
20/01/2023

1

ΔQSD: Designing Systems with
Predictable Latency at High Load

January 18, 2023

Peter Van Roy
Université catholique de Louvain

Neil Davies, Peter Thompson
Predictable Network Solutions Ltd.

Seyed Hossein Haeri
PLWorkz

1

1

Organization of the tutorial
� Lecture 1: Case Studies

1. Small cells
2. iPhone launch
3. Cardano Shelley block diffusion

� Lecture 2: Compositional systems
1. Quality attenuation (ΔQ)
2. Outcome diagrams
3. Shelley block diffusion algorithm
4. Some typical ΔQs

� Lecture 3: Systems with dependencies
1. Shared resources
2. Iterative query

� Lecture 4: Multilevel systems
1. Managing risk
2. Multilevel system design
3. Supermarket example
4. Design for overload

� Conclusions

� ΔQSD is a system design paradigm that
can predict system behaviour at high
load. It was developed by PNSol over 30
years and validated in large-scale
industrial systems
◦ This tutorial is part of an ongoing project to

disseminate ΔQSD for the benefit of the
wider system design community

� This tutorial is work in progress: I
welcome errata and constructive
comments

� Caveat
◦ I am not the inventor of ΔQSD. I am a

computer scientist with long experience in
system design based on distributed systems
and programming languages. I created this
tutorial as part of my experience in learning
ΔQSD, because I consider ΔQSD to be an
interesting and innovative approach that
deserves to be more widely known.

2

2

20/01/2023

2

Systems with many users
� ΔQSD targets systems with many independent users

where performance and reliability are important
◦ Systems with large flows of independent data items
◦ Systems that are subject to unexpected overload situations

� Examples of systems where ΔQSD works well
◦ Distributed systems that perform tasks for many independent

users, such as cryptocurrency platforms
◦ Large-scale communications networks including telephony,

mobile telephony, and publish/subscribe
◦ Client/server systems, often with networked connections and

databases, such as used in Internet commerce
◦ Distributed sensor networks with real-time data streams and

analysis

3

3

PNSol Ltd
www.pnsol.com

� Predictable Network Solutions Ltd (PNSol) is a UK company
that specializes in system performance of large-scale
distributed systems
◦ PNSol was founded in 2003 by a small group of people from the

University of Bristol

� PNSol has solved problems in many industrial systems
including at British Telecom, Vodafone, Boeing Space and
Defence, and IOG (formerly IOHK)
◦ Performance under high load, scalability effects, managing

graceful degradation under adverse operational conditions
◦ Development of the ΔQSD methodology for design and diagnosis

of large systems with predictable performance under high-load
conditions

4

4

http://www.pnsol.com/

20/01/2023

3

ΔQSD paradigm
� ΔQSD is an industrial-strength paradigm for system design

that can predict performance and feasibility early on
◦ Developed over 30 years by a small group of people around

Predictable Network Solutions Ltd.
◦ Widely used and validated in large industrial projects, with large

cumulative savings in project costs

� ΔQSD properties
◦ Compositional approach with first-class latency and failure
◦ Stochastic approach to capture uncertainty during the design
◦ Performance (latency and throughput) and feasibility can be

predicted at high system load for partially defined systems
◦ Dependencies and multiple timescales are added to the

compositional approach

5

5

Goals of these lectures
� Understand the two main concepts of ΔQSD:

quality attenuation (ΔQ) and outcome diagram
� Understand how to design systems as

independent parts with added dependencies
� Understand how to design systems by refining

partially defined systems
� Understand how to compute latency and

throughput and infeasibility during the design
� Give enough concepts and examples so you can

start using ΔQSD in your own designs

6

6

20/01/2023

4

Introduction

7

7

Two main concepts of ΔQSD
� Quality attenuation (ΔQ): “first-class latency and failure”
◦ A ΔQ is a cumulative distribution function that defines both

latency and failure probability between a start and an end event
◦ Because the ΔQ combines latency and failure in a single quantity,

it makes it easy to examine trade-offs between them

� Outcome diagram: “system observed from outside”
◦ An outcome is any well-defined system behaviour with observable

start and end events; each outcome has a ΔQ
◦ An outcome diagram is a causal directed graph that defines the

relationships between all system outcomes; it allows computing
ΔQ for the whole system

◦ The outcome diagram can be used during the whole design
process. It can express partially defined systems that are refined
from an initial unknown design up to the final constructed system.

8

8

20/01/2023

5

Quality attenuation
and outcome diagram

9

C

ΔQ

1

0 delay
d

p

f
percent

min mout

ΔQ

C1 O1C2 O2

q1 r1u1

q1 r1u1

Outcome diagramSystem block diagram

ΔQ1 ΔQ2

Quality attenuationSystem component

9

Quality attenuation ΔQ

� Given a system component, for example a database
◦ What is the latency between a query and its response?
◦ It is not constant!
◦ Sometimes there is no response (component failure)!

� We give latency as a cumulative distribution function ΔQ
(actually, an improper random variable because max<1)
◦ This represents both the variability and the failure probability

DB

ΔQ

1

0 latency
d

p

f
percent

query response

ΔQ

Quality attenuationSystem component

10

20/01/2023

6

Outcome diagram

� Given a system with a frontend and database
◦ What is the total delay from u1 to r1?

� We represent the system as an outcome diagram,
a graph that shows how the delays combine
◦ Total delay ΔQSystem is the “sum” of delays ΔQFE and ΔQDB

◦ ΔQSystem = ΔQFE ⊕ ΔQDB

◦ How do we calculate this sum? We will see it later!

11

FE OFEDB ODB

q1 r1u1

q1 r1u1

Outcome diagramSystem block diagram

ΔQFE ΔQDB

ΔQSystem

11

To the case studies…
� Now we know enough for the case studies

� We combine ΔQi of components Ci to get the
ΔQsystem of the whole system
◦ If there is something wrong with ΔQsystem then we reason

backwards to pinpoint the problem

� After the case studies, we will study how to design
systems using ΔQ and outcome diagrams

12

12

20/01/2023

7

Lecture 1
Case Studies

13

13

Case studies
� As motivation for ΔQSD we present three case studies
◦ Small cells
◦ iPhone launch
◦ Cardano Shelley

� These are industrial case studies done by PNSol that have
limited documentation and are partially covered by NDA

� In these scenarios, the ΔQSD paradigm is used in two ways
◦ Diagnostic use: debugging of existing systems with problems

(for small cells and iPhone launch)
◦ Design use: designing systems using ΔQSD from the start

(for Cardano Shelley)
� It’s better to use ΔQSD for design rather than diagnosis
◦ Prevention is better than cure!
◦ This is one of the motivations of this tutorial: to disseminate the
ΔQSD paradigm so it can be used during the design process
� PNSol is often called in to perform a cure for systems that have major problems

14

14

20/01/2023

8

1. Small Cells Case Study

15

15

Small cells case study
� A major MNO (Mobile Network Operator), who shall

remain unnamed, deployed small cells
◦ Small cell: low-powered cellular radio access nodes with

range 10m-3km
◦ Backhaul using consumer DSL broadband

� The system worked but did not scale
◦ Voice quality had major problems, cells were failing
◦ What part of the system is the cause and who is to blame?

� PNSol was brought in to investigate
◦ Determined outcome diagram for complete system
◦ Measured ΔQ across system to pinpoint the problem
◦ Focus on problematic behavior shown by ΔQ
◦ ΔQSD led to successful diagnosis and cure proposal

16

16

20/01/2023

9

Who is to blame for my system crashing?

MNO (erroneously) believed that: (1) its contracts would deliver
the service & contain the hazards; and (2) there were no residual hazards.

MNO’s accountability

RAN supplier Backhaul supplier Core supplier

C1 C2 D EB

A

17

ΔQAB ΔQBC1 ΔQC2D ΔQDE

17

How PNSol gathered the evidence

� Establish end to end measurement
◦ From synthetic traffic generator… (A)

� includes an observer

◦ …to reference point (E)
� reflects traffic, acts as a protocol peer, and includes an observer

◦ Add internal observers to get spatial discernment (B, C, D)

� Analyse measurements to obtain ΔQ distributions
◦ Outcome diagram

A→B→C1→C2→D→E→D→C2→C1→B→A
◦ Measure quality attenuation ΔQ for outcomes
◦ Identify issues and anomalies for further investigation

� Each added observation point greatly increases spatial fidelity
◦ Example: even with just A and E there is definitive knowledge

as to whether the effect is occurring upstream or downstream.

18

18

20/01/2023

10

Which direction has issues?

Upstream variability
is 5 times greater
than downstream;
tail variation is x10

19

Problem in upstream?
No, actually not!

0

ΔQAE

1

Each slice gives an
instantaneous ΔQAE

Round trip

Upstream

Downstream

19

Who is to blame for the system failing?

Examine sub-paths to isolate the issue

20

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 100 200 300 400 500 600

Observ
ed Dela

y Betw
een En

d Point
s (s)

Experiment Run Time (s)

B->C->D delay

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500 600

O
bs

er
ve

d
De

la
y

Be
tw

ee
n

En
d

Po
in

ts
 (s

)

Experiment Run Time (s)

D->C->B delay

Small cell fails
shortly after this

Upstream Downstream

Resized to
same scale
Resized to
same scale

20

• The instantaneous ΔQ is measured as a function of experiment run time
• We find that the ΔQ is not stationary: it changes during the run
• There are times when the ΔQ has strong anomalous behavior

20

20/01/2023

11

Where is the issue?

