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Organization of the tutorial
� Lecture 1: Case Studies

1. Small cells
2. iPhone launch
3. Cardano Shelley block diffusion

� Lecture 2: Compositional systems
1. Quality attenuation (ΔQ)
2. Outcome diagrams
3. Shelley block diffusion algorithm
4. Some typical ΔQs

� Lecture 3: Systems with dependencies
1. Shared resources
2. Iterative query

� Lecture 4: Multilevel systems
1. Managing risk
2. Multilevel system design
3. Supermarket example
4. Design for overload

� Conclusions

� ΔQSD is a system design paradigm that 
can predict system behaviour at high 
load. It was developed by PNSol over 30 
years and validated in large-scale 
industrial systems
◦ This tutorial is part of an ongoing project to 

disseminate ΔQSD for the benefit of the 
wider system design community

� This tutorial is work in progress: I 
welcome errata and constructive 
comments

� Caveat
◦ I am not the inventor of ΔQSD.  I am a 

computer scientist with long experience in 
system design based on distributed systems 
and programming languages.  I created this 
tutorial as part of my experience in learning 
ΔQSD, because I consider ΔQSD to be an 
interesting and innovative approach that 
deserves to be more widely known.
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Systems with many users
� ΔQSD targets systems with many independent users

where performance and reliability are important
◦ Systems with large flows of independent data items
◦ Systems that are subject to unexpected overload situations

� Examples of systems where ΔQSD works well
◦ Distributed systems that perform tasks for many independent 

users, such as cryptocurrency platforms
◦ Large-scale communications networks including telephony, 

mobile telephony, and publish/subscribe
◦ Client/server systems, often with networked connections and 

databases, such as used in Internet commerce
◦ Distributed sensor networks with real-time data streams and 

analysis
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PNSol Ltd
www.pnsol.com

� Predictable Network Solutions Ltd (PNSol) is a UK company 
that specializes in system performance of large-scale 
distributed systems
◦ PNSol was founded in 2003 by a small group of people from the 

University of Bristol

� PNSol has solved problems in many industrial systems 
including at British Telecom, Vodafone, Boeing Space and 
Defence, and IOG (formerly IOHK)
◦ Performance under high load, scalability effects, managing 

graceful degradation under adverse operational conditions
◦ Development of the ΔQSD methodology for design and diagnosis 

of large systems with predictable performance under high-load 
conditions
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ΔQSD paradigm
� ΔQSD is an industrial-strength paradigm for system design 

that can predict performance and feasibility early on
◦ Developed over 30 years by a small group of people around 

Predictable Network Solutions Ltd.
◦ Widely used and validated in large industrial projects, with large 

cumulative savings in project costs

� ΔQSD properties
◦ Compositional approach with first-class latency and failure
◦ Stochastic approach to capture uncertainty during the design
◦ Performance (latency and throughput) and feasibility can be 

predicted at high system load for partially defined systems
◦ Dependencies and multiple timescales are added to the 

compositional approach
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Goals of these lectures
� Understand the two main concepts of ΔQSD: 

quality attenuation (ΔQ) and outcome diagram
� Understand how to design systems as 

independent parts with added dependencies
� Understand how to design systems by refining 

partially defined systems
� Understand how to compute latency and 

throughput and infeasibility during the design
� Give enough concepts and examples so you can 

start using ΔQSD in your own designs

6
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Introduction

7
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Two main concepts of ΔQSD
� Quality attenuation (ΔQ): “first-class latency and failure”
◦ A ΔQ is a cumulative distribution function that defines both 

latency and failure probability between a start and an end event
◦ Because the ΔQ combines latency and failure in a single quantity, 

it makes it easy to examine trade-offs between them

� Outcome diagram: “system observed from outside”
◦ An outcome is any well-defined system behaviour with observable 

start and end events; each outcome has a ΔQ
◦ An outcome diagram is a causal directed graph that defines the 

relationships between all system outcomes; it allows computing 
ΔQ for the whole system

◦ The outcome diagram can be used during the whole design 
process. It can express partially defined systems that are refined 
from an initial unknown design up to the final constructed system.
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Quality attenuation
and outcome diagram
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Quality attenuation ΔQ

� Given a system component, for example a database
◦ What is the latency between a query and its response?
◦ It is not constant!
◦ Sometimes there is no response (component failure)!

� We give latency as a cumulative distribution function ΔQ 
(actually, an improper random variable because max<1)
◦ This represents both the variability and the failure probability

DB

ΔQ

1

0 latency
d

p

f
percent

query response

ΔQ

Quality attenuationSystem component

10



20/01/2023

6

Outcome diagram

� Given a system with a frontend and database
◦ What is the total delay from u1 to r1?

� We represent the system as an outcome diagram,
a graph that shows how the delays combine
◦ Total delay ΔQSystem is the “sum” of delays ΔQFE and ΔQDB

◦ ΔQSystem = ΔQFE ⊕ ΔQDB

◦ How do we calculate this sum? We will see it later!

11
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To the case studies…
� Now we know enough for the case studies

� We combine ΔQi of components Ci to get the 
ΔQsystem of the whole system
◦ If there is something wrong with ΔQsystem then we reason 

backwards to pinpoint the problem

� After the case studies, we will study how to design 
systems using ΔQ and outcome diagrams

12
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Lecture 1
Case Studies

13
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Case studies
� As motivation for ΔQSD we present three case studies
◦ Small cells
◦ iPhone launch
◦ Cardano Shelley

� These are industrial case studies done by PNSol that have 
limited documentation and are partially covered by NDA

� In these scenarios, the ΔQSD paradigm is used in two ways
◦ Diagnostic use: debugging of existing systems with problems

(for small cells and iPhone launch)
◦ Design use: designing systems using ΔQSD from the start

(for Cardano Shelley)
� It’s better to use ΔQSD for design rather than diagnosis
◦ Prevention is better than cure!
◦ This is one of the motivations of this tutorial: to disseminate the 
ΔQSD paradigm so it can be used during the design process
� PNSol is often called in to perform a cure for systems that have major problems

14
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1. Small Cells Case Study

15
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Small cells case study
� A major MNO (Mobile Network Operator), who shall 

remain unnamed, deployed small cells
◦ Small cell: low-powered cellular radio access nodes with 

range 10m-3km
◦ Backhaul using consumer DSL broadband

� The system worked but did not scale
◦ Voice quality had major problems, cells were failing
◦ What part of the system is the cause and who is to blame?

� PNSol was brought in to investigate
◦ Determined outcome diagram for complete system
◦ Measured ΔQ across system to pinpoint the problem
◦ Focus on problematic behavior shown by ΔQ
◦ ΔQSD led to successful diagnosis and cure proposal

16
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Who is to blame for my system crashing?

MNO (erroneously) believed that: (1) its contracts would deliver
the service & contain the hazards; and (2) there were no residual hazards.

MNO’s accountability

RAN supplier Backhaul supplier Core supplier

C1 C2 D EB

A

17

ΔQAB ΔQBC1 ΔQC2D ΔQDE
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How PNSol gathered the evidence

� Establish end to end measurement
◦ From synthetic traffic generator… (A)

� includes an observer

◦ …to reference point (E)
� reflects traffic, acts as a protocol peer, and includes an observer

◦ Add internal observers to get spatial discernment (B, C, D)

� Analyse measurements to obtain ΔQ distributions
◦ Outcome diagram

A→B→C1→C2→D→E→D→C2→C1→B→A
◦ Measure quality attenuation ΔQ for outcomes
◦ Identify issues and anomalies for further investigation

� Each added observation point greatly increases spatial fidelity
◦ Example: even with just A and E there is definitive knowledge 

as to whether the effect is occurring upstream or downstream.

18
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Which direction has issues?

Upstream variability 
is 5 times greater 
than downstream; 
tail variation is x10

19

Problem in upstream?
No, actually not!

0

ΔQAE

1

Each slice gives an
instantaneous ΔQAE

Round trip

Upstream

Downstream
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Who is to blame for the system failing?

Examine sub-paths to isolate the issue

20
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• The instantaneous ΔQ is measured as a function of experiment run time
• We find that the ΔQ is not stationary: it changes during the run
• There are times when the ΔQ has strong anomalous behavior

20
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Where is the issue?

