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Abstract: Designing distributed systems to have predictable performance under all loads is
difficult because of resource exhaustion, nonlinearity, and stochastic behaviour.
Timeliness, defined as delivering results within a specified delay distribution, is a
central aspect of predictable performance. In this paper, we focus on timeliness using
the ∆Q Systems Development paradigm (ΔQSD, developed by PNSol), which
computes timeliness by modelling systems observationally using so-called outcome
expressions. An outcome expression is a compositional definition of a system's
observed behaviour that shows the causal connections between its basic operations.
Given the ∆QSD operations, we use outcome expressions to compute the stochastic
behaviour of the whole system including its timeliness.
This paper defines and proves algebraic equivalences of outcome expressions with
respect to timeliness.  We prove the correctness of known equivalences, and introduce
new equivalences and prove their correctness, for outcome expressions containing
probabilistic choice, failure, synchronisation (first-to-finish and last-to-finish), and
sequential composition operators. We show how to incorporate failure as a first-class
citizen in outcome expressions by developing a body of mathematics for improper
random variables. The paper shows the practical usefulness of algebraic equivalences
by studying the design of a memory system containing a local cache, a networked read
with timeout, and the ability to retry.  We compute the delay and failure behaviour of
several versions of this system, using the equivalences to simplify computations. This
work is part of an ongoing project to disseminate and build tool support for ∆QSD, to
make it available to the wider community of system designers.
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Abstract

Designing distributed systems to have predictable performance under all
loads is difficult because of resource exhaustion, nonlinearity, and stochastic
behaviour. Timeliness, defined as delivering results within a specified delay
distribution, is a central aspect of predictable performance. In this paper, we
focus on timeliness using the ∆Q Systems Development paradigm (∆QSD,
developed by PNSol), which computes timeliness by modelling systems ob-
servationally using so-called outcome expressions. An outcome expression is
a compositional definition of a system’s observed behaviour that shows the
causal connections between its basic operations. Given the ∆QSD opera-
tions, we use outcome expressions to compute the stochastic behaviour of
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the whole system including its timeliness.
This paper defines and proves algebraic equivalences of outcome expres-

sions with respect to timeliness. We prove the correctness of known equiv-
alences, and introduce new equivalences and prove their correctness, for
outcome expressions containing probabilistic choice, failure, synchronisation
(first-to-finish and last-to-finish), and sequential composition operators. We
show how to incorporate failure as a first-class citizen in outcome expressions
by developing a body of mathematics for improper random variables. The
paper shows the practical usefulness of algebraic equivalences by studying
the design of a memory system containing a local cache, a networked read
with timeout, and the ability to retry. We compute the delay and failure be-
haviour of several versions of this system, using the equivalences to simplify
computations. This work is part of an ongoing project to disseminate and
build tool support for ∆QSD, to make it available to the wider community
of system designers.

Keywords: Algebraic Reasoning, Timeliness, System Design, ∆QSD
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Designing distributed systems to have predictable performance under all
loads is difficult. At high load, throughput and latency reach their limits
and resources such as network capacity, CPU capacity, and storage will be
exhausted, causing a dramatic effect on performance. Prediction is difficult
because the behaviour of system components and their interactions is both
nonlinear and stochastic. For over 20 years, a small group of people associated
with the company PNSol has worked on diagnosing and designing systems
to predict and correct performance problems [1, 2, 3, 4, 5, 6, 7]. PNSol has
developed the ∆Q Systems Development paradigm (∆QSD) as part of this
work. ∆QSD has been used in areas as diverse as telecommunications [8]
[9] [10], WiFi [11], and distributed ledgers [12]. ∆QSD has been applied to
many large industrial systems, with clients including BT, Vodafone, Boeing
Space and Defence, and IOG (formerly IOHK).

This paper defines and proves algebraic properties of the ∆QSD operators
with respect to timeliness, i.e., delivering outcomes within the acceptable
time-frames. In this paper, our sole resource of concern is time, although
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∆QSD includes other types of resources and their interaction.
This work is part of an ongoing project to disseminate and build tool

support for ∆QSD, to make it available to the wider community of system
engineers. It is based on on the ∆QSD formalisation given by Haeri et al.
[13], which defines outcome expressions and their semantics and gives a real-
world example of ∆QSD taken from the blockchain domain.

1.1. Timeliness and the ∆QSD Paradigm
This paper extends the ∆QSD paradigm with algebraic reasoning for

timeliness. By facilitating the computation of timeliness, this extension has
the potential to greatly improve the efficiency of software tools using ∆QSD,
and in addition it allows the use of ∆QSD for back-of-the-envelope estima-
tions by design engineers. We believe that the extension has the potential
to have a large positive impact not only on ∆QSD but on system design in
general. In this section, we justify this belief by explaining the main concepts
of ∆QSD, the systems it targets, and its properties for those systems.

The ∆QSD paradigm models systems using outcome expressions, which
are directed graphs that give the causal dependencies between the operation
of a system’s components. The behaviour of each component is defined by
a cumulative distribution function (CDF) of the component’s delay (which
may depend on various parameters including load). The behaviour of the
whole system is given by a CDF that is obtained by combining the CDFs of
its components. This may require a significant amount of computation, and
this computation must be repeated whenever the system design is modified
during the design process. The algebraic equivalences derived in this paper
allow simplification of many of these computations.

Scope of ∆QSD. ∆QSD is a systems development paradigm that is able
to compute many system properties early on in the design process, such as
performance (latency and throughput), timeliness (whether results appear on
time), resource consumption, risks, and feasibility. ∆QSD is used for both
diagnosis and design:

• System Diagnosis. ∆QSD can be used to analyse an existing system,
to pinpoint anomalous behaviours so their origin can be found and the
system can be corrected.

• System Design. ∆QSD can estimate performance trade-offs during the
design process. At every step of the design process, performance of
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the complete system can be estimated by a computation on the partial
design. This computation also determines whether or not the system
is feasible, i.e., whether it can or cannot meet the requirements.

Historically, ∆QSD has primarily been used for system diagnosis, to find
and solve problems in existing large industrial systems. However, PNSol
has recently used ∆QSD for system design, to conceptualize and define the
Shelley block diffusion algorithm as used in the Cardano blockchain [13].

Targeted systems. The ∆QSD paradigm primarily targets systems with many
independent users where real-time performance is important. This includes
systems with large flows of mostly independent data items and systems
that are subject to frequent overload situations. Some examples where the
paradigm works well:

• Distributed systems that perform tasks for many independent users,
such as cryptocurrency platforms.

• Large-scale communications systems including telephony, mobile tele-
phony, content distribution, and publish/subscribe.

• Large client/server systems with many networked connections and back-
end databases.

• Distributed sensor networks with real-time data streams and analysis,
where edge data is transmitted to cloud tools, analysed, and results
return back to the edge.

Note that for systems that execute long sequences of dependent actions, the
predictions will be less accurate. We believe it is possible to extend the
paradigm for such systems by modelling the dependent sequences, but this
has not been the focus of our work.

Properties. The ∆QSD paradigm has the following properties:

• It can define and analyse partially specified systems. System properties
can be computed early on in the design process. This is possible even
when large parts of the system have not yet been specified concretely,
by using approximation that can be refined later. At any point in the
design process, the system’s latency and throughput can be predicted
under various load situations. Infeasible designs can be eliminated early
on in the design process.
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• It factors the design into three sections: a compositional base made
of independent parts; a set of dependencies between parts (e.g., shared
resources such as latency, power consumption, storage, and CPU load);
and a hierarchy of supervisory systems for risk management.

• It uses a stochastic approach to specify system behaviour, using cu-
mulative distribution functions to model delay and failure. Experience
shows that this is a ‘sweet spot’ that gives good results with respect to
the amount of information needed. Predictions are accurate when the
system model correctly models both independent and dependent parts.

We note that achieving the full power of the approach can require signifi-
cant computation (although much less than for simulation-based approaches).
Component behaviour is modelled by CDFs, which are functions that poten-
tially contain a large amount of information. Computations done during the
design process require convolution, deconvolution, and other arithmetic op-
erations on CDFs. With some attention to efficiency in the formalisation and
implementation of ∆QSD, we expect that a modern laptop computer will be
sufficient for most practical designs. More information on ∆QSD and many
examples of outcome diagrams can be found in the tutorial given at HiPEAC
2023 [14].

1.2. Structure of the Paper and Contributions
This paper is based on a general model theory of resource analysis for

systems specified using outcome expressions [15]. That model theory is the
first of its kind and we specialise it using the timeliness analysis recipe that
is commonly used in ∆QSD (Definition 3). This paper gives a firm mathe-
matical foundation for ∆QSD and uses this to establish important algebraic
properties of the ∆QSD operators with respect to timeliness, i.e., when the
relevant resource is time. The contributions of this paper are presented in
three parts, with two sections for each part:

• Memory system case study (§2 and §3). This part shows the prac-
tical application of the results of the paper. It uses these results to
study properties of a realistic memory system containing a cache, a
networked read with timeout, and the ability to retry when reads time
out. This part is of particular interest to system designers, and can be
read independently of the rest of the paper.
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– §2 defines the basic concepts of the paper. The most fundamental
concept is the outcome, which corresponds to an observed system
behaviour. Outcomes are combined into outcome expressions with
their graphical representation as outcome diagrams. We associate
to each outcome a quality attenuation, which is also written ∆Q.
The quality attenuation is a cumulative distribution function of
delay that is allowed to be improper. The use of improper random
variables allows modelling failure together with delay. The time-
liness of an outcome is a relation that compares its observed (or
calculated) quality attenuation with its required quality attenua-
tion.

– §3 gives the case study. We define different versions of a mem-
ory system and compute their failure probability and timeliness,
using the algebraic equivalences of the paper to simplify the com-
putations. This illustrates the practical usefulness of algebraic
equivalences.

– Fig. 7 in §3 is a table that summarises all the algebraic equiva-
lences of the paper, in a form usable by system designers. The
figure is explained in §3.4. Because of its size, the table is split
into two parts.

• Algebraic equivalences of outcome expressions with respect to timeli-
ness (§4 and §5). This part gives the main theoretical contributions of
the paper.

– §4 defines the formal syntax and timeliness semantics of out-
come expressions. Outcome expressions contain primitive out-
comes and four compositional operators: sequential composition;
first-to-finish (a.k.a. any-to-finish); last-to-finish (a.k.a. all-to-
finish); and probabilistic choice. The graphical representation
of an outcome expression is called an outcome diagram. The
timeliness semantics associates a cumulative distribution function
(CDF) with each outcome expression. As explained before, this
CDF is called a quality attenuation and it is given the symbol ∆Q.
The use of improper distributions is a key property of the ∆QSD
approach that allows studying the trade-offs between delay and
failure. The example of §3.9, which models timeout and retry,
shows the advantage of this approach.
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– §5 derives a series of algebraic equivalences. We first prove a set
of known equivalences (“folklore equivalences”). We then prove
equivalences for probabilistic choice, distributivity, and failure ex-
traction. For ease of use, these equivalences are summarised in
Fig. 7 as mentioned above.

• Algebraic study of failure (§6 and §7). This part gives the theoretical
foundations of how failure is incorporated as a first-class citizen in the
∆QSD approach.

– §6 shows how failure can be extracted from outcomes so that it be-
comes usable by the algebraic equivalences. This transformation
is called properisation. Using properisation together with alge-
braic equivalence allows transformation of an outcome expression
to make the failure visible at the top level. This makes it simple to
compute the effect of subsystem failure on overall system failure.

– §7 gives an algebra of failure probabilities and shows how this
fits into a more general algebraic model of proper and improper
probability distributions. This gives a deeper explanation of the
relationship between failure and proper distributions. It shows
why the use of improper distributions can be seen as a natural
way to combine delay and failure into a single concept.

• Related work (§8). Other formalisms have a much smaller set of trans-
formations than we show here. In a general comparison of ∆QSD with
other formalisms, three properties stand out:

– It gives an observational model of the system that is independent
of its internal structure, as opposed to UML, for example, which
defines what happens inside the system being modelled.

– It gives a stochastic definition of system behaviour that covers
both delay and failure. This gives good results for the amount of
information needed to define the system. In particular, the use
of improper random variables makes it easy to explore trade-offs
between delay and failure. Classical reliability theory corresponds
to a subset of ∆QSD that looks only at failure probabilities.

– It allows performance and feasibility to be computed for partially
defined systems. Determining feasibility is more precise than for
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other formalisms because the stochastic approach of ∆QSD allows
both independent and dependent outcomes.

§8 gives more information on the relationship between ∆QSD and par-
ticular formalisms including BPMN, PEPA, PerformERL, and FMEA.

For brevity, some of the proofs are shortened in this paper. Full proofs can be
found in the accompanying technical report [15]. In addition, the technical
report shows how the memory system of Fig. 4 can be further elaborated
using code running in a Jupyter notebook.

Figure 1: A Component’s Operation and its Cumulative Delay Function

(a) Failure is modelled as a quality attenuation whose
limit is less than 1.
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Figure 2: Failure and Timeliness
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2. Background

We define the basic concepts used in the paper, in terms of systems and
their behaviour. These definitions underlie both the practical part (§3) and
theoretical part (§4 – §7) of the paper.

