
Mind Your Outcomes
Quality-Centric Systems Development in a Pure Functional Framework

Seyed Hossein Haeri

Formal Methods Team, IOHK

Department of Informatics, University of Bergen, Norway

hossein@uib.no

Neil Davies

Predictable Network Solutions Ltd, Stonehouse, UK

neil.davies@pnsol.com

Peter Thompson

Predictable Network Solutions Ltd, Stonehouse, UK

peter.thompson@pnsol.com

Peter Van Roy

Department of Computing Science and Engineering,

Université catholique de Louvain, Belgium

pvr@info.ucl.ac.be

ABSTRACT
This paper defines the ΔQ𝑆𝐷 language that embodies the main con-

cepts of the ΔQ framework for distributed systems design. The ΔQ
framework has been developed over three decades to design large

distributed systems with predictable behaviour under high applied

load. The framework specifies system designs at different levels of

refinement and tracks and predicts their performance envelope as a

function of load. System designers can thereby determine whether

the system is likely to perform satisfactorily before the system is

actually built. This is a critical property for real-world systems: they

are expected to perform well in exactly those cases when it is diffi-

cult to ensure adequate performance, such as telephony systems

during natural catastrophes.

The ΔQ𝑆𝐷 language defines a system as a formal structure

(called an “outcome diagram”) that makes explicit how all sys-

tem behaviours relate to each other. The system’s design is then a

sequence of refinement steps starting from a system with wholly

unspecified structure and ending with a system with completely

specified structure. We give the language semantics that allows

computation of the predicted system performance at any step in

the refinement process. In future work we intend to incorporate

ΔQ𝑆𝐷 in software tools and to use it to provide formal proofs that a

partially specified design’s performance is adequate or inadequate.

This will make it a practical and useful tool for system designers.

ACM Reference Format:
Seyed Hossein Haeri, Neil Davies, Peter Thompson, and Peter Van Roy.

2021. Mind Your Outcomes: Quality-Centric Systems Development in a Pure

Functional Framework. In Proceedings of 33rd Symposium on Implementation
and Application of Functional Languages (IFL 2021). ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IFL 2021, 01–03 Sep 2021, Online
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACKNOWLEDGMENTS
This research was sponsored by IOHK under grant number 7006

for the Gödel project.

1 INTRODUCTION
Designing large distributed systems is a key part of network-based

infrastructure and applications, but engineering these systems to

have predictable performance at high applied load is very hard.

However, predictability at such loads can be critical to the system’s

usefulness and effectiveness. For example, many of today’s telecom-

munications systems suffer from overload when catastrophes occur,

because of the large number of people placing simultaneous calls;

but this is exactly when the system is in most need of predictable

performance. The problem is not limited to telecommunications;

in fact many large distributed systems have the same problem: dis-

tributed databases, social networks, industrial control systems, and

so forth, including the Internet itself built on top of the IP best-effort

packet transfer protocol. To address this problem in its generality,

the ΔQ framework was developed over three decades and has been

used successfully to design several large systems [3, 4].

The purpose of this paper is to define a formal language ΔQSD
(“ΔQ for System Design”) that embodies the main concepts of the

ΔQ framework. This will allow ΔQ to be incorporated into software

tools; it will help disseminate the framework by facilitating teaching

materials; it will help designers use the framework to convince

management of system problems (backed-up by formal proofs); and

it will form a solid foundation for further development.

This paper presents the first step in a long-term research effort

on formalisation of the established ΔQ framework. The ultimate

goal of this work is a high-level design language for describing

system designs at different levels of refinement, from specification

down to implementation. A key property is that formal detection

of infeasibility should be possible at any level of refinement, before

hard-to-reverse decisions have been taken, and in particular, before

the system is actually built. This will allow avoiding wasted effort

in building systems that cannot handle the required load. The for-

malisation is important not only for correctness but also so that

design engineers can present a convincing reasoned conclusion of

infeasibility to management during the design process.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IFL 2021, 01–03 Sep 2021, Online Seyed Hossein Haeri, Neil Davies, Peter Thompson, and Peter Van Roy

1.1 Motivation
Large distributed systems with stringent quality requirements for

many users are difficult to design well. In particular, it is difficult

to determine at design time how they will behave in high load

situations. In many situations, design engineers simply overdimen-

sion the system as a rule of thumb. In several large companies

known to the authors, engineers simply double the capacity of the

system’s main components with respect to a credible worst case

estimate of typical conditions (in their engineering judgement).

This is unsatisfactory for several reasons.

Firstly, the overdimensioning may not actually solve the problem

and the system may still fail to deliver acceptable performance (or

even just fail entirely) under high load. No guarantees can be given.

After all, overdimensioning is just a rule of thumb – one that is

implicitly assuming that the extent and duration of load saturation is

strongly bounded. It is not actively managing saturation conditions.

Secondly if, during the design process, the need for a major refac-

toring becomes inevitable, then the engineers have no systematic

way of presenting this issue (and the refinement steps previously

taken) to stakeholders to convince them that corrective action is

needed before the system is actually built.