21

National Interconnect Wholesale Access Core

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  100  200  300  400  500  600

O
bs

er
ve

d 
De

la
y 

Be
tw

ee
n 

En
d 

Po
in

ts
 (s

)

Experiment Run Time (s)

C->B delay

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  100  200  300  400  500  600  700

Observ
ed Dela

y Betw
een En

d Point
s (s)

Experiment Run Time (s)

D->C delay

Resized to 
same scale

Here is the 
problem

Resized to 
same scale

Use spatial resolution to isolate the problem

21

Zoom in on the issue
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Actual + predicted measures
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Technical diagnosis

� A queue is forming in the wholesale access network
◦ This is because the arrival rate from the MNO security boundary 

exceeds the sync rate (service capacity) of the xDSL line
◦ The queue exhibits temporary overloading, which degrades 

overall behaviour for long time periods
◦ This is in breach of the wholesaler’s technical terms & conditions

� This queue delays all traffic, including small cell control traffic
◦ Small cells are known to fail if their control loops exceed a given 

round trip time. The figures here are 5x that limit.
� System reset is just the extreme failure case
◦ Delays of that magnitude adversely effect voice quality as well
◦ Causes small cells to “breathe” inappropriately
◦ Dramatically weakens deployment business case

24
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Systemic diagnosis and cure

� Why is the system crashing?
◦ There is an unmanaged hazard that sits with the MNO

� Root cause is that the subsystems don’t compose
◦ The pre-requisites for use of one element are not met by other 

elements of the system
� Common structural problem, not unique to this MNO or technology

◦ The MNO believed they only had to match bandwidths (numbers!)
� They should match ΔQ (CDFs!) (Quantitative Timeliness Agreement)

� Recommendations to the MNO:
◦ Note on corporate risk register: records the risks and 

opportunities that affect the delivery of the Corporate Plan
◦ Technical training to improve contractual processes & 

hazard management

25

2. iPhone Launch
Case Study

26
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iPhone launch case study

� iPhone was initially supported in UK by one MNO

� A second MNO prepared to enter this market
◦ Before the launch, the performance was known to be bad 

for the second MNO, and the first MNO had gleefully 
prepared a major ad campaign focusing on this fact
� Both MNOs are large UK operators who will remain unnamed

◦ Using ΔQSD, PNSol managed to diagnose and correct the 
problem just before the launch
� Thus saving the bacon of the second MNO

◦ Result was a 100% improvement in http download KPI, 
which placed the second MNO in first place
� To the great embarrassment of the first MNO

27

27

Diagnosis approach and solution
� For data collection, observation points were placed at the RNC 

(Radio Network Controller) and around the network edges

� The ΔQSD paradigm was used for the diagnosis
◦ Determine outcome diagram for end to end delivery of packets and 

measuring ΔQ for intermediate points
◦ Isolate cause and effect to pinpoint the problem, finding where loss 

and delay are introduced in an unexpected pattern
◦ Ultimately, to find solutions

28
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Packet delivery behaviour

Here we observed a RTT 
delay introduced for each 
packet in a sample low-rate 
stream over the entire path 
during the first 100 
seconds of the data 
collection
This sample did not show 
any unexpected behaviour 
in the network in terms of 
loss and delay during this 
period;
However …

Not real data for example purposes only

The RTT (Round-Trip Time) during the first 100 seconds

29

Not real data for example purposes only

Packet delivery behaviour

With the full sample time at almost 
800 seconds we observed 
unexpected behaviour;
� Service break occurred
� Excessive delays of up to 1s

This directly correlates to a bad 
experience being delivered to end 
users 
• And delivering quality is about 

making bad experiences rare

The next step is to divide the paths (MT, RNC, Internet) into 
sections and deal with the issues in a focused way…

The RTT for the full duration of the data collection

30
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Packet delivery behaviour

Improvements typically are focused on 
getting the best from the down link (DL) 
RNC to MT….
But as can be seen from the BLUE on 
the chart (RNC to MT DL) we only 
observed a single outlier during the total 
sample time
For the full round trip across the core to 
the internet and back shown in GREEN
we again observed no real issues
The MNO suspected the RNC DL was 
the major trouble spot. As can be seen 
with the RED (MT to RNC UL) we found 
it was really on the UL: this is where the 
service break occurred.

Observing the end-to-end behaviour of packet flows enables 
the true cause of issues to be identified and corrected

Not real data for example purposes only

Combined observations split by element

31

iPhone launch findings using ΔQSD (1 of 2)

• Damaging user experience
• Placing excessive load on HLR/ 

authentication servers
Slow PDP context 

authentication

• Damaging user experience.
• Excessive radio-bearer allocation 

times from RNC.

Outsourced RAN 
inappropriately 

configured

• Latent & intermittent bug caused 
proxy to fail for x% of GGSN users 
for y sec

• Potential distributed denial of 
service attack (DDOS)

Fault in core network 
related to 

implementation of 
restrictive content 

filters

Significantly reduced 
HLR load

Improved user 
experience

Increased responsiveness
Reduced signalling load 

against RNC
Reduced pressure for 

RNC upgrade

Removed intermittent 
failure for users

Increased the robustness 
of the MNO network

Problem Issues Results

32
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iPhone launch findings using ΔQSD (2 of 2)

• Upstream problems from 
RNC to internet

• Issue due to particular 
equipment interactions

TCP download 
throughput audit 

• Worsened round-trip latencies
• Unnecessarily increasing 

transmission load/ network 
volume on GGSN, SGSN, & RNC

• Probable cause of occasional 
bursts of several seconds of 
delay in end-to-end user traffic

Unnecessary 
multiple 

fragmentation of 
user data in many 
parts of the MNO 

network

* as measured by independent testing
** by internal MNO measurement

Solution increased 
effective TCP 

throughput by 47%*
This took the MNO 

from 2nd/3rd in their 
market to equal 1st

Gave an additional
100% improvement in 
http throughput KPI**
This put the MNO well 
ahead of competition

Problem Issues Results
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3. Cardano Shelley
Case Study

34
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Cardano Shelley case study
� The previous case studies used ΔQSD for diagnosis
◦ PNSol was brought in to diagnose problems in running systems

� Cardano Shelley used ΔQSD for the system design
◦ Design is the preferred way to use ΔQSD

(“prevention, not cure!”)
� Cardano Shelley is part of the Cardano blockchain, supporting 

the Ada cryptocurrency
◦ An important part of Cardano is block diffusion, to allow an authorized 

node to create a block and add it to the most recently created block
◦ The initial implementation, Jormungandr, had insufficient performance
◦ A further implementation, Shelley, was done using ΔQSD to guide the 

design from early on, and achieved adequate performance in a 
decentralised environment
� We present part of the Shelley design using ΔQSD

35

35

Context of block diffusion
� Blockchain management in Cardano
◦ We will use ΔQSD to solve a design problem in the Cardano 

cryptocurrency, which is implemented using a blockchain
◦ A blockchain is a distributed ledger comprising a set of data blocks 

that are cryptographic witnesses to correctness of preceding blocks
◦ A distributed consensus algorithm is used to agree on the correct 

sequence of blocks; Cardano uses the Ouroboros Praos consensus
◦ Ouroboros Praos randomly selects a node to produce a new block 

during a specific time interval, weighted by distribution of stake

� Shelley block diffusion algorithm
◦ The block-producing node is randomly chosen and needs a copy of 

the most recent block
◦ Therefore this block must be copied to all potentially block-producing 

nodes in real time, which is called block diffusion
◦ We will design a block diffusion algorithm using ΔQSD to ensure that 

the algorithm satisfies stringent timeliness constraints

36
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Block diffusion problem statement

� Problem:
◦ Determine ΔQAZ for 

randomly chosen nodes A 
and Z, as function of design

◦ Determine design so that 
ΔQAZ satisfies performance 
constraints 

◦ ΔQXY is known
(measured)

� Design parameters:
◦ Frequency of block production
◦ Node connection graph
◦ Block size
◦ Block forwarding protocol
◦ Block processing time

37
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Z
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Sequence of intermediary nodes

Node graph of Cardano blockchain

ΔQAZ

X Y
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Block diffusion design using ΔQSD

� First step: ΔQ measurement
◦ Measure primitive ΔQ for simple cases
◦ Compute overall ΔQ for two arbitrary nodes across the Internet

� Second step: Algorithm design
◦ Define simple initial design and its outcome diagram
◦ Performance is ΔQ as function of load
◦ Make a design decision and refine the outcome diagram

� Each refinement defines a new outcome diagram
� Compute new performance and compare with requirements
� Decide whether to keep the design or not

◦ Continue until design is satisfactory
� We will show part of this process in Lecture 2
◦ When we have defined the concepts we need

38

38



20/01/2023

20

Lecture 2
Compositional Systems

39

39

Systems with no dependencies
(compositional systems)
� ΔQSD approach is done in three steps
◦ First, design the system with independent parts
◦ Second, add dependencies where they are needed
◦ Third, add multiple levels to handle multiple timescales

