
Migratable User Interfaces: Beyond Migratory Interfaces 
Donatien Grolaux 

CETIC ASBL 
Aéropole 

Rue Clément Ader, 8 
B-6041 Gosselies, Belgium 

+32-71-91 98 08 
dg@cetic.be 

Peter Van Roy 
Dept. of Computing Science and Engineering 

Catholic University of Louvain 
Place Sainte-Barbe, 2 

B-1348 Louvain-la-Neuve, Belgium 
+32-10-47 83 74 

pvr@info.ucl.ac.be 
 

Jean Vanderdonckt 
School of Management (IAG)  

Catholic University of Louvain 
Place des Doyens, 1 

B-1348 Louvain-la-Neuve, Belgium 
+32-10-47 85 25 

vanderdonckt@isys.ucl.ac.be 
 

ABSTRACT 
The migration of a user interface (UI) is the action of 
transferring a UI from a device to another one, for exam-
ple from a desktop computer to a handheld device. A UI 
is said migratable if it has the migration ability. This pa-
per describes how the QTk toolkit was extended to pro-
vide migratable UI and what API is provided to the de-
velopers. Basically an indirection layer has been intro-
duced between the application and the actual representa-
tion of the UI. The migration of a UI is achieved by firstly 
creating a clone of the state of the site displaying the UI, 
secondly by changing the indirection to point to this 
clone. The API provides a way to specify if (the entirety 
of) a window can be migrated or not at construction time. 
A migratable window returns a universal reference that 
can be given to any site with whom a network connection 
is possible. This reference can be used by a receiver wid-
get to migrate the window there. Interestingly, a migrat-
able window can itself contain a receiver widget config-
ured to display the content of another migratable window: 
all windows are transparently migrated along. Also a 
window (stationary or migratable) may contain one or 
more receiver widgets : it is possible to dynamically com-
pose a UI from several different UIs. 

Keywords 
Attachability, migration, detachability, migratory UI, 
multiple computing platforms, multi-surface interaction, 
naturalness, plasticity. 

INTRODUCTION 
Remote access to applications is common place nowa-
days: X11 remote displays [15], VNC [16], Windows 
Terminal Server [17] to name a few of them. These solu-
tions are based on an external service such that the appli-
cations are not aware of the remote access nor can they 
control it. Also the granularity of the remote access is 
very broad; in general whole screens are exported. Be-
cause of that, these mechanisms cannot provide multi-
platform interactions where the user interface of an appli-
cation is spread over several devices. A famous example 
of such interaction is the Painter’s Palette problem: paint-
ers use a combination of pencils, a color palette and an 
uncluttered canvas, when traditional paint applications 
display both the color palette and the canvas on the same 
screen. If the application was designed to allow the mi-
gration of the color palette and the toolboxes to another 

device like a handheld computer, then a fully uncluttered 
canvas on the screen would be possible; the handheld de-
vice would be the digital equivalent to the Painter’s Pal-
ette [1,4].  
In other words, the multi-platform interaction can be 
achieved by offering the migration ability and control to 
the applications themselves. This paper explains how this 
capability is introduced at the toolkit level. First, the sta-
tionary version of the toolkit is detailed.  Second, the mi-
gration extension is explained, with an example of the 
API. Third, the migration mechanism itself is detailed by 
explaining the remote access mechanism then the migra-
tion between two sites. Fourth, the conclusion details how 
this toolkit has been used to solve the Painter’s Palette 
problem on a real application.  

INTRODUCTION TO QTk 
This work is based on the QTk toolkit [6] for the Mozart 
system [12]. QTk in itself is an extension of the Tk [13] 
module that offers an object-oriented binding to Tcl/Tk 
[14]. The Mozart platform implements the Oz program-
ming language. QTk takes advantage of Oz records to in-
troduce a partly declarative approach for programming 
user interfaces. Oz records are tree-like data structures 
that generalize XML by allowing the embedding of live 
language references. QTk uses correctly formatted Oz re-
cords to specify: 
• The initial widgets of a window and their initial states. 
• The geometry placement of these widgets and their 

behavior upon window resize events. 
• Basic user interaction like button clicking (depends on 

the type of the widget). 
• For each widget, a handle specifies a variable that will 

be bound at construction time to the object controlling 
that widget. 