Finally, from a scientific viewpoint, a more satisfactory approach

would start from basic principles and allow quantitative prediction

of system behaviour at high load, given only a partial specification

of the system design. Such an approach creates specifications for the

remaining components, permitting concurrency in the development

of the design. This approach is widely used in other engineering

disciplines where a system failure would be catastrophic. For exam-

ple, bridge designers carefully determine the strength of a bridge’s

design against both static and dynamic load, using both simulation

and computation, well before building the actual bridge.

The key property of physical-world design processes is that

their modelling techniques have an effective notion of composition-

ality. The ΔQSD approach is endeavouring to achieve this for the

ICT-world.

Performance is a complex concept with many axes that system

designers need to consider. Out of all those axes – bandwidth,

latency, scalability, and so on – there is one property that is the most

important of all, namely feasibility. Feasibility is a predicate over

performance: Can the system provide acceptable performance with

the available resources under all specified circumstances including

load levels; yes or no? This determination must be possible at design

time, before the system is actually built. We call a system that is

not able to satisfy this condition infeasible. Building an infeasible

system is a huge waste of resources in money, people, and time; so,

it must be avoided. The first goal of the ΔQ framework is to help

the system designers detect infeasibility as early as possible. Early

detection implies early circumvention and redesign, when possible.

This is also the first goal of our formal language.

The reader may wonder why determining infeasibility is difficult.

Let us focus for a moment on infeasibility due to delay surpass-

ing an acceptable maximum. Would it not be possible to simply

add up the delays of the system’s subcomponents, and see if the

resulting delay is low enough? In fact, this simple approach does

not work. The problem is that system behaviour cannot easily be

predicted in high load situations. Many factors contribute to this

unpredictability, such as failures (transient or otherwise), conges-

tion, jitter, translations between protocols, and outside interference.

These factors interact in complex ways, which are often highly non-

linear or discontinuous. Any approach for determining infeasibility

needs to take these factors into account, without overly complicat-

ing the design process. Achieving these together is nontrivial and

explains why no widely used approach exists yet.

1.2 Basic Concepts of the ΔQ Framework
We first give a brief introduction to the main concepts of the ΔQ
framework, on which the rest of this work is based. There are three

basic concepts: outcome, quality attenuation, and hazard. We give

brief definitions of these concepts below. More details and formal

definitions are given in the rest of the paper.

• An outcome is a desired behaviour of the system. Formally,

an outcome has a pair of events that denote the beginning

and the end of the outcome, where an event is something that

happens in the system at a specific location and a specific

time. We can then define a service as a (usually distributed)

process that generates outcomes. The specific outcomes that

are important for a given system depend on the system re-

quirements and are defined by the system designer. Some

examples of outcomes are a web page download, the display

of a video frame, and the response to a transaction request

of a database. See Section 3.2 for more details.

• Quality attenuation, denoted by ΔQ, is a function giving the

cumulative probability that the delay associated with an

outcome is less than or equal to a given value, with respect

to the value. The cumulative probability can be an improper

value, i.e., when time increases indefinitely it may converge

to a probability less than 1.

Outcomes where the end event is beyond some defined delay

limit can be seen as failures - this encompasses both typical

notion of failure (crash etc.) as well as excessive delays.

In this way, the ΔQ function models both delay and failure

of the outcome. See Section 2 for more details.

• A hazard is a system effect that excessively increases quality

attenuation. For example, a hazard can be armed by an inter-

nal correlation, where a part of the system interferes with

another (e.g., two system components interfere when they

are implemented on the same CPU core), or an external cor-

relation such as interaction between users (e.g., congestion,

where a component is overloaded by too many simultaneous

requests). The framework classifies hazards [4] according

to their complexity and defines mathematical models for

some of those hazards (Definitions 3.5, 3.8, and 3.11). In prac-

tice, hazards affect how ΔQ computations are done for the

complete system, as explained below.

1.3 Outcome Diagram
Based on these three concepts, the ΔQ framework defines an al-

gorithm for computing system performance at design time. The

system itself is represented by a formal diagram, called an outcome
diagram, that takes into account both the system block diagram

and the system outcomes that are considered important by the

designer. The outcome diagram is a directed graph where nodes

2

Mind Your Outcomes IFL 2021, 01–03 Sep 2021, Online

are outcomes and edges are causal relationships between outcomes.

The outcome diagram defines how system outcomes are related

to the outcomes of its subsystems. The outcome diagram can be

defined even for partially specified systems (where some outcomes

are still black boxes); it requires only that undefined subsystems

have well-specified behaviours.

Figure 1: Block diagram and outcome diagram for a simple
system constructed through stepwise refinement

Figure 2: Legend for the outcome diagram of Figure 1

Figure 1 shows both a block diagram and outcome diagram for

a simple system consisting of a user querying a front end that is

connected to a database. The edges in the outcome diagram are

labelled by the observation locations (small squares). Each outcome

(large open circle) consists of events happening at the incoming

and outgoing locations. The figure shows the refinement process of

system design: a system with initially unknown structure is refined

stepwise into a system with a completely known structure.