21

National Interconnect Wholesale Access Core

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600

O
bs

er
ve

d
De

la
y

Be
tw

ee
n

En
d

Po
in

ts
 (s

)

Experiment Run Time (s)

C->B delay

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 100 200 300 400 500 600 700

Observ
ed Dela

y Betw
een En

d Point
s (s)

Experiment Run Time (s)

D->C delay

Resized to
same scale

Here is the
problem

Resized to
same scale

Use spatial resolution to isolate the problem

21

Zoom in on the issue

22

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 590 591 592 593 594 595 596 597 598 599 600

Ob
se

rve
d D

ela
y B

etw
ee

n E
nd

 P
oin

ts
(s)

Experiment Run Time (s)

C->B delay

Typical queue overload pattern:
get into ‘trouble’ very quickly, get out of it far more slowly

Temporary overloads have long-lasting effects!

Expand temporal resolution to examine the problem

⇒ Later in the lecture we will study queues to understand this

Buffer fills quickly Buffer empties slowly

22

20/01/2023

12

Actual + predicted measures

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 590 591 592 593 594 595 596 597 598 599 600

O
bs

er
ve

d
De

la
y

Be
tw

ee
n

En
d

Po
in

ts
 (s

)

Experiment Run Time (s)

C->B delay

Measured delay
in access network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 590 591 592 593 594 595 596 597 598 599 600Ca
lcu

la
te

d
Q

ue
ui

ng
 D

el
ay

 D
ue

 T
o

Ar
riv

al
 R

at
e

Ex
ce

ed
in

g
Li

nk
 C

ap
ac

ity
 (s

)

Experiment Run Time (s)

calculated queueing delay

Calculated delay
(from mathematical model)

due to arrival pattern of traffic
exiting MNO security gateway

Use predictability of ∆Q to check the conclusion

23

Technical diagnosis

� A queue is forming in the wholesale access network
◦ This is because the arrival rate from the MNO security boundary

exceeds the sync rate (service capacity) of the xDSL line
◦ The queue exhibits temporary overloading, which degrades

overall behaviour for long time periods
◦ This is in breach of the wholesaler’s technical terms & conditions

� This queue delays all traffic, including small cell control traffic
◦ Small cells are known to fail if their control loops exceed a given

round trip time. The figures here are 5x that limit.
� System reset is just the extreme failure case
◦ Delays of that magnitude adversely effect voice quality as well
◦ Causes small cells to “breathe” inappropriately
◦ Dramatically weakens deployment business case

24

20/01/2023

13

Systemic diagnosis and cure

� Why is the system crashing?
◦ There is an unmanaged hazard that sits with the MNO

� Root cause is that the subsystems don’t compose
◦ The pre-requisites for use of one element are not met by other

elements of the system
� Common structural problem, not unique to this MNO or technology

◦ The MNO believed they only had to match bandwidths (numbers!)
� They should match ΔQ (CDFs!) (Quantitative Timeliness Agreement)

� Recommendations to the MNO:
◦ Note on corporate risk register: records the risks and

opportunities that affect the delivery of the Corporate Plan
◦ Technical training to improve contractual processes &

hazard management

25

2. iPhone Launch
Case Study

26

26

20/01/2023

14

iPhone launch case study

� iPhone was initially supported in UK by one MNO

� A second MNO prepared to enter this market
◦ Before the launch, the performance was known to be bad

for the second MNO, and the first MNO had gleefully
prepared a major ad campaign focusing on this fact
� Both MNOs are large UK operators who will remain unnamed

◦ Using ΔQSD, PNSol managed to diagnose and correct the
problem just before the launch
� Thus saving the bacon of the second MNO

◦ Result was a 100% improvement in http download KPI,
which placed the second MNO in first place
� To the great embarrassment of the first MNO

27

27

Diagnosis approach and solution
� For data collection, observation points were placed at the RNC

(Radio Network Controller) and around the network edges

� The ΔQSD paradigm was used for the diagnosis
◦ Determine outcome diagram for end to end delivery of packets and

measuring ΔQ for intermediate points
◦ Isolate cause and effect to pinpoint the problem, finding where loss

and delay are introduced in an unexpected pattern
◦ Ultimately, to find solutions

28

20/01/2023

15

Packet delivery behaviour

Here we observed a RTT
delay introduced for each
packet in a sample low-rate
stream over the entire path
during the first 100
seconds of the data
collection
This sample did not show
any unexpected behaviour
in the network in terms of
loss and delay during this
period;
However …

Not real data for example purposes only

The RTT (Round-Trip Time) during the first 100 seconds

29

Not real data for example purposes only

Packet delivery behaviour

With the full sample time at almost
800 seconds we observed
unexpected behaviour;
� Service break occurred
� Excessive delays of up to 1s

This directly correlates to a bad
experience being delivered to end
users
• And delivering quality is about

making bad experiences rare

The next step is to divide the paths (MT, RNC, Internet) into
sections and deal with the issues in a focused way…

The RTT for the full duration of the data collection

30

20/01/2023

16

Packet delivery behaviour

Improvements typically are focused on
getting the best from the down link (DL)
RNC to MT….
But as can be seen from the BLUE on
the chart (RNC to MT DL) we only
observed a single outlier during the total
sample time
For the full round trip across the core to
the internet and back shown in GREEN
we again observed no real issues
The MNO suspected the RNC DL was
the major trouble spot. As can be seen
with the RED (MT to RNC UL) we found
it was really on the UL: this is where the
service break occurred.

Observing the end-to-end behaviour of packet flows enables
the true cause of issues to be identified and corrected

Not real data for example purposes only

Combined observations split by element

31

iPhone launch findings using ΔQSD (1 of 2)

• Damaging user experience
• Placing excessive load on HLR/

authentication servers
Slow PDP context

authentication

• Damaging user experience.
• Excessive radio-bearer allocation

times from RNC.

Outsourced RAN
inappropriately

configured

• Latent & intermittent bug caused
proxy to fail for x% of GGSN users
for y sec

• Potential distributed denial of
service attack (DDOS)

Fault in core network
related to

implementation of
restrictive content

filters

Significantly reduced
HLR load

Improved user
experience

Increased responsiveness
Reduced signalling load

against RNC
Reduced pressure for

RNC upgrade

Removed intermittent
failure for users

Increased the robustness
of the MNO network

Problem Issues Results

32

20/01/2023

17

iPhone launch findings using ΔQSD (2 of 2)

• Upstream problems from
RNC to internet

• Issue due to particular
equipment interactions

TCP download
throughput audit

• Worsened round-trip latencies
• Unnecessarily increasing

transmission load/ network
volume on GGSN, SGSN, & RNC

• Probable cause of occasional
bursts of several seconds of
delay in end-to-end user traffic

Unnecessary
multiple

fragmentation of
user data in many
parts of the MNO

network

* as measured by independent testing
** by internal MNO measurement

Solution increased
effective TCP

throughput by 47%*
This took the MNO

from 2nd/3rd in their
market to equal 1st

Gave an additional
100% improvement in
http throughput KPI**
This put the MNO well
ahead of competition

Problem Issues Results

33

3. Cardano Shelley
Case Study

34

34

20/01/2023

18

Cardano Shelley case study
� The previous case studies used ΔQSD for diagnosis
◦ PNSol was brought in to diagnose problems in running systems

� Cardano Shelley used ΔQSD for the system design
◦ Design is the preferred way to use ΔQSD

(“prevention, not cure!”)
� Cardano Shelley is part of the Cardano blockchain, supporting

the Ada cryptocurrency
◦ An important part of Cardano is block diffusion, to allow an authorized

node to create a block and add it to the most recently created block
◦ The initial implementation, Jormungandr, had insufficient performance
◦ A further implementation, Shelley, was done using ΔQSD to guide the

design from early on, and achieved adequate performance in a
decentralised environment
� We present part of the Shelley design using ΔQSD

35

35

Context of block diffusion
� Blockchain management in Cardano
◦ We will use ΔQSD to solve a design problem in the Cardano

cryptocurrency, which is implemented using a blockchain
◦ A blockchain is a distributed ledger comprising a set of data blocks

that are cryptographic witnesses to correctness of preceding blocks
◦ A distributed consensus algorithm is used to agree on the correct

sequence of blocks; Cardano uses the Ouroboros Praos consensus
◦ Ouroboros Praos randomly selects a node to produce a new block

during a specific time interval, weighted by distribution of stake

� Shelley block diffusion algorithm
◦ The block-producing node is randomly chosen and needs a copy of

the most recent block
◦ Therefore this block must be copied to all potentially block-producing

nodes in real time, which is called block diffusion
◦ We will design a block diffusion algorithm using ΔQSD to ensure that

the algorithm satisfies stringent timeliness constraints

36

36

20/01/2023

19

Block diffusion problem statement

� Problem:
◦ Determine ΔQAZ for

randomly chosen nodes A
and Z, as function of design

◦ Determine design so that
ΔQAZ satisfies performance
constraints

◦ ΔQXY is known
(measured)

� Design parameters:
◦ Frequency of block production
◦ Node connection graph
◦ Block size
◦ Block forwarding protocol
◦ Block processing time

37

…

… …

…

… …

…

…

…

…

…
A

Z

B C
Sequence of intermediary nodes

Node graph of Cardano blockchain

ΔQAZ

X Y

37

Block diffusion design using ΔQSD

� First step: ΔQ measurement
◦ Measure primitive ΔQ for simple cases
◦ Compute overall ΔQ for two arbitrary nodes across the Internet

