rythmic+pitches
2269)
2270)
2271

2272 ; return a species array for a 4th species counterpoint
2273 ; - len-2: the length of the counterpoint - 2
2274 (defun get-4th-species-array (len-2)
2275 (append (list 0 0) (get-n-4040 len-2) (list 4 0 1))
2276)
2277

2278 ; return a note array for a 4th species counterpoint
2279 ; - len: the length of the cantus firmus
2280 (defun get-4th-notes-array (cp len)
2281 (let* (
2282 (notes (make-list len :initial-element 0)) ; notes that we don’t care about

can be 0
2283)
2284 (loop
2285 for n from 2 below len by 2 ; we move from 4 to 4 (4 0 4 ...) after the

silence (0 0) at the start
2286 for p in cp
2287 do
2288 (setf (nth n notes) p)
2289)
2290 notes
2291)
2292)
2293

2294 ; return a list with n * (4 0 4 0), used to build the rythmic pattern for the 4th
species

2295 ; - n: the number of times the pattern is repeated
2296 (defun get-n-4040 (n)
2297 (if (eq n 0)
2298 nil

199

2299 (append (list 4 0 4 0) (get-n-4040 (- n 1)))
2300)
2301)
2302

2303 ; return the tone offset of the voice
2304 ; => [0, ..., 11]
2305 ; 0 = C, 1 = C#, 2 = D, 3 = D#, 4 = E, 5 = F, 6 = F#, 7 = G, 8 = G#, 9 = A, 10 = A#,

11 = B
2306 (defun get-tone-offset (voice)
2307 (let (
2308 (tone (om::tonalite voice))
2309)
2310 (if (eq tone nil)
2311 ; then default to C major
2312 0
2313 ; else check if the mode is major or minor
2314 (let (
2315 (mode (om::mode tone))
2316)
2317 (if (eq (third mode) 300)
2318 (midicent-to-midi-offset (+ (om::tonmidi tone) 300))
2319 (midicent-to-midi-offset (om::tonmidi tone))
2320)
2321)
2322)
2323)
2324)
2325

2326 ; converts a midicent value to the corresponding offset midi value
2327 ; note:[0, 12700] -> [0, 11]
2328 ; 0 corresponds to C, 11 to B
2329 (defun midicent-to-midi-offset (note)
2330 (print (list "midicent-to-midi-offset..." note))
2331 (mod (/ note 100) 12)
2332)
2333

2334 ; return the absolute difference between two midi notes modulo 12
2335 ; or the brut interval if b is true
2336 (defun inter (n1 n2 &optional (b nil))
2337 (if b
2338 (- n1 n2)
2339 (mod (abs (- n1 n2)) 12)
2340)
2341)
2342

2343 ; add constraint in sp such that the interval between the two notes is a member of
interval-set

2344 (defun inter-member-cst (sp n1-var n2-val interval-set)
2345 (let (
2346 (t1 (gil::add-int-var-expr sp n1-var gil::IOP_SUB n2-val)) ; t1 = n1 - n2
2347 (t2 (gil::add-int-var sp 0 127)) ; used to store the absolute value of t1
2348 note-inter
2349)
2350 (gil::g-abs sp t1 t2) ; t2 = |t1|
2351 (setq note-inter (gil::add-int-var-expr sp t1 gil::IOP_MOD 12)) ; note-inter

= t1 % 12
2352 (gil::g-member sp interval-set note-inter) ; note-inter in interval-set
2353)
2354)
2355

2356 ; add constraint such that n3-var = |n1-var - n2-val| % 12
2357 (defun inter-eq-cst (sp n1-var n2-val n3-var)
2358 (let (

200

2359 (t1 (gil::add-int-var-expr sp n1-var gil::IOP_SUB n2-val)) ; t1 = n1 - n2
2360 (t2 (gil::add-int-var sp 0 127)) ; used to store the absolute value of t1
2361 (modulo (gil::add-int-var-dom sp ’(12))) ; the IntVar just used to store 12
2362)
2363 (gil::g-abs sp t1 t2) ; t2 = |t1|
2364 (gil::g-mod sp t2 modulo n3-var) ; n3-var = t2 % 12
2365)
2366)
2367

2368 ; add constraint such that
2369 ; brut-var = n1-var - n2
2370 ; abs-var = |brut-var|
2371 (defun inter-eq-cst-brut (sp n1-var n2 brut-var abs-var)
2372 (let (
2373 (t1 (gil::add-int-var-expr sp n1-var gil::IOP_SUB n2)) ; t1 = n1-var - n2
2374)
2375 (gil::g-rel sp t1 gil::IRT_EQ brut-var) ; t1 = brut-var
2376 (gil::g-abs sp t1 abs-var) ; abs-var = |t1|
2377)
2378)
2379