It is important to understand the fundamental difference be-

tween a block diagram and an outcome diagram. A block diagram

shows the system’s structure in terms of its subsystems and base

components. An outcome diagram does not correspond directly

to system structure. An outcome diagram is a causal graph that

shows how the system’s outcomes are related to each other. This is

a more general concept than a block diagram. For a given outcome

diagram, there can be more than one functional decomposition into

a block diagram.

The outcome diagram is a key concept of the ΔQ framework.

It can be used to compute the overall ΔQ of an outcome by com-

posing the ΔQs of the finer-grain outcomes of the system, taking

the relevant hazards into account. Section 2 shows how this works

by giving an example of a simple system and its outcome diagram.

Section 3 gives a formal definition of the outcome diagram and its

semantics.

1.4 Principles of the Formal Design Language
The ΔQSD language defined in Section 3 formalises the outcome

diagram and its refinement steps. The language is purely functional

and its semantics is defined using a mathematical approach very

similar to denotational semantics. An outcome diagram, called an

outcome expression in the language, denotes a snapshot of the

system design at a given level of detail. An outcome expression can

contain both undefined and defined subsystems.

We define a system design as a sequence of outcome expressions

that starts with a completely unknown system and ends with the

fully specified system including all components and outcomes. Fig-

ure 1 gives an example of a system design consisting of a sequence

of three outcome expressions. Each step in the sequence follows a

refinement rule defined by the language. For each expression in the

sequence, the language semantics gives the predicted performance

as a ΔQ. An expression’s semantics can be related to that of the

previous and later expressions in the sequence.

By changing the sequence while respecting the refinement rules,

a designer can explore the design space while satisfying perfor-

mance requirements. Feasibility can be checked at any time during

the design process, and if the system is infeasible the language gives

a formal argument that demonstrates it. This shows the usefulness

of formalising a design as a sequence of outcome expressions.

1.5 Structure of this Paper
The paper is structured into the following sections.

• Section 2 gives a more precise definition of the basic concepts

of the ΔQ framework, including an example of an outcome

diagram and how it is used to compute overall ΔQ.
• Section 3 contains the main contributions of the paper. It

defines the abstract syntax of the ΔQSD language which

defines outcome expressions and refinement steps between

them. It defines the semantics of ΔQSD which allows com-

puting ΔQ for any outcome expression, and it connects

ΔQSD to other concepts in the ΔQ framework.

• Section 4 recapitulates the main contributions of the paper

and outlines the further work that needs to be done.

2 QUALITY ATTENUATION
From the perspective of a user, a perfect system would deliver the

desired outcome without error, failure or delay, whereas real sys-

tems always fall short of this; we can say that the quality of their

response is attenuated relative to the ideal. We denote this qual-

ity attenuation by the symbol ΔQ and reformulate the problem of

managing performance as one of maintaining suitable bounds on

ΔQ. This is an important conceptual shift because ‘performance’

may seem like something that can be increased arbitrarily, whereas

ΔQ (rather like noise) is evidently something that may be min-

imised but never eliminated completely. Indeed, some aspects of

ΔQ, such as the time for signals to propagate between components

of a distributed system, cannot be reduced below a certain point.

Because the response of the system in any particular instance

can depend on a wide range of factors, including the availability of

shared resources, we model ΔQ as a random variable. This allows

various sources of uncertainty to be captured andmodelled, ranging

3

IFL 2021, 01–03 Sep 2021, Online Seyed Hossein Haeri, Neil Davies, Peter Thompson, and Peter Van Roy

from as-yet-undecided aspects of the design to resource use by other

processes to dependence of behaviour on data values.

In capturing the deviation from ideal behaviour, ΔQ incorporates

both delay (a continuous random variable) and exceptions/failures

(discrete variables). This can be modelled mathematically using

improper random variables (IRVs), whose total probability is less

than one. If we write ΔQ(x) for the probability that an outcome

occurs in a time 𝑡 ≤ 𝑥 , then we can define the intangible mass of

such an IRV as 1 − lim𝑥→∞ Δ𝑄 (𝑥), which encodes the probability

of exception or failure. This is illustrated by Figure 3, showing the

cumulative distribution function (CDF) of an IRV
1
(with arbitrary

time units).

Figure 3: Cumulative distribution of an IRV

We can define a partial order on such variables, in which the

‘smaller’ attenuation is the one that delivers a higher probability of

completing the outcome in any given time:

(∀𝑥Δ𝑄1 (𝑥) ≤ Δ𝑄2 (𝑥)) ≡ Δ𝑄1 ≥ Δ𝑄2

This partial order has a ‘top’ element, which is simply perfect

performance: ⊤ ≡ (∀𝑥Δ𝑄 (𝑥) = 1), and a ‘bottom’ element, which

is total failure (an outcome that never occurs): ⊥ ≡ (∀𝑥Δ𝑄 (𝑥) = 0).
We can write specifications for system performance using this

partial order by requiring the delivered ΔQ to be less than or equal

to a predefined bounding case. Where the delivered ΔQ is strictly

less than the requirement, we say there is slack; when it is not less

than or equal to the requirement, we say there is a hazard. More

details of this approach are given in [4].