� Second step: Algorithm design
◦ Define simple initial design and its outcome diagram
◦ Performance is ΔQ as function of load
◦ Make a design decision and refine the outcome diagram

� Each refinement defines a new outcome diagram
� Compute new performance and compare with requirements
� Decide whether to keep the design or not

◦ Continue until design is satisfactory
� We will show part of this process in Lecture 2
◦ When we have defined the concepts we need

38

38

20/01/2023

20

Lecture 2
Compositional Systems

39

39

Systems with no dependencies
(compositional systems)
� ΔQSD approach is done in three steps
◦ First, design the system with independent parts
◦ Second, add dependencies where they are needed
◦ Third, add multiple levels to handle multiple timescales

� We start with systems of independent parts
◦ Most systems consist largely of independent parts
◦ Dependencies and multiple levels will be treated later

(in Lectures 3 and 4)
� Topics for Lecture 2
◦ Quality attenuation (ΔQ)
◦ Outcome diagrams
◦ Cardano Shelley block diffusion
◦ Some typical ΔQs

40

40

20/01/2023

21

Lecture 2 contents
1. Quality attenuation (ΔQ)

1. Designing with ΔQ
2. Diagnosing with ΔQ

2. Outcome diagrams
1. Client/server example
2. Cache memory example
3. General system design
4. Semantics of outcome diagrams

3. Cardano Shelley block diffusion algorithm
1. Measuring ΔQ
2. Designing with outcome diagrams

4. Some typical ΔQs
1. Some typical distributions
2. ΔQ for a typical component
3. Load balancing example
4. ΔQ for a typical network

41

41

1. Quality Attenuation
(ΔQ)

42

42

20/01/2023

22

Quality attenuation (ΔQ)

� Message min enters component A and mout exits
� How do we characterize the message traveling through A?
◦ The latency between entry and exit: delay value (a number)
◦ The message might be dropped: chance of failure (a percentage)
◦ The latency is not always the same for all messages: jitter

� We combine all this into a single quantity ΔQ
◦ p percent of messages have delay ≤ d and f percent of messages fail
◦ Latency and failure are considered together, not separately
◦ This helps to examine trade-offs latency/failure in the same design

43

A

?

1

0 delay
d

p

f
percent

min mout

43

Combining delay and failure
� Delay and failure are combined in one quantity ΔQ
◦ Two parts of system design that are usually separate are

considered together
◦ This lets us examine trade-offs between delay and failure

� Performance and fault tolerance should not be separate
◦ They are two sides of the same coin
◦ For example, failure can be reduced by increasing delay,

which is all part of one ΔQ
� By changing the maximum delay threshold: increasing delay tolerance

will reduce the percentage of messages that are considered failed
� By retrying: failure can be made arbitrarily small by increasing delay
� Both of these techniques are captured by the ΔQ quantity

44

44

20/01/2023

23

Comparing ΔQs
� We can compare two

ΔQs: one is less than the
other if its CDF is
everywhere to the left
and above the other
◦ Mathematically, this relation

between two ΔQs is a
partial order
◦ If the ΔQs intersect then

they are not ordered

� A system satisfies its
specification if the
‘delivered ΔQ’ is less than
the ‘required ΔQ’

ΔQ1

ΔQ2

ΔQ1 < ΔQ2

45

“Adding” two ΔQs

� Given components A and B
◦ ΔQA from m1 to m2

◦ ΔQB from m2 to m3

� We connect them together
◦ What is ΔQAB from m1 to m3?

46

ΔQA ΔQB

A B

ΔQAB ?

m1 m2 m3

0

ΔQA

1

0

ΔQB

1

0

ΔQAB

1

⊕

=

?

46

20/01/2023

24

Convolution: “sum” of two ΔQs

� How likely is a total delay t?
� Total delay t is split over A and B:
◦ t = δ + (t–δ)

� Since A and B are independent,
probability density is the product:
◦ pAB(t) = pA(δ)⋅pB(t–δ)

� We sum over all the values of δ:
◦ Total pAB(t) = ∑0≤δ≤t pA(δ)⋅pB(t–δ)

◦ PDFAB(t) = ∫ PDFA(δ)⋅PDFB(t–δ)dδ

◦ This is a convolution
47

0

ΔQA

1

0

PDFA

dA dA

0

PDFB

dB

0

PDFAB

dAB

derivative

t

t

0

t-δ

δ

probability
density

cumulative probability

t

47

Designing with ΔQ

48

48

20/01/2023

25

Designing with ΔQ
� We can use ΔQ to help design a system
� Let’s start with a simple system that is just a connection

of two components
◦ We will show both a top-down and a bottom-up design

� In both cases, we determine the behavior of a new component
◦ We will determine when the top-down design is infeasible:

when there is no possible way to build it (because a
component must have negative delay and/or negative loss!)

� We will use a simple ΔQ in these examples, namely a
Uniform distribution
◦ This is a reasonable approximation for components, but of

course many other ΔQs occur in practice!
◦ We will “add” and “subtract” ΔQs in the examples, note that

technically this is convolution and deconvolution

49

49

Uniform distribution

� For our two examples, we use a Uniform distribution for ΔQ
◦ It is one of the simplest distributions and it is useful in practice:

many components have approximately a uniform distribution
◦ Uniform distributions are good for “back-of-the-envelope” ΔQ

computations; an automated tool can of course compute with a full ΔQ
� In this lecture, we will do back-of-the-envelope computations
◦ It is easy to extend this and do the full computations

50

1

0
a a+sa

Uniform
spread sa

� A Uniform distribution approximates
a component with buffer and server
◦ a is the minimum time in the component

◦ sa is the spread of times in the component

◦ a+sa is the maximum time in the component

50

20/01/2023

26

Bottom-up design with ΔQ

� Component A has ΔQA and
component B has ΔQB

◦ What is ΔQC?

� We assume Uniform
distributions for A and B and
“add” them to get C:
◦ Assume (a,sa) and (b,sb)
◦ We can approximate (c,sc):

c = (a + b) + m/4
sc = max(sa,sb) + m/2
where m=min(sa,sb)

◦ Overall delay c is a bit more than
the sum of the two delays

◦ Overall spread sc is a bit wider
than the worst spread

51

ΔQC = ΔQA ⊕ ΔQB

ΔQA

Already known

Compute ΔQC

ΔQB

Already known

A B

51

Numerical bottom-up example
� We know A and B
◦ a=5, sa=10
◦ b=5, sb=10
◦ m=min(sa,sb)=5

� Compute for C:
◦ c = (a+b)+m/4 = 11.25ms
◦ sc = max(sa,sb)+m/2 = 12.5ms

� Note bigger c and sc!
◦ c = 11.25 not 10
◦ sc = 12.5 not 10

52

0

ΔQA

1

0

ΔQB

1

0

ΔQC

1

⊕

=

?

11.25 23.75

5ms 10ms

5ms 10ms

52

20/01/2023

27

Top-down design with ΔQ

� There is a global overall
requirement of ΔQC and
component B is known to
have ΔQB

◦ What ΔQA is needed for A?
� We assume Uniform

distributions and “subtract”:
◦ a ≤ (c – b) – m/4

� Remember that m=min(sa,sb)
� A’s delay must be less than c–b

◦ If sa ≤ sb then sa ≤ 2(sc–sb)
If sa > sb then sa ≤ sc–sb/2
� This follows from

max(sa,sb)=sc – m/2

53

ΔQC = ΔQA⊕ ΔQB

Already known ΔQC

Compute ΔQA ΔQB

Already known

A B

53

Numerical top-down example
� We know B and C
� Assume sa ≈ sb
◦ b=5, sb=5
◦ c=7.5, sc=7.5
◦ m=min(sa,sb)=5

� Compute for A:
◦ a ≤ (c–b)–m/4 = 1.25ms
◦ sa ≤ 2(sc–sb) = 5ms

� Note strict bound on A!
◦ a=1.25 not 2.5

54

0

ΔQA

1

0

ΔQB

1

0

ΔQC

1

⊕

=

?

7.5ms 15ms

5ms 10ms

1.25 6.25

54

20/01/2023

28

Infeasibility check for top-down
� Let us compute the conditions on B and C for feasibility
◦ If they are not satisfied, then no component A is possible so

the design is certainly infeasible!
� We start with two simultaneous equations in (a,sa):

c = a + b + min(sa,sb)/4
sc = max(sa,sb) + min(sa,sb)/2

� We solve this by distinguishing two cases
� First, assume sa≤sb :

sa = 2(sc – sb) > 0 which implies sc > sb [1]
a = (c–b)–(sc–sb)/2 > 0 which implies (c–b) > sc/2–sb/2 [2]

� Second, assume sa>sb :
sa = sc – sb/2 > 0 which implies sc > sb /2 [3]
a = c–b–sb/4 > 0 which implies (c–b) > sb/4 [4]

� The design is infeasible if (¬[1] ∨ ¬ [2]) ∧ (¬[3] ∨ ¬[4])
which is implied by sc ≤ sb/2 ∨ (c–b)≤min(sc/2–sb/2, sb/4)

55

55

“Subtracting” Uniform distributions
� When doing top-down design, we do the opposite of addition
◦ Mathematically, we are doing deconvolution which is much harder

to compute than convolution
◦ However, for specific distributions like Uniform it is easy
◦ It is also not a problem for a tool, because even though it needs

much more computation, the user does not notice
� It is a really good use of computation power to help a system designer