2380 ; add constraint such that
2381 ; brut-var = n1-var - n2
2382 ; abs-var = |brut-var|
2383 (defun inter-eq-cst-brut-for-cst (sp n1-var n2 brut-var abs-var is-cst)
2384 (let (
2385 (t1 (gil::add-int-var-expr sp n1-var gil::IOP_SUB n2)) ; t1 = n1-var - n2
2386 (t2 (gil::add-int-var sp 0 12)) ; store the absolute value of t1
2387)
2388 (gil::g-abs sp t1 t2) ; t2 = |t1|
2389 (gil::g-ite sp is-cst t1 ZERO brut-var) ; brut-var = t1 if is-cst, else

brut-var = 0
2390 (gil::g-ite sp is-cst t2 ZERO abs-var) ; abs-var = t2 if is-cst, else

abs-var = 0
2391)
2392)
2393

2394 ; return the last element of a list
2395 (defun lastone (l)
2396 (first (last l))
2397)
2398

2399 ; return the rest of a list without its last element
2400 (defun restbutlast (l)
2401 (butlast (rest l))
2402)
2403

2404 ; return the penultimate element of a list
2405 (defun penult (l)
2406 (nth (- (length l) 2) l)
2407)
2408

2409 ; return an approximative checksum of pitches associated to a rythmic
2410 ; - p: the list of pitches
2411 ; - r: the list of rythmic values (with the -1/2 at the beginning)
2412 (defun checksum-sol (p r)
2413 (let (
2414 (l (length p))
2415)
2416 (mod (floor (reduce #’+
2417 (mapcar #’* (range (+ l 5) :min 5) (rest r) p)))
2418 (expt l 12))
2419)

201

2420)
2421

2422 ; add the sum of the @factor-arr as a cost to the *cost-factors array and increment

*n-cost-added
2423 ; additionnally, keeps track of the index it was added to
2424 ; @g-sum: t if we need to sum the factor-arr, false if not
2425 (defun add-cost-to-factors (factor-arr cost-name &optional (g-sum 1))
2426 (assert (< *n-cost-added *N-COST-FACTORS) (*n-cost-added) "Assertion failed:

Trying to set more costs than what has been defined (~A). Please increase
the value of *N-COST-FACTORS." *N-COST-FACTORS)

2427 (if g-sum
2428 (gil::g-sum *sp* (nth *n-cost-added *cost-factors) factor-arr)
2429 (setf (nth *n-cost-added *cost-factors) factor-arr)
2430)
2431 ; store the index of the cost in the cost-index hashmap
2432 (setf (gethash cost-name *cost-indexes) (append (gethash cost-name *cost-indexes

) (list *n-cost-added)))
2433 (incf *n-cost-added)
2434)

202

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

	Introduction and context of this work
	A brief history of counterpoint: from Bach to algorithmic generation
	Software tool for writing species counterpoint

	Fux's theory of counterpoint for two-, three- and four-part composition
	Species counterpoint

	Tools and implementation
	Constraint Programming
	OpenMusic
	GiL and Gecode
	Software integration

	Standing on the shoulders of giants: underlying works and editions of Gradus ad Parnassum used
	The contributions of this thesis

	Definition of concepts and variables
	Voices, parts and strata
	Exploring the interaction of the parts with the lowest stratum
	Definitions of the variables used in the formalisation
	Variables and array notation
	Overview of all the variables
	In depth definition of the variables

	Formal rules for three-part counterpoint
	Implicit rules
	Formalisation in English
	Formalisation into constraints

	First species
	Formalisation into English
	Formalisation into constraints

	Second species
	Formalisation in English
	Formalisation into constraints

	Third species
	Formalisation in English
	Formalisation into constraints

	Fourth species
	Formalisation in English
	Formalisation into constraints

	Fifth species
	Writing a three-part composition using various species

	Solution search for three-part counterpoint
	Dealing with the higher computational complexity
	Using Branch-And-Bound as a search algorithm
	Heuristics
	Time to find a solution

	Designing the costs of the solver to be as faithful as possible to the preferences of Fux
	Linear combination
	Minimising the maxima
	Lexicographic order
	Comparison between the three types of costs.

	Combining the three types of costs
	Comparing the linear combination and the lexicographic order in practice
	Mixing the technique of maximum minimisation with lexicographic order

	Conclusion on the search methods

	Musicality of the solutions
	Combining first species with another species
	Using preferences to improve musicality
	Combining arbitrary species

	Known issues and future improvements
	Known issues about the current state of the work
	Future improvements

	Conclusion
	Bibliography
	Software Architecture
	User Guide
	Installing FuxCP
	Prerequisites
	Loading FuxCP in OpenMusic

	Using FuxCP in OpenMusic
	Interface Parameters Description

	Complete set of rules for two and three part compositions
	Code
	FuxCP.lisp
	package.lisp
	interface.lisp
	fuxcp-main.lisp
	3v-ctp.lisp
	cf.lisp
	1sp-ctp.lisp
	2sp-ctp.lisp
	3sp-ctp.lisp
	4sp-ctp.lisp
	5sp-ctp.lisp
	constraints.lisp