2.1 Simple Example
Consider the commonplace distributed system of a web browser and

a set of servers providing a web page. The outcome of interest to the

user starts with the event of a user clicking on a URL, and end with

the event of the page being fully rendered, corresponding to the first

1
In this paper we regard and IRV as equivalent to its CDF.

row of Figure 1. The second row of the figure shows the distinction

between the user and the browser, and the third exposes the back-

end servers. A typical web page will contain a variety of elements

served by different domains, so for each element the browser (and

its supporting O/S) must first resolve the corresponding domain

name; establish a connection to the given server; and download

and render the provided content. Thus for each element, the ΔQ of

completing this process is the sequential composition of the ΔQs of
the component steps; and the ΔQ of rendering the whole page is a

last-to-finish combination of the ΔQs of all the elements. Note that

this formulation automatically deals with the possibility that any

of the steps may fail, and provides the resultant failure probability

for the whole process in addition to the distribution of expected

completion time.

We can further refine the model: for example the DNS resolution

of a domain may provide alternative server addresses for load-

balancing, and these servers may have different ΔQs for providing
the content. We can represent this as a probabilistic choice between

these ΔQs, weighted by the chances of the respective servers being

provided.

We can additionally consider the effect of load and contention

for shared resources, for example network interface bandwidth or

rendering capacity, or the impact of different DNS caching architec-

tures. These aspects of system performance design are formalised

below.

3 FORMALISM
In remainder of this text, we take the system of discourse to be

fixed for the Subject Matter Expert (SME). We assume their system

has a number of tasks to perform. In order to perform a task, the

system might need to perform several other subtasks, or a task

might be considered atomic by the SME. The process of looking into

more details of the system by breaking tasks into their pertaining

subtasks is what we call refinement. (See Definition 3.3 for the

formal definition.) By refining a system, one goes from a coarser

granularity to a finer one. In that vein, a quality-centric system

design is a sequence of consecutive refinements from the topmost

outcome to the lowest level of granularity.

3.1 Notational Conventions
Subscripts and priming do not change the syntactic category of a

symbol. For example, for a set 𝐴, we write 𝐴 ∋ 𝑎 to indicate that

𝑎, 𝑎′, 𝑎′′, . . . , 𝑎1, 𝑎2, . . . all range over 𝐴.
We employ fonts to communicate information about the syntac-

tic categories. Let 𝑥 be an object of interest. When referring to the

set of all such objects, we write X. For predicates, we write pred(𝑥).

3.2 Outcomes
An outcome is what the system obtains by performing one of its

tasks. Each task has a corresponding outcome and each outcome

has a corresponding task. With that one-to-one correspondence in

mind, we say an outcome is ‘performed’ to mean the corresponding

task of an outcome is performed. Likewise, we might use the task

adjectives for outcomes too, even though outcomes and tasks are

inherently different. For example, by an atomic outcome, we mean

an outcome the corresponding task of which is atomic.

4

Mind Your Outcomes IFL 2021, 01–03 Sep 2021, Online

Description of system performance in terms of the outcomes

expected from it is a novelty of our work. In this section, we for-

malise different aspects of such a description, the result of which

we call the outcome expression of a system. (See Definition 3.1.)

The outcome expression is a basis for different analyses we put

forward. As will become clear in Section 3.3 and Section 3.4, an

outcome expression is like the syntax for a variety of semantices à

la polymorphic embedding [1].

Two distinct sets of events are attributed to each outcome: the

starting set and the terminating set. Each of those sets consists of

events that are of particular interest (as opposed to just any event).

We call such events of interest the observables. For example, an

observable in the starting set of an outcome 𝑜 is of interest because

it signifies the point in time at which as well as the 3D location

– altogether referred to as the 4D location or simply location – at

which 𝑜’s performance began. Likewise, an observable from the

terminating set of 𝑜 is an event with information regarding its

location. Of course, once an observable from 𝑜’s starting set occurs,

there is no guarantee that one from 𝑜’s terminating set will also

occur within 𝑜’s duration limit. But, when an observable from 𝑜’s

terminating set occurs within the duration limit after an observable

from its starting set occurred, 𝑜 is said to be done.
Diagrammatically, we show an outcome using a circle. In an

outcome diagram, we depict the starting set and the terminating

set of an outcome using small boxes to the left and to the right

of the outcome’s circle, respectively. We connect the starting set

to the outcome from the left and to the terminating set from the

right. Fig. 1 presents all that. When unimportant for an outcome,

we do not include the starting set and the terminating set of that

particular outcome in the outcome diagram. In terms of graph

theory, observables are optional labels for the edges. We maintain

a directional convention to avoid showing directions explicitly for

every edge: When an edge connects two outcomes, the one depicted

to the right causally depends on the one depicted to the left.

We single out two sets of outcomes.