Outcome and Quality Attenuation. Consider a component C which inputs
message min and outputs message mout after a delay d. Doing this many
times will usually give different delays. We define a cumulative delay function
so that p percent of delays are less or equal to d. Fig. 1 gives an illustration.

The ∆QSD paradigm generalises this simple measurement. We measure
delay not only for messages, but for all system behaviours that have a starting
event and a terminating event. Given a starting event ein and a terminating
event eout, what the system gains within the (ein, eout) time frame is called
an instance of an outcome. We also generalise the property that we measure:
we measure not only delay, but any property that makes the system less
than perfect. The cumulative distribution function of the property is then
called a quality attenuation and is denoted by a ∆Q. In what follows, we will
consistently use the terms outcome and quality attenuation.

Failure. It is straightforward to generalise quality attenuation to model both
delay and failure. It suffices to allow the cumulative delay function’s limit
to be less than 1. Fig. 2a illustrates this possibility. There is an f percent
probability that the delay is infinite, which corresponds precisely to a failure.
For the component, it means simply that there is an input message min
with no corresponding output message mout within the timescale of interest.
Mathematically, the delay is modelled by a random variable that is allowed to
be improper: The probability that it is infinite can be greater than 0. This
probability is called the intangible mass of the Improper Random Variable
(IRV) [16].

The ability to model delay and failure as a single quantity is a key strength
of ∆QSD. It makes it easy to explore trade-offs between delay and failure in
the system design. This ability shows up clearly in the algebra presented in
this paper.

Timeliness. We define timeliness as a relation (defined in [8]) between an
observed ∆Qobs and a required ∆Qreq. We say that the system satisfies
timeliness for a given outcome if ∆Qobs ≤ ∆Qreq. Fig. 2b illustrates this
condition. The timeliness relation defines a partial order [13]. If ∆Qobs and
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∆Qreq intersect, then the order is undefined. In that case, the probabil-
ity that the required timeliness is violated is called the hazard. It can be
computed from the two CDFs.

Outcome Diagram. For a system consisting of multiple interconnected com-
ponents, one can define a directed graph that combines all the components’
outcomes. This graph defines the causal relationships between the outcomes
and is called an outcome diagram. Each outcome diagram has a correspond-
ing outcome expression – a mathematical description of the diagram1. Given
an outcome expression and the quality attenuations of all its components,
it is possible to compute the quality attenuation of the complete system.
The reverse process can also be fruitful: given an outcome expression and
the required quality attenuation of the complete system, one can estimate
the required quality attenuations of its components. This gives the system
designer a powerful tool for both design and diagnosis. Many practical exam-
ples of outcome diagrams are given in §3 which presents the memory system
case study.

Outcome expressions can be manipulated according to algebraic rules, in
particular those presented in this paper, which are useful to system designers
in ∆QSD. As part of an ongoing project, we are building software tools to
support ∆QSD, which can use the algebraic rules presented here for symbolic
manipulation of outcome expressions.

3. Memory System Case Study

To show how to use the ∆QSD approach in practice, we study different
versions of a memory system consisting of a local cache with a remote main
memory. This case study serves four purposes:

• First, it shows how outcome diagrams are used to model nontrivial
systems.

• Second, it shows how we can compute properties of the system (failure
probability and delay distribution) by algebraic transformations of an
outcome diagram. This is often simple enough to be done by hand.

1In this paper, we take the equivalence between outcome expressions and outcome
diagrams for granted. That equivalence is not the focus of this paper.
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• Third, it shows how the full quality attenuation ∆Q of the system can
be computed. We combine the distribution functions of the cache’s
components according to the operations of the outcome diagram. This
can be done approximately as a back-of-the-envelope calculation, or
more precisely by a software tool that computes with the actual distri-
bution functions.

• Fourth, it shows how to study the trade-off between delay and failure.
We extend the memory system to do a retry if a remote read times out.
This reduces the probability that the read fails at the price of increased
delay.

3.1. Overview of the Case Study
We present the case study in step-by-step fashion.

• We first give the basic definitions used in the examples:

– We define the memory system by its block diagram (§3.2). This
is a standard way to show the system structure.

– We define the memory system as an outcome diagram (§3.3). This
diagram shows the operation of the system, with all messages and
the causal connections between them.

– Fig. 7 gives a table of algebraic equivalences that summarize the
results of this paper. These equivalences are used to compute the
properties of the examples (§3.4).

• We use the outcome diagram to calculate the failure probability and the
delay function. To make this easy to follow, we give three progressively
more realistic versions of the cache.

1. Cache with zero delay network and no timeout (§3.5). We com-
pute the failure probability by transforming the outcome diagram.
This shows how the main memory failure affects the probability
of overall failure in the presence of the cache.

2. Cache with reliable network and timeout (§3.6). We compute
the cumulative delay distribution. Because of timeout, the failure
behavior is more subtle. The cache read always returns a result
but it may be a timeout and not a successful read. We show the
combined effect of the timeout and the main memory failure.
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Figure 3: Block Diagram of a Memory System with Local Cache and Networked Main
Memory with Timeout

3. Cache with failure-prone network and timeout (§3.7). We show
that the overall failure probability of the main memory read across
the network is the sum of the probabilities of the network failure
and the main memory failure. This confirms that when limited to
failure probabilities our approach gives the same result as classical
reliability theory.

• We show how to compute the full ∆Q (cumulative delay function) of
the memory system (§3.8).

• We show how to extend the memory system with a retry if the net-
worked read times out and we study the trade-off between reduced
failure probability of a read versus increased delay (§3.9).

3.2. Block Diagram
Fig. 3 gives the block diagram of the memory system. A read message

enters the cache; a cache hit – when the memory word is in the cache – results
in an immediate return message; a cache miss – when the memory word is not
in the cache – results in a main memory read. The main memory is across
a network, so accessing it requires communication in both directions. Main
memory access is guarded by a timeout in case of communication failure.
The cache miss initialises the timeout timer; the mreturn message is passed
through if it occurs before the timeout; otherwise, a timeout message is passed
instead.

3.3. Outcome Diagram
Fig. 4 shows the outcome diagram for the memory system. In this diagram

there are six primitive outcomes (the orange circles). These are composed
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c-miss main

c-hit⇋ [95%]

[5%]

∃ net

t-out

net

read

mread mreturn

returnhit

miss

Figure 4: Outcome Diagram for the Memory System of Fig. 3

c-miss main

c-hit⇋ [95%]

[5%]

Figure 5: Outcome Diagram for Simplified Cache with Zero Delay Network and No Time-
out

with three operations, sequential composition, probabilistic choice, “⇋”, and
first-to-finish synchronisation, “∃”. Probabilistic choice and first-to-finish
synchronisation use prefix operators, to make it clear how the component
outcomes are combined before they are shown.

We assume that the cache hit rate is 95%. That is modelled using a prob-
abilistic choice with two paths, one for each outcome (“c-hit” and “c-miss”),
decorated with their corresponding probabilities. The cache miss leads to a
main memory read, which is modelled as a sequential composition with three
outcomes, the network send (“net”), the memory read proper (“main”), and
the network return (“net”). Timeout is modelled by a first-to-finish relation-
ship between the main memory read and the timer (“t-out”).

3.4. Table of Equivalences (“Cheat Sheet”)
The rest of §3 studies different versions of the memory system and uses

the algebraic equivalences derived in this paper to compute their properties.
For ease of consultation, Fig. 7 (in two parts) summarises these equivalences
in a “cheat sheet.” The equivalences are all written as equations o1 = o2
where o1 and o2 are outcome expressions. Each equivalence states that o1
and o2 have strictly the same timeliness, i.e., the quality attenuation is the
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c-miss main

c-hit⇋

⇋

⊥

[95%]

[5%]

[1 - 10-16]

[10-16]

Figure 6: Outcome Diagram for Simplified Cache with Unreliable Main Memory

same for both expressions. In all expressions, ⊤ refers to a system with
perfect behaviour (zero delay), basically just a direct connection from input
to output, and ⊥ refers to a failed system (infinite delay), basically just an
open connection so that the terminating event never appears.

3.5. Cache with Zero Delay Network and No Timeout
We start with a simplified cache system that has zero network delay and

no timeout. Fig. 5 shows the outcome diagram for the simplified cache. This
outcome diagram corresponds to the following equivalent outcome expression:

c-hit 95%
⇋ (c-miss •→−•main) (1)

Let us now assume that the memory read main has a small probability of
failure, for example 10−16. Using the outcome diagram, we can compute
the overall probability of failure when using the cache. We first replace the
memory read by a probabilistic choice between a perfectly reliable memory
read and a failure ⊥. Fig. 6 shows the new outcome diagram. The operation
of replacing an unreliable operation by a choice between a reliable operation
and a failure is called properisation (see §6). The new outcome expression is:

c-hit 95%
⇋

(
c-miss •→−• (main 1−10−16

⇋ ⊥)
)

(2)

Note that the main in Eq. (2) is reliable, unlike the main in Eq. (1) which
is unreliable. To keep the notation light, this section will always use the
same name for both the reliable and unreliable versions, unlike §6 which
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o1 •→−• (o2 •→−• o3) = (o1 •→−• o2) •→−• o3 o1 •→−• o2 = o2 •→−• o1
⊤ •→−• o = o = o •→−• ⊤ ⊥ •→−• o = ⊥ = o •→−• ⊥

(a) Equivalences for the Algebraic Structure of (O, •→−•)

o1 ∥∀ (o2 ∥∀ o3) = (o1 ∥∀ o2) ∥∀ o3 o1 ∥∀ o2 = o2 ∥∀ o1
⊤ ∥∀ o = o = o ∥∀ ⊤ ⊥ ∥∀ o = ⊥ = o ∥∀ ⊥

(b) Equivalences for Algebraic Structure of (O, ∥∀)

o1 ∥∃ (o2 ∥∃ o3) = (o1 ∥∃ o2) ∥∃ o3 o1 ∥∃ o2 = o2 ∥∃ o1
⊥ ∥∃ o = o = o ∥∃ ⊥ ⊤ ∥∃ o = ⊤ = o ∥∃ ⊤

(c) Equivalences for Algebraic Structure of (O, ∥∃)

Figure 7: The Practising Engineer’s Cheat Sheet for Timeliness (Part 1 of 2)

uses main →
| for the reliable version. Using an elementary equivalence (from

Fig. 7), we move up the failure one level:

c-hit 95%
⇋

(
(c-miss •→−•main) 1−10−16

⇋ ⊥
)

(3)

Using an associative equivalence between probabilistic choices (again from
Fig. 7), we bring up the failure to the top level:

(c-hit p′

⇋ (c-miss •→−•main)) q′

⇋⊥ (4)

where the new probabilities are computed as follows:

p′ = 0.95
1−(1−0.95)·(1−(1−10−16))

q′ = 1− (1− 0.95) · (1− (1− 10−16))

Simplifying gives (in the computation of p′, we assume that 10−16 can safely
be ignored compared to 0.95):

(c-hit 95%
⇋ (c-miss •→−•main)) 1−0.05·10−16

⇋ ⊥ (5)

The overall failure rate is therefore 0.05 · 10−16.

3.6. Cache with Reliable Network and Timeout
Let us now consider the original system of Fig. 4. We assume that the read

main can fail but the other four primitive outcomes c-miss, c-hit, net , and
t-out are completely reliable. Fig. 4 has the following outcome expression:

c-hit 95%
⇋ (c-miss •→−• (net •→−•main •→−• net∥∃t-out)) (6)
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⊥⇋⊥ = ⊥ o •→−• ⊥ = ⊥ ⊤⇋⊤ = ⊤ ⊥ •→−• o = ⊥
⊤ •→−• o = o o •→−• ⊤ = o ⊤∥∀o = o ⊥∥∃o = o

(o1 ⇋⊥) •→−• o2 = (o1 •→−• o2)⇋⊥ o1 •→−• (o2 ⇋⊥) = (o1 •→−• o2)⇋⊥
(o1 ⇋⊤) •→−• o2 = (o1 •→−• o2)⇋ o2 o1 •→−• (o2 ⇋⊤) = (o1 •→−• o2)⇋ o1

(d) Elementary Equivalences

⊥ p
⇋ (⊥ q

⇋ o) = ⊥ [p+(1−p)q]
⇋ o o1

p
⇋ (o2

q
⇋⊤) = o2

[q(1−p)]
⇋ (o1 [

p
1−q(1−p) ]
⇋

⊤)

o1
p
⇋ (o2

q
⇋o3) = (o1

p′

⇋o2)
q′

⇋o3 iff p′ = p
1−(1−p)(1−q)

and q′ = 1− (1−p)(1−q).