� Top-down design introduces a new subtlety: “goodness”
changes direction
◦ Bottom-up (addition): we compute the known behavior of a

component, so decreasing sa means it is performing better
◦ Top-down (subtraction): we compute a requirement on a new

component, so decreasing sa makes it harder to satisfy

56

56

20/01/2023

29

Diagnosing with ΔQ

57

57

Diagnosing with ΔQ

� Consider a pipeline of components that has a bad overall ΔQ
◦ This happens often in practice, e.g., the small cells case study

� Since adding a component can only make ΔQ get worse, we can
find the faulty component(s) by binary search

� This technique can be generalized to follow the path of messages
through the system
◦ This technique was used in the small cells case study

58

C1 C2 Cn-1 Cn

ΔQ

ΔQ1 ΔQ2 ΔQn-1 ΔQn

…

…

58

20/01/2023

30

2. Outcome Diagrams

59

59

Outcome diagrams
� Now let’s combine components (defined by ΔQ)

into full systems (defined by outcome diagrams)
� Outcome diagrams define systems by looking at

their behaviours from the outside
� They are purely observational
◦ They are very different from UML diagrams

� UML diagrams define what happens inside the system being modelled

◦ Outcome diagrams say nothing about system state
� They are extremely useful
◦ Many different kinds of component can be brought

together, software, humans, mechanical devices
◦ They allow estimating performance and feasibility early on

in the design process
60

60

20/01/2023

31

Single outcome

� An outcome O1 is a specific system behaviour, which is a pair
defined by its start event q1 and end event r1
◦ We don’t care how the system is built, we simply observe it
◦ Left figure shows the query and response messages entering and

exiting a component
◦ Right figure shows just the causal connection between the two

events: query causes response, with quality attenuation ΔQ1
61

System
component

(e.g., server)Query q1
(start event)

Response r1
(end event) O1=(q1,r1)

q1 r1

Component performing an outcome
(in the running system)

Causal connection between q1 and r1

(just an abstract relationship)

ΔQ1

Outcome
O1

61

Outcome diagram

� We have a user click u1 causing a query q1 to be sent causing a
response r1 to be received

� An outcome diagram is a graph showing the causal connections
between all the outcomes that we are interested in
◦ We don’t actually care (yet) how the system is constructed, we are only

interested in the behaviour
◦ Total ΔQ is the convolution of the individual ΔQ1 and ΔQ2

(all delays and failures are “added”)
62

C1 O1C2 O2

q1 r1u1q1 r1u1

Outcome diagramBlock diagram

ΔQ = ΔQ1 ⊕ ΔQ2

ΔQ1 ΔQ2

62

20/01/2023

32

How outcome diagrams work

� An outcome O1 occurs when event u and event q both occur
◦ Square boxes show where events may occur (locations in the system)
◦ Circles show which outcomes can occur (behaviours we are interested in)

� New instances of O1 can occur later when new instances of u and q occur
◦ Many user clicks and queries can happen when the system is running
◦ If new events u’ and q’ occur then a new outcome O1’ occurs

63

O1 O2

C1 O1C2 O2

u q

event u event q

Outcome O1 occurs when
events u and q both occur

User click u enters C1

and query q exits C1

The outcome diagram shows
the events and outcomes that
we are interested in and how
they are related

Behaviour we are
interested in (outcome)

click query

63

Client/server example

64

64

20/01/2023

33

Generic RPC outcome diagram

� This is a simple client/server shown as an outcome diagram
� Each square is an event and each circle is an outcome
� Each outcome has its own ΔQ
� Total ΔQ from user click to response displayed is addition of all ΔQs

65

O2 O3

O5O6

O1

Browser Network

O7

O4Server

User
click

Response
displayed

Query
created Query sent Query received

Response sentResponse
received

Response
processed

65

Cache memory example

66

66

20/01/2023

34

Cache memory example

� A cache memory is modeled using probabilistic choice
� ΔQmem = h･ΔQhit + m･(ΔQmiss ⊕ ΔQmain)
� We can see the cache as one component or refine it

67

Cache Main
memory

read

return

main

hit

⇋
miss

miss

read return

main

0.95

0.05

main

Refinement step

mem

67

Cache quality attenuation

Combining the three
ΔQs gives the cache
memory’s overall ΔQmem

68

1

0

hit
(95%)

1

0

miss
(5%)

1

0

mem

1

0

main

1

1.5

4

1 5.5

0.95

68

20/01/2023

35

General system design

69

69

General system design

� We design the system by
designing its outcome diagram
step by step

� We start from an unknown
system and refine it until we
arrive at the actual system

� At each step, we can compute
estimated performance and
feasibility
◦ If we make a mistake, we can

correct it before actually
building the system

70

Unknown system
uin uout

uin uout

uin uout

request

request

reply

replydb-request db-reply

Unknown subsystem

Refinement step

Refinement step

Completely defined system

70

20/01/2023

36

Example top-down design

� We use a top-down design approach
◦ We assume that ΔQsystem , ΔQrequest , ΔQreply are all known: ΔQsystem is the system

requirement, and ΔQrequest and ΔQreply have already been determined
◦ We compute required ΔQunknown for the unknown subsystem to be designed

� If ΔQunknown is infeasible, then go back and change ΔQrequest and ΔQreply

◦ If there is no way to solve the problem by changing ΔQrequest and ΔQreply then we
need to go back even further and change the overall requirement ΔQsystem or
change the outcome diagram (i.e., the system design)

� We navigate by going up and down the refinements until reaching a
satisfactory design or until showing that no design is possible

� This gives a design tree…
71

uin uout
request replyUnknown subsystem

ΔQsystem = ΔQrequest ⊕ ΔQunknown ⊕ ΔQreply

71

Exploring the design space

� The design space is a tree of partially defined systems
◦ The designer navigates the tree starting with an unknown system, making

design decisions, until arriving at a completely designed system that
satisfies the requirements

� The ΔQSD paradigm allows to compute infeasibility early on, even
for partially defined systems

72

Unknown system

Completely
designed system

…

… … … …… …

… …

…

Infeasibility detected
here with ΔQSD

D1 D2
D3 : Refinement (design decision)

D4

D5

D6

DX

Subtree containing
all designs using DX

Infeasibility detected here
with traditional method

Start here

72

20/01/2023

37

Connection to logic programming
� There is a precise correspondence between this design process

and the execution of a logic program
◦ Initial system requirements = query (initial logical formula)
◦ Partially specified system = logical formula
◦ Completely specified system = solution
◦ Design decision = axiom choice
◦ Infeasibility = unsatisfiability (failure)

� If a choice leads to failure, then the system backtracks
◦ “If a design decision leads to infeasibility, then we remove it”

� Logical semantics
◦ Proof theory: Designing a system is deduction in a proof system in

which each design decision is an additional logical constraint
◦ Model: Each partially specified system corresponds to a set of

concrete systems that are coherent with that specification; each
design decision restricts the set; infeasibility means an empty set

� A software tool for ΔQSD is a logic programming system

73

73

Semantics of outcome
diagrams

74

74

20/01/2023

38

Semantics of outcome diagrams

� Given an outcome diagram and the ΔQs of all outcomes in the
diagram, we can compute the ΔQ of the complete diagram
◦ Recall that ΔQ(t) is a function of delay t that represents the

cumulative probability distribution of the delay (formally, it is an
improper random variable since the maximum can be < 100%)

� Outcome diagrams have four primitive operators
◦ Sequential composition (convolution)
◦ Probabilistic choice (weighted sum)
◦ Last-to-finish (all-to-finish) (arithmetic product)
◦ First-to-finish (dual of arithmetic product)

� They are defined as a formal language
◦ Outcome diagrams are represented formally by outcome expressions

with a semantics, which allows a software tool to represent outcome
diagrams and do ΔQ computations on them

◦ We only give the semantics of the four operators in this lecture; to
make a practical software tool we need to define more properties

75

75

Sequential composition

� Assume two outcomes OA and OB where the end event of OA
is the start event of OB

� The probability distribution of OAB is the convolution of the
probability distributions of OA and OB

� Therefore:
ΔQ′AB = ΔQ′A ⊕ ΔQ′B
where ΔQ′(t) = dΔQ/dt and ⊕ is the convolution operator

� Convolution is a commutative mathematical operator, but this
does not mean that components can be switched around

76

OA OB

ΔQAB

76

20/01/2023

39

Probabilistic choice

� Assume there are two possible outcomes OA and OB and
exactly one outcome is chosen during each occurrence of
a start event

� OA occurs with probability p/(p+q)
OB occurs with probability q/(p+q)

� Therefore:
ΔQPC(A,B) = ΔQA + ΔQB

77

OA

⇋
OB

ΔQPC(A,B)

p

q

p
p+q

q
p+q

77

Last-to-finish semantics

� Assume two independent outcomes with the same start event
� Last-to-finish outcome occurs when both end events occur
� ΔQLTF(A,B) = Pr[dA≤ t ∧ dB≤ t] = Pr[dA≤ t] × Pr[dB≤ t] = ΔQA × ΔQB

� Therefore:
ΔQLTF(A,B) = ΔQA × ΔQB
where × is simple multiplication

78

OA

∀
OB

ΔQLTF(A,B)

78

20/01/2023

40

First-to-finish semantics

� Assume two independent outcomes with the same start event
� First-to-finish outcome occurs when at least one end event occurs
� We compute the probability that there are zero end events
� (1–ΔQFTF(A,B)) = Pr[dA> t ∧ dB> t]

= Pr[dA> t] × Pr[dB> t] = (1–ΔQA)×(1–ΔQB)
� Simplifying gives:
ΔQFTF(A,B) = ΔQA + ΔQB – ΔQA × ΔQB

79

OA

∃
OB

ΔQFTF(A,B)

79

Timeout example
� Timeout is modeled using first-to-finish
� Assume a send request to “Cloud” that

waits for a response or a timeout
� This gives:

ΔQCT = ΔQC + ΔQT – ΔQC × ΔQT

80

OC

∃
OT

ΔQCT

send

response
or

timeout

Timer

Merge

init

timeout

response

Cloud

0

ΔQT

timeout threshold

0

ΔQC

0

ΔQCT

1

1

1

ΔQCT ΔQC

response
timeout

80

20/01/2023

41

Inverse computations
� When designing a system, it is common to make

top-down decisions
◦ We have the known ΔQ of a component and we need to

compute the required ΔQ of a subcomponent
◦ For sequential composition, this requires doing a

deconvolution, which is the inverse of convolution

� For the other three operations this also requires
doing an inverse computation
◦ In most cases, there are many possible ΔQs for the

subcomponent. The inverse computation therefore
computes a set of possible ΔQs which defines a range of
allowable behaviours for the subcomponent.