Consider the situation where an SME is aware that an outcome is

not atomic; nevertheless, they take a level of refinement enough for

carrying out a particular analysis. (See Section 3.3 and Section 3.4

for two possible analyses.) In our formalism, the description of that

intention at that level of refinement employs a black box for that

particular outcome. As such, black boxes B ∋ ♭ are those outcomes

that:

• can be easily quantified;

• are beyond the SME’s control (and so may need to be quan-

tified by external specification or measurement);

• the SME intentionally leaves the details for later.

Outcome variables O𝑣 ∋ 𝑜𝑣 are the variables that we use for

referring to a given outcome. We refer to black boxes and outcome

variables together as base variables: B = O𝑣 ∪ B, where B ∋ 𝛽 .

Definition 3.1. Define the abstract syntax of outcome expressions

as:

𝑜 ::= ♭ | 𝑜𝑣
| 𝑜 •→−• 𝑜 ′ sequential composition

| 𝑜
𝑚
⇋
𝑚′ 𝑜

′
probabilistic choice

| ∀(𝑜 ∥ 𝑜 ′) all-to-finish (a.k.a. last-to-finish)

| ∃(𝑜 ∥ 𝑜 ′) first-to-finish

We take 𝑜 ∥ 𝑜 ′ to be commutative. 2

A probabilistic choice 𝑜
𝑚
⇋
𝑚′𝑜

′
is the same as 𝑜 with the probability

𝑚
𝑚+𝑚′ and same as 𝑜 ′ with the probability

𝑚′
𝑚+𝑚′ . For two outcomes

𝑜 and 𝑜 ′ started at the same time and run in parallel, ∀(𝑜 ∥ 𝑜 ′) is
done when both 𝑜 and 𝑜 ′ are done. Similarly, ∃(𝑜 ∥ 𝑜 ′) is done as
soon as the first of 𝑜 and 𝑜 ′ is done.

Definition 3.2. The evaluation contexts 𝐶 of an outcome are

defined as follows:

𝐶 ::= [] | 𝐶 •→−• 𝑜 | 𝑜 •→−•𝐶 | 𝐶
𝑚
⇋
𝑚′ 𝑜 | 𝑜

𝑚
⇋
𝑚′ 𝐶 | ∀(𝐶 ∥ 𝑜) | ∃(𝐶 ∥ 𝑜).

where “[]" is the empty context. 2

The evaluation contexts become handy in the definition of out-

come transitions, which we define next.

Definition 3.3. Outcome transitions 𝜏𝑜 : 𝑜 → 𝑜 ′ are defined by

the following rewrite rules:

𝐶 [♭] → 𝐶 [𝑜] 𝑜 ∉ B (Unbx)
𝐶 [𝑜𝑣] → 𝐶 [𝑜] 𝑜 ∉ B (Elab)
𝐶 [𝑜] → 𝐶 [𝑜 ′

𝑚
⇋
𝑚′ 𝑜

′′] for some𝑚,𝑚′ ∈ R+, 𝑜 ′, 𝑜 ′′ ∈ O (Prob)
𝐶 [𝑜] → 𝐶 [∀(𝑜 ′ ∥ 𝑜 ′′)] for some 𝑜 ′, 𝑜 ′′ ∈ O (A2F)
𝐶 [𝑜] → 𝐶 [∃(𝑜 ′ ∥ 𝑜 ′′)] for some 𝑜 ′, 𝑜 ′′ ∈ O (F2F).
Formally speaking, a refinement step is an instance of an outcome

transition. The formal description of the system is refined upon

taking one or more refinement steps. 2

Note that a refinement is not a system evolution. A refinement

is an update in the system description.

3.3 ΔQ Analysis
Fix a set Γ ∋ 𝛾 of all CDFs. Fix also a countable set of ΔQ variables

Δ𝑣 ∋ 𝛿𝑣 . Let Δ = Δ𝑣∪Γ, where Δ ∋ 𝛿 . We are now ready to describe

the process of ΔQ analysis.

The idea is that the SME gives the formulation we are about

to provide (Definition 3.4) the basic ΔQ analysis. Based on that

analysis, our formulation enables them to work out the ΔQ analysis

of the larger parts of their system, or even all of it. The formulation

is compositional and simple.

We call the ΔQ analysis that the SME provides the basic (ΔQ) as-
signment. In the basic assignment, the SME onlymapsB expressions.
And, they map those expressions to either CDFs or ΔQ variables.

The reason for the inclusion of the CDFs is rather obvious. The

choice to allow ΔQ variables here might be less so. The assignment

of those B expressions that are mapped to ΔQ variables are con-

sidered to be left by the SME for later. As such, the formulation

in Definition 3.4 takes the ΔQ value of those expressions to be ⊤.
That is to let the SME to investigate feasibility even when those

particular expressions are disregarded for the moment.