The handles fill the gap between the declarative and the 
imperative worlds: 
• The description record specifies the initial state of the 

window, and some statically definable aspects of its 
dynamic behavior (e.g. geometry behavior upon win-
dow resize, basic actions) 

• The handles are hooks over the widgets to control 
them at runtime. They are equivalent to the objects 
created by usual imperative toolkits. 



D=td(lr(glue:we  
        label(text:“Enter your name”)  
        entry(handle:E glue:we)) 
     lr(glue:we 
        button(text:”Ok” action:OKPROC) 
        button(text:”Cancel” 
               action:CANCELPROC))) 
W={QTk.build D} 
{W show} 
{E set(”Type here”)} 
{E getFocus} 

 

This example shows the different aspects of QTk: 
• D is the description record 

o The td container widget organizes widgets top-
down 

o The lr container widget organizes them left-right 
o The handle feature of the entry widget references 

E: once the window is built, E will be a reference 
to an object that interacts with this particular entry 
widget. 

o OKPROC and CANCELPROC are procedure names; 
their bodies are defined elsewhere in the program. 
Basically, they will close the window while taking 
into account (resp. discarding) the value of the en-
try. 

• The QTk.build function takes a description record as 
parameter, builds the corresponding UI and returns an 
object controlling the window. As a side effect, all 
handles of the description are linked to objects con-
trolling the corresponding widget. In this particular 
example, this is where E is linked to an object control-
ling the entry widget of the window. 

• {W show} applies the show method to the W object. 
This instruction makes the constructed window visible 
to the user (by default, it is kept invisible). 

• {E set(“…”)} and {E getFocus} respectively 
changes the text of the entry widget and gives the user 
focus to it. 

 
MIGRATION PROCESS API 
Before describing the migration mechanism itself, we first 
show how it is provided to QTk developers. A function 
QTk.newMigratable is introduced: 
W={QTk.newMigratable D} 

Where D is a description record accepted by QTk.build. 
This function returns an object that represents a virtual 
window instead of a real one. As such, this window lacks 
the decoration of real windows (title bar, close button, top 
left system menu), and does not support window specific 
methods like show. However it provides the getRef 
method that returns a unique universal reference for this 

window.  
UniversalRef={W getRef($)} 
A receiver widget is introduced: it defines a rectangu-
lar area of a window that can display a remote user inter-
face when given its universal reference: 
DW={QTk.new td(receiver(glue:nswe  
                        handle:R))} 
{DW show} 
{R set(ref:UniversalRef)} 
It is up to the application to pass the universal reference 
of a migratable window between interested processes. Us-
ing the Mozart distribution subsystem, this is done by 
passing around a string of characters that looks like a 
URL [18]. For example an application can use tcp broad-
cast to get this reference from processes willing to offer a 
migratable user interface on the same LAN.  
Handles of migratable windows 
From the application point of view, handles of virtual 
windows are equivalent to handles of real windows: it’s 
impossible to tell if a handle is from a migratable user in-
terface or from a stationary one. As there is also no dif-
ference between description records of stationary UIs and 
migratable UIs, we say that the migration capability is 
transparent to the application. It is also important to no-
tice that applications where only subparts of the UI are 
migratable are also easy to implement by composition: 
1. Split the different migratable subparts of the UI in rec-

tangular composition of widgets 

Migratable 
parts 

 
2. Take these compositions away from the description 

record of the window, and replace them by receiver 
widgets 

receiver 
r
e
c
e
i
v
e
r 

r
e
c
e
i
v
e
r 

Migratable 
parts taken 
away from 
the main 
window 

 
3. For each subpart, create a migratable window from its 

corresponding description 
4. Create the main application window 
5. Place the migratable windows into the receivers that 

replace them: visually the output is the same as the 
stationary UI. 

 2



receiver 
r
e
c
e
i
v
e
r 

r
e
c
e
i
v
e
r 

 
It’s up to the application to decide if migratable subparts 
should be migrated together or not. 