81

81

3. Cardano Shelley Block
Diffusion Algorithm

82

82

20/01/2023

42

Context of block diffusion
� Blockchain management in Cardano
◦ We will use ΔQSD to solve a design problem in the Cardano blockchain, which

is an open-source platform using proof of stake
◦ A blockchain is a distributed ledger comprising a chain of data blocks that are

cryptographic witnesses to correctness of preceding blocks
� Ledger = A book in which financial transactions are recorded

◦ A distributed consensus algorithm is used to agree on the correct sequence of
blocks; Cardano uses the Ouroboros Praos consensus

◦ Ouroboros Praos randomly selects a node to produce a new block during a
specific time interval, weighted by distribution of stake

� Shelley block diffusion algorithm
◦ The block-producing node is randomly chosen and needs a copy of the most

recent block
◦ Therefore the most recent block must be copied to all potentially block-

producing nodes in real time, which is called block diffusion
◦ We will design a block diffusion algorithm using ΔQSD to ensure that the

algorithm satisfies stringent timeliness constraints
83

83

Block diffusion problem statement

� Problem:
◦ Determine ΔQAZ for

randomly chosen nodes A
and Z, as function of design

◦ Determine design so that
ΔQAZ satisfies performance
constraints

◦ ΔQXY is known
(measured)

� Design parameters:
◦ Frequency of block production
◦ Node connection graph
◦ Block size
◦ Block forwarding protocol
◦ Block processing time

84

…

… …

…

… …

…

…

…

…

…
A

Z

B C
Sequence of intermediary nodes

Node graph of Cardano blockchain

ΔQAZ

X Y

84

20/01/2023

43

Block diffusion design using ΔQSD

� First step: preparation
◦ Define an initial design and its outcome diagram
◦ Measure ΔQ between two randomly chosen nodes

� Second step: design the algorithm
◦ We make design decisions and refine the outcome diagram to take

each decision into account
◦ Each refinement defines a new outcome diagram and computes its ΔQ

� At each step, we decide whether to keep the design or whether to go back to
a previous design and make another design decision

◦ Details given in “Mind Your Outcomes”, Computers 2022, 11, 45
� https://www.mdpi.com/2073-431X/11/3/45

85

Initial design
(one-hop)

Multiple
hops

Header-body
split

Rejoining
network

Neighbor
selection

de
sig

n d
eci

sio
n

return to previous

85

Measuring ΔQ

86

86

https://www.mdpi.com/2073-431X/11/3/45

20/01/2023

44

First step: measuring ΔQ
� First step is to measure ΔQ between two Internet nodes
◦ This requires some preliminary work

� Four main factors
◦ Block size: 64KB to 2048KB (5 steps)
◦ Network speed: measured TCP speeds
◦ Geographical distance (for single packet):

� Short (same data centre), medium (same continent), long (different continents)

◦ Network congestion: initially ignored
� Single-hop ΔQs are approximately step functions
◦ Multi-hop ΔQs computed from single-hop (sequential composition

operator, i.e., convolution)
◦ Random path ΔQs computed from multi-hop (probabilistic choice

operator, i.e., weighted sum)

87

87

Measured ΔQ for fixed paths

88

One-hop ΔQ per block size

Weighted sum of short, medium,
and long hops, computed using
probabilistic choice operator

Multi-hop ΔQ for 64KB Multi-hop ΔQ for 1024KB

Multi-hop computed
using convolution

Multi-hop computed
using convolution

88

20/01/2023

45

Measured ΔQ for varying paths

� ΔQ computed for
varying path lengths
◦ Percentage of paths of

given length in a
random graph of 2500
nodes of degree 10

◦ Computed using
probabilistic choice
operator

89

89

Designing with outcome
diagrams

90

90

20/01/2023

46

Second step: design process

� For each design decision
◦ Determine a new outcome diagram
◦ Evaluate the effectiveness (ΔQ) using the outcome diagram

� This leads step by step to a final outcome diagram, which
corresponds to the complete distributed system
◦ Let us explain one of the steps, namely obtaining several blocks

from the fastest neighbour
◦ The other steps are explained in the Computers paper

91

Outcome diagram for obtaining three
blocks from the fastest neighbour, where
blocks are divided into header and body
and permission is requested before transmission

91

Obtaining three blocks (1)

92

� We remind you of the two
operators that are needed

� Obtaining one block from
each neighbour uses the
all-to-finish operator (∀)

� Obtaining fastest block
from one neighbour uses
first-to-finish operator (∃)

All-to-finish operator

First-to-finish operator

92

20/01/2023

47

Obtaining three blocks (2)

93

Obtain three blocks in order:
- permission request before transmission authorized
- header obtained before body
- body and next block combined using ∀

Obtain one block body
- from fastest neighbour

93

Obtaining three blocks (3)

� The resulting outcome diagram correctly models the causality
and performance of the block transfer; ΔQ is easily computed

� The outcome diagram is complex but it can be simplified by
introducing abstractions

� A software tool would have no problem with it, of course
94

94

20/01/2023

48

4. Some Typical ΔQs

95

95

Some typical ΔQs
� Introduction to distributions
◦ Gaussian distribution: used for aggregates
◦ Uniform distributions: used for single parts

� Two parts that occur often in systems

◦ Component
� We give the typical ΔQ for a component
� What happens when components are overloaded

◦ Network
� We give the typical ΔQ for a network
� Effects of geography (distance), packet size, and random

fluctuations

96

96

20/01/2023

49

Some typical distributions

97

97

Some typical distributions
� A tool can compute arbitrarily complex ΔQs
◦ There is no limitation on the complexity of the ΔQ

� But it’s still important to know some typical ΔQs
◦ A good engineer always knows when something is possible

or impossible with back-of-the-envelope calculations

� We give theory and intuition for two common
distributions
◦ Gaussian distribution: approximation for aggregates
◦ Uniform distributions: approximation for single parts

98

98

20/01/2023

50

Gaussian and Uniform distributions

� A Gaussian distribution approximates the
sum of many independent random
quantities (Central Limit Theorem)
◦ μ is the mean
◦ σ is the standard deviation

� Gaussian is a good approximation for
aggregates, but not for single parts
◦ Gaussians have infinite tails!

� A Uniform distribution approximates one
part of a system (component or network)
◦ a is the minimum time in the part
◦ sa is the spread of times in a part
◦ a+sa is the maximum time in the part

� Uniform is a good approximation for single
parts, but not for many connected parts

99

1

0

1

0

μ

a a+sa

Uniform

Gaussian

μ+σμ−σ

spread sa

99

Convolution of
Gaussian distributions

� Formulas: (exact)
◦ GA = (μA,σA)

GB = (μB,σB)
GC = GA ⊕ GB = (μC,σC)

◦ μC = μA + μB

σC2 = σA2 + σB2

◦ σC = √ σA2 + σB2

� In other words:
◦ Means are added
◦ Squares of standard deviations are

added
� Intuition:
◦ Standard deviation increases more

slowly than addition, because we
are adding independent variables

100

1

0

1

0

1

0
μB

⊕

=

GA

GB

GC

μA

μC

100

20/01/2023

51

Convolution of
Uniform distributions

� Formulas: (approximate)
◦ UA = (a,sa)

UB = (b,sb)
UC = UA ⊕ UB = (c,sc)

◦ M = max(sa , sb)
m = min(sa , sb)

◦ c = (a + b) + m/4
C = (A + B) – m/4
sc = max(sa , sb) + m/2

� In other words:
◦ Starting times are added, plus a

little more
◦ Spread is the maximum of the

spreads, plus a little more
� Intuitions:
◦ Spread causes the delay to be a

bit worse than just a simple sum
◦ If there are several spreads, the

biggest one will dominate
101

1

0
a+b A+B

1

0
a A

1

0
b B

c

C

⊕

=

UA

UB

UC m/2

exact
approximate

sb

sa

M
m/2

101

ΔQ for a typical component
(from queuing theory)

102

102

20/01/2023

52

A component as a queue

� Let’s get some more intuition on how a component works
◦ To get this intuition, we model the component as a queue

� A typical component has four parameters of interest
◦ Offered load a: arrival rate / service rate of messages
◦ Buffer size k: number of messages stored inside
◦ Failure rate f: percentage of messages dropped
◦ Delay d: time delay between input and output message