� We start with systems of independent parts
◦ Most systems consist largely of independent parts
◦ Dependencies and multiple levels will be treated later

(in Lectures 3 and 4)
� Topics for Lecture 2
◦ Quality attenuation (ΔQ)
◦ Outcome diagrams
◦ Cardano Shelley block diffusion
◦ Some typical ΔQs

40
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Lecture 2 contents
1. Quality attenuation (ΔQ)

1. Designing with ΔQ
2. Diagnosing with ΔQ

2. Outcome diagrams
1. Client/server example
2. Cache memory example
3. General system design
4. Semantics of outcome diagrams

3. Cardano Shelley block diffusion algorithm
1. Measuring ΔQ
2. Designing with outcome diagrams

4. Some typical ΔQs
1. Some typical distributions
2. ΔQ for a typical component
3. Load balancing example
4. ΔQ for a typical network

41
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1. Quality Attenuation 
(ΔQ)

42
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Quality attenuation (ΔQ)

� Message min enters component A and mout exits 
� How do we characterize the message traveling through A?
◦ The latency between entry and exit: delay value (a number)
◦ The message might be dropped: chance of failure (a percentage)
◦ The latency is not always the same for all messages: jitter

� We combine all this into a single quantity ΔQ
◦ p percent of messages have delay ≤ d and f percent of messages fail
◦ Latency and failure are considered together, not separately
◦ This helps to examine trade-offs latency/failure in the same design

43
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Combining delay and failure
� Delay and failure are combined in one quantity ΔQ
◦ Two parts of system design that are usually separate are 

considered together
◦ This lets us examine trade-offs between delay and failure

� Performance and fault tolerance should not be separate
◦ They are two sides of the same coin
◦ For example, failure can be reduced by increasing delay, 

which is all part of one ΔQ
� By changing the maximum delay threshold: increasing delay tolerance 

will reduce the percentage of messages that are considered failed
� By retrying: failure can be made arbitrarily small by increasing delay
� Both of these techniques are captured by the ΔQ quantity

44
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Comparing ΔQs
� We can compare two 

ΔQs: one is less than the 
other if its CDF is 
everywhere to the left 
and above the other
◦ Mathematically, this relation 

between two ΔQs is a 
partial order
◦ If the ΔQs intersect then 

they are not ordered

� A system satisfies its 
specification if the 
‘delivered ΔQ’ is less than 
the ‘required ΔQ’

ΔQ1

ΔQ2

ΔQ1 < ΔQ2

45

“Adding” two ΔQs

� Given components A and B
◦ ΔQA from m1 to m2

◦ ΔQB from m2 to m3

� We connect them together
◦ What is ΔQAB from m1 to m3?

46

ΔQA ΔQB

A B

ΔQAB ?

m1 m2 m3

0

ΔQA

1

0

ΔQB

1

0

ΔQAB

1

⊕
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?
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Convolution:  “sum” of two ΔQs

� How likely is a total delay t?
� Total delay t is split over A and B:
◦ t = δ + (t–δ)

� Since A and B are independent, 
probability density is the product:
◦ pAB(t) = pA(δ)⋅pB(t–δ)

� We sum over all the values of δ:
◦ Total pAB(t) = ∑0≤δ≤t pA(δ)⋅pB(t–δ)

◦ PDFAB(t) = ∫ PDFA(δ)⋅PDFB(t–δ)dδ

◦ This is a convolution
47
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Designing with ΔQ

48
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Designing with ΔQ
� We can use ΔQ to help design a system
� Let’s start with a simple system that is just a connection 

of two components
◦ We will show both a top-down and a bottom-up design

� In both cases, we determine the behavior of a new component
◦ We will determine when the top-down design is infeasible: 

when there is no possible way to build it (because a 
component must have negative delay and/or negative loss!)

� We will use a simple ΔQ in these examples, namely a 
Uniform distribution
◦ This is a reasonable approximation for components, but of 

course many other ΔQs occur in practice!
◦ We will “add” and “subtract” ΔQs in the examples, note that 

technically this is convolution and deconvolution

49
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Uniform distribution

� For our two examples, we use a Uniform distribution for ΔQ
◦ It is one of the simplest distributions and it is useful in practice:

many components have approximately a uniform distribution
◦ Uniform distributions are good for “back-of-the-envelope” ΔQ 

computations; an automated tool can of course compute with a full ΔQ
� In this lecture, we will do back-of-the-envelope computations
◦ It is easy to extend this and do the full computations 

50

1

0
a a+sa

Uniform
spread sa

� A Uniform distribution approximates
a component with buffer and server
◦ a is the minimum time in the component

◦ sa is the spread of times in the component

◦ a+sa is the maximum time in the component
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Bottom-up design with ΔQ

� Component A has ΔQA and 
component B has ΔQB

◦ What is ΔQC?

� We assume Uniform 
distributions for A and B and 
“add” them to get C:
◦ Assume (a,sa) and (b,sb)
◦ We can approximate (c,sc):

c = (a + b) + m/4
sc = max(sa,sb) + m/2
where m=min(sa,sb)

◦ Overall delay c is a bit more than 
the sum of the two delays

◦ Overall spread sc is a bit wider 
than the worst spread

51

ΔQC = ΔQA ⊕ ΔQB

ΔQA

Already known

Compute ΔQC

ΔQB

Already known

A B
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Numerical bottom-up example
� We know A and B
◦ a=5, sa=10
◦ b=5, sb=10
◦ m=min(sa,sb)=5

� Compute for C:
◦ c = (a+b)+m/4 = 11.25ms
◦ sc = max(sa,sb)+m/2 = 12.5ms

� Note bigger c and sc!
◦ c = 11.25 not 10
◦ sc = 12.5 not 10

52

0

ΔQA

1

0

ΔQB

1

0

ΔQC

1

⊕

=

?

11.25 23.75

5ms 10ms

5ms 10ms

52



20/01/2023

27

Top-down design with ΔQ

� There is a global overall 
requirement of ΔQC and 
component B is known to 
have ΔQB

◦ What ΔQA is needed for A?
� We assume Uniform 

distributions and “subtract”:
◦ a ≤ (c – b) – m/4

� Remember that m=min(sa,sb)
� A’s delay must be less than c–b

◦ If sa ≤ sb then sa ≤ 2(sc–sb)
If sa > sb then sa ≤ sc–sb/2
� This follows from 

max(sa,sb)=sc – m/2

53

ΔQC = ΔQA⊕ ΔQB

Already known ΔQC

Compute ΔQA ΔQB

Already known

A B
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Numerical top-down example
� We know B and C
� Assume sa ≈ sb
◦ b=5, sb=5
◦ c=7.5, sc=7.5
◦ m=min(sa,sb)=5

� Compute for A:
◦ a ≤ (c–b)–m/4 = 1.25ms
◦ sa ≤ 2(sc–sb) = 5ms

� Note strict bound on A!
◦ a=1.25 not 2.5
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Infeasibility check for top-down
� Let us compute the conditions on B and C for feasibility
◦ If they are not satisfied, then no component A is possible so 

the design is certainly infeasible!
� We start with two simultaneous equations in (a,sa):

c = a + b + min(sa,sb)/4
sc = max(sa,sb) + min(sa,sb)/2

� We solve this by distinguishing two cases
� First, assume sa≤sb :

sa = 2(sc – sb) > 0 which implies sc > sb [1]
a = (c–b)–(sc–sb)/2 > 0 which implies (c–b) > sc/2–sb/2 [2]

� Second, assume sa>sb :
sa = sc – sb/2 > 0 which implies sc > sb /2 [3]
a = c–b–sb/4 > 0 which implies (c–b) > sb/4 [4]

� The design is infeasible if (¬[1] ∨ ¬ [2]) ∧ (¬[3] ∨ ¬[4])
which is implied by sc ≤ sb/2 ∨ (c–b)≤min(sc/2–sb/2, sb/4)

55
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“Subtracting” Uniform distributions
� When doing top-down design, we do the opposite of addition
◦ Mathematically, we are doing deconvolution which is much harder 

to compute than convolution
◦ However, for specific distributions like Uniform it is easy
◦ It is also not a problem for a tool, because even though it needs 

much more computation, the user does not notice
� It is a really good use of computation power to help a system designer

� Top-down design introduces a new subtlety: “goodness” 
changes direction
◦ Bottom-up (addition): we compute the known behavior of a 

component, so decreasing sa means it is performing better
◦ Top-down (subtraction): we compute a requirement on a new 

component, so decreasing sa makes it harder to satisfy
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Diagnosing with ΔQ

57

57

Diagnosing with ΔQ

� Consider a pipeline of components that has a bad overall ΔQ
◦ This happens often in practice, e.g., the small cells case study