MIGRATION WITH QTK 
This chapter details the general concepts behind this mi-
gration in a very broad view first, and then details the im-
plementation issues.  

Stationary case 
Let an application A whose user interface is displayed in 
the single window M. M is composed of widgets Mi. To 
each Mi corresponds an object Oi (in the object-orientation 
sense) that serves as the application interface for that wid-
get. For simplicity, let’s first assume the following restric-
tions (they will be removed later): 
[R1] Only the application can change the state of Mi, there 
is no interaction possible by the user. 
[R2] The set of widgets contained in M is constant during 
its existence : if ∃time t where Mi∈M, then ∀time t’, 
Mi∈M also. This restriction assumes that M is populated by 
all its widgets at creation time. This is not the case with 
most graphical imperative toolkits (the UI is incremen-
tally created by commands to add widgets), however this 
is the case with the QTk toolkit where a complete window 
is built at once from a description record. 

 
Figure 1. Stationary case 

If M were purely stationary when A is running, the appli-
cation would respect the scheme of figure 1. 

Remote case 
Before taking the migration process into account, let’s 
first consider a stationary remote UI. Let’s consider that 
M is running on a distant site1 D different from the site L 
running A. The Oi objects are thorn apart between both 

                                                           
1 A site is a process, however to keep in mind that D and 

L may be running on different computers, the term site 
is used here. 

sites : 
• they should be at the D site otherwise nothing 

links the UI with the actual application 
• to achieve transparency, they should also be at 

the L site : the application should be able to ac-
cess these objects as in the stationary case 

To achieve transparency, Oi objects are replaced by Pi 
proxy objects on the L site. These proxy objects are such 
that the application can’t tell the difference between them 
and the original Oi objects; interactions from the applica-
tion are relayed from L to D, while interactions from the 
user are relayed from D to L. Both sites use a communica-
tion manager to work together. The general scheme is 
shown in figure 2. 

 
Figure 2. Remote case 

For example, if the application wants to change the text of 
the label O1, it would normally do so by invoking the 
method set(text:”Some new text”)  on O1. This 
invocation is applied to P1 instead, which tells the com-
munication manager (CM) of A about it. The CM of A relays 
this information to the CM of D which invokes this method 
on O1, changing the actual widget’s content. From the ap-
plication’s point of view, there is no difference between 
Pi objects and Oi objects, thus the application doesn’t 
need to change when using a migratable UI or a station-
ary one. From the user’s point of view, the modification 
of states by the application are relayed to the remote site 
where the UI is displayed, consequently it is the same 
user interface no matter where it is physically situated. 

Callbacks 
Feedback from users is generally managed by a callback 
system where widgets are configured to tell the applica-
tion about specific events. Let’s remove the [R1] restric-
tion in the stationary case: 

 
This is one of the possible schemes for callbacks: the ap-
plication uses Oi objects to configure the widgets to react 

O 1

O2

ON

.

.

.

P 1

P 2

P N

.

.

.

Comm 
Manager

D site 
Comm
Manager

User Application

L site running A

Internet 
Connection 

Application 
User part of the application 

O 2 

O 1 

O N 

. 

. 

. 

G 

Application

User part of the application

O2

O1

ON

. 

. 

. 

G 

Callbacks listener

 3



to certain user events. When these events occur, the wid-
gets send a message to a listener in the application itself. 
It’s up to the listener to decide what to do in response of 
these messages. In the remote case, the CMs relay these 
callbacks to the application. The event configuration 
commands are sent to Pi instead of Oi. These commands 
are relayed to Oi objects by the CMs. They are applied at 
D such that the messages are sent to a listener inside the 
CM of D itself. Each time a message is received by this 
listener, it is relayed to the CM of A which in turn sends it 
to the listener inside the application. 

 
Implementation of remote user interfaces with the QTk 
toolkit in the Oz programming language 
Several properties of Oz make the implementation of such 
relay mechanism easy: 
• Oz has a full support for object-oriented program-

ming. The QTk toolkit provides an object-based ab-
straction for controlling widgets. 