(o1
p
⇋ o2)

q
⇋ o3 = o1

p′

⇋ (o2
q′

⇋ o3) iff p′ = pq and q′ = q(1−p)
1−pq

.
(e) Equivalences with More than One Probabilistic Choice

o1
[p]
⇋ (o2

[q]
⇋o3)=(o1

[p]
⇋o2)

[q]
⇋ (o1

[p]
⇋o3) (o1

[p]
⇋o2)

[q]
⇋ o3=(o1

[q]
⇋o3)

[p]
⇋ (o2

[q]
⇋o3)

o1∥∃(o2 ⇋ o3) = (o1∥∃o2)⇋ (o1∥∃o3) (o1 ⇋ o2)∥∃o3 = (o1∥∃o3)⇋ (o2∥∃o3)

o1∥∀(o2 ⇋ o3) = (o1∥∀o2)⇋ (o1 ∥∀o3) (o1 ⇋ o2)∥∀o3 = (o1∥∀o3)⇋ (o2∥∀o3)

(f) Distributivity

• (o1
p1
⇋⊥) •→−• (o2 p2

⇋⊥) = (o1 •→−• o2) [p1p2]
⇋ ⊥.

• (o1
p1
⇋ ⊥) p

⇋ (o2
p2
⇋ ⊥) = (o1

q
⇋ o2)

r
⇋ ⊥, where q = pp1

p2−pp2+pp1
and

r = p2 − pp2 + pp1.

• (o1
p1
⇋⊥)∥∀(o2 p2

⇋⊥) = (o1∥∀o2) [p1p2]
⇋ ⊥.

• (o1
p1
⇋⊥)∥∃(o2 p2

⇋⊥) =
(
(o1∥∃o2) p

⇋ (o1
q
⇋ o2)

)
r
⇋⊥, where

p = p1p2
1−(1−p2)(1−p1)

, q = p1(1−p2)
p1+p2−2p1p2

, and r = 1− (1− p2)(1− p1).

(g) Compositional Extraction of Failure

Figure 7: The Practising Engineer’s Cheat Sheet for Timeliness (Part 2 of 2)

16



Figure 8: Computing the Delay Function for the Main Memory Read

Doing properisation on the memory read gives:

c-hit 95%
⇋

(
c-miss •→−•

(
net •→−•

(
main 1−10−16

⇋ ⊥
)
•→−• net∥∃t-out

))
(7)

We now transform this expression using the equivalences from Fig. 7. The
goal is to bring the ⊥ up to the top level inside a probabilistic choice. We can
then read off the reliability directly from this choice. The first step is to bring
together the sequential compositions. Using two elementary equivalences we
get:

c-hit 95%
⇋

(
c-miss •→−•

(
(net •→−•main •→−• net) 1−10−16

⇋ ⊥∥∃t-out
))

(8)

We focus on the first-to-finish operation:(
(net •→−•main •→−• net) 1−10−16

⇋ ⊥∥∃t-out
)

(9)

We can remove the failure ⊥ by doing a compositional failure extraction.
This gives the following simplified expression:

(net •→−•main •→−• net∥∃t-out) 1−10−16

⇋ t-out (10)

This expression has both a first-to-finish and a probabilistic choice. What
kind of cumulative delay does it give? Fig. 8 shows a graphical computation of
its cumulative delay function (in our example, ϵ = 10−16). This computation
follows the semantics given in §4.2. This figure is read from left to right.
Start with the graphs for memory read and timeout on the left. Combining
them with a first-to-finish ∥∃ gives a memory read with timeout, where the
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net ProperisationProperisation net⇋

⊥

[1 - α]

[α]

Figure 9: Failure-Prone Network (Properisation of Network Communication)

read is perfectly reliable. On the right we give the analogous delay function
for memory read with timeout, where the read can fail. This graph is almost
but not quite identical to the previous one. The only difference is that the
probability p0 becomes p0 · (1− ϵ). Given that ϵ = 10−16 is extremely small
compared to po, we can assume in practice that the graphs are identical. We
can therefore simplify Eq. (10) into a pure timeout:

(net •→−•main •→−• net∥∃t-out) (11)

We replace this in Eq. (8), which gives:

c-hit 95%
⇋ (c-miss •→−• (net •→−•main •→−• net∥∃t-out)) (12)

The main memory failure is therefore hidden by the timeout.

3.7. Cache with Failure-Prone Network and Timeout
Assuming that the network is completely reliable is unrealistic. Let us

now assume that both the network net and the read main can fail. On
the other hand, we assume that the cache and timeout are completely reli-
able. This is realistic since both are implemented locally by robust circuitry.
Fig. 9 shows a failure-prone network communication. We can replace the
two network communications in the remote memory access by failure-prone
networks. Fig. 10 gives the outcome diagram. This can be written as an
outcome expression:

(net 1−α
⇋ ⊥) •→−• (main 1−ϵ

⇋ ⊥) •→−• (net 1−α
⇋ ⊥) (13)

Each network communication has a failure probability of α. A typical value
of α is around 10−10 for wired local area networks such as Ethernet. The
main memory read has a typical failure probability of 10−16. Doing two
applications of failure extraction, we transform this into:

(net •→−•main •→−• net) (1−ϵ)·(1−α)2

⇋ ⊥ (14)
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Figure 10: Remote Memory Access when the Network can Fail

The failure rate is 1 − (1 − ϵ) · (1 − α)2. If both α and ϵ are small, this
failure rate is closely approximated by ϵ+2α, which is 2 · 10−10 (in this case,
we ignore ϵ compared to α). This is the same result as given by classical
reliability theory.

3.8. Direct Computation of Quality Attenuation ∆Q
We now show how to compute the full quality attenuation ∆Q of the

cache example using the semantics given in this paper. This is a numeric
computation using the CDF values of the ∆Qs. In general, this computation
cannot easily be done by hand, but it is straightforward with a software
tool. It gives much more information than just a failure probability. As an
illustration, Fig. 8 gives a visual example of what such a CDF value would
look like. First define a new outcome mem:

mem = net •→−• (main 1−10−16

⇋ ⊥) •→−• net (15)

which corresponds to a networked main memory read. We start by computing
its quality attenuation ∆Qmem :

∆Qmem = ∆Qnet ∗ ((1− 10−16)×∆Qmain + 10−16 ×∆Q⊥) ∗∆Qnet (16)

Since ∆Q⊥ = 0, we can simplify this to:

∆Qmem = ∆Qnet ∗ (1− 10−16)×∆Qmain ∗∆Qnet (17)
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The overall ∆Qobs is then given by:

∆Qobs = 0.95×∆Qc-hit+0.05×(∆Qc-miss∗(∆Qmem+∆Qt-out−∆Qmem×∆Qt-out)).
(18)

In these expressions × is arithmetic multiplication and ∗ is convolution. This
computation gives us the CDF for the observed execution time of a memory
read. For readers interested in seeing fully worked-out numerical examples,
we recommend looking up the tutorial [14].

Given the observed timeliness ∆Qobs as computed above, we can check
whether it satisfies the requirement. §2 defines this check as ∆Qobs ≤ ∆Qreq

where ∆Qreq is the required timeliness. As explained in §2, this relation is
a partial order between two CDFs. If the CDFs intersect, then there is a
nonzero probability that the timeliness is violated.

3.9. Cache with Timeout and Retry
The ∆Q concept combines both delay and failure in a single value. This

is a powerful property that can help us when designing a system. It lets us
easily design systems that trade off delay for failure or vice versa. In this
section we show it for our memory system.

If the network is slow then networked reads may time out too often. There
are two possible fixes at the client side: either increase the timeout delay or
do a retry. Both fixes reduce failure rate at the cost of increasing delay. If the
timeout is due to lost packets, then increasing the timeout delay will have
no effect. In that case it is better to do a retry. We model the retry by an
outcome expression and we compute the effect of the retry on failure rate by
using algebraic equivalences. In what follows, we abbreviate the networked
read (net •→−•main •→−• net) as netmain.

Our goal is to compute the probability of a successful read with up to
one retry. To be precise, if a networked read attempt times out, then we do
another networked read attempt. The overall read operation will only fail if
the second attempt times out. Recall that in Eq. (11), we gave an outcome
expression for a networked read with timeout, which we can write as follows:

(netmain ∥∃ t-out) (19)

This expression gives the outcome for a successful return signal. This should
not be confused with a successful read. The memory system will always
eventually give a successful return signal, simply because when the read fails
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1

0
t0

(netmain ∥∃ t-out)
p0

ΔQ of return signal with timeout

1

0
t0

(netmainS ⇋ ⊥) p0

ΔQ of read with timeout

1

0
t0

netmainS

ΔQ of read with timeout
given that the read succeeds with t≤t0

p0

Figure 11: Cumulative Delay for Return Signal versus Read

the return signal comes from the timeout. For a successful read with timeout,
the outcome expression is:

(netmainS p0
⇋ ⊥) (20)

where netmainS is a networked read given that the read succeeds with delay
t ≤ t0. Fig. 11 compares the cumulative delay functions. We model the time-
out as a probabilistic choice between success (netmainS with probability p0)
and failure (⊥ with probability 1− p0). Here the probability p0 corresponds
to a successful read with t ≤ t0, which is p0 = ∆Qnetmain(t0) (see Fig. 8). We
model the retry by extending Eq. (20):

netmainS p0
⇋ (t-out •→−• (netmainS p0

⇋⊥)) (21)

We have replaced the failure ⊥ in Eq. (20) by a timeout followed by another
networked read. To compute the failure probability of this expression, we
use the equivalences of Fig. 7 to transform this into:

(netmainS p′

⇋ (t-out •→−• netmainS )) q′

⇋⊥ (22)

The failure is now visible at the top level. The probability of success is q′.
From Fig. 7 the probabilities p′ and q′ are computed as follows:

p′ = p0
1−(1−p0)2

q′ = 1− (1− p0)
2
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0
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p0

1

0

(netmainS ⇋ (t-out ➝ (netmainS ⇋⊥)))

p0

ΔQ of read with timeout and one retry
p0

2t0

p0+p0·(1-p0)

p0

Figure 12: Cumulative Delay for Read with No Retry and One Retry

This gives q′ = 2p0 − p0
2 = (2− p0)p0. Recall that with no retry the success

probability was p0 (from Eq. (20)). With one retry the success probability
has therefore increased from p0 to (2 − p0)p0. Fig. 12 compares the ∆Qs
of the two cases. This approach can easily be extended to any number of
retries. The success probability can be computed from the number of retries,
the timeout delay t0, and ∆Qnetmain .

3.10. Closing Remarks on the Case Study
This section has shown how the use of algebraic equivalences can simplify

computations of failure and timeliness on realistic systems. The memory
system of this section is simplified for pedagogical purposes, but it contains
the elements of more complex systems. More realistic memory systems give
rise to more complicated outcome diagrams in which failure (⊥) appears at
multiple levels. The techniques of this section can be used to combine these
failures to compute the overall failure probability and the effect of failure
on the memory system. Furthermore, the techniques allow comparison of
designs with different trade-offs between delay and failure.

The probability of main memory failure (10−16) may seem small, but it is
wrong to ignore such small numbers. They can increase by being combined
with probabilities from other parts of the system and by being part of op-
erations repeated many times (for instance a typical processor may perform
109 memory accesses per second). The ∆QSD approach keeps track of them
and allows the designer to decide when and where they can be ignored.

4. Syntax and Timeliness Semantics

In this section, we present the formal syntax and semantics of outcome
expressions (Definition 1), as given in our earlier work [13]. One can give
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multiple semantices to that syntax, depending on the resource of interest.
Our focus here is on time, so we present a timeliness semantics for outcome
expressions (Definition 3) from our earlier work [13]. That syntax and seman-
tics give us a language together for communicating the algebraic properties
of outcome expressions w.r.t. time, as outlined in §4.3, which will be used
in the remainder of this paper. The keen reader is invited to consult our
accompanying technical report [15] for the additional details.

4.1. Syntax of Outcome Expressions
Definition 1 (Haeri et al. [13]). Assume a set B of primitive outcomes. We
use variables β ∈ B to represent individual primitive outcomes. We define
the abstract syntax of outcome expressions as follows:

O ∋ o ::= β primitive outcome
| o •→−• o′ sequential composition
| (o ∥∀ o′) all-to-finish (a.k.a. last-to-finish)
| o p

⇋ o′ probabilistic choice
| (o ∥∃ o′) any-to-finish (a.k.a. first-to-finish).

This defines outcome expressions as combinations of primitive outcomes
β and four composition operators. In the case of probabilistic choice, the
numerical value p (0 ≤ p ≤ 1) is the probability of choosing the left al-
ternative; correspondingly, (1 − p) is the probability of choosing the right
alternative. We distinguish two constant outcomes: ⊤ for “perfection” and
⊥ for “unconditional failure.”

Note that the operator “∃” in the outcome diagrams is “∥∃” in the out-
come expressions. That is to signify that when two outcomes are connected
by any-to-finish, they are performed concurrently; hence the “∥” sign. One
need not emphasise that concurrency in the outcome diagrams because our
left-to-right directional convention on causal dependency already implies con-
currency when forking off an “∃” in the outcome diagrams. Similarly, for “∥∀”
in the outcome expressions, the sign in the outcome diagrams is simply “∀”.