� Since adding a component can only make ΔQ get worse, we can 
find the faulty component(s) by binary search

� This technique can be generalized to follow the path of messages 
through the system
◦ This technique was used in the small cells case study
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2. Outcome Diagrams

59

59

Outcome diagrams
� Now let’s combine components (defined by ΔQ) 

into full systems (defined by outcome diagrams)
� Outcome diagrams define systems by looking at 

their behaviours from the outside
� They are purely observational
◦ They are very different from UML diagrams

� UML diagrams define what happens inside the system being modelled 

◦ Outcome diagrams say nothing about system state
� They are extremely useful
◦ Many different kinds of component can be brought 

together, software, humans, mechanical devices
◦ They allow estimating performance and feasibility early on 

in the design process
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Single outcome

� An outcome O1 is a specific system behaviour, which is a pair 
defined by its start event q1 and end event r1
◦ We don’t care how the system is built, we simply observe it
◦ Left figure shows the query and response messages entering and 

exiting a component
◦ Right figure shows just the causal connection between the two 

events: query causes response, with quality attenuation ΔQ1
61

System
component

(e.g., server)Query q1
(start event)

Response r1
(end event) O1=(q1,r1)

q1 r1

Component performing an outcome
(in the running system)

Causal connection between q1 and r1

(just an abstract relationship)

ΔQ1

Outcome
O1
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Outcome diagram

� We have a user click u1 causing a query q1 to be sent causing a 
response r1 to be received

� An outcome diagram is a graph showing the causal connections 
between all the outcomes that we are interested in
◦ We don’t actually care (yet) how the system is constructed, we are only 

interested in the behaviour
◦ Total ΔQ is the convolution of the individual ΔQ1 and ΔQ2

(all delays and failures are “added”)
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q1 r1u1q1 r1u1
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ΔQ = ΔQ1 ⊕ ΔQ2

ΔQ1 ΔQ2
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How outcome diagrams work

� An outcome O1 occurs when event u and event q both occur
◦ Square boxes show where events may occur (locations in the system)
◦ Circles show which outcomes can occur (behaviours we are interested in)

� New instances of O1 can occur later when new instances of u and q occur
◦ Many user clicks and queries can happen when the system is running
◦ If new events u’ and q’ occur then a new outcome O1’ occurs
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O1 O2

C1 O1C2 O2

u q

event u event q
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they are related
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interested in (outcome)

click query
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Client/server example
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Generic RPC outcome diagram

� This is a simple client/server shown as an outcome diagram
� Each square is an event and each circle is an outcome
� Each outcome has its own ΔQ
� Total ΔQ from user click to response displayed is addition of all ΔQs
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Cache memory example

66

66



20/01/2023

34

Cache memory example

� A cache memory is modeled using probabilistic choice
� ΔQmem = h･ΔQhit + m･(ΔQmiss ⊕ ΔQmain)
� We can see the cache as one component or refine it
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Cache quality attenuation

Combining the three 
ΔQs gives the cache 
memory’s overall ΔQmem
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General system design

69

69

General system design

� We design the system by 
designing its outcome diagram 
step by step

� We start from an unknown 
system and refine it until we 
arrive at the actual system

� At each step, we can compute 
estimated performance and 
feasibility
◦ If we make a mistake, we can 

correct it before actually 
building the system
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Refinement step

Refinement step
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Example top-down design

� We use a top-down design approach
◦ We assume that ΔQsystem , ΔQrequest , ΔQreply are all known: ΔQsystem is the system 

requirement, and ΔQrequest and ΔQreply have already been determined
◦ We compute required ΔQunknown for the unknown subsystem to be designed

� If ΔQunknown is infeasible, then go back and change ΔQrequest and ΔQreply

◦ If there is no way to solve the problem by changing ΔQrequest and ΔQreply then we 
need to go back even further and change the overall requirement ΔQsystem or 
change the outcome diagram (i.e., the system design)

� We navigate by going up and down the refinements until reaching a 
satisfactory design or until showing that no design is possible

� This gives a design tree…
71

uin uout
request replyUnknown subsystem

ΔQsystem = ΔQrequest ⊕ ΔQunknown ⊕ ΔQreply
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Exploring the design space

� The design space is a tree of partially defined systems
◦ The designer navigates the tree starting with an unknown system, making 

design decisions, until arriving at a completely designed system that 
satisfies the requirements

� The ΔQSD paradigm allows to compute infeasibility early on, even 
for partially defined systems
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Connection to logic programming
� There is a precise correspondence between this design process 

and the execution of a logic program
◦ Initial system requirements = query (initial logical formula)
◦ Partially specified system = logical formula
◦ Completely specified system = solution
◦ Design decision = axiom choice
◦ Infeasibility = unsatisfiability (failure)

� If a choice leads to failure, then the system backtracks
◦ “If a design decision leads to infeasibility, then we remove it” 

� Logical semantics
◦ Proof theory: Designing a system is deduction in a proof system in 

which each design decision is an additional logical constraint
◦ Model: Each partially specified system corresponds to a set of 

concrete systems that are coherent with that specification; each 
design decision restricts the set; infeasibility means an empty set

� A software tool for ΔQSD is a logic programming system
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Semantics of outcome 
diagrams
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Semantics of outcome diagrams

� Given an outcome diagram and the ΔQs of all outcomes in the 
diagram, we can compute the ΔQ of the complete diagram
◦ Recall that ΔQ(t) is a function of delay t that represents the 

cumulative probability distribution of the delay (formally, it is an 
improper random variable since the maximum can be < 100%)

� Outcome diagrams have four primitive operators
◦ Sequential composition (convolution)
◦ Probabilistic choice (weighted sum)
◦ Last-to-finish (all-to-finish) (arithmetic product)
◦ First-to-finish (dual of arithmetic product)

� They are defined as a formal language
◦ Outcome diagrams are represented formally by outcome expressions 

with a semantics, which allows a software tool to represent outcome 
diagrams and do ΔQ computations on them

◦ We only give the semantics of the four operators in this lecture; to 
make a practical software tool we need to define more properties
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Sequential composition

� Assume two outcomes OA and OB where the end event of OA
is the start event of OB

� The probability distribution of OAB is the convolution of the 
probability distributions of OA and OB

� Therefore:
ΔQ′AB = ΔQ′A ⊕ ΔQ′B
where ΔQ′(t) = dΔQ/dt and ⊕ is the convolution operator

� Convolution is a commutative mathematical operator, but this 
does not mean that components can be switched around 

76

OA OB

ΔQAB

76



20/01/2023

39

Probabilistic choice

� Assume there are two possible outcomes OA and OB and 
exactly one outcome is chosen during each occurrence of 
a start event

� OA occurs with probability p/(p+q)
OB occurs with probability q/(p+q)

� Therefore:
ΔQPC(A,B) =       ΔQA +      ΔQB
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⇋
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ΔQPC(A,B)
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q
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p+q

q
p+q
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Last-to-finish semantics

� Assume two independent outcomes with the same start event
� Last-to-finish outcome occurs when both end events occur
� ΔQLTF(A,B) = Pr[dA≤ t ∧ dB≤ t] = Pr[dA≤ t] × Pr[dB≤ t] = ΔQA × ΔQB

� Therefore:
ΔQLTF(A,B) = ΔQA × ΔQB
where × is simple multiplication
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First-to-finish semantics

� Assume two independent outcomes with the same start event
� First-to-finish outcome occurs when at least one end event occurs
� We compute the probability that there are zero end events
� (1–ΔQFTF(A,B)) = Pr[dA> t ∧ dB> t]

= Pr[dA> t] × Pr[dB> t] = (1–ΔQA)×(1–ΔQB)
� Simplifying gives:
ΔQFTF(A,B) = ΔQA + ΔQB – ΔQA × ΔQB
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Timeout example
� Timeout is modeled using first-to-finish
� Assume a send request to “Cloud” that 

waits for a response or a timeout
� This gives:

ΔQCT = ΔQC + ΔQT – ΔQC × ΔQT
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Inverse computations
� When designing a system, it is common to make 

top-down decisions
◦ We have the known ΔQ of a component and we need to 

compute the required ΔQ of a subcomponent
◦ For sequential composition, this requires doing a 

deconvolution, which is the inverse of convolution

� For the other three operations this also requires 
doing an inverse computation
◦ In most cases, there are many possible ΔQs for the 

subcomponent.  The inverse computation therefore 
computes a set of possible ΔQs which defines a range of 
allowable behaviours for the subcomponent.
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3. Cardano Shelley Block 
Diffusion Algorithm
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Context of block diffusion
� Blockchain management in Cardano
◦ We will use ΔQSD to solve a design problem in the Cardano blockchain, which 

is an open-source platform using proof of stake
◦ A blockchain is a distributed ledger comprising a chain of data blocks that are 

cryptographic witnesses to correctness of preceding blocks
� Ledger = A book in which financial transactions are recorded