• Oz supports a symbolic tree data structure: records. 
They have the form: 
label(feat1:val1 feat2:val2 … 
featN:valN) 
where 
o label is an atom. An atom is any text between 

single quotes, or a single word starting by a low-
ercase character which is not a keyword of the 
language (for example hello, world and ‘hello 
world’ are atoms) 

o featX are integers or atoms. When not present, 
an implicit numbering is used instead (la-
bel(val1 val2 … valN) == la-
bel(1:val1 2:val2 … N:valN) ) 

o valX can be any data structure of the language, 
including variables or records. 

Records are natural data structures of the language, 
with full support to manipulate them. The descrip-
tion mechanism of QTk is based on Oz records. 

• Method invocations are based on records. If O is an 
Oz object, {O set(bg:”black”)} calls the method 
set of O, with “black” as the bg parameter. What is 
important to notice is that set(bg:”black”) is in 
fact an Oz record. If a variable is set to this record  
MyRec=set(bg:”black”), then {O MyRec} is 
equivalent to the invocation above. 

• Classes support an otherwise method that is called 
by default if a method invocation uses a method 
name not defined in the class definition of the object. 

Instead of raising an exception when an undefined 
method is invoked on an instance of such a class, the 
otherwise method is invoked instead, with the ac-
tual record used for invocation given as parameter. 

• Oz supports transparent distribution, which means 
that Oz data structures have a distributed protocol at-
tached to them. For example, records are duplicated 
using a transparent marshalling process. 

Using the otherwise method technique, it is easy to cre-
ate Pi objects that accept any kind of method invocations, 
and send them to the CM of L for relay to the other site. 
Eventual exceptions are caught by the CM of D, and sent 
back to the CM of L which injects them to the application. 
Note that the message exchange between the two CMs 
benefits from the transparent distribution of Oz: there is 
no need to marshall the data structures into a stream of 
bytes for sending through the network. Event notifica-
tions are always configured by the bind method of Oi. 
The CM of D site catches these methods to configure 
them to use its own callbacks listener. This listener relays 
all messages to the CM of L which injects them to the 
callbacks listener of the application.  

Migration process 
Let’s consider a site L running a migratable user interface 
MW displayed at the site D1, and let’s migrate this user in-
terface to site D2. In essence, a migration consists of these 
steps: 
1. Isolate the migratable user interface from the applica-

tion to prevent interactions during the migration 
process 

2. Create at D2 a UI equivalent to the one being at D1, ie 
a clone. 

3. Disconnect the CM of L from the CM of D1, and con-
nect it to the CM of D2 

4. Resume the interaction with the application 
Isolating the application is necessary because the whole 
migration process takes some time but should be atomic 
wrt the application interaction. Creating a UI at D2 
equivalent to the one at D1 consists in reproducing all its 
state and behavior observable by the user: 
1. For all widgets MW1i at site D1, create a widget MW2i at 

site D2 of the same type and with the same geometry 
(same placement configuration inside the window). 

2. For all widgets MW1i, for all visual parameters of 
MW1

i, set the corresponding visual parameter of MW2i 
to the same value. 

3. For all event bindings of widgets MW1i, set the same 
event bindings to MW2i. 

Implementation of the migration using QTk and OZ 
Let a migratable window built from a description record 
DR. The handle parameters of DR are bound to Pi objects 
and a CM object is created. The original DR record is also 
stored by CM. At this stage, there is no display site D yet. 

O 1 
O 2 

O N 

. 

. 

. 

P 1 
P 2 

P N 

. 

. 

. 

Comm 
Manager

D site 
Comm 
Manager User Application 

L site running A 

Internet 
Connection 

Callbac s k
listener Callbacks 

relay Callbacks listener 

 4



Application
Construction of the 
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

 
So far there are no real Oi objects, so how should the Pi 
objects behave if the application tries to interact with 
them ? At least these two different designs can be envi-
sioned: 
1. Pi objects can fully emulate Oi objects by them-

selves. 
2. Pi  objects cannot emulate Oi objects at all and they 

explicitly rely on them. 
The first one is the most powerful, but involves a huge 
work of development and maintenance: for each different 
kind of widget, the toolkit should implement two classes 
with the same signature, one for the stationary case and 
the other for the migratory one. The second approach is 
far less expensive to implement as it only requires creat-
ing a polymorphic class for migratable widgets in general, 
no matter what their particular properties might be. QTk 
uses this approach. As a result, the migratable widgets 
cannot work until there is a display site. When not con-
nected, method invocation messages are buffered; only 
when connected these messages are processed by the dis-
play site. 