� These four parameters are all related
◦ ΔQ is function of offered load and buffer size

103

A

ΔQ

min mout

ΔQ

103

M/M/1/K queue

� We model a component as an M/M/1/K queue
◦ M: arriving messages have Exponential distribution with rate λ
◦ M: service time has Exponential distribution with rate μ
◦ 1: one message can be served at a time
◦ k: total buffer size is k (buffer size = queue size k-1 + server size 1)

� Offered load a = λ/μ (arrival rate / service rate)
� The two knobs we control are offered load a and buffer size k
◦ When the component’s buffer is full, new arrivals are dropped (failure)
◦ ΔQ, i.e., failure rate f and average delay d, is function of a and k

104

Queue (size k-1 max) Server (size 1 max)

Arrival rate λ,
time τ=1/λ

Service time s,
Service rate μ, E[s] = 1/μ,
Ns messages in steady state ≤ 1

Queue time q,
Nq messages in steady state

104

20/01/2023

53

Effect of offered load a
� The offered load is the most important parameter
◦ a<1: the component has enough power to service all messages
◦ a>1: the component is overloaded and performs very badly

� Low load (a<0.8)
◦ Failure tends to 0, delay tends to 1 (as k increases)
◦ An underloaded component behaves very well

� High load (a≥0.8)
◦ When a gets close to 1 (around 0.8) things quickly get worse!
◦ When a>>1, failure rate tends to (a-1)/a, up to 100% for high load!
◦ Delay increases very quickly when a approaches 1

� When a=1, delay is already k/2, half of buffer size, which can be huge

� Quick switchover somewhere between a=0.5 and a=1
◦ As the load increases beyond 0.5, the system quickly gets very bad
◦ The exact threshold depends on what you consider bad!
◦ Even a temporary overload causes a big, long-lasting degradation

� This is the cause of the problem in the small cells case study

105

!

105

ΔQ as function of load a

106

1

0

a<<1
s

� Let’s visualize ΔQ as function
of offered load a

� To make it understandable,
we approximate the ΔQ as a
Uniform distribution and we
give asymptotic behaviors for
three cases, a<<1, a=1, a>>1
◦ We assume constant service

time s and buffer size k=10
◦ We simplify the complicated

formulas of a M/M/1/K queue

as/(1-a) → 0

1

0

a=1
s

k/2 ⋅ s = 5s

f=a10 ≈ 0

a ≈ 0: good behaviour

f=1/(k+1) ≈ 9%

1

0

a>>1
s

(k – 1/(a-1)) ⋅ s ≈ 10s

f=(a-1)/a → 100%

a → ∞: even worse!

delay

delay

delay

a approaches 1: bad behaviour

106

20/01/2023

54

Effect of buffer size k
� The buffer size k is the total number of messages that can

be stored in a component
◦ Manufacturers like to brag about buffer size. It might seem

like a no-brainer that bigger is better, but this is wrong!
� We look separately at low load and high load
� Low load (a<0.8)
◦ Bigger buffer decreases failures and increases delay

� At low load, we can adjust k to trade off failure and delay

◦ As k➞∞ the failure rate f➞0 and delay➞1/(1-a) (close to 1)
� Big buffers are good at low load

� High load (a>0.8)
◦ Failure rate and delay are both high
◦ Bigger buffer greatly increases delay (around k/2 for big a)

� Big buffers are bad at high load
� NICs that can store 1000 packets are especially bad when overloaded
� With temporary overload, buffer will fill quickly, and then empty slowly
� If you want good behaviour:

(1) don’t ever overload not even temporarily, (2) keep buffer size small

107

107

Load balancing example

108

108

20/01/2023

55

Load balancing example
� We illustrate the queue model by

doing load balancing
� Load a is split between p⋅a and

q⋅a for the two servers
◦ Modeled with probabilistic choice
◦ Servers have equal capacity with

normalized load a=1, so p=q=0.5

� All quality attenuations are
function of load

� We have the equation:
ΔQS(a) = p⋅ΔQ1(p⋅a) + q⋅ΔQ2(q⋅a)

� For good performance, both
servers must never be
overloaded, which gives:
◦ p⋅a < 0.8 and q⋅a < 0.8
◦ This results in a < 1.6

� This example can be extended in
many ways, for example to divide
packets into low and high priority

109

ΔQS(a)

Server 1

Server 2

a
p⋅a

q⋅a

ΔQ1(p⋅a)

ΔQ2(q⋅a)

OS1

⇋
OS2

ΔQS

p

q

Splitter

109

ΔQ for a typical network

110

110

20/01/2023

56

ΔQ for network packets

� We can study what the real ΔQ is for networks
delivering packets

� Experience shows that the ΔQ has four
parameters G, S, V, L:
◦ ∆Q = ∆QG ⊕ ∆QS ⊕ ∆QV ⊕ ∆QL

� Again, we add ΔQs using convolution
◦ Because of their simple structure, convolution is easy

111

Packet
source

Packet
destination

ΔQ

network

111

Raw two-point measurements

112

20/01/2023

57

Measurements sorted by packet size

113

Minimum delays for each size

114

20/01/2023

58

Extrapolate to zero size packet: G

115

Extract S

116

20/01/2023

59

V is what remains

117

G, S, V from measured ∆Q

G ∆Q
(geography/given)

S ∆Q (size related)

Variable ∆Q

G

S

V

Each of those
components could
also contribute to

loss.
∆Q is comprised of
these three basic

elements.

118

20/01/2023

60

Overall network ΔQ
� Total network ΔQ is the

sum of the three parts:
◦ Geographic delay G
◦ Size-related delay S(s)

function of packet size s
� ΔQS is a step function if there

is a constant packet size,
otherwise it has another shape

◦ Variability V function of
contention and noise

� In addition, there is a
percentage L of lost
packets

119

0

ΔQG

1

0

ΔQS

1

0

ΔQV

1

0

ΔQ

1

G

S(s)

G S(s)

V

V

L

⊕

ΔQL

119

120

120

20/01/2023

61

Lecture 3
Systems with
Dependencies

121

121

Systems with dependencies

� ΔQSD approach is done in three steps
◦ First, design the system with independent parts
◦ Second, add dependencies where they are needed
◦ Third, add multiple levels to handle multiple timescales

� Realistic systems have some dependent parts
◦ Most of the system consists of independent parts
◦ A few dependencies are added, for example where two

message streams use the same database
� Topics for Lecture 3
◦ Shared resources
◦ Variable load (iterative query example)

122

122

20/01/2023

62

Nonlinearity
� The outcome diagrams of Lecture 2 describe

systems with independent components
◦ Overall ΔQ is a linear combination of the component ΔQs

� It is compositional: we can decompose the outcome diagram
into parts, compute ΔQs separately, and then combine them

◦ Nevertheless, this ΔQ is a nonlinear function of the load
� There is an overflow effect: when offered load goes beyond

capacity, delay and failure rate of a component increase quickly

� Lecture 3 adds even more nonlinearity
◦ Adding dependencies between components is another

source of nonlinearity
◦ A shared resource can also overflow and cause a major

change in ΔQ

123

123

Shared resources

124

124

20/01/2023

63

Shared resources
� Computing ΔQ is simple if all components are

independent
◦ This is the default compositional approach we saw so far

� But real systems have shared resources
◦ A resource is part of the system that can potentially be shared
◦ Sharing is modeled by additional variables and their equations
◦ Computing ΔQ is done by adding the equations to the solver

� Resource properties
◦ Ephemeral: A resource is ephemeral if it is available at a

particular time instant and if not used at that time, it is lost.
◦ Threshold: A resource is threshold if exceeding a particular

limit causes a ΔQ to become bottom (failure: no result). If
there is still some functionality, it is not a threshold resource.

125

125

Examples of shared resources
� Ephemeral, not threshold
◦ (1) A network connection. When capacity of the line is exceeded or

there is congestion, the ΔQ has larger failure rate, but it still works.
◦ (2) A shared CPU. When too many processes use same CPU, they

slow down but still keep going.
� Ephemeral, threshold
◦ (1) Working set of a process. When size of working set exceeds

maximum memory available, system will thrash and effectively stops.
◦ (2) Mains electricity at an outlet. When too much power is drawn, a

circuit breaker trips and power is zero.
� Not ephemeral, not threshold
◦ Tidal energy generator with battery storage. Battery is charged

periodically, can always take energy from battery. Battery energy
goes down until next charge cycle.

� Not ephemeral, threshold
◦ Battery power supply. Battery can supply energy at any time, until it

runs out (total energy needed exceeds energy stored in battery).