◦ A distributed consensus algorithm is used to agree on the correct sequence of 
blocks; Cardano uses the Ouroboros Praos consensus

◦ Ouroboros Praos randomly selects a node to produce a new block during a 
specific time interval, weighted by distribution of stake

� Shelley block diffusion algorithm
◦ The block-producing node is randomly chosen and needs a copy of the most 

recent block
◦ Therefore the most recent block must be copied to all potentially block-

producing nodes in real time, which is called block diffusion
◦ We will design a block diffusion algorithm using ΔQSD to ensure that the 

algorithm satisfies stringent timeliness constraints
83
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Block diffusion problem statement

� Problem:
◦ Determine ΔQAZ for 

randomly chosen nodes A 
and Z, as function of design

◦ Determine design so that 
ΔQAZ satisfies performance 
constraints 

◦ ΔQXY is known
(measured)

� Design parameters:
◦ Frequency of block production
◦ Node connection graph
◦ Block size
◦ Block forwarding protocol
◦ Block processing time
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Block diffusion design using ΔQSD

� First step: preparation
◦ Define an initial design and its outcome diagram
◦ Measure ΔQ between two randomly chosen nodes

� Second step: design the algorithm
◦ We make design decisions and refine the outcome diagram to take 

each decision into account
◦ Each refinement defines a new outcome diagram and computes its ΔQ

� At each step, we decide whether to keep the design or whether to go back to 
a previous design and make another design decision

◦ Details given in “Mind Your Outcomes”, Computers 2022, 11, 45
� https://www.mdpi.com/2073-431X/11/3/45
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Measuring ΔQ

86

86

https://www.mdpi.com/2073-431X/11/3/45


20/01/2023

44

First step: measuring ΔQ
� First step is to measure ΔQ between two Internet nodes
◦ This requires some preliminary work

� Four main factors
◦ Block size: 64KB to 2048KB (5 steps)
◦ Network speed: measured TCP speeds
◦ Geographical distance (for single packet):

� Short (same data centre), medium (same continent), long (different continents)

◦ Network congestion: initially ignored
� Single-hop ΔQs are approximately step functions
◦ Multi-hop ΔQs computed from single-hop (sequential composition 

operator, i.e., convolution)
◦ Random path ΔQs computed from multi-hop (probabilistic choice 

operator, i.e., weighted sum)
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Measured ΔQ for fixed paths
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One-hop ΔQ per block size

Weighted sum of short, medium, 
and long hops, computed using 
probabilistic choice operator

Multi-hop ΔQ for 64KB Multi-hop ΔQ for 1024KB

Multi-hop computed
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Multi-hop computed
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Measured ΔQ for varying paths

� ΔQ computed for 
varying path lengths
◦ Percentage of paths of 

given length in a 
random graph of 2500 
nodes of degree 10

◦ Computed using 
probabilistic choice 
operator
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Designing with outcome 
diagrams
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Second step: design process

� For each design decision
◦ Determine a new outcome diagram
◦ Evaluate the effectiveness (ΔQ) using the outcome diagram

� This leads step by step to a final outcome diagram, which 
corresponds to the complete distributed system
◦ Let us explain one of the steps, namely obtaining several blocks 

from the fastest neighbour
◦ The other steps are explained in the Computers paper
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Outcome diagram for obtaining three
blocks from the fastest neighbour, where
blocks are divided into header and body
and permission is requested before transmission
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Obtaining three blocks (1)
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� We remind you of the two 
operators that are needed

� Obtaining one block from 
each neighbour uses the 
all-to-finish operator (∀)

� Obtaining fastest block 
from one neighbour uses 
first-to-finish operator (∃)

All-to-finish operator

First-to-finish operator
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Obtaining three blocks (2)

93

Obtain three blocks in order:
- permission request before transmission authorized
- header obtained before body
- body and next block combined using ∀

Obtain one block body
- from fastest neighbour

93

Obtaining three blocks (3)

� The resulting outcome diagram correctly models the causality 
and performance of the block transfer; ΔQ is easily computed

� The outcome diagram is complex but it can be simplified by 
introducing abstractions

� A software tool would have no problem with it, of course
94
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4. Some Typical ΔQs

95

95

Some typical ΔQs
� Introduction to distributions
◦ Gaussian distribution: used for aggregates
◦ Uniform distributions: used for single parts

� Two parts that occur often in systems

◦ Component
� We give the typical ΔQ for a component
� What happens when components are overloaded

◦ Network
� We give the typical ΔQ for a network
� Effects of geography (distance), packet size, and random 

fluctuations
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Some typical distributions

97
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Some typical distributions
� A tool can compute arbitrarily complex ΔQs
◦ There is no limitation on the complexity of the ΔQ

� But it’s still important to know some typical ΔQs
◦ A good engineer always knows when something is possible 

or impossible with back-of-the-envelope calculations

� We give theory and intuition for two common 
distributions
◦ Gaussian distribution: approximation for aggregates
◦ Uniform distributions: approximation for single parts
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Gaussian and Uniform distributions

� A Gaussian distribution approximates the 
sum of many independent random 
quantities (Central Limit Theorem)
◦ μ is the mean
◦ σ is the standard deviation

� Gaussian is a good approximation for 
aggregates, but not for single parts
◦ Gaussians have infinite tails!

� A Uniform distribution approximates one 
part of a system (component or network)
◦ a is the minimum time in the part
◦ sa is the spread of times in a part
◦ a+sa is the maximum time in the part

� Uniform is a good approximation for single 
parts, but not for many connected parts
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Convolution of
Gaussian distributions

� Formulas: (exact)
◦ GA = (μA,σA)

GB = (μB,σB)
GC = GA ⊕ GB = (μC,σC)

◦ μC = μA + μB

σC2 = σA2 + σB2

◦ σC = √ σA2 + σB2

� In other words:
◦ Means are added
◦ Squares of standard deviations are 

added
� Intuition:
◦ Standard deviation increases more 

slowly than addition, because we 
are adding independent variables
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Convolution of
Uniform distributions

� Formulas: (approximate)
◦ UA = (a,sa)

UB = (b,sb)
UC = UA ⊕ UB = (c,sc)

◦ M = max(sa , sb)
m = min(sa , sb)

◦ c = (a + b) + m/4
C = (A + B) – m/4
sc = max(sa , sb) + m/2

� In other words:
◦ Starting times are added, plus a 

little more
◦ Spread is the maximum of the 

spreads, plus a little more
� Intuitions:
◦ Spread causes the delay to be a 

bit worse than just a simple sum
◦ If there are several spreads, the 

biggest one will dominate
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ΔQ for a typical component
(from queuing theory)
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A component as a queue

� Let’s get some more intuition on how a component works
◦ To get this intuition, we model the component as a queue

� A typical component has four parameters of interest
◦ Offered load a: arrival rate / service rate of messages
◦ Buffer size k: number of messages stored inside
◦ Failure rate f: percentage of messages dropped
◦ Delay d: time delay between input and output message

� These four parameters are all related
◦ ΔQ is function of offered load and buffer size
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ΔQ

min mout

ΔQ
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M/M/1/K queue

� We model a component as an M/M/1/K queue
◦ M: arriving messages have Exponential distribution with rate λ
◦ M: service time has Exponential distribution with rate μ
◦ 1: one message can be served at a time
◦ k: total buffer size is k (buffer size = queue size k-1 + server size 1)

� Offered load a = λ/μ (arrival rate / service rate)
� The two knobs we control are offered load a and buffer size k
◦ When the component’s buffer is full, new arrivals are dropped (failure) 
◦ ΔQ, i.e., failure rate f and average delay d, is function of a and k
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Queue (size k-1 max) Server (size 1 max)

Arrival rate λ,
time τ=1/λ

Service time s,
Service rate μ, E[s] = 1/μ,
Ns messages in steady state ≤ 1

Queue time q,
Nq messages in steady state
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Effect of offered load a
� The offered load is the most important parameter
◦ a<1: the component has enough power to service all messages
◦ a>1: the component is overloaded and performs very badly

� Low load (a<0.8)
◦ Failure tends to 0, delay tends to 1 (as k increases)
◦ An underloaded component behaves very well

� High load (a≥0.8)
◦ When a gets close to 1 (around 0.8) things quickly get worse!
◦ When a>>1, failure rate tends to (a-1)/a, up to 100% for high load!
◦ Delay increases very quickly when a approaches 1