4.2. Timeliness Semantics for Outcome Expressions
Having defined the syntax of outcome expressions, we now want to give

them a semantics in terms of timeliness. This semantics maps each outcome
expression o ∈ O to an improper probability distribution ∆Q[[o]] that repre-
sents the quality attenuation of this outcome, i.e. the distribution of its time
delay.
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We model the time delay of an outcome by a cumulative distribution func-
tion (CDF) ∆Q(t), which records the probability that the outcome occurs
in a time t0 ≤ t. Such a function is monotonically increasing and takes
values between 0 = 0% and 1 = 100% inclusive. In addition, we allow for
the possibility that the outcome never occurs at all in a finite amount of
time — the outcome may fail, and this manifests in the fact that the limit
limt→∞∆Q(t) may stay strictly below 1. A cumulative distribution function
of this kind describes an improper probability distribution [16]. The intangible
mass ℑ(∆Q) = 1 − limt→∞ ∆Q(t) of such a distribution, also known as the
failure probability, is the probability that the outcome never occurs. Notably,
we make no distinction between an infinite delay and an early failure due to
an exception, as these two kinds of outcomes tend to be indistinguishable in
a practical setting.

We use the letter I to denote the set of these improper probability dis-
tributions. For practical computations, the cumulative distribution function
Q(t) is a good way to describe an element Q ∈ I. However, this element
can also be viewed as a probability measure on the set of time delays. For
a continuous distribution of time delays, the function Q(t) is differentiable,
and its derivative Q′(t) is the probability density function (PDF) of the dis-
tribution. However, we also allow discrete time delays, which are described
by point measures. We refer to Appendix A for the precise definition of
improper probability distributions I, where we also define the convolution ∗
of two improper probability distributions.

Fix a countable set of ∆Q variables ∆v. We define ∆ = ∆v ∪ I to denote
both IRVs and ∆Q variables.

We first define a mapping between primitive outcomes B and ∆Qs.

Definition 2. We call a function ∆◦[[.]] : B → ∆ a basic assignment when
∆◦[[⊤]] = 1 and ∆◦[[⊥]] = 0. Here, 1 is the distribution that succeeds imme-
diately, with cumulative distribution function 1(t) := 1 for all t. Conversely,
0 is the distribution that always fails, 0(t) := 0 for all t.

We now define the semantics of an outcome expression as a mapping
between the outcome expression and an IRV, for a given basic assignment.

Definition 3 (Haeri et al. [13]). Given a basic assignment ∆◦[[.]] : B → ∆,
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define ∆Q[[.]]∆◦ : O → I such that

∆Q[[β]]∆◦ =

{
1 when ∆◦[[β]] /∈ I
∆◦[[β]] otherwise

∆Q[[o •→−• o′]]∆◦ = ∆Q[[o]]∆◦ ∗∆Q[[o′]]∆◦

∆Q[[o p
⇋ o′]]∆◦ = p×∆Q[[o]]∆◦ + (1− p)×∆Q[[o′]]∆◦

∆Q[[o ∥∀ o′]]∆◦ = ∆Q[[o]]∆◦ ×∆Q[[o′]]∆◦

∆Q[[o ∥∃ o′]]∆◦ = ∆Q[[o]]∆◦ +∆Q[[o′]]∆◦ −∆Q[[o]]∆◦ ×∆Q[[o′]]∆◦

Here, the notation ∗ denotes the convolution of two improper probability
distributions, and the operations +,−, and × operate on the cumulative
distribution functions.

In what follows, we will drop ∆◦ whenever the basic assignment is fixed
throughout a computation.

One way to interpret Definition 3 is that ∆Q[[.]]∆◦ is a homomorphism
from the term algebra of outcome expressions O to an algebra of probability
distributions I, as discussed in §7.
Remark 1. Note that, according to Definition 3, we get ∆Q[[o1 •→−• o2]] =
∆Q[[o2•→−•o1]]. This may seem counter-intuitive because o1•→−•o2 ̸= o2•→−•o1.
∆Q[[o1 •→−• o2]] = ∆Q[[o2 •→−• o1]] is, nonetheless, valid because, intuitively,
o1 •→−• o2 is just as timely as o2 •→−• o1. See the proof of Theorem 2 in our
accompanying technical report [15] for the mathematical justification of that
intuition. □

4.3. Connecting Algebra to Timeliness
An algebraic structure typically consists of a carrier set, a few operations

on the carrier set, and a finite set of identities that those operations need to
satisfy.

• Given our intentions for the generality of the algebraic study of resource
consumption à la ∆QSD, the natural carrier set will be O.2

• The full set of operators on O is P = {•→−•, ∥∀, ∥∃,⇋}. However,
most algebraic structures do not need all those operators. Different
structures work with different number of operations; for example, a
monoid works with only one operation; whilst a group works with two.

2When more appropriate, one may choose to take more specific carrier sets. See §7 for
an example.
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• Finally, the identities are of the form ol = or.

We take ∆Q[[.]] (Definition 3) to be the model of time consumption for O.
We write ⊙⊙ time ⊨ ol = or when ∆Q[[ol]] = ∆Q[[or]]. That is when ol and
or are as timely. For example, unsurprisingly, o1 ∥∃ o2 = o2 ∥∃ o1 because
∆Q[[o1 ∥∃ o2]] = ∆Q[[o2 ∥∃ o1]].

With time being our solo resource of interest in this paper, we tend to
drop the initial “⊙⊙ time ⊨” from the above formulation hereafter.

5. Algebraic Results

This section is a summary of the algebraic results obtained using the
machinery developed in the previous section. §5.1 gives the algebraic struc-
tures the ∆QSD operators (P) form with the set of outcome expressions
(O). It also explains why those operators fail to establish stronger algebraic
structures. §5.2 utilises the footing given by Definition 3 to prove a series
of ∆QSD equivalences that have been in use by the ∆QSD practitioners in
large-scale real-world projects. Next, §5.3 focuses on distributivity of the
∆QSD operators (P). Finally, §5.4 is on compositionally extracting failure.
This is important for systematically pushing the failure rate up to the top of
the outcome expressions so one can swiftly assess the failure rate of a given
outcome expression (and, hence, a design) without going through all the de-
tails of Definition 3. To that end, Theorem 7 gives instructions for each an
every ∆QSD operator.

5.1. Algebraic Structures
This section establishes several important properties on O:

• probabilistic choice forms a magma (Theorem 1);

• sequential composition forms a commutative monoid with ⊤ and ⊥ as
the identity and absorbing elements (Theorem 2);

• all-to-finish forms a commutative monoid with ⊤ and ⊥ as the identity
and absorbing elements (Theorem 3);

• any-to-finish forms a commutative monoid with ⊥ and ⊤ as the identity
and absorbing elements (Theorem 4); and
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• neither all-to-finish nor any-to-finish nor their combination form the
familiar richer algebraic structures (Remarks 2, 3, and 4).

Theorem 1. (O,⇋) forms a magma when observing time.

A magma is the weakest algebraic structure. We cannot derive anything
stronger because ⇋ is not even associative; although expressions containing
two consecutive occurrences of ⇋ can be re-associated, but the coefficients
will change. Lemmas 2 and 3 give the exact formulae.

Theorem 2. When observing time, (O, •→−•) forms a commutative monoid
with ⊤ and ⊥ as the identity and absorbing elements, respectively.

Theorem 3. When observing time, (O, ∥∀) forms a commutative monoid
with ⊤ and ⊥ as the identity and absorbing elements, respectively.

Remark 2. It is important to notice that, when observing time, (O, ∥∀) does
not form a group because an outcome has no inverse element; intuitively, one
can never undo an outcome!

In order to prove that claim formally, suppose otherwise. That is, suppose
that there exist a pair of outcomes o1 and o2 such that o1 ∥∀ o2 = ⊤. Then,
∆Q[[o1 ∥∀ o2]] = ∆Q[[⊤]] which implies δ1 × δ2 = 1 ⇒ δ2 = 1

δ1
. However,

given that δ1 ≤ 1, we get δ2 ≥ 1. The latter inequality can only be satisfied
when o1 = ⊤. Restricting the application of ∆QSD to perfection is not
practical. □

Theorem 4. When observing time, (O, ∥∃) forms a commutative monoid
with ⊥ and ⊤ as the identity and absorbing elements, respectively.

Remark 3. Similar to the case for ∥∀, it is important to note that, when
observing time, (O, ∥∃) does not form a group. Again, it is the lack of an
inverse element that is causing the trouble. Following our previous result,
suppose that there exist a pair of outcomes o1 and o2 such that o1 ∥∃ o2 = ⊥.
Then, ∆Q[[o1 ∥∃ o2]] = ∆Q[[⊥]] which implies δ1+δ2−δ1×δ2 = 0 ⇒ δ2 =

δ1
δ1−1

.
However, because δ1 ≤ 1, we get δ2 ≤ 0. But, only ⊥ can satisfy the latter
inequality. There is no reason to develop a system in which all the outcomes
will fail unconditionally! □

Having established that both (O, ∥∀) and (O, ∥∃) form commutative monoids
for time, a natural question is whether (O, ∥∀, ∥∃) or (O, ∥∃, ∥∀) form semi-
rings. This is not the case, since they do not distribute over one another.

Lemma 1 helps Remark 4 show how the desirable distributivities fail.
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⊥⇋⊥ = ⊥ o •→−• ⊥ = ⊥ ⊤⇋⊤ = ⊤ ⊥ •→−• o = ⊥
⊤ •→−• o = o o •→−• ⊤ = o ⊤∥∀o = o ⊥∥∃o = o

(o1 ⇋⊥) •→−• o2 = (o1 •→−• o2)⇋⊥ o1 •→−• (o2 ⇋⊥) = (o1 •→−• o2)⇋⊥
(o1 ⇋⊤) •→−• o2 = (o1 •→−• o2)⇋ o2 o1 •→−• (o2 ⇋⊤) = (o1 •→−• o2)⇋ o1

⊥ p
⇋ (⊥ q

⇋ o) = ⊥ [p+(1−p)q]
⇋ o o1

p
⇋ (o2

q
⇋⊤) = o2

[q(1−p)]
⇋ (o1 [

p
1−q(1−p) ]
⇋

⊤)

Figure 13: Folklore Equivalences Containing ⊤ and ⊥

Lemma 1. ⊙⊙ time ⊨ o1 ∥∃ o2 = ⊤ implies o1 = ⊤ and o2 = ⊤.

Remark 4. Neither (O, ∥∀, ∥∃) nor (O, ∥∃, ∥∀) form a semi-ring when observing
time: for this to be the case, ∥∀ and ∥∃ would need to distribute over one
another. The first distributivity requirement is:

o1 ∥∃ (o2 ∥∀ o3)
?
= (o1 ∥∃ o2) ∥∀ (o1 ∥∃ o3) (23)

Equating ∆Q[[.]]s of the two sides, one eventually makes it to the requirement
that either δ1 = 0 or ∆Q[[(o1 ∥∃ o3) ∥∃ o2]] = ⊤. In other words, it follows
by Lemma 1 that Eq. (23) can only hold under the trivial conditions when
either o1 = ⊥ or o1 = o2 = o3 = ⊤. The second distributivity requirement is

o1 ∥∀ (o2 ∥∃ o3)
?
= (o1 ∥∀ o2) ∥∃ (o1 ∥∀ o3) (24)

Again, equating ∆Q[[.]]s of the two sides, one eventually comes to observe
that Eq. (24) only holds when δ1 = 1 ∧ δ2 ̸= 0 ∧ δ3 ̸= 0, i.e., when o1 =
⊤ ∧ o2 ̸= ⊥ ∧ o3 ̸= ⊥. □

5.2. Folklore Equivalences Containing Constant Outcomes
Practitioners of ∆QSD already use some algebraic equivalences to sim-

plify outcome expressions for timeliness analysis. These “folklore equiva-
lences,” shown in Fig. 13, all contain constant outcomes (⊤ or ⊥). These
equivalences provide the basis for rewrite rules that are useful for construc-
tion of normal forms, such as expressing a given system as a convolution of
probabilistic choices or a probabilistic choice of convolutions. Such rewriting
allows for: extraction of common sub-expressions permitting aggregation of
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failure rates (distinguishing between conditional and unconditional failure);
identifying minimal delays; highlighting branching probabilities to identify
issues of relative criticality; and more. Identification of minimal delays is
useful for quickly assessing whether a particular outcome diagram is feasi-
ble without having to compute the complete ∆Q (see §3, for example). In
addition, the equivalences of Fig. 13 are very handy in the proofs of proper-
ties such as those established in this paper. Two examples are the proofs of
Theorem 7 of [17] and Theorem 7 here.

Before we delve into Fig. 13, we prove a result about re-associating
probabilistic choice. Given an expression with two consecutive probabilis-
tic choices, one of which wrapped inside a pair of parentheses, the ∆QSD
practitioner might be interested in wrapping the other two inside a pair of
parentheses – re-associating the probabilistic choices, in effect. Lemmata 2
and 3 give the conditions on the coefficients of those probabilistic choices.

Lemma 2. o1
p
⇋ (o2

q
⇋ o3) = (o1

p′

⇋ o2)
q′

⇋ o3 iff p′ = p
1−(1−p)(1−q)

and q′ =

1− (1− p)(1− q).