5

IFL 2021, 01–03 Sep 2021, Online Seyed Hossein Haeri, Neil Davies, Peter Thompson, and Peter Van Roy

Definition 3.4. Given a basic assignment Δ◦ [[.]] : B→ Δ, define
ΔQ[[.]]Δ◦ : O→ Γ such that

ΔQ[[𝛽]]Δ◦ =

{
⊤ when Δ◦ [[𝛽]] ∉ Γ
Δ◦ [[𝛽]] otherwise

ΔQ[[𝑜 •→−• 𝑜 ′]]Δ◦ = ΔQ[[𝑜]]Δ◦ ⊕ ΔQ[[𝑜 ′]]Δ◦

ΔQ[[𝑜
𝑚
⇋
𝑚

𝑜 ′]]Δ◦ = 𝑚
𝑚+𝑚′ΔQ[[𝑜]]Δ◦ + 𝑚′

𝑚+𝑚′ΔQ[[𝑜 ′]]Δ◦

ΔQ[[∀(𝑜 ∥ 𝑜 ′)]]Δ◦ = max(ΔQ[[𝑜]]Δ◦ ,ΔQ[[𝑜 ′]]Δ◦)
ΔQ[[∃(𝑜 ∥ 𝑜 ′)]]Δ◦ = min(ΔQ[[𝑜]]Δ◦ ,ΔQ[[𝑜 ′]]Δ◦)

Denote the set of all basic assignments by {Δ◦ [[.]]}. 2

The above formulation gives the SME the possibility of working

out the ΔQ behaviour of a snapshot of their system. Armed with

that, the SME needs to figure out whether such ΔQ behaviour

is affordable. In other words, they need to make sure the actual
ΔQ is within the acceptable bounds. To that end, we assume that

the SME’s customer provides them with a demand CDF: one that

defines the acceptable bounds. Definition 3.5 below is a recipe for

comparing the actual behaviour against a demand CDF.

Definition 3.5. Given a demand CDF 𝛾 and a partial order < on

Γ, say that a basic assignment Δ◦ is a witness that an outcome 𝑜 is

a hazard w.r.t. 𝛾

Δ◦ |=< hazard𝛾 (𝑜)
when

ΔQ[[𝑜]]Δ◦ ≮ 𝛾 .

Likewise, say Δ◦ is a witness that an outcome 𝑜 has slack once

compared with 𝛾

Δ◦ |=< slack𝛾 (𝑜)
when

ΔQ[[𝑜]]Δ◦ < 𝛾 .

2

The formulation of Definition 3.5 enables the SME to perform the

ΔQ analysis of a single snapshot of their system. In some cases, that

is enough because it can, for example, reveal absolute infeasibility.

For the majority of cases, however, that is not enough. After all,

a snapshot ΔQ analysis might not be conclusive, for a variety of

reasons. For example, one might not see any indication of a hazard

by employing just Definition 3.5 because more detail is required.

That takes us to Definition 3.8.

When an SME works out the ΔQ analysis of a snapshot, the

results might be favourable at the given level of refinement but

still inaccurate. In such a case, an SME may wish to refine the

system and perform the snapshot ΔQ again to check whether the

refinement confirms the initial ΔQ analysis. Definition 3.8 examines

that confirmation. Definitions 3.6 and 3.7 set the stage.

Definition 3.6. Let Δ◦ be a basic assignment. Write

𝐷Γ (Δ◦) = {𝛽 ∈ B | Δ◦ (𝛽) ∈ Γ}
for those B outcomes in the domain of Δ◦ that Δ◦ maps to CDFs.2

Definition 3.7. Say Δ′
◦ refines Δ◦ (write Δ◦ →Δ Δ′

◦) when

• 𝐷Γ (Δ◦) ⊆ 𝐷Γ (Δ′
◦)

• ∀𝛽 ∈ 𝐷Γ (Δ◦). Δ◦ (𝛽) = Δ′
◦ (𝛽).

In such a case, call Δ◦ →Δ Δ′
◦ a ΔQ refinement. When clear, we

will replace→Δ by →. 2

In words, a basic assignment refines another one when it keeps

all the CDFs in place and possibly adds more. We are now ready

for Definition 3.8.

Definition 3.8. Fix an outcome transition 𝑜 → 𝑜 ′ and a ΔQ re-

finement Δ◦ → Δ′
◦. Given a partial order < on Γ, say Δ◦ → Δ′

◦
witnesses that 𝑜 → 𝑜 ′ arms a hazard

Δ◦ → Δ′
◦ |=< hazard (𝑜 → 𝑜 ′)

when ΔQ[[𝑜]]Δ◦ ≮ ΔQ[[𝑜 ′]]Δ′
◦ . Likewise, say Δ◦ → Δ′

◦ witnesses

that 𝑜 → 𝑜 ′ leaves the system slack

Δ◦ → Δ′
◦ |=< slack (𝑜 → 𝑜 ′)

when ΔQ[[𝑜]]Δ◦ < ΔQ[[𝑜 ′]]Δ′
◦ . 2

3.4 Load Analysis
This section aims at analysing the load on given resources. Re-

sources can be of different types, in particular we distinguish

ephemeral resources that are available at a certain rate, and fixed
resources that are available in a fixed number or amount. Examples

of ephemeral resources are CPU cycles, network interface capac-

ity, and disk IO operations. Fixed resources include CPU cores,

memory capacity and disk capacity. In this paper, we consider only

ephemeral resources. The analysis we are after in this paper is

working out an answer to the following question: Will the resource

manage the amount of work assigned to it in the available time

frame?