126

126

20/01/2023

64

Example 1: congestion

� Assume two message streams entering the same component
(e.g., a router)
◦ Total load is the sum of the two incoming loads: a = ax + ay

◦ Sharing is modeled as the sum of loads
� Congestion, i.e., buffer overflow and message drop, is computed

from ΔQRouter using the queue model we saw before
◦ Router will show congestion if ax + ay ≥ 0.8
◦ Message delay and message failure are computed with the queue

127

Router

ΔQRouter(a)

mx

mout

my

ax

ay

a = ax + ay

127

Example 2: shared CPU

� Assume two components are implemented on the same
processor core
◦ Each component uses fraction ci of the processing power with

the constraint c1+c2=1
◦ ΔQ of each component is function of its processor utilisation

� This gives extra arguments c1 and c2 to the ΔQs and an
equation (constraint) linking them

128

A

ΔQA(c1)

B

ΔQB(c2)

c1+c2=1

128

20/01/2023

65

Example 3: shared cell tower

� Two carriers share a cell tower
� Each carrier is guaranteed

50% of the tower capacity
� Each is allowed to use the

capacity unused by the other

� Assume carrier 1 uses 30% and carrier 2 uses 70% of the capacity
� If carrier 1 suddenly decides to use 50% then carrier 2 will immediately

drop to 50% and some packets it has in transit will be lost
� This is a nonlinear resource dependency: (with loads aC1(t) and aC2(t))
◦ ∀t. If aC1 ≥ 0.5 then aC1 ≤ 0.5 + max(0, 0.5–aC2)
◦ ∀t. If aC2 ≥ 0.5 then aC2 ≤ 0.5 + max(0, 0.5–aC1)

129

129

Iterative query

130

130

20/01/2023

66

Systems with iterative queries

� Consider an iterative process where user sends query qn to server which
sends response rn back to user, which sends query qn+1 and so forth
◦ This is a common structure: it models many human-computer interactions on

the Web, it models software doing iterative queries to a database, and many
other repetitive processes

� How do we compute the ΔQ for this system?
◦ There are two kinds of outcomes: Os,n=(qn,rn) and Ou,n=(rn,qn+1)
◦ The causal sequence is unbounded: Os,0 < Ou,0 < Os,1 < Ou,1 < …

131

user server

rn

qn

Ou Os

rn

qn

131

ΔQ for iterative queries

� Two equations must be solved simultaneously
◦ The server cdf ΔQs(a) is function of load a (as we saw before)
◦ Because of iterative execution, load a is function of total delay ΔQs+ΔQu

� Load a is the expected rate of queries (queries per second):

132

Ou Os

rn

qn

∞
⌠
⎮1/t P(t,a) dt
⎮
⌡0

• P(t,a) = d(ΔQs+ΔQu)/dt is the pdf which is function of t & a
• Each value of load a gives another pdf P(t,a)
• Computing this integral gives an equation to solve for load a

a =

132

20/01/2023

67

Solving the equations

� Working out the integral gives:

a = 1/s ln(1 +)

(assuming Uniform distribution)
� Let’s look at the solutions
◦ Ratio d/s (user/server time) is important
◦ Solutions give good intuition but to be

precise you need more computation

133

1

0

sas/(1-a)

ΔQs

1

0
ΔQu

d
⊕ =

1

0

sd+as/(1-a)

ΔQs ⊕ ΔQu

1/s

0

sd+as/(1-a)

t t t

t

d/dt

Density P(t,a)

d/s + a/(1–a)
1

133

Solutions

1340.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1/s ln(1 +)
d/s + a/(1–a)

1

d=0, s=1

d=0.5, s=1

d=2, s=1

d=5, s=1

0.18

0.34

d=1, s=1

0.44

0.51

0.57

Fastest speed (no user delay)

Slow user compared to server

User and server similar speed

45° solution line

User
(delay d)

Server
(delay s)

134

20/01/2023

68

Solutions

1350.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1/s ln(1 +)
d/s + a/(1–a)

1

d=0, s=1

d=0.5, s=1

d=2, s=1

d=5, s=1

0.18

d=1, s=1

0.44

0.51

0.57

45° solution line

135

How to measure load
� There are two ways of measuring offered load
◦ Arrival rate: number of events per second

(as function of time)
◦ Interarrival time: interarrival time between events

(as function of time)
� What is the right way to compute average load?
� Usually we are interested in the arrival rate
◦ Rate is a measure for work done per unit of time

� Work done = rate × duration
◦ Rate can be computed using arithmetic average

� Rate a1 for duration d followed by rate a2 for duration d gives average
rate (a1+a2)/2 for duration 2d

136

136

20/01/2023

69

Back-to-back servers

� A similar system is the connection of two servers back-to-back
� This is also a common situation, e.g., two collaborating human

teams that communicate with one another
� If s1 ≠ s2 then we can show that almost all waiting messages will

queue up at the slow server (smallest si)
◦ The slow server sets the pace
◦ This happens even if the difference between s1 and s2 is only a few percent
◦ Making the fast server even faster has no effect on performance

137

server
s1

server
s2

rn

qn

137

138

138

20/01/2023

70

Lecture 4
Multilevel Systems

139

139

There is always a cliff
� We are ambitious fellows
◦ We are building a big system, bigger than anything that

has been built before!
� We are experienced engineers
◦ We use our experience to build the system: this is called

inductive reasoning
◦ But inductive reasoning is flawed

� It goes wrong when we go beyond where it has gone before

� There is always a cliff
◦ But we don’t know where it is
◦ The system works perfectly until we fall off the cliff!

140

140

20/01/2023

71

Multilevel systems

� ΔQSD approach is done in three steps
◦ First, design the system with independent parts
◦ Second, add dependencies where they are needed
◦ Third, add multiple levels to make the system resilient

� Highly reliable systems need multiple levels
◦ The main system will break when too much goes wrong
◦ When this happens, control passes to another level
◦ In general, widely different problems occur at different

timescales, which need different solutions
� Topics for Lecture 4
◦ Managing risk
◦ Multilevel system design
◦ Supermarket scenario
◦ Multiple timescales

141

141

Managing risk

142

142

20/01/2023

72

Managing risk

143

Hazard
(probability of failure occurrence)

Impact
(amount of damage when failure occurs)

Risk = Hazard × Impact
(the expected damage)

The amount of damage done by a
failure depends on the system’s effect in
the real world: it can be large (a nuclear
accident) or small (a pencil point break)

The probability that a failure occurs can
be computed by comparing the system
requirements with the delivered behaviour

This is where ΔQSD intervenes

143

Hazard in terms of ΔQ

� We compare a delivered ΔQ to a required ΔQ
◦ The required ΔQ is defined by the QTA (Quantitative Timeliness Agreement)
◦ ΔQ1 satisfies the requirement; the green part shows the ‘slack’
◦ ΔQ2 does not satisfy the requirement; the red part shows the ‘hazard’

� When creating a design, keep slack and hazard in mind
◦ Slack gives an extra degree of freedom for the designer, whereas hazard is a

potential problem that may need further attention
144

← required ΔQ

delivered ΔQ1

slack

hazard

delivered ΔQ2

144

20/01/2023

73

Computing hazard and risk

� Risk = impact times probability of occurrence
◦ Hazard = probability of occurrence of the failure = p1 – p0
◦ Impact = cost (i.e., extra delay) when the failure occurs = i(p)

� Because ΔQ is a probability distribution, this is an integral
� r = ∫ i dp
◦ Total risk is area of orange triangular part
◦ Risk = expected damage, i.e. expected extra delay

145

1

0

percent

← required ΔQdelivered ΔQ →

delay

p

p0

p1

hazard
impact

145

Managing hazards
� The number of possible hazards is unbounded
◦ “Limited only by your imagination”
◦ Theoretically, the system should be designed to handle all

possible hazards, but this is too costly and time-consuming
◦ How do we bring order into this situation?

� New hazards appear in new systems
◦ If you are building a system that goes beyond previous systems,

then new hazards will appear
◦ New hazards are hard to predict, but ΔQSD gives some useful

tools: it can compute ΔQ for high loads and it organizes hazards
according to their order

� Managing the hazards
◦ To manage a hazard, you look at all the ways that it can occur

and you reduce the probability that one of these will happen

146

146

20/01/2023

74

Avoid “arming the hazards”
� A hazard can be quantified through its preconditions
◦ Enabling a precondition gives the hazard a nonzero probability

� This is called arming the hazard
◦ The system should be designed to avoid arming the hazards

� Example: the 2011 Fukushima nuclear disaster
◦ Caused by an earthquake and a followup tsunami
◦ The earthquake caused the reactor to shut down normally
◦ But the tsunami broke the generators needed to cool the core

� Safety regulations should have avoided this, but they were violated

◦ Absence of cooling caused a severe nuclear accident
� There was a chain of preconditions arming the hazard
◦ Safety violations armed the broken generator hazard
◦ Broken generator armed the nuclear accident hazard

147

147

Causal graph of preconditions

� We show a graph of preconditions for the Fukushima accident
◦ Safety violations ➝ Vulnerable generator
◦ Vulnerable generator ∧ Tsunami ➝ Broken generator

� The hazards are armed like a chain of falling dominos
◦ Each precondition arms the next one

148

Nuclear Accident

Absence cooling

Broken generator

Vulnerable generator

Safety violations

Tsunami

Earthquake

(other possibilities)

AND
Arming a hazard

OR

148

20/01/2023

75

Performance hazards
� Now let us focus on performance hazards
◦ Hazards that affect performance of a system

� There is a hierarchy of performance hazards
◦ Depending on how the system is stressed
◦ Does the system work as expected under normal load?
◦ What happens when hazards are armed:

� By internal preconditions (e.g., scheduled maintenance)?
� By external preconditions (e.g., load peaks)?

� We classify hazards according to preconditions
◦ How easy it is to control the preconditions to avoid arming
◦ Some preconditions are controlled by correct design
◦ Some preconditions are hard to control (external effects)

149

149

Order of performance hazards

� We define a hierarchy of performance hazards
� ΔQ computation techniques depend on the order of hazards
◦ Orders 0 and 1 assume independence; orders 2, 3, 4 introduce sharing

150

Order Subject of concern

0: Causality Causal behavior is the only requirement. If ΔQ is best possible,
can the system deliver its successful top-level outcomes, i.e.,
can the system ever work if causality is respected?