Lemma 3. (o1
p
⇋ o2)

q
⇋ o3 = o1

p′

⇋ (o2
q′

⇋ o3) iff p′ = pq and q′ = q(1−p)
1−pq

.

Theorem 5. The equivalences in Fig. 13 are correct.

Proof. We will only present the proof of ⊥ p
⇋ ⊥ = ⊥ here. The rest of the

equivalences are proved similarly:

∆Q[[⊥ p
⇋⊥]] = p0+ (1− p)0 = 0 = ∆Q[[⊥]].

■

Remark 5. The very last equivalence in Fig. 13 was incorrectly formulated
(though never published) prior to this paper. Thanks to the formalisation
developed in [13], that mistake was corrected, and all equivalences have been
given a sound footing. □

5.3. Distributivity
In this section, we consider the distributivity results between the ∆QSD

operators. Recall that out of the four P operators, three are commutative
(i.e., •→−•, ∥∀, and ∥∃) and one is not (i.e., ⇋). Hence, it is only possible
for right- and left-distributivity to differ when ⇋ is the outermost operator.
That gives rise to 2 ×

(
3
1

)
+

(
3
1

)(
3
1

)
= 15 possible ways for distributing P
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operators over each other. Theorem 6 establishes 3 of those 15. In our
earlier work [17, §7.1], we show how the routine technique for examining the
equivalence of expressions (i.e., equating the ∆Q[[.]] of the two sides) is not
that helpful for the study of the remaining 12 distributivity results. That
leads to two further developments in our earlier work [17, §7.2 and §8], which
disprove the generality of 4 and 8 distributivity results using counterexamples
and properisation (Theorem 8), respectively.

We use the following syntactic convention: when, in an equivalence, two
⇋s are used without probability values, once on either side of the equivalence,
we will assume that those probabilities are the same. For example, in the
theorem below, there exists a probability p such that o1 •→−• (o2

p
⇋ o3) is

equivalent to (o1 •→−• o2)
p
⇋ (o1 •→−• o3), but we omit the letter p from the

notation.

Theorem 6. Let o1, o2, o3 ∈ O and ⋄ ∈ {•→−•, ∥∀, ∥∃}. Then,

• ⊙⊙ time ⊨ o1 ⋄ (o2 ⇋ o3) = (o1 ⋄ o2)⇋ (o1 ⋄ o3), and

• ⊙⊙ time ⊨ (o1 ⇋ o2) ⋄ o3 = (o1 ⋄ o3)⇋ (o2 ⋄ o3).

5.4. Compositional Extraction of Failure
We start the application of our properisation technique by obtaining some

useful results. Theorem 7 paves the way for the applications of the above
technique. They instruct one on how to accumulate failure at the rightmost
corner when the operator between two pairs of parentheses is •→−•, ⇋, and
∥∀, respectively. Unfortunately, for ∥∃ one cannot retain a simple ∥∃ after the
accumulation and the formula gets doubly involved: see Remark 6.

Theorem 7. For every o1, o2, o3 ∈ O,

(o1
p1
⇋⊥) •→−• (o2 p2

⇋⊥) = (o1 •→−• o2) [p1p2]
⇋ ⊥

(o1
p1
⇋⊥) p

⇋ (o2
p2
⇋⊥) = (o1

q
⇋ o2)

r
⇋⊥, where

q = pp1
p2−pp2+pp1

and r = p2 − pp2 + pp1
(o1

p1
⇋⊥)∥∀(o2 p2

⇋⊥) = (o1∥∀o2) [p1p2]
⇋ ⊥

(o1
p1
⇋⊥)∥∃(o2 p2

⇋⊥) =
(
(o1∥∃o2) p

⇋ (o1
q
⇋ o2)

)
r
⇋⊥, where

p = p1p2
1−(1−p2)(1−p1)

, q = p1(1−p2)
p1+p2−2p1p2

, and r = 1− (1− p2)(1− p1).

Proof. We only prove the first equivalence here. The proof is similar for the
others.
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By Theorems 5 and 6,

(o1
p1
⇋⊥)•→−•(o2 p2

⇋⊥) = ((o1
p1
⇋⊥)•→−•o2) p2⇋⊥ = ((o1•→−•o2) p1⇋⊥) p2⇋⊥ = (o1•→−•o2)[p1p2]⇋ ⊥.

■

Remark 6. Interestingly enough, there is no p such that the following holds
in its full generality:

(o1
p1
⇋⊥)∥∃(o2 p2

⇋⊥)
?
= (o1∥∃o2) p

⇋⊥.

Suppose there were such a p. After some calculations one finds that equating
the ∆Q[[.]] of the two sides implies p = p1 = p2 = 1 or p = p1 = p2 = 0.
When (o1

p1
⇋⊥)∥∃(o2 p2

⇋⊥) is o1∥∃o2, in which o1 and o2 are being properised,
that is either when o1 = o2 = ⊤ or o1 = o2 = ⊥. □

6. Properisation: Making Failure Algebraically Accessible

Recall that the intangible mass of an outcome is a matter of semantics.
In particular, it is the basic assignment (Definition 2) that determines the
intangible mass of an individual outcome. Properisation is a technique that
gives a syntactic representation to intangibility (as a semantic property) and
then employs Theorem 7 repeatedly until the failure probability of a given
complex outcome expression hits the surface. As explained before, that gives
rise to a technique for swiftly calculating an outcome expression’s failure
probability.

Theorem 8 authorises levering properisation for a different purpose. As
demonstrated in our earlier work [17, §8], properisation can also be utilised
for disproving equivalences, in particular those related to distributivity of
the ∆QSD operators (P). But, before delving into the technical details, §6.1
explains why one should essentially care about properisation. §6.2 provides
the technicality required for Theorem 8.

6.1. Motivation
The equivalences of Fig. 7 can be used to compute the overall failure

probability of an outcome expression by transforming it so that failure (⊥)
appears in a probabilistic choice at the top level. The examples of §3 use
this technique to compute failure probabilities. But this only works if the
failures are syntactically present in the outcome expression. If a primitive
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Figure 14: Properisation of β1 and β2 in o According to ∆

outcome is itself improper then we cannot use it. Properisation is designed
to overcome this limitation. If we have an outcome, such as main, that
is improper (nonzero failure probability) in a given basic assignment, then
we rewrite it as main →

| p
⇋ ⊥, where “main →

| ” now refers to main with a
proper distribution (no failure) whilst the failure probability of main →

| p
⇋⊥

altogether is still p. The algebraic equivalences of Fig. 7 can now be used.
Fig. 14 gives the big picture for a large outcome expression o. The improper
outcomes β1 and β2, as assigned by ∆, are transformed into β1 →

|

⇋ ⊥ and
β2 →

|

⇋⊥. This gives the transformed expression o →
| β1β2 where the β →
| ’s now

refer to proper outcomes. We can use Fig. 7 on this expression to “bubble
up” the failures ⊥ to the top level.

6.2. Formulation
This section sets the stage using Theorem 8 for a technique that we

call properisation and use for disproving potential equivalences (in their full
generality).

Properisation is based on the following important observation: if two
outcomes do not fail similarly, they are not equivalent. Properisation is an
algebraic technique for swiftly extracting the failure behaviour of outcomes
via rewriting but without assessing the rest of their timeliness behaviour.
Once the failure parts of the timeliness behaviours are at hand for the two
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sides, one can check whether they are equal, and if they are not, deduce that
the outcomes in question are therefore unequal.

Our intuition for the choice of name “properisation” for this technique
follows: recall that ∆Qs are CDFs (or PDFs) of improper random variables.
Properisation is a technique based on making the ∆Q of an outcome o proper
(by scaling it) and restoring its amount of improperness – i.e., o’s intangible
mass, denoted by ℑ(∆Q(o)) – as a probabilistic choice (of the right weights)
between o and ⊥. That is also the intention behind the symbol we use for
properisation: “ →

| .” As one can see in Fig. 2a, the CDF of an improper
random variable needs not to make it to the “ceiling” (i.e., 1). The symbol
“ →

| ” that we use is intended to resemble the act of ‘sticking the CDF to the
ceiling’ (represented by the horizontal bar at the top of “ →

| ”)!
Now, the formal definitions of properisation.

Definition 4. For an ι ∈ I such that ℑ(ι) = i ̸= 1, write ι′ := ι →
| when

dom(ι) = dom(ι′) and ι′(x) = 1
1−i

ι(x) for every x ∈ dom(ι). Call ι′ the
properisation of ι.

More on the above definition in Equation (48).

Proposition 1. ℑ(ι →
|

) = 0, for all ι ∈ I.

Intuitively, for IRVs, “. →
| ” produces a scaled random variable with no

intangible mass.

Definition 5. Fix two basic assignments ∆,∆′ and a base variable β such
that ∆(β) = ι. Write ∆′ = ∆ →

| β when

∆′(β′) = ∆(β′) for β′ ̸= β ∆′(β′) = ι →
| otherwise.

We say ∆ →
| β is the result of properisation of β in ∆.

Intuitively, ∆ →
| β produces a new basic assignment that is the same as ∆

everywhere except β, where the assigned IRV is properised.

Notation 1. Write o[o′/β] for the familiar λ-Calculus notation for substitu-
tions: o in which every instance of β is replaced by o′.

Definition 6. Fix a basic assignment ∆ and a base variable β such that
∆(β) = ι where ℑ(ι) = i. Write (o,∆) →

| β
:= (o′,∆′) when
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• o′ := o[(β →
| 1−i

⇋ ⊥)/β], and

• ∆′ := ∆ →
| β.

We say that o′ is the result properisation of β in o according to ∆.

As a shorthand, we write (o,∆) →
| β1,β2 for

(
(o,∆) →

| β1

)

→
| β2 and ∆ →
| β1,β2

for
(
∆ →

| β1

)
→
| β2 .

As one can see from Definition 6, the act of properisation of a base variable
β in an outcome o is according to a given basic assignment ∆. That is, the
move from the right-hand-side of (o,∆) →

| β
= (o′,∆′) to its left-hand-side is

performed by taking two steps in unison:
1. scaling according to the intangible mass of ∆(β) so that β is no longer

improper in the resulting new basic assignment ∆′; and,
2. replacing every occurrence of β in the outcome o with the probabilis-

tic choice that is weighted according to the intangible mass of ∆(β),
resulting in the new outcome o′.

The idea is that the intangible mass that ∆′ takes away o′ returns, leaving
timeliness intact. Lemma 4 utilises that idea.

Lemma 4. Suppose that (o,∆) →
| β1,β2,...,βn = (o′,∆′) for some β1, β2, . . . , βn ∈

B, o, o′ ∈ O and basic assignments ∆ and ∆′. Then, ∆Q[[o]]∆ = ∆Q[[o′]]∆′.

Theorem 8 utilises Lemma 4 for examining equivalence of pairs of outcome
expressions with no properisation relationship.

Theorem 8. Suppose ∆ and ∆′ are two basic assignments. Suppose also
that o1, o

′
1, o2, o

′
2 ∈ O such that (o′1,∆

′) = (o1,∆) →
| β1,β2,...,βn and (o′2,∆

′) =

(o2,∆) →
| β1,β2,...,βn, for some β1, β2, . . . , βn ∈ B. Then, ∆Q[[o1]]∆ = ∆Q[[o2]]∆

iff ∆Q[[o′1]]∆′ = ∆Q[[o′2]]∆′.

Even though properisation has long been used as a technique for swiftly
calculating the failure rates, Theorem 8 also gives rise to a technique for
disproving equivalences. That is well-detailed in our earlier work [17, §8].
Here we only outline that properisation disproving technique:

Suppose two outcome expressions o and o′ the equivalence of which is
to be studied. One begins by studying the equivalence of o →

| β1,...,βn and
o′ →

| β1,...,βn for some β1, . . . , βn ∈ B. Now, suppose that – after the application
of algebraic laws – one gets to rewrite o →

| β1,...,βn to (. . . ) p
⇋⊥ and o′ →

| β1,...,βn

to (. . . ) p′

⇋⊥. One concludes that o ̸= o′ if one can show that p ̸= p′.
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7. Failure and Proper Probability Distributions

We have discussed that the quality attenuation ∆Q models both delay
and failure of an outcome. Specifically, failure of an outcome is identified
with the failure of the outcome to occur within a finite amount of time, i.e.
with an infinite delay. When gauging the feasibility of a system design, one
may want to do a back-of-the-envelope computation that computes only the
failure probability, and forego a detailed analysis of the delay times; in other
words, one may want to do a failure analysis.

The algebra of outcome expressions is well-suited for computing failure
probabilities in a way that combines naturally with the full quality attenua-
tion. Specifically, the failure probability is a morphism from the algebra of
improper probability distributions to a single numeric value. The property
of being a morphism simplifies the computation significantly: it implies that
the failure probability of an outcome expression can be computed by combin-
ing single numerical values, and skipping over the intermediate computation
of the full quality attenuation. We will present an example shortly.

In addition, the failure probability also sheds light on the full quality at-
tenuation. One may decompose a quality attenuation into a pair of a proper
probability distribution (some finite delay) and a probability of failure (infi-
nite delay). But, it turns out that the components of this pair are not inde-
pendent. Specifically, the operation ∥∃ combines them in a nontrivial way.
By computing with expressions in the combined algebra of improper prob-
ability distributions, this dependence is automatically taken into account.
The decomposition of an expression into a proper probability distribution
and a failure part is what we refer to as properisation, introduced in §6.