To that end, we first need to set up terminology for specifying

the available time frame as well as the amount of work assigned to

a given resource. The next four paragraphs serve that purpose.

Write 𝑡◦ (𝑜) for the time an observable from the starting set of

an outcome 𝑜 occurs. Let 𝑡∞ (𝑜) = 𝑡◦ (𝑜) +𝑑 (𝑜), where 𝑑 (𝑜) denotes
the duration limit of 𝑜 .

Fix a set of resources
2 H ∋ 𝜌 .

The amount of work assigned to a resource 𝜌 is not scalar. The

unit of measurement is necessary. For example, when 𝜌 is CPU, a

sensible unit of measurement is the number of CPU cycles. When

𝜌 is network, a sensible unit of measurement is the message size.

At its current level of formalisation, however, we wish to set

ourselves free from thinking about units of measurement. Therefore,

given a resource 𝜌 , we write𝑊𝜌 for the set of values of the right

unit of measurement that an amount of work shed to 𝜌 can take.

The SME utilises our load analysis in the same way they utilise

our ΔQ analysis. That is, it is on them to provide some basic load

analysis. Then, they use the formulation we are about to present

(Definition 3.10) to work out the load analysis for larger parts of

their system, or possibly all of it. We now formalise what we mean

by a basic load analysis.

Definition 3.9. For a given 𝜌 , a basic “static (amount of) work

assignment for 𝜌" is a function:

𝜌
𝑊

𝑆◦ [[.]] : B→𝑊𝜌 .

Definition 3.10. Given a basic static work assignment 𝑆◦ for 𝜌 ,
the static work assignment (i.e., the amount of work for a single

2
The sensible notation for the set of all resources would have been R, which is already

reserved for real numbers. So, we chose H because the second letter in “rho" is ‘h.‘

6

Mind Your Outcomes IFL 2021, 01–03 Sep 2021, Online

performance of an outcome per unit of size)

𝜌
𝑊

𝑆 [[.]]𝑆◦ (.) : O→ 𝑇 →𝑊𝜌

(where 𝑇 is for time) is defined as

𝜌
𝑊

𝑆 [[𝛽]]𝑆◦ (𝑡) = 𝜌
𝑊

𝑆◦ [[𝛽]] 𝑡 ∈ [𝑡◦ (𝑜), 𝑡∞ (𝑜)]
𝜌

𝑊
𝑆 [[𝑜 •→−• 𝑜 ′]]𝑆◦ (𝑡) ={

𝜌
𝑊

𝑆 [[𝑜]]𝑆◦ (𝑡) 𝑡 ∈ [𝑡◦ (𝑜), 𝑡∞ (𝑜))
𝜌

𝑊
𝑆 [[𝑜 ′]]𝑆◦ (𝑡) 𝑡 ∈ [𝑡◦ (𝑜 ′), 𝑡∞ (𝑜 ′)]

𝜌
𝑊

𝑆 [[𝑜
𝑚
⇋
𝑚′ 𝑜

′]]𝑆◦ (𝑡) =
𝑚

𝑚+𝑚′ × 𝜌
𝑊

𝑆 [[𝑜]]𝑆◦ (𝑡) + 𝑚′
𝑚+𝑚′ × 𝜌

𝑊
𝑆 [[𝑜 ′]]𝑆◦ (𝑡)

𝜌
𝑊

𝑆 [[∀(𝑜 ∥ 𝑜 ′)]]𝑆◦ (𝑡) =
𝜌

𝑊
𝑆 [[∃(𝑜 ∥ 𝑜 ′)]]𝑆◦ (𝑡) =

𝜌
𝑊

𝑆 [[𝑜]]𝑆◦ (𝑡) + 𝜌
𝑊

𝑆 [[𝑜 ′]]𝑆◦ (𝑡).2

Whether or not a given resource 𝜌 is overloaded upon the per-

formance of an outcome 𝑜 is determined by whether 𝜌 can bear

the offered load in 𝑑 (𝑜). The smaller 𝑑 (𝑜), the quicker 𝑜 is to be

performed, i.e., the more intensely. But, that can only be done up to

a certain threshold that is determined by the system’s configuration.

In other words, whether the intensity brought to 𝜌 passes a given

threshold is what determines whether 𝜌 is overloaded. Similar to

𝑊𝜌 , at our current level of abstraction, we would like to disregard

the units of measurement for intensity. That is, we write 𝐼𝜌 for the

set of values of the right unit of measurement the intensity of the

load shed on 𝜌 takes. We single out \𝐼 (𝜌) ∈ 𝐼𝜌 for the threshold of

intensity 𝜌 can bear. When clear, we write \𝐼 for \𝐼 (𝜌).