� When a=1, delay is already k/2, half of buffer size, which can be huge

� Quick switchover somewhere between a=0.5 and a=1
◦ As the load increases beyond 0.5, the system quickly gets very bad
◦ The exact threshold depends on what you consider bad!
◦ Even a temporary overload causes a big, long-lasting degradation

� This is the cause of the problem in the small cells case study
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ΔQ as function of load a
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� Let’s visualize ΔQ as function 
of offered load a

� To make it understandable, 
we approximate the ΔQ as a 
Uniform distribution and we 
give asymptotic behaviors for 
three cases, a<<1, a=1, a>>1
◦ We assume constant service 

time s and buffer size k=10
◦ We simplify the complicated 

formulas of a M/M/1/K queue

as/(1-a) → 0
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k/2 ⋅ s = 5s

f=a10 ≈ 0

a ≈ 0: good behaviour

f=1/(k+1) ≈ 9%
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a>>1
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(k – 1/(a-1)) ⋅ s ≈ 10s

f=(a-1)/a → 100%

a → ∞: even worse!

delay

delay

delay

a approaches 1: bad behaviour
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Effect of buffer size k
� The buffer size k is the total number of messages that can 

be stored in a component
◦ Manufacturers like to brag about buffer size. It might seem 

like a no-brainer that bigger is better, but this is wrong!
� We look separately at low load and high load
� Low load (a<0.8)
◦ Bigger buffer decreases failures and increases delay

� At low load, we can adjust k to trade off failure and delay

◦ As k➞∞ the failure rate f➞0 and delay➞1/(1-a) (close to 1)
� Big buffers are good at low load

� High load (a>0.8)
◦ Failure rate and delay are both high
◦ Bigger buffer greatly increases delay (around k/2 for big a)

� Big buffers are bad at high load
� NICs that can store 1000 packets are especially bad when overloaded
� With temporary overload, buffer will fill quickly, and then empty slowly
� If you want good behaviour:

(1) don’t ever overload not even temporarily, (2) keep buffer size small
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Load balancing example
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Load balancing example
� We illustrate the queue model by 

doing load balancing
� Load a is split between p⋅a and 

q⋅a for the two servers
◦ Modeled with probabilistic choice
◦ Servers have equal capacity with 

normalized load a=1, so p=q=0.5

� All quality attenuations are 
function of load

� We have the equation:
ΔQS(a) = p⋅ΔQ1(p⋅a) + q⋅ΔQ2(q⋅a)

� For good performance, both 
servers must never be 
overloaded, which gives:
◦ p⋅a < 0.8 and q⋅a < 0.8
◦ This results in a < 1.6

� This example can be extended in 
many ways, for example to divide 
packets into low and high priority
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ΔQS(a)

Server 1

Server 2

a
p⋅a

q⋅a

ΔQ1(p⋅a)

ΔQ2(q⋅a)

OS1

⇋
OS2

ΔQS

p

q

Splitter

109

ΔQ for a typical network
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ΔQ for network packets

� We can study what the real ΔQ is for networks 
delivering packets

� Experience shows that the ΔQ has four 
parameters G, S, V, L:
◦ ∆Q = ∆QG ⊕ ∆QS ⊕ ∆QV ⊕ ∆QL

� Again, we add ΔQs using convolution
◦ Because of their simple structure, convolution is easy
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Packet 
source

Packet 
destination

ΔQ

network
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Raw two-point measurements
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Measurements sorted by packet size

113

Minimum delays for each size
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Extrapolate to zero size packet: G
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Extract S

116



20/01/2023

59

V is what remains

117

G, S, V from measured ∆Q

G ∆Q 
(geography/given)

S ∆Q (size related)

Variable ∆Q

G

S

V

Each of those 
components could 
also contribute to 

loss. 
∆Q is comprised of 
these three basic 

elements.
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Overall network ΔQ
� Total network ΔQ is the 

sum of the three parts:
◦ Geographic delay G
◦ Size-related delay S(s) 

function of packet size s
� ΔQS is a step function if there 

is a constant packet size, 
otherwise it has another shape

◦ Variability V function of 
contention and noise

� In addition, there is a 
percentage L of lost 
packets
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Lecture 3
Systems with 
Dependencies

121

121

Systems with dependencies

� ΔQSD approach is done in three steps
◦ First, design the system with independent parts
◦ Second, add dependencies where they are needed
◦ Third, add multiple levels to handle multiple timescales

� Realistic systems have some dependent parts
◦ Most of the system consists of independent parts
◦ A few dependencies are added, for example where two 

message streams use the same database
� Topics for Lecture 3
◦ Shared resources
◦ Variable load (iterative query example)
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Nonlinearity
� The outcome diagrams of Lecture 2 describe 

systems with independent components
◦ Overall ΔQ is a linear combination of the component ΔQs

� It is compositional: we can decompose the outcome diagram 
into parts, compute ΔQs separately, and then combine them

◦ Nevertheless, this ΔQ is a nonlinear function of the load
� There is an overflow effect: when offered load goes beyond 

capacity, delay and failure rate of a component increase quickly

� Lecture 3 adds even more nonlinearity
◦ Adding dependencies between components is another 

source of nonlinearity
◦ A shared resource can also overflow and cause a major 

change in ΔQ  
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Shared resources
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Shared resources
� Computing ΔQ is simple if all components are 

independent
◦ This is the default compositional approach we saw so far

� But real systems have shared resources
◦ A resource is part of the system that can potentially be shared
◦ Sharing is modeled by additional variables and their equations
◦ Computing ΔQ is done by adding the equations to the solver

� Resource properties
◦ Ephemeral: A resource is ephemeral if it is available at a 

particular time instant and if not used at that time, it is lost.
◦ Threshold: A resource is threshold if exceeding a particular 

limit causes a ΔQ to become bottom (failure: no result).  If 
there is still some functionality, it is not a threshold resource.

125
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Examples of shared resources
� Ephemeral, not threshold
◦ (1) A network connection.  When capacity of the line is exceeded or 

there is congestion, the ΔQ has larger failure rate, but it still works. 
◦ (2) A shared CPU.  When too many processes use same CPU, they 

slow down but still keep going.
� Ephemeral, threshold
◦ (1) Working set of a process. When size of working set exceeds 

maximum memory available, system will thrash and effectively stops. 
◦ (2) Mains electricity at an outlet.  When too much power is drawn, a 

circuit breaker trips and power is zero.
� Not ephemeral, not threshold
◦ Tidal energy generator with battery storage. Battery is charged 

periodically, can always take energy from battery.  Battery energy 
goes down until next charge cycle.

� Not ephemeral, threshold
◦ Battery power supply.  Battery can supply energy at any time, until it 

runs out (total energy needed exceeds energy stored in battery).
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Example 1: congestion

� Assume two message streams entering the same component 
(e.g., a router)
◦ Total load is the sum of the two incoming loads: a = ax + ay

◦ Sharing is modeled as the sum of loads
� Congestion, i.e., buffer overflow and message drop, is computed 

from ΔQRouter using the queue model we saw before
◦ Router will show congestion if ax + ay ≥ 0.8
◦ Message delay and message failure are computed with the queue
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Router

ΔQRouter(a)

mx

mout

my

ax

ay

a = ax + ay
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Example 2: shared CPU

� Assume two components are implemented on the same 
processor core
◦ Each component uses fraction ci of the processing power with 

the constraint c1+c2=1
◦ ΔQ of each component is function of its processor utilisation

� This gives extra arguments c1 and c2 to the ΔQs and an 
equation (constraint) linking them
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A

ΔQA(c1)

B

ΔQB(c2)

c1+c2=1
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Example 3: shared cell tower

� Two carriers share a cell tower
� Each carrier is guaranteed 

50% of the tower capacity
� Each is allowed to use the 

capacity unused by the other

� Assume carrier 1 uses 30% and carrier 2 uses 70% of the capacity
� If carrier 1 suddenly decides to use 50% then carrier 2 will immediately 

drop to 50% and some packets it has in transit will be lost
� This is a nonlinear resource dependency: (with loads aC1(t) and aC2(t))
◦ ∀t. If aC1 ≥ 0.5 then aC1 ≤ 0.5 + max(0, 0.5–aC2)
◦ ∀t. If aC2 ≥ 0.5 then aC2 ≤ 0.5 + max(0, 0.5–aC1)
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Iterative query
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Systems with iterative queries

� Consider an iterative process where user sends query qn to server which 
sends response rn back to user, which sends query qn+1 and so forth 
◦ This is a common structure: it models many human-computer interactions on 

the Web, it models software doing iterative queries to a database, and many 
other repetitive processes