Application
Construction of the 
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

 
When the first remote display site D1 connects to the CM of 
L, the DR record is sent. D1 creates the actual user inter-
face and the Oi’s from this DR. At this moment, the appli-
cation can start working with the remote user interface; 
the buffered messages are sent first. 

Application
Construction of the 
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

CM
DR 1

2

N

.

.

.

O

O

O

UI

D1 site

 
When migrating to a Dk+1 site, the actual user interface 
and Ok+1i’s are still created from the DR record. However 
the visual aspects of the widgets might have changed 
since their creation time, and the Dk+1 site should reflect 
that. Let’s define: 

• VA(O)={v | v is a visually observable aspect 
of the widget controlled by O} 

• get(O,v): returns the current value of the vis-
ual aspect v of O. 

• set(O,v,s): sets the visual aspect v of O to s. 

After the user interface and O(k+1)i’s are created at Dk+1, ∀ 
i in 1..N, ∀ v in VA(Oki): set(Ok+1i,v,get(Oki,v)). 
In practice, Pi’s are used to store the visual parameters: 
Pi’s contain a dictionary that supports the operations: 

• get(P,v): returns the value of the key v of the 
dictionary of P 

• set(P,v,s): sets the key v of the dictionary of 
P to s. 

When disconnecting from a display site Dk, ∀ i in 1..N, 
∀ v in VA(Oki), set(Pi,v,get(Oki,v)). When con-
necting to a display site Dk+1, ∀ i in 1..N, ∀ v in 
VA(Ok+1i), set(Ok+1i,v,get(Pi,v)). 

Application
Construction of the 
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

CM
DR 1

2

N

.

.

.

O

O

O

UI

Dk+1 site

Application
Construction of the 
window from a DR record

CM

DR

Relay buffer

Callbacks relay

P1

P2

PN

.

.

.

L Site

CM
DR 1

2

N

.

.

.

O

O

O

UI

Dk site

K

K

K

K+1

K+1

K+1

 
Widget manipulations 
The [R2] restriction assumes that the set of widgets in MW 
is constant over time. Under this restriction, QTk can of-
fer migratable UIs: the set of widgets of MW is defined at 
creation time and remains the same over the different mi-
grations as the same DR is used each time to set up the ini-
tial display of the different Dis. Let’s remove the [R2] re-
striction and consider an application that: 

 5



• adds one or more widgets to MW 
• deletes one or more widgets from MW 
• changes the geometry management of one or 

more widgets of MW 
Implementation of widget manipulations 
From the implementation point of view, this is a difficult 
problem for several reasons. Before detailing them, it is 
important to understand how QTk manages this kind of 
functionality. The declarative approach of the construc-
tion record does not by itself support the dynamic ma-
nipulation of widgets in the user interface. Consequently, 
QTk provides several dedicated container widgets for 
solving this problem. The simplest one is the place-
holder widget that reserves a rectangular area of the UI: 
placeholder(handle:P) 

The P handle object can be used to display any new wid-
get as long as the placeholder exists. The creation of 
widgets is however still based on a declaration record. 
For example, to create a label inside the above place-
holder, the application could do: 
{P set(label(text:”Hello world”))} 

and to replace the label by a button: 
{P set(button(text:”Button”))} 

as the placeholder can contain only one widget at a 
time, the previous command replaces what was currently 
displayed (the label) by the new widget (the button). Note 
that the new widget can be a container widget with a 
complex configuration: 
{P set(td(lr(glue:we  
      label(text:”Type your name here”) 
      entry(handle:E glue:we bg:white)) 
   lr(glue:we 
      button(text:”Ok”     handle:BOk) 
      button(text:”Cancel”  
             handle:BCancel))))} 
The implementation problems related to the migration 
are: 
• The proxy objects are general objects that cannot 

make the difference between a method invocation that 
creates a new widget and other method invocations 
that don’t. 