In §7.1, we will define the algebra of failure probabilities F, the failure
probability morphism F : I → F, and present a computation for the cache
example from §3. In §7.2, we will describe the decomposition of improper
probability distributions into a proper probability distribution and a prob-
ability of failure. In §7.3, we will conceive the decomposition as an isomor-
phism of algebras I ∼= P ⋊ F, where P is the algebra of proper probability
distributions. Here, the construction ⋊ denotes pairing, but also takes into
account that the operation ∥∃ mixes the components of the pair.

7.1. Failure Probability Morphism
In order to introduce the failure probability morphism, let us revisit the

cache example from the introduction. Specifically, we consider the outcome
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expression (Eq. (1))

c-hit 95%
⇋ (c-miss •→−•main). (25)

We had assumed that the memory read main can fail with the very small
chance of 10−16. Let us denote this fact by the notation F̃ (main) = 10−16,
where the function F̃ : O → F maps an outcome expression to its probability
of failure. Here, F denotes the algebra of failure probabilities: each element
p ∈ F is a numerical probability, p ∈ [0, 1], but we use the emboldened
notation F to highlight that these probabilities can be combined with the
following operations:

Definition 7 (Algebra of Failure Probabilities). The algebra F of failure
probabilities consists of the carrier set [0, 1] and the operations {•→−•,⇋, ∥∃, ∥∀} :
F× F → F defined as follows:

p1 •→−• p2 := p1 + p2 − p1p2, (26)
p1

p
⇋ p2 := pp1 + (1− p)p2, (27)

p1 ∥∀ p2 := p1 + p2 − p1p2, (28)
p1∥∃ p2 := p1p2. (29)

Now, a morphism between algebras denotes a map that is compatible
with the operations of the algebra; in our case, a morphism between algebras
A,B is a map f : A → B such that f(x ⋄ y) = f(x) ⋄ f(y) where ⋄ is a
placeholder for any of the operations •→−•,⇋, ∥∀, or ∥∃. In other words, it
makes no difference whether we first combine elements from the algebra A
and then map them using f , or whether we first map them to the algebra B
and then combine them.

We claim that the map F̃ from outcome expressions to failure proba-
bilities introduced above is a morphism. Assuming this for a moment, we
can compute the failure probability by exchanging morphism and operations
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repeatedly:

F̃
(
c-hit 95%

⇋ (c-miss •→−•main)
)

= F̃ (c-hit) 95%
⇋ F̃ (c-miss •→−•main) (30)

= 0 95%
⇋ F̃ (c-miss •→−•main) (31)

= 5% · F̃ (c-miss •→−•main) (32)

= 5% ·
(
F̃ (c-miss) •→−• F̃ (main)

)
(33)

= 5% ·
(
0 •→−• F̃ (main)

)
(34)

= 5% · F̃ (main) (35)
= 5% · 10−16 = 5 · 10−18. (36)

In addition to the morphism property and the rules for combining failure
probabilities, we have used the fact that the outcomes c-miss and c-hit always
succeed, and the assumption F̃ (main) = 10−16 noted above. This example
highlights how the property of being a morphism simplifies computations.
In addition, by focusing our attention on outcome expressions and applying
simplifications only while computing quantities of interest from it, we can
revisit those simplifications later in the design. For example, the above com-
putation can be revisited at a later stage to account for an imperfect cache
that does not satisfy F̃ (c-miss) = 0.

Motivated by the above example, we now define the mapping F̃ more
precisely, relate it to the full quality attenuation, and prove that it is a
morphism.

We have applied the mapping F̃ : O → F directly to outcome expressions.
However, from an algebraic perspective, it is more convenient to define it as
a composition F̃ := F ◦∆Q of the quality attenuation mapping ∆Q : O → I
and a mapping F : I → F which maps improper probability distributions to
their probability of failure:

Definition 8. We define the failure probability to be the mapping F : I → F
given by

F (Q) := 1− lim
t→∞

Q(t),

where Q(t) is the cumulative distribution function of the element Q ∈ I.

Lemma 5. The failure probability F : I → F is a morphism of algebras.
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Figure 15: The failure probability F (Q) is the probability that the outcome never occurs,
i.e. it is the difference between the limit of the cumulative probability Q(t) as t → ∞ and
perfect 100% probability.

Proof. For the operations ⇋, ∥∀, ∥∃, this follows from the fact that limits
commute with arithmetic operations. For example, by using the definition
of ∥∃ for improper probability distributions Q1, Q2 ∈ I, we find

F (Q1 ∥∃ Q2) = 1− lim
t→∞

(Q1 ∥∃ Q2)(t) (37)

= 1− lim
t→∞

[Q1(t) +Q2(t)−Q1(t)×Q2(t)] (38)

= 1− lim
t→∞

[1− (1−Q1(t))× (1−Q2(t))] (39)

= 1− [1− F (Q1)× F (Q2)] (40)
= F (Q1) ∥∃ F (Q1). (41)

Here, Eq. (38) uses the definition of ∥∃, and Eq. (40), uses that limt→∞
commutes with + and ×.

For sequential composition, •→−•, the result makes sense intuitively: A
sequence of operations succeeds if and only if both of the operations succeed,
so the total success probability should be the product of the individual success
probabilities. For a formal proof of this fact, we use Lemma 6 in §Appendix
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A.3. We have

F (Q1 •→−•Q2) = 1− lim
t→∞

(Q1 •→−•Q2)(t) (42)

= 1− lim
t→∞

(Q1 ∗Q2)(t) (43)

= 1−
(
lim
t→∞

Q1(t)
)(

lim
t→∞

Q2(t)
)

(44)

= 1− (1− F (Q1))× (1− F (Q2)) (45)
= F (Q1) + F (Q2)− F (Q1)F (Q2) (46)
= F (Q1) •→−• F (Q2). (47)

Here, we have used Lemma 6 in Eq. (44). ■

7.2. Decomposition into Failure and Proper Probability Distribution
We have discussed quality attenuation ∆Q in terms of improper prob-

ability distributions. An improper probability distribution P ∈ I assigns a
probability P (t) to the event that an outcome occurs with a delay ≤ t; but, it
may also assign a non-zero probability to the event that the outcome never
occurs (within an acceptable time frame), so that the cumulative weight
limt→∞ P (t) can be strictly less than one.

However, any improper probability distribution P ∈ I can also be de-
scribed by its probability of failure F (P ) and a conditional probability, namely
the probability P̃ (t) that the outcome occurs with a delay ≤ t on the con-
dition that the outcome does occur at all. This conditional probability
can be obtained by scaling the cumulative distribution function P̃ (t) :=
P (t)/ (limτ→∞ P (τ)), except for the corner case where the outcome has zero
chance of occurring, i.e., where the denominator vanishes.

Properisation gives this decomposition a syntactic account. Specifically,
in line with Definition 4, one can write every improper probability distribu-
tion P ∈ I that does not always fail as a probabilistic choice between a proper
probability distribution P̃ and failure ⊥:

P = P̃ [1−p]
⇋ ⊥, where p = F (P ), P̃ (t) =

P (t)

(1− p)
, provided that p ̸= 1.

(48)
For the corner case where the outcome always fails, we have to write P = ⊥
instead.

This method of expressing a quality attenuation is helpful when one wants
to compute the failure probability whilst retaining information about finite
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delay times. Specifically, combining two expressions of the form given in
Eq. (48) with one of the operations will yield another expression of the same
form. This is straightforward for •→−• and ∥∀, but the expression is more
complicated in the case of ∥∃. The formulas are presented in Theorem 7.

7.3. Decomposition of Algebras
It is instructive to recast the above observation that every improper prob-

ability distribution can be decomposed into a probability of failure and a
proper probability distribution in terms of algebras and their morphisms,
i.e., in terms of commutative diagrams, which are a common tool in abstract
algebra and category theory.

First, we define the subset of proper probability distributions by

P := {Q ∈ I : F (Q) = 0} ⊂ I. (49)

We can check that this set is, in fact, closed under the algebra operations,
and, hence, a subalgebra of I.

The relation between proper probability distributions P, the improper
probability distributions I, and the algebra of failure probabilities F can be
summarised in the diagram

P I Fι F . (50)

Here, ι is the identity embedding, which maps any cumulative distribution
function P ∈ P to the function ι(P )(t) := P (t) representing a (potentially)
improper probability distribution. The hook on the arrow indicates that this
morphism is injective. The morphism F is the failure probability defined as
before; the double arrowhead indicates that this morphism is surjective. In
addition, the maps satisfy F ◦ ι = 0.

The observation that any improper probability distribution can be written
as pair of a proper probability distribution and a failure probability can be
expressed in a commutative diagram

I

P F

P ⋊ F

F

G,∼=

ι

i1 π2

(51)
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which we now explain. The algebra P ⋊ F will be defined properly below,
but the intuition is that its carrier set is roughly the set of pairs ∼ P × F
composed of a proper probability distribution and a failure probability. The
morphism G in the middle maps from the algebra I to this algebra, and the
symbol ∼= indicates that this morphism is, in fact, an isomorphism, i.e. that
it is a bijection between the elements of both algebras that preserves the
operations. The intuition is that the isomorphism G lifts Eq. (48) from a
convenient rule for computation to a bona-fide map between algebras. This
diagram is commutative, which means that the composition of arrows along
any sequence with the same starting and ending point gives the same map.
For example, commutativity of the left triangle amounts to the claim that
G ◦ ι = i1, and the right triangle amounts to F = π2 ◦G. In addition to the
fact that the algebras in the middle are isomorphic, these identities tell us
that the isomorphism relates the embedding ι to the embedding i1, and the
surjection F to the surjection π2.

We now define the carrier set of the object P ⋊ F, as well as the maps
i1 and π2. The carrier set is given by the set (P × [0, 1)) ∪ {⊥}, i.e. a set
of pairs adjoined with a formal failure element ⊥. The map i1 is defined
as i1(P ) := (P, 0). The map π2 is defined as π2(P, p) = p on a pair, and
π2(⊥) = 1 for failure. It is straightforward to see that π2 ◦ i1 = 0, which
implies that the outermost paths of the diagram commute.

Next, we define the map G : I → P ⋊ F on the carrier sets:

G(P ) :=

{
(P (t)/(1− F (P )), F (P )) if F (P ) ̸= 1

⊥ otherwise.
(52)

Here, P (t) is the cumulative distribution function of the improper probability
distribution P ∈ I. It is straightforward to check that the map G̃ : P⋊F → I
defined by

G̃(P̃ , p) := P̃ [1−p]
⇋ ⊥, G̃(⊥) := ⊥ (53)

is the inverse of the map G, i.e. that both G ◦ G̃ and G̃ ◦G are the identity
maps on the respective carrier sets. This shows that G is a bijection. With
these definitions, it is also straightforward to check that the left and right
triangles of the diagram are commutative, G ◦ ι = i1, and F = π2 ◦G.

We still need to give P ⋊ F algebraic structure, and show that G, i1, π2

are not just maps between sets, but morphisms between algebras.
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Definition 9. (Algebra P ⋊ F) On the object P ⋊ F with the carrier set
(P × [0, 1)) ∪ {⊥}, we define the algebra operations as follows: When both
arguments of the operation are pairs, we define

(P̃1, p1) •→−• (P̃2, p2) := (P̃1 •→−• P̃2, p1 •→−• p2), (54)
(P̃1, p1)

α
⇋ (P̃2, p2) := (P̃1

r
⇋ P̃2, p1

α
⇋ p2) (55)

where r =
αp1

(1− α)p1 + αp2
, (56)

(P̃1, p1) ∥∀ (P̃2, p2) := (P̃1 ∥∀ P̃2, p1 ∥∀ p2), (57)
(P̃1, p1) ∥∃ (P̃2, p2) := ((P̃1 ∥∃ P̃2)

[p]
⇋ (P̃1

[q]
⇋ P̃2), p1 ∥∃ p2) (58)

where p =
p1p2

1− (1− p2)(1− p1)
, (59)

and q =
p1(1− p2)

p1 + p2 − 2p1p2
. (60)

For the case where the first argument is ⊥, we define

⊥ •→−• (P̃2, p2) := ⊥, (61)
⊥ α

⇋ (P̃2, p2) := (P̃2, 1 α
⇋ p2), (62)

⊥ ∥∀ (P̃2, p2) := ⊥, (63)
⊥ ∥∃ (P̃2, p2) := (P̃2, p2), (64)

For the case where the second argument is ⊥, we define

(P̃1, p1) •→−• ⊥ := ⊥, (65)
(P̃1, p1)

α
⇋⊥ := (P̃1, p1

α
⇋ 1), (66)

(P̃1, p1) ∥∀ ⊥ := ⊥, (67)
(P̃1, p1) ∥∃ ⊥ := (P̃1, p1). (68)

Finally, we define the result to ⊥ whenever both arguments are equal to ⊥.