� How do we compute the ΔQ for this system?
◦ There are two kinds of outcomes: Os,n=(qn,rn) and Ou,n=(rn,qn+1)
◦ The causal sequence is unbounded: Os,0 < Ou,0 < Os,1 < Ou,1 < …
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user server

rn

qn

Ou Os

rn

qn
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ΔQ for iterative queries

� Two equations must be solved simultaneously
◦ The server cdf ΔQs(a) is function of load a (as we saw before)
◦ Because of iterative execution, load a is function of total delay ΔQs+ΔQu

� Load a is the expected rate of queries (queries per second):

132

Ou Os

rn

qn

∞
⌠
⎮1/t P(t,a) dt
⎮
⌡0

• P(t,a) = d(ΔQs+ΔQu)/dt is the pdf which is function of t & a
• Each value of load a gives another pdf P(t,a)
• Computing this integral gives an equation to solve for load a

a =
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Solving the equations

� Working out the integral gives:

a = 1/s ln(1 +                   ) 

(assuming Uniform distribution)
� Let’s look at the solutions
◦ Ratio d/s (user/server time) is important
◦ Solutions give good intuition but to be 

precise you need more computation
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ΔQs
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ΔQu
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Density P(t,a)

d/s + a/(1–a)
1
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Solutions

1340.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1/s ln(1 +                  ) 
d/s + a/(1–a)

1

d=0, s=1

d=0.5, s=1

d=2, s=1

d=5, s=1

0.18

0.34

d=1, s=1

0.44

0.51

0.57

Fastest speed (no user delay)

Slow user compared to server 

User and server similar speed

45° solution line

User
(delay d)

Server
(delay s)
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Solutions

1350.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1/s ln(1 +                  ) 
d/s + a/(1–a)

1

d=0, s=1

d=0.5, s=1

d=2, s=1

d=5, s=1

0.18

d=1, s=1

0.44

0.51

0.57

45° solution line
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How to measure load
� There are two ways of measuring offered load
◦ Arrival rate: number of events per second

(as function of time)
◦ Interarrival time: interarrival time between events

(as function of time)
� What is the right way to compute average load?
� Usually we are interested in the arrival rate
◦ Rate is a measure for work done per unit of time

� Work done = rate × duration
◦ Rate can be computed using arithmetic average

� Rate a1 for duration d followed by rate a2 for duration d gives average 
rate (a1+a2)/2 for duration 2d
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Back-to-back servers

� A similar system is the connection of two servers back-to-back
� This is also a common situation, e.g., two collaborating human 

teams that communicate with one another
� If s1 ≠ s2 then we can show that almost all waiting messages will 

queue up at the slow server (smallest si)
◦ The slow server sets the pace
◦ This happens even if the difference between s1 and s2 is only a few percent
◦ Making the fast server even faster has no effect on performance
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server
s1

server
s2

rn

qn
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Lecture 4
Multilevel Systems

139

139

There is always a cliff
� We are ambitious fellows
◦ We are building a big system, bigger than anything that 

has been built before!
� We are experienced engineers
◦ We use our experience to build the system: this is called 

inductive reasoning
◦ But inductive reasoning is flawed

� It goes wrong when we go beyond where it has gone before

� There is always a cliff
◦ But we don’t know where it is
◦ The system works perfectly until we fall off the cliff!
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Multilevel systems

� ΔQSD approach is done in three steps
◦ First, design the system with independent parts
◦ Second, add dependencies where they are needed
◦ Third, add multiple levels to make the system resilient 

� Highly reliable systems need multiple levels
◦ The main system will break when too much goes wrong
◦ When this happens, control passes to another level
◦ In general, widely different problems occur at different 

timescales, which need different solutions
� Topics for Lecture 4
◦ Managing risk
◦ Multilevel system design
◦ Supermarket scenario
◦ Multiple timescales

141
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Managing risk
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Managing risk

143

Hazard
(probability of failure occurrence)

Impact
(amount of damage when failure occurs)

Risk = Hazard × Impact
(the expected damage)

The amount of damage done by a 
failure depends on the system’s effect in 
the real world: it can be large (a nuclear 
accident) or small (a pencil point break)

The probability that a failure occurs can 
be computed by comparing the system 
requirements with the delivered behaviour

This is where ΔQSD intervenes

143

Hazard in terms of ΔQ

� We compare a delivered ΔQ to a required ΔQ
◦ The required ΔQ is defined by the QTA (Quantitative Timeliness Agreement)
◦ ΔQ1 satisfies the requirement; the green part shows the ‘slack’
◦ ΔQ2 does not satisfy the requirement; the red part shows the ‘hazard’

� When creating a design, keep slack and hazard in mind
◦ Slack gives an extra degree of freedom for the designer, whereas hazard is a 

potential problem that may need further attention
144

← required ΔQ

delivered ΔQ1

slack

hazard

delivered ΔQ2
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Computing hazard and risk

� Risk = impact times probability of occurrence
◦ Hazard = probability of occurrence of the failure = p1 – p0
◦ Impact = cost (i.e., extra delay) when the failure occurs = i(p)

� Because ΔQ is a probability distribution, this is an integral
� r = ∫ i dp
◦ Total risk is area of orange triangular part
◦ Risk = expected damage, i.e. expected extra delay
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1

0

percent

← required ΔQdelivered ΔQ →

delay

p

p0

p1

hazard
impact
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Managing hazards
� The number of possible hazards is unbounded
◦ “Limited only by your imagination”
◦ Theoretically, the system should be designed to handle all 

possible hazards, but this is too costly and time-consuming
◦ How do we bring order into this situation?

� New hazards appear in new systems
◦ If you are building a system that goes beyond previous systems, 

then new hazards will appear
◦ New hazards are hard to predict, but ΔQSD gives some useful 

tools: it can compute ΔQ for high loads and it organizes hazards 
according to their order

� Managing the hazards
◦ To manage a hazard, you look at all the ways that it can occur 

and you reduce the probability that one of these will happen
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Avoid “arming the hazards”
� A hazard can be quantified through its preconditions
◦ Enabling a precondition gives the hazard a nonzero probability

� This is called arming the hazard
◦ The system should be designed to avoid arming the hazards

� Example: the 2011 Fukushima nuclear disaster
◦ Caused by an earthquake and a followup tsunami
◦ The earthquake caused the reactor to shut down normally
◦ But the tsunami broke the generators needed to cool the core

� Safety regulations should have avoided this, but they were violated

◦ Absence of cooling caused a severe nuclear accident
� There was a chain of preconditions arming the hazard
◦ Safety violations armed the broken generator hazard
◦ Broken generator armed the nuclear accident hazard
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Causal graph of preconditions

� We show a graph of preconditions for the Fukushima accident
◦ Safety violations ➝ Vulnerable generator
◦ Vulnerable generator ∧ Tsunami ➝ Broken generator

� The hazards are armed like a chain of falling dominos
◦ Each precondition arms the next one
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Nuclear Accident

Absence cooling

Broken generator

Vulnerable generator

Safety violations

Tsunami

Earthquake

(other possibilities)

AND
Arming a hazard

OR
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Performance hazards
� Now let us focus on performance hazards
◦ Hazards that affect performance of a system

� There is a hierarchy of performance hazards
◦ Depending on how the system is stressed
◦ Does the system work as expected under normal load?
◦ What happens when hazards are armed:

� By internal preconditions (e.g., scheduled maintenance)?
� By external preconditions (e.g., load peaks)?

� We classify hazards according to preconditions
◦ How easy it is to control the preconditions to avoid arming
◦ Some preconditions are controlled by correct design
◦ Some preconditions are hard to control (external effects)

149
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Order of performance hazards

� We define a hierarchy of performance hazards
� ΔQ computation techniques depend on the order of hazards
◦ Orders 0 and 1 assume independence; orders 2, 3, 4 introduce sharing

150

Order Subject of concern

0: Causality Causal behavior is the only requirement. If ΔQ is best possible, 
can the system deliver its successful top-level outcomes, i.e., 
can the system ever work if causality is respected?

1: Capacity Markovian (independent) and linear (superposition) behaviour.  
Will the delivered ΔQ be within requirements at expected 
loads, i.e., constant average load within capacity constraints?

2: Schedulability Expected variability in behaviour which can be managed by 
proper scheduling.  Can the QTAs be maintained during 
reasonable operational stress, i.e., expected load variability?

3: Behaviour Is the system sensitive to internal correlation effects, i.e., 
interactions between subsystems due to internal effects?  For 
example, all devices doing http lookup at midnight.