1: Capacity Markovian (independent) and linear (superposition) behaviour.
Will the delivered ΔQ be within requirements at expected
loads, i.e., constant average load within capacity constraints?

2: Schedulability Expected variability in behaviour which can be managed by
proper scheduling. Can the QTAs be maintained during
reasonable operational stress, i.e., expected load variability?

3: Behaviour Is the system sensitive to internal correlation effects, i.e.,
interactions between subsystems due to internal effects? For
example, all devices doing http lookup at midnight.

4: Stress Is the system sensitive to external correlation effects, i.e.,
extreme behaviour of the users? For example, all users
placing a call when a natural catastrophe occurs.

C
om

po
si

tio
na

l
D

ep
en

de
nt

150

20/01/2023

76

Multilevel system design

151

151

Multilevel system design
� In lectures 2 and 3 we saw how to design systems with

predictable performance
◦ Outcome diagrams show the causal connections
◦ We add dependencies where they occur

� This works for systems with limited perturbations
◦ But it is not good enough for safety-critical systems that must

continue to work under all circumstances
◦ You might think it is a good idea to add mechanisms

inside the system to avoid arming the hazards
� This does not work!

� Multilevel systems
◦ The right solution is to add mechanisms outside the system

� Build a hierarchy of observers where each observer manages the hazards that
are not managed by observers at a lower level

◦ The original system is the base of the hierarchy

152

152

20/01/2023

77

Base system

� Our starting point is a base system that satisfies a QTA
◦ The QTA (Quantitative Timeliness Agreement) specifies what the

base system does and its limits
◦ In lectures 2 and 3 we saw how to design this system using outcome

diagrams with dependencies
� What happens when the QTA is no longer satisfied?
◦ Some hazard has occurred
◦ The system no longer provides its service to its users

� Multilevel design targets this situation
153

Base system
(satisfies QTA)

153

Multilevel system
� During normal operation, System 1

does the work
◦ The other systems monitor this but

normally do not intervene
◦ Upon QTA1 breach, System 2 is notified

� System 2 has several options:
◦ Take over from System 1,

temporarily or permanently
◦ Reconfigure system 1 and then

resume it
◦ Replace system 1 by another

system and then resume it
� If System 2 cannot fix the problem

then QTA2 is breached
◦ System 3 is notified and handles the

problem at a higher level

154

System 1 (base system)
(satisfies QTA1)

System 3
(satisfies QTA3)

System 2
(satisfies QTA2)

… …More levels (if needed)

QTA1
breach

QTA2
breach

Resume

Resume

154

20/01/2023

78

System 1 design constraints

� A base system in a multilevel system must be designed right
� Management ability:
◦ For breach detection, it must be extended with real-time observation points
◦ For resuming operation, it must be extended with reconfiguration and restart

� QTA1 properties: (used to minimize breaches)
◦ When System 1 is overloaded, it may behave badly but it should not “break”,

i.e., if the overload disappears the system recovers
◦ When System 1 is overloaded, it provides a guaranteed minimum functionality
◦ These properties are only possible if System 1 is not physically damaged

155

System 1
(satisfies QTA1)

Breach
detection

Resume
operation

QTA1 obeys two rules

155

“mitigate or propagate”
� The general principle of a multilevel system is

called “mitigate or propagate”
◦ First try to solve the problem inside the current system

(mitigate), if this is not possible go to the next (propagate)
� “mitigate”
◦ Each level first tries to solve the problem by itself
◦ This is why we give rules for QTA1: you can behave badly

but you should not break, and you should always provide
some minimal functionality
◦ Don’t try to mitigate too much; there may be interactions

between the mitigation strategies
� “propagate”
◦ Propagation can be simpler than mitigation, because each

system is cleanly separated from the others (modular)

156

156

20/01/2023

79

Breach detection

� Base system does continuous measurement of QTA1 divergence
◦ Quantified hazard, by comparison of QTA1 and delivered ΔQ

� When the divergence goes above a critical value, the violation
flips and a message is sent to the next level

� Hysteresis is used to avoid oscillations at the boundary
◦ This can happen when the divergence measure is noisy

157

QTA1 divergence measure
(raw time function)

QTA1 violation
(true or false)

false

true

violation

divergence

divergence
increases

divergence
decreases

157

Supermarket example

158

158

20/01/2023

80

Supermarket example

� To illustrate the approach we design a supermarket
◦ Customers enter the supermarket, collect their merchandise,

and queue up at an open cash register
� QTA1 = “less than 5 customers are in line”
◦ What happens when there are too many customers in a line?
◦ What do the next levels look like?

159

Entrance

Exit

Cash registers

Supermarket Queue

159

Supermarket layered system

� Three levels of operation
◦ QTA1: normal operation of the

supermarket with customers
coming and going

◦ QTA2: local reconfiguration of the
supermarket recovers QTA1

◦ QTA3: global reconfiguration of
supermarket chain recovers QTA2

� Each level “escalates” the
solution
◦ Each level happens at a different

timescale

� Fire alarm is an emergency
solution with low probability

160

QTA1

“longest line < 5 customers”

⇋
QTA1

breach

QTA1
breach

Add cashier

Open self-service

Open bar

Set off fire alarm!

Resume

QTA2

“QTA1 violations less
than 50% of the time”

QTA2
breach

Resume

QTA2

breach
Om

Study
group

⇋
New store
…
…
…

QTA3

“QTA2 violations
are being solved”

Supermarket

160

20/01/2023

81

Multiple timescales

161

161

Multiple timescales
� The system must be designed to deal with

overload (hazard orders 3 and 4)
◦ Ideally the load never approaches 1

� As we saw before, when a>0.8 things get bad very quickly
◦ But it will almost certainly happen if we wait long enough

� It is usually too expensive to greatly overdimension the system
� So overallocation must be combined with other techniques

� Solution
◦ Overload must be dealt with at all timescales of interest,

where each timescale is handled at its own level
� Time to react depends on timescale of the hazard
� ΔQSD is used to define the actions at each level

◦ Software must be as idempotent as possible and non-
idempotent parts should be isolated

162

162

20/01/2023

82

System at multiple timescales

163

Base system
Guaranteed minimum functionality

Level 3
System reconfigure (up to days)

Level 2
Task reconfigure (seconds)

Level 4
System modification (up to years)

Order 3
Internal correlations
(unexpected interactions
between subsystems)

Order 4
External correlations
(extreme user behavior
or environment)

163

Actions at each timescale
� Base system is designed to obey two rules:

1. When overloaded, the system may behave badly but it must never
break (“weather the storm”)

� If the load fluctuation is temporary, this may be sufficient (system is “ballistic”)

2. When overloaded, the system must provide some guaranteed
minimum functionality (for example, high priority packets will pass)

� Level 2: reconfigure with respect to primitive tasks (seconds)
◦ Drop nonessential traffic; stop admitting new tasks; kick out tasks

already in progress
� Level 3: reconfigure overall system (up to days)
◦ Depending on timescale: admission control, cold standbys, data

center elasticity, software rejuvenation, put human in the loop
� Level 4: system modification (from days to years)
◦ One month: add new equipment
◦ One year: system redesign, build new data center
◦ Longer than one year: fire, forest, flood, nuclear accident, Carrington event,

asteroid impact, supervolcano eruption

164

164

20/01/2023

83

Conclusions

165

165

Advantages of ΔQSD
� ΔQSD works with partially specified designs
◦ It can use both top-down and bottom-up approaches
◦ At any point, we can check whether the system is feasible

� We can eliminate infeasible approaches early on in the design process
◦ At any point, we can predict latency and throughput under high load

� It saves time and money compared to full designs or building systems
◦ It makes no unnecessary assumptions regarding system state

� Unlike UML, which specifies the system’s internal structure
◦ The stochastic approach (cdfs, convolution) is a good compromise

� It is a sweet spot that gives good results w.r.t. amount of information needed
� Predictions are accurate when the independence assumption is satisfied

� ΔQSD cleanly factors the design into three parts
◦ Compositional system made of independent parts
◦ Adding dependencies between components
◦ Adding multilevel risk management

166

166

20/01/2023

84

Limitations of ΔQSD
� ΔQSD requires valid inputs to give useful results
◦ QTAs (Quantitative Timeliness Agreements): requirements must be known
◦ Components: stochastic behaviour of components must be known
◦ Dependencies: forgetting some dependencies will reduce accuracy
◦ Risk management: forgetting some hazards will reduce accuracy

� ΔQSD works best for systems with independent actions
◦ For systems that execute long sequences of dependent actions,

the predictions will be less accurate

� Achieving ΔQSD’s full power requires significant computation
◦ But much less computation than some other techniques, e.g., simulation

� Laptop computers are sufficiently powerful for large designs
◦ It can be used for back-of-the-envelope design but with loss of accuracy
◦ It is most suitable as foundation for a software design tool

� It puts to good use the available computing power

167

167

Conclusions and future steps
� This tutorial introduces ΔQSD but there is much more:
◦ Practical measurement and computation of ΔQ
◦ Practical experience with large systems
◦ Shared resources and timescales applied to large systems
◦ The tutorial is still an ongoing work!

� PNSol has detailed slide decks and documentation
◦ Theory and practice of ΔQSD
◦ Experience reports for large industrial projects

� Ongoing project to formalize ΔQSD and build tools
◦ We are looking for Ph.D. students to help us
◦ Publication “Mind Your Outcomes”, Computers 2022, 11, 45

https://www.mdpi.com/2073-431X/11/3/45

168

168

https://www.mdpi.com/2073-431X/11/3/45