The definitions of the operations of the algebra P ⋊ F were chosen in a
way such that the map G̃ becomes a morphism of algebras. This fact is the
most important claim of the commutative diagram above, but it is merely
another way of presenting Theorem 7.

We note that some operations, such as •→−• and ∥∀, are performed by
applying them to each component of the pair separately. However, for the
operations ⇋ and ∥∃, the first component is more complicated, and contains
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information from the second component. In other words, when computing
the probability distribution of finite delay times, the probability of failure
has to be taken into account in the computation, it would not be correct to
treat them in isolation! The asymmetric product symbol ⋊ was chosen to
highlight this fact.

The other maps are morphisms as well. To see this, note that G is
the inverse of the morphism G̃, hence it is also a morphism. The maps
i1 and π2 are morphisms, because we have already shown that the diagram
commutes as a diagram of maps between sets, and these maps can be written
as compositions of morphisms: i1 = G ◦ ι and π2 = F ◦ G̃.

Even though the isomorphism I ∼= P ⋊ F clarifies the algebraic relations
between failure and quality attenuation, for practical computations, we do
not advise to use the pair notation used to define P⋊ F. Instead, we recom-
mend to work in the algebra I and use the expression presented in Eq. (48).
We note that this expression makes use of the fact that any proper probabil-
ity distribution P̃ is also a valid improper probability distribution, i.e. that
the embedding ι is transparent as far as notation is concerned.

8. Related Work

∆QSD has been used in practice by a small group of practitioners for a
couple of decades now [8, 9, 10, 11, 12]. The first formalisation of ∆QSD was,
however, done quite recently by Haeri et al. [13]. We use that formalisation
as a foundation.

Teigen et al [11] use ∆Q to develop a novel model of WiFi performance
that produces complete latency distributions. The model is validated by
comparison with previous modeling work and real-world measurements. It
would be very interesting to apply ∆QSD to an outcome description of the
protocol to see if this can replicate the same results.

Elsewhere, Gajda [18] attempts to model latency distributions but allows
operations that do not preserve total probability, hence, leading to incorrect
conclusions about failure probabilities.

Business Process Modelling and Notation (BPMN) [19] is a diagram
scheme which is closely related to Outcome Diagrams (although with some
details that are not considered relevant to ∆QSD). BPMN supports all ∆QSD
operators except probabilistic choice. The closest operator is their “xor” gate-
way, which is essentially [0.5]

⇋ . It is less expressive to the extent that it makes

43



it impossible to consider systems such as the example in §3. Of the at-
tempts for formalising BPMN, those of Wong and Gibbons [20, 21] are the
most related to our work. Wong and Gibbons use the CSP process algebra
for that purpose and further develop it to enable the specification of tim-
ing constraints on concurrent systems. Their developments allow mechanical
verification of behavioural properties of BPMN diagrams using the FDR2
[22] refinement checker. Whilst Wong and Gibbons prove many interesting
properties of their BPMN instances, they do not consider algebraic equiva-
lences or algebraic structures for BPMN as we do in this work for ∆QSD.
A less related BPMN formalisation work is that of El Hichami et al. [23],
which provides a denotational semantics based on the Max+ algebra as an
execution model for BPMN. They list a handful of algebraic equivalences in
Max+ only axiomatically, and make no attempt to study the equivalence of
BPMN diagrams based on their Max+ semantics.

When it comes to timeliness analysis, an important advantage of outcome
diagrams over BPMNs is Definition 3, which formally defines the timeliness
analysis of outcome diagrams. Definition 3 is fundamental to the applicabil-
ity of the model theory we employ in this paper (§4.3). We are not aware
of any formally defined recipe for timeliness analysis of BPMNs. The clos-
est attempts that we could find are the following two: Friedenstab et al.
[24] borrow constructs from Business Activity Monitoring [25] to augment
BPMN with a graphical notation for describing certain timeliness matters;
and Morales [26] informally describes how to transform BPMN diagrams to
timed automata networks, suggesting qualitative analysis of timeliness.

Performance Evaluation Process Algebra (PEPA) [27] is an algebraic lan-
guage for performance modelling of systems. PEPA is successful and well-
published with a rich family of formalisations with various interesting the-
oretical properties. However, PEPA suffers from several shortcomings that
make it difficult to apply to real-world software systems. For example, PEPA
does not model open or partially-specified systems; every detail of the sys-
tem needs to be determined in advance. Since PEPA does not allow goals
and objectives to be specified, it offers no assistance when comparing the
predicted performance with the requirements. PEPA also suffers from state
explosion, rapidly making it impractical, although more recent PEPA tech-
nology employs continuous approximations of the states to contain some of
the state explosion. This is similar to the use of IRVs in ∆QSD but rather ad
hoc in comparison. Less conservative alternatives to PEPA like SCEL [28]
allow open systems but suffer from even more state explosion. CARMA [29]
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addresses a lot of the problems with PEPA, using a fluid approximation to
manage the state explosion.

PerformERL [30] is an Erlang toolset, which focuses on monitoring the
relationship between load repeatability and internal resource allocation. The
authors advertise their toolset as an assistant for making early stage perfor-
mance decisions, but it is unclear how it does this. Unlike ∆QSD, monitoring
(like testing) requires implementation of the system specification up to a cer-
tain level. The closer the implementation is to the full specification, the more
reliable the monitoring will become, but the analysis is then no longer early-
stage. Less accurate monitoring, on the other hand, is not reliable for decision
making. The closest PerformERL gets to this paper is its lightweight theo-
retical work out of the monitoring overhead it imposes to the system under
development.

Finally, Failure Modes Effects Analysis [31] (FMEA) considers how fail-
ures propagate through a system but, unlike ∆QSD, does not model delays.
We are not aware of any formalisation of FMEA that can serve algebraic
developments like those on failure in this paper.

9. Conclusion and Future Work

The ∆QSD paradigm defines systems as directed graphs, called outcome
expressions, that give the causal connections between all of the system’s
behaviours. Outcome expressions consist of primitive outcomes and four
compositional operators, namely sequential composition, probabilistic choice,
first-to-finish synchronisation, and last-to-finish synchronisation. The main
theoretical contribution of this paper is to define and prove algebraic equiva-
lence relations between outcome expressions (see §4 and §5). We define and
prove correctness of an extensive set of equivalences with respect to timeli-
ness, where two outcome expressions are equivalent when they have identical
timeliness (see Fig. 7). To show how this works in practice, we give a case
study of a memory system consisting of a local cache, networked memory
read with timeout, and the ability to retry (see §2 and §3). The design was
successively refined, and the compositional properties of the algebra used to
rapidly extract key performance features. We are developing software tool
support for ∆QSD and the equivalences will allow considerable simplification
of the computations required to compute timeliness. The second theoretical
contribution of the paper is an algebraic study of failure. We show how to
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make failure visible in outcome expressions and we give a general algebraic
model that combines failure and delay in a single model (see §6 and §7).

The ∆QSD paradigm has been developed and used to resolve issues in
production systems for more than two decades. As a diagnostic tool, it
provides reasoned expectations of operational behaviour based on observable
events. When observations conflict with these expectations, ∆QSD can be
used to isolate the cause, which might be a design flaw, runtime violation
of invariants or incorrect observations. As a design tool, it enables issues
of resource consumption, in particular timeliness, to be considered from the
very beginning of the design process, and engineering trade-offs to be explored
early.

More generally, ∆QSD provides a language for expressing issues of uncer-
tainty and risk for a range of stakeholders; having this language formalised
and supported by software tools removes subjectivity and increases confi-
dence in the conclusions. Uncertainty in the design phase will relate to
unknowns of component performance and design details, whereas in an op-
erational system, it will be due to variations in performance and loading.
Having a single formalism that can express all of this using probability distri-
butions increases the value of the initial design capture. Experience suggests
that simply asking the questions required to define timeliness and construct
an outcome diagram will expose many misconceptions and potential design
flaws. One can only speculate how different the deployment of the Horizon
accounting system in the British Post Office [32] might have been if such a
methodology had been employed.

Future work will extend the formalism to other types of resources, of
various kinds: ephemeral resources such as CPU cycles, power and inter-
face capacity; static resources such as memory; and ‘level’ resources such
as energy. These factor directly into system costs and performance, and
the trade-offs between these. Having a robust formalism for exploring such
trade-offs throughout the system life-cycle will enable system designers (and
their management) to have more confidence in the design process and help
many blind alleys to be avoided.

The formalism developed in this paper is immediately applicable to real
engineering tasks, and we look forward to expanding its scope with the con-
sideration of more types of resources and software tool support.
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Appendix A. Improper Probability Distributions, and Measure
Theory

In this appendix, we give a mathematically complete definition of the
space I of improper probability distributions, also known as defective distri-
butions [16]. We want to cover both discrete and continuous distributions
simultaneously, for which we need measure theory as presented in [33].

Appendix A.1. Carrier Set I
To define I, we consider the measurable space ([0,∞),B) of the half-line

together with the σ-algebra B of Borel sets. Then, we define the space I to
be the set of measures whose total weight is bounded by one:

I := {P : P measure on ([0,∞),B), P ([0,∞)) ≤ 1}. (A.1)

Remember that a measure P assigns, to each Borel set A, a number P (A).
A measure P ∈ I is a proper probability distribution if P ([0,∞)) = 1.

For practical computations, such measures are best represented in terms
of their cumulative distribution functions (CDFs). For every measure P ∈ I,
we define its cumulative distribution function

FP : [0,∞) → [0, 1], FP (t) := P ([0, t]). (A.2)

This function is increasing, t1 ≤ t2 implies FP (t1) ≤ FP (t2), and it is right-
continuous, limt>t0,t→t0 FP (t) = FP (t0). Since P ([0,∞)]) ≤ 1, this function
is bounded by FP (t) ∈ [0, 1].

Conversely, using Theorem 3.5 in [33], for every function F : [0,∞) →
[0, 1] which is increasing and right-continuous, there exists a measure P with
P ((a, b]) = F (b)− F (a). The condition F (t) ≤ 1 implies P ((0,∞)) ≤ 1. As
F (0) ≥ 0, we can set P ({0}) := F (0); this uniquely defines the measure P .
With this definition, F is also the CDF of P .

To summarize, the space I is in bijection with the space of functions
[0,∞) → [0, 1] that are increasing and right-continuous.
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Appendix A.2. Operations on I
We now define four operations that map I × I → I: probabilistic choice,

first-to-finish, last-to-finish, and convolution.
For any two measures P1, P2 ∈ I, we define their probabilistic choice as(

P1

m
⇋
m′ P2

)
(A) :=

m

m+m′P1(A) +
m′

m+m′P2(A) (A.3)

for all Borel sets A. It is straightforward to show that this definition gives
again a measure in I.

For any two measures P1, P2 ∈ I with cumulative distribution functions
F1, F2, we define the last-to-finish P1 ∥∀ P2 to be the measure P3 ∈ I whose
CDF F3 is given by

F3(t) := F1(t) · F2(t), (A.4)
for all t ∈ [0,∞). It is straightforward to check that F3 is increasing, right-
continuous and maps to [0, 1].

Similarly, we define first-to-finish P1 ∥∃ P2 to be the measure P3 ∈ I
whose CDF F3 is given by

F3(t) := F1(t) + F2(t)− F1(t)× F2(t). (A.5)

It is straightforward to check that F3 right-continuous. To see that it is
increasing and bounded, use the identity p+ q − pq = 1− (1− p)(1− q).

Finally, we define the convolution P1 ∗ P2 of two measures P1, P2 ∈ I to
be the measure P3 given by

P3(A) :=

∫
[0,∞)×[0,∞)

χA(t1 + t2) d(P1 × P2). (A.6)

Here, χA denotes the characteristic function of the Borel set A, that is
χA(t) = 1 if t ∈ A and χA(t) = 0 if t ̸∈ A. Using the monotone conver-
gence theorem, it can be shown that this definition satisfies σ-additivity and
hence gives a measure. We note that

(P1 ∗ P2)([0,∞)) = P1([0,∞)) · P2([0,∞)), (A.7)

because

P3([0,∞)) =

∫
[0,∞)×[0,∞)

χ[0,∞)(t1 + t2) d(P1 × P2) (A.8)

=

∫
[0,∞)×[0,∞)

1 d(P1 × P2) (A.9)

= P1([0,∞)) · P2([0,∞)). (A.10)
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This shows that P3 is bounded by one, as P1, P2 are assumed to be bounded
by one. These considerations imply that P3 ∈ I.

Appendix A.3. Properties of Convolution
In the main text, we have claimed that the failure probability is a mor-

phism from improper probability distributions to the algebra of failure prob-
abilities. In order to show that the failure probability commutes with se-
quential composition, we require the following

Lemma 6 (Success probability of the convolution). Let Q1, Q2 ∈ I. Then,

lim
t→∞

(Q1 ∗Q2)(t) =
(
lim
t→∞

Q1(t)
)
×
(
lim
t→∞

Q2(t)
)
. (A.11)

Proof. Denote Q3 = Q1∗Q2. The limits of the cumulative distributions func-
tions can be expressed in terms of the measures as limt→∞Qj(t) = Qj([0,∞))
for j = 1, 2, 3. But then, the claim is the same as Eq. (A.7). ■

References

[1] Predictable Network Solutions Ltd (PNSol) (2022). [link].
URL http://www.pnsol.com

[2] J. T. Bradley, Towards reliable modelling with stochastic process al-
gebras, Ph.D. thesis, University of Bristol, Department of Computer
Science (October 1999).