Definition 3.11. For a fixed 𝜌 , given a threshold of intensity \𝐼 (𝜌)
and a basic static work assignment 𝑆◦ for 𝜌 , the static slack of an

outcome in 𝜌-consumption

𝑆◦ |=𝜌 slack\𝐼 (.) : O→ 𝑇 → 𝐼𝜌

is defined as

𝑆◦ |=𝜌 slack\𝐼 (𝑜) = \𝐼 −
𝜌

𝑊
𝑆 [[𝑜]]𝑆◦

𝑑 (𝑜) .

Define the static hazard of an outcome in 𝜌-consumption

𝑆◦ |=𝜌 hazard\𝐼 (𝑜) = −𝑆◦ |=𝜌 slack\𝐼 (𝑜).

2

Our emphasis on considering the analyses of Definitions 3.9–3.11

“static" is intentional.

Firstly, they all assume that a base outcome’s work is spread

uniformly over its duration limit. That is obviously not always

correct. The work assignment typically varies over the duration

limit. However, if to every base outcome 𝛽 , the SME chooses to

assign the highest amount of work 𝛽 needs to do during its duration

limit, the analyses given in Definition 3.11 would lead to a safe

upperbound that is useful as a first estimate.

Secondly, Definitions 3.9–3.11 assume that an outcome’s amount

of work is always the same throughout the runtime. Again, that

is not realistic. Various reasons might cause the amount of work

assigned to a base outcome to change over time. Examples are con-

gestion, nonlinear correlations between outcomes, and cascading

effects.

The above two paragraphs suggest more advanced load analy-

ses that are rather “dynamic.” We leave the development of such

analyses to future work.

4 CONCLUSIONS
This work presents a formalism (Section 3) for a systems develop-

ment process steered by performance predictability concerns. It

can be seen as a complement to system development approaches

which are steered by functional concerns.

The formalism is based on a vision (Section 1.1) that takes out-

comes of a system as the central point of focus (Section 3.2) and

captures the causal dependencies between outcomes as outcome

diagrams (Section 1.3). The formalism also describes the process of

refining outcome diagrams to one another (Definition 3.7), hence,

modelling the steps of a system design process. The formal spec-

ification serves as a basis for different analyses of a system such

as timeliness (Section 3.3) and behaviour under load (Section 3.4).

Although illustrated in the context of design refinement, the aim is

that these aspects should permeate throughout the complete system

life-cycle. The formalism employed for those analyses builds on

the simple concept of ΔQs for quality attenuation (Section 2) that

enables early detection of infeasibility. As such it helps early circum-

vention or redesign, when possible; hence, preventing foreseeable

but often neglected wasting of resources.

The formalism we present in this work is an attempt to give

a well-established practice, which we call ΔQSD, a sound footing.

Prior to this work, ΔQSD used concepts from pure functional lan-

guages (Haskell, in particular) by formulating the representation of

the performance characteristics as, for example, monoids. ΔQSD
has been successfully used in a wide range of industries, including

telecommunications, avionics, space and defence, and cryptocur-

rency. Our formalisation of ΔQSD is a part of a wider initiative both

within PNSol and IOHK [2].

Load analysis for other resources than ephemeral ones is future

work. Dynamic load analysis is also an important future work for

those being more realistic. In parallel, we plan to use our formal-

ism as an intermediate step to better teaching and disseminating

ΔQSD. We will build tools for understanding how to track the key

observables/outcomes from the the design into the implementation

so that they can support ongoing system development throughout

the life-cycle. The wider ΔQ framework is also under active devel-

opment in the Broadband Forum [5] as a means of characterising

quality attenuation associated with networks.

REFERENCES
[1] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic embedding of DSLs.

In Y. Smaragdakis and J. G. Siek, editors, Generative Programming and Component
Engineering, 7th International Conference, GPCE 2008, Nashville, TN, USA, October
19-23, 2008, Proceedings, pages 137–148. ACM, 2008.

[2] P. Kant, K. Hammond, D. Coutts, J. Chapman, N. Clarke, J. Corduan, N. Davies,

J. Díaz, M. Güdemann, W. Jeltsch, M. Szamotulski, and P. Vinogradova. Flexi-

ble formality practical experience with agile formal methods. In A. Byrski and

J. Hughes, editors, Trends in Functional Programming, pages 94–120, Cham, 2020.

Springer International Publishing.

[3] P. Thompson and N. Davies. Towards a performance management architecture for

large-scale distributed systems using rina. In 2020 23rd Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), pages 29–34, 2020.

[4] P. Thompson and N. Davies. Towards a RINA-based architecture for performance

management of large-scale distributed systems. Computers, 2(53), June 2020.
[5] P. Thompson and R. Hernadaz. Quality attenuation measurement architecture

and requirements. Technical Report TR-452.1, Broadband Forum, September 2020.

7

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Basic Concepts of the Q Framework
	1.3 Outcome Diagram
	1.4 Principles of the Formal Design Language
	1.5 Structure of this Paper

	2 Quality Attenuation
	2.1 Simple Example

	3 Formalism
	3.1 Notational Conventions
	3.2 Outcomes
	3.3 Q Analysis
	3.4 Load Analysis

	4 Conclusions
	References