4: Stress Is the system sensitive to external correlation effects, i.e., 
extreme behaviour of the users?  For example, all users 
placing a call when a natural catastrophe occurs.
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Multilevel system design

151

151

Multilevel system design
� In lectures 2 and 3 we saw how to design systems with 

predictable performance
◦ Outcome diagrams show the causal connections
◦ We add dependencies where they occur

� This works for systems with limited perturbations
◦ But it is not good enough for safety-critical systems that must 

continue to work under all circumstances
◦ You might think it is a good idea to add mechanisms

inside the system to avoid arming the hazards
� This does not work!

� Multilevel systems
◦ The right solution is to add mechanisms outside the system

� Build a hierarchy of observers where each observer manages the hazards that 
are not managed by observers at a lower level

◦ The original system is the base of the hierarchy
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Base system

� Our starting point is a base system that satisfies a QTA
◦ The QTA (Quantitative Timeliness Agreement) specifies what the 

base system does and its limits
◦ In lectures 2 and 3 we saw how to design this system using outcome 

diagrams with dependencies
� What happens when the QTA is no longer satisfied?
◦ Some hazard has occurred
◦ The system no longer provides its service to its users

� Multilevel design targets this situation
153

Base system
(satisfies QTA)

153

Multilevel system
� During normal operation, System 1 

does the work
◦ The other systems monitor this but 

normally do not intervene
◦ Upon QTA1 breach, System 2 is notified

� System 2 has several options:
◦ Take over from System 1, 

temporarily or permanently
◦ Reconfigure system 1 and then 

resume it
◦ Replace system 1 by another 

system and then resume it
� If System 2 cannot fix the problem 

then QTA2 is breached
◦ System 3 is notified and handles the 

problem at a higher level
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System 1 (base system)
(satisfies QTA1)

System 3
(satisfies QTA3)

System 2
(satisfies QTA2)

… …More levels (if needed)

QTA1
breach

QTA2
breach

Resume

Resume
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System 1 design constraints

� A base system in a multilevel system must be designed right
� Management ability:
◦ For breach detection, it must be extended with real-time observation points 
◦ For resuming operation, it must be extended with reconfiguration and restart 

� QTA1 properties: (used to minimize breaches)
◦ When System 1 is overloaded, it may behave badly but it should not “break”, 

i.e., if the overload disappears the system recovers
◦ When System 1 is overloaded, it provides a guaranteed minimum functionality
◦ These properties are only possible if System 1 is not physically damaged
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System 1
(satisfies QTA1)

Breach
detection

Resume
operation

QTA1 obeys two rules
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“mitigate or propagate”
� The general principle of a multilevel system is 

called “mitigate or propagate”
◦ First try to solve the problem inside the current system 

(mitigate), if this is not possible go to the next (propagate)
� “mitigate”
◦ Each level first tries to solve the problem by itself
◦ This is why we give rules for QTA1: you can behave badly 

but you should not break, and you should always provide 
some minimal functionality
◦ Don’t try to mitigate too much; there may be interactions 

between the mitigation strategies
� “propagate”
◦ Propagation can be simpler than mitigation, because each 

system is cleanly separated from the others (modular)
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Breach detection

� Base system does continuous measurement of QTA1 divergence
◦ Quantified hazard, by comparison of QTA1 and delivered ΔQ

� When the divergence goes above a critical value, the violation 
flips and a message is sent to the next level

� Hysteresis is used to avoid oscillations at the boundary
◦ This can happen when the divergence measure is noisy
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QTA1 divergence measure
(raw time function)

QTA1 violation 
(true or false)

false

true

violation

divergence

divergence
increases

divergence
decreases
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Supermarket example
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Supermarket example

� To illustrate the approach we design a supermarket
◦ Customers enter the supermarket, collect their merchandise, 

and queue up at an open cash register
� QTA1 = “less than 5 customers are in line”
◦ What happens when there are too many customers in a line?
◦ What do the next levels look like?
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Entrance

Exit

Cash registers

Supermarket Queue
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Supermarket layered system

� Three levels of operation
◦ QTA1: normal operation of the 

supermarket with customers 
coming and going

◦ QTA2: local reconfiguration of the 
supermarket recovers QTA1

◦ QTA3: global reconfiguration of 
supermarket chain recovers QTA2

� Each level “escalates” the 
solution
◦ Each level happens at a different 

timescale

� Fire alarm is an emergency 
solution with low probability
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QTA1

“longest line < 5 customers”

⇋
QTA1

breach

QTA1
breach

Add cashier

Open self-service

Open bar

Set off fire alarm!
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QTA2

“QTA1 violations less
than 50% of the time”

QTA2
breach

Resume

QTA2

breach
Om

Study
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⇋
New store
…
…
…

QTA3

“QTA2 violations
are being solved”
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Multiple timescales

161

161

Multiple timescales
� The system must be designed to deal with 

overload (hazard orders 3 and 4)
◦ Ideally the load never approaches 1

� As we saw before, when a>0.8 things get bad very quickly
◦ But it will almost certainly happen if we wait long enough

� It is usually too expensive to greatly overdimension the system
� So overallocation must be combined with other techniques

� Solution
◦ Overload must be dealt with at all timescales of interest, 

where each timescale is handled at its own level
� Time to react depends on timescale of the hazard
� ΔQSD is used to define the actions at each level

◦ Software must be as idempotent as possible and non-
idempotent parts should be isolated
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System at multiple timescales

163

Base system
Guaranteed minimum functionality

Level 3
System reconfigure (up to days)

Level 2
Task reconfigure (seconds)

Level 4
System modification (up to years)

Order 3
Internal correlations
(unexpected interactions
between subsystems)

Order 4
External correlations
(extreme user behavior
or environment)
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Actions at each timescale
� Base system is designed to obey two rules:

1. When overloaded, the system may behave badly but it must never 
break (“weather the storm”)

� If the load fluctuation is temporary, this may be sufficient (system is “ballistic”)

2. When overloaded, the system must provide some guaranteed 
minimum functionality (for example, high priority packets will pass)

� Level 2: reconfigure with respect to primitive tasks (seconds)
◦ Drop nonessential traffic; stop admitting new tasks; kick out tasks 

already in progress
� Level 3: reconfigure overall system (up to days)
◦ Depending on timescale: admission control, cold standbys, data 

center elasticity, software rejuvenation, put human in the loop
� Level 4: system modification (from days to years)
◦ One month: add new equipment
◦ One year: system redesign, build new data center
◦ Longer than one year: fire, forest, flood, nuclear accident, Carrington event, 

asteroid impact, supervolcano eruption
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Conclusions
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165

Advantages of ΔQSD
� ΔQSD works with partially specified designs
◦ It can use both top-down and bottom-up approaches
◦ At any point, we can check whether the system is feasible

� We can eliminate infeasible approaches early on in the design process
◦ At any point, we can predict latency and throughput under high load

� It saves time and money compared to full designs or building systems
◦ It makes no unnecessary assumptions regarding system state

� Unlike UML, which specifies the system’s internal structure
◦ The stochastic approach (cdfs, convolution) is a good compromise

� It is a sweet spot that gives good results w.r.t. amount of information needed
� Predictions are accurate when the independence assumption is satisfied

� ΔQSD cleanly factors the design into three parts
◦ Compositional system made of independent parts
◦ Adding dependencies between components
◦ Adding multilevel risk management
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Limitations of ΔQSD
� ΔQSD requires valid inputs to give useful results
◦ QTAs (Quantitative Timeliness Agreements): requirements must be known
◦ Components: stochastic behaviour of components must be known
◦ Dependencies: forgetting some dependencies will reduce accuracy
◦ Risk management: forgetting some hazards will reduce accuracy

� ΔQSD works best for systems with independent actions
◦ For systems that execute long sequences of dependent actions,

the predictions will be less accurate

� Achieving ΔQSD’s full power requires significant computation
◦ But much less computation than some other techniques, e.g., simulation

� Laptop computers are sufficiently powerful for large designs
◦ It can be used for back-of-the-envelope design but with loss of accuracy
◦ It is most suitable as foundation for a software design tool

� It puts to good use the available computing power

167

167

Conclusions and future steps
� This tutorial introduces ΔQSD but there is much more:
◦ Practical measurement and computation of ΔQ
◦ Practical experience with large systems
◦ Shared resources and timescales applied to large systems
◦ The tutorial is still an ongoing work!

� PNSol has detailed slide decks and documentation
◦ Theory and practice of ΔQSD
◦ Experience reports for large industrial projects

� Ongoing project to formalize ΔQSD and build tools
◦ We are looking for Ph.D. students to help us
◦ Publication “Mind Your Outcomes”, Computers 2022, 11, 45

https://www.mdpi.com/2073-431X/11/3/45
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