[3] D. C. Reeve, A New Blueprint for Network QoS, Ph.D. thesis, Com-
puting Laboratory, University of Kent, Canterbury, Kent, UK (August
2003).
URL http://www.cs.kent.ac.uk/pubs/2003/1892

[4] R. Beuran, M. Ivanovici, B. Dobinson, Network quality of service
measurement system for application requirements evaluation, in: In-
ternational Symposium on Performance Evaluation of Computer and
Telecommunication Systems, SPECTS’03, 2003, pp. 380–387.

[5] L. Leahu, Analysis and predictive modeling of the performance of the
atlas tdaq network, Ph.D. thesis, Bucharest, Tech. U. (January 2013).

49

http://www.pnsol.com
http://www.pnsol.com
http://www.cs.kent.ac.uk/pubs/2003/1892
http://www.cs.kent.ac.uk/pubs/2003/1892


[6] S. L. Gaixas, J. Perelló, D. Careglio, E. Grasa, M. Tarzan, N. Davies,
P. Thompson, Assuring QoS guarantees for heterogeneous services in
RINA networks with ∆Q, in: 2016 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), 2016, pp. 584–
589. doi:10.1109/CloudCom.2016.0101.

[7] P. Thompson, N. Davies, Towards a performance management architec-
ture for large-scale distributed systems using rina, in: 2020 23rd Con-
ference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN), Paris, France, 2020, pp. 29–34.

[8] P. Thompson, R. Hernadaz, Quality attenuation measurement archi-
tecture and requirements, Tech. Rep. TR-452.1, Broadband Forum
(September 2020).
URL https://www.broadband-forum.org/download/TR-452.1.pdf

[9] P. Thompson, Tr-452.2 quality attenuation measurements using active
test protocols, Tech. rep., The Broadband Forum (November 2022).

[10] N. Davies, P. Thompson, G. Young, J. Newton, B. Teigen, M. Olden,
Measuring network impact on application outcomes using quality atten-
uation, in: Measuring Network Quality for End-Users, Internet Archi-
tecture Board, 2021, pp. 43–52.
URL https://shorturl.at/bvxGT

[11] B. Ivar Teigen, N. Davies, K. Olav Ellefsen, T. Skeie, J. Torresen,
Quantifying the Quality Attenuation of WiFi, in: S. Oteafy, E. Bu-
lut, F. Tschorsch (Eds.), IEEE 47th LCN, IEEE, 2022, pp. 189–197.
doi:10.1109/LCN53696.2022.9843690.

[12] D. Coutts, N. Davies, M. Szamotulski, P. Thompson, Introduction to
the Design of the Data Diffusion and Networking for Cardano Shelley,
Tech. rep., IOHK (August 2020).
URL https://hydra.iohk.io/build/20405228/download/1/
network-design.pdf

[13] S. H. Haeri, P. Thompson, N. Davies, P. Van Roy, K. Hammond,
J. Chapman, Mind Your Outcomes: The ∆QSD Paradigm for Quality-
Centric Systems Development and Its Application to a Blockchain Case

50

https://doi.org/10.1109/CloudCom.2016.0101
https://www.broadband-forum.org/download/TR-452.1.pdf
https://www.broadband-forum.org/download/TR-452.1.pdf
https://www.broadband-forum.org/download/TR-452.1.pdf
https://shorturl.at/bvxGT
https://shorturl.at/bvxGT
https://shorturl.at/bvxGT
https://doi.org/10.1109/LCN53696.2022.9843690
https://hydra.iohk.io/build/20405228/download/1/network-design.pdf
https://hydra.iohk.io/build/20405228/download/1/network-design.pdf
https://hydra.iohk.io/build/20405228/download/1/network-design.pdf
https://hydra.iohk.io/build/20405228/download/1/network-design.pdf
https://www.mdpi.com/2073-431X/11/3/45
https://www.mdpi.com/2073-431X/11/3/45
https://www.mdpi.com/2073-431X/11/3/45
https://www.mdpi.com/2073-431X/11/3/45


Study, Computers 11 (3) (2022) 45. doi:10.3390/computers11030045.
URL https://www.mdpi.com/2073-431X/11/3/45

[14] P. Van Roy, N. Davies, P. Thompson, S. H. Haeri, ∆QSD: Designing
systems with predictable latency at high load, Tutorial, HiPEAC 2023
(Conf. High Perf. Emb. Arch. & Compil.) (January 2023).
URL shorturl.at/dmKSW

[15] S. H. Haeri, P. W. Thompson, P. Van Roy, M. Haveraaen, N. J. Davies,
M. Barash, J. Chapman, On the algebraic properties of timeliness,
Tech. rep., IOG (2023).
URL http://www.pnsol.com/public/Algebraic-Timeliness-TR.
pdf

[16] K. S. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, 2nd Edition, Wiley, New York, NY,
USA, 2002.

[17] S. H. Haeri, P. W. Thompson, P. Van Roy, M. Haveraaen, N. J. Davies,
M. Barash, K. Hammond, J. Chapman, Algebraic Reasoning About
Timeliness, in: C. Aubert, C. Di Giusto, S. Fowler, L. Safina (Eds.), 16th
ICE, Vol. 383 of EPTCS, 2023, pp. 35–54. doi:10.4204/EPTCS.383.3.

[18] M. J. Gajda, Curious Properties of Latency Distributions, CoRR
abs/2011.05219 (2020). doi:10.1007/978-3-031-10461-9_10.
URL https://arxiv.org/abs/2011.05219

[19] K. J. Sherry, Business Process Modelling with BPMN: Modelling and
Designing Business Processes Course Book using The Business Process
Model and Notation Specification Version 2.0, CreateSpace Independent
Publishing Platform, 2012.

[20] P. Y. H. Wong, J. Gibbons, Formalisations and Applica-
tions of BPMN, SCP 76 (8) (2011) 633–650. doi:https:
//doi.org/10.1016/j.scico.2009.09.010.
URL https://www.sciencedirect.com/science/article/pii/
S0167642309001282

[21] P. Y. H. Wong, J. Gibbons, Property Specifications for Work-
flow Modelling, SCP 76 (10) (2011) 942–967. doi:https:

51

https://www.mdpi.com/2073-431X/11/3/45
https://www.mdpi.com/2073-431X/11/3/45
https://www.mdpi.com/2073-431X/11/3/45
https://www.mdpi.com/2073-431X/11/3/45
https://doi.org/10.3390/computers11030045
https://www.mdpi.com/2073-431X/11/3/45
shorturl.at/dmKSW
http://www.pnsol.com/public/Algebraic-Timeliness-TR.pdf
http://www.pnsol.com/public/Algebraic-Timeliness-TR.pdf
http://www.pnsol.com/public/Algebraic-Timeliness-TR.pdf
https://doi.org/10.4204/EPTCS.383.3
https://arxiv.org/abs/2011.05219
https://doi.org/10.1007/978-3-031-10461-9_10
https://arxiv.org/abs/2011.05219
https://www.sciencedirect.com/science/article/pii/S0167642309001282
https://www.sciencedirect.com/science/article/pii/S0167642309001282
https://doi.org/https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/https://doi.org/10.1016/j.scico.2009.09.010
https://www.sciencedirect.com/science/article/pii/S0167642309001282
https://www.sciencedirect.com/science/article/pii/S0167642309001282
https://www.sciencedirect.com/science/article/pii/S0167642310001735
https://www.sciencedirect.com/science/article/pii/S0167642310001735
https://doi.org/https://doi.org/10.1016/j.scico.2010.09.007
https://doi.org/https://doi.org/10.1016/j.scico.2010.09.007
https://doi.org/https://doi.org/10.1016/j.scico.2010.09.007


//doi.org/10.1016/j.scico.2010.09.007.
URL https://www.sciencedirect.com/science/article/pii/
S0167642310001735

[22] F. S. E. Ltd, Failures-divergence refinement: Fdr2 user manual (May
2012).
URL https://www.cs.ox.ac.uk/projects/concurrency-tools/
download/fdr2manual-2.94.pdf

[23] O. El Hichami, M. Naoum, M. Al Achhab, I. Berrada, B. E. El Mohajir,
An Algebraic Method for Analysing Control Flow of BPMN Models,
iJES 3 (3) (2015) 20—26. doi:10.3991/ijes.v3i3.4862.
URL https://online-journals.org/index.php/i-jes/article/
view/4862

[24] J.-P. Friedenstab, C. Janiesch, M. Matzner, O. Muller, Extending
BPMN for Business Activity Monitoring, in: 45th HICSS, 2012, pp.
4158–4167. doi:10.1109/HICSS.2012.276.

[25] C. Costello, O. Molloy, Towards a Semantic Framework for Business
Activity Monitoring and Management, in: AAAI Spring Symposium:
AI meets business rules and process management, 2008, pp. 17–27.

[26] L. E. M. Morales, Specifying BPMN Diagrams with Timed Automata:
Proposal of Some Mapping Rules, in: 9th CISTI, 2014, pp. 1–6. doi:
10.1109/CISTI.2014.6876897.

[27] J. Hillston, A Compositional Approach to Performance Modelling, Cam-
bridge University Press, 1996.

[28] R. De Nicola, D. Latella, A. L. Lafuente, M. Loreti, A. Margheri,
M. Massink, A. Morichetta, R. Pugliese, F. Tiezzi, A. Vandin, The
SCEL Language: Design, Implementation, Verification, Springer, 2015,
pp. 3–71. doi:10.1007/978-3-319-16310-9_1.
URL https://doi.org/10.1007/978-3-319-16310-9_1

[29] L. Bortolussi, R. De Nicola, V. Galpin, S. Gilmore, J. Hillston,
D. Latella, M. Loreti, M. Massink, CARMA: collective adaptive
resource-sharing markovian agents, in: N. Bertrand, M. Tribastone
(Eds.), Proc. 13th W. Quant. Aspects of Prog. Lang. and Sys., Vol.

52

https://doi.org/https://doi.org/10.1016/j.scico.2010.09.007
https://doi.org/https://doi.org/10.1016/j.scico.2010.09.007
https://doi.org/https://doi.org/10.1016/j.scico.2010.09.007
https://doi.org/https://doi.org/10.1016/j.scico.2010.09.007
https://www.sciencedirect.com/science/article/pii/S0167642310001735
https://www.sciencedirect.com/science/article/pii/S0167642310001735
https://www.cs.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.94.pdf
https://www.cs.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.94.pdf
https://www.cs.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.94.pdf
https://online-journals.org/index.php/i-jes/article/view/4862
https://doi.org/10.3991/ijes.v3i3.4862
https://online-journals.org/index.php/i-jes/article/view/4862
https://online-journals.org/index.php/i-jes/article/view/4862
https://doi.org/10.1109/HICSS.2012.276
https://doi.org/10.1109/CISTI.2014.6876897
https://doi.org/10.1109/CISTI.2014.6876897
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.1007/978-3-319-16310-9_1
https://doi.org/10.4204/EPTCS.194.2
https://doi.org/10.4204/EPTCS.194.2


194 of EPTCS, 2015, pp. 16–31. doi:10.4204/EPTCS.194.2.
URL https://doi.org/10.4204/EPTCS.194.2

[30] W. Cazzola, F. Cesarini, L. Tansini, PerformERL: A Performance Test-
ing Framework for Erlang, Distributed Comp. 35 (5) (2022) 439–454.
doi:10.1007/s00446-022-00429-7.
URL https://doi.org/10.1007/s00446-022-00429-7

[31] Mil-std-1629a – procedures for performing a failure mode effect and
criticality analysis, Tech. rep., United States Department of Defense
(November 1980).

[32] K. Peachy, M. Race, V. Sri-Pathma, Post office scandal explained: What
the horizon saga is all about (2024) [cited 17/1/2024].
URL https://www.bbc.com/news/business-56718036

[33] E. M. Stein, R. Shakarchi, Real Analysis: Measure Theory, Integration,
and Hilbert Spaces, Princeton Uni. Press, 2005.

53

https://doi.org/10.4204/EPTCS.194.2
https://doi.org/10.4204/EPTCS.194.2
https://doi.org/10.1007/s00446-022-00429-7
https://doi.org/10.1007/s00446-022-00429-7
https://doi.org/10.1007/s00446-022-00429-7
https://doi.org/10.1007/s00446-022-00429-7
https://www.bbc.com/news/business-56718036
https://www.bbc.com/news/business-56718036
https://www.bbc.com/news/business-56718036


Declaration of interests 
  
☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  
☐ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

 
  
  
  
 



  

PDF as rendered by Overlaf

Click here to access/download
Supporting File

TimelinessSystemDesign.pdf

https://www2.cloud.editorialmanager.com/jlamp/download.aspx?id=21308&guid=d7e2f177-f14b-4811-9b31-7719e66dfdae&scheme=1