• Only the display site can detect a method invocation 
that leads to the creation of a new widget. 

• When migrating, dynamically created widgets have to 
be created again on the new site. The only way to do it 
correctly is to replay the method invocation that cre-
ated the widget at first. 

When a method invocation is received by Pi, it is relayed 
to the D site through the CMs as usual. When applied by 
the Oi object, the new widget creation is detected: it is 
created along with the handle objects as usual and the CM 
of D is notified of the creation of these objects. This noti-
fication is relayed to the CM of A which creates proxy ob-

jects for all the newly created objects, and connects them 
to the handle parameters in the description record used to 
create them. Also, the method invocation used to create 
these new widgets is stored in Pi.  
When migrating, right after the window is built from the 
original DR record, for all proxy objects, if they contain 
method invocations to create widgets, replay these meth-
ods, but instead of creating new proxy objects for each 
newly created widget, use the corresponding already ex-
isting proxy object. The rest of the migration process 
stays the same: for all widgets in MW, restore their visual 
parameters and event bindings. 

L site D site
{P set(label(text:”Foo” handle:L))}

P proxy object

set(label(text:”Foo”
               handle:L))

CM CM

O object
of P

UI

FooO object
of the label

P proxy object
of the label

Store the command

 
Fault tolerance and performance issues 
The default migration configuration assumes a fault-free 
environment. This is a reasonable assumption when pro-
totyping an application, or in those special cases where 
the environment is guaranteed to satisfy it. For normal 
Internet situations, this is not enough, and there should be 
a way to manage fault tolerance. According to the migra-
tion protocol, at most one display site can be connected to 
the application site at any time. Both sites can go down: 
o If the application site goes down, there is no running 

application anymore, so there should be no UI too. In 
such a case, the receiver widget of the display site is 
emptied by destroying whatever it contained.  

o If the display site goes down, an assumption of the 
migration protocol is broken: the Pi don’t have the 
opportunity to store the visual states of the Oi before 
disconnecting from the display site. However QTk 
can still use the last successful migration data to re-
store the UI in that state.  

The fault-tolerance consists in restoring the visual aspects 
of the widgets in case a display site goes down. One 
scheme would be to store this information each time it is 
available. For example if the user application changes the 
color of a button to red, it has to issue a method invoca-
tion of the form: {ButtonHandle set(background: 
red)}. This information could be caught by the proxy 
object and stored somewhere. However it involves that 
the proxy objects have enough knowledge of the semantic 
of the widget they pretend to be to differentiate between 
method invocations that change visual aspects of the wid-
gets and others that don’t. As mentioned before, this ap-
proach would require a big development and maintenance 
effort. Also if the user changes the state of a widget (typ-
ing a letter in an entry field for example), this information 

 6



has to be brought to the application site; that causes a 
network overhead, and again the proxy objects should 
have enough knowledge of the widgets they pretend to be 
to know what to do of this information. 
Another approach is used: let the application define the 
way the storage and update of the visual aspect of the 
widgets are done. The application can define them by 
classes of widgets and/or for specific instances of widgets 
and/or let the default behavior. The default behavior is the 
one described in the migration protocol above: 
When disconnecting from a display site Dk, ∀ i in 1..N, 
∀ v in VA(Oki), set(Pi,v,get(Oki,v)). 

When connecting to a display site Dk+1, ∀ i in 1..N, ∀ v 
in VA(Ok+1i), set(Ok+1i,v,get(Pi,v)). 
The idea is that one can make a prototype application 
with migratable widgets at nearly no cost assuming a poor 
behavior in case of failures. When making it fault-
tolerant, the developer has to redefine these aspects so 
that no action at all is taken when disconnecting from a 
display site, and when connecting to a site, the visual as-
pects are restored from the inner state of the application. 
As a result, the migration process is fastened: the restora-
tion of visual aspects depends only on the changes the 
application expects, and is fault tolerant as the application 
restores these parameters in a coherent way with its inner 
state. On real examples, the speedup of the network op-
erations has often been observed to be more than 50%. 

Painter’s Palette problem 
To highlight the benefit of transparent migration, we 
modified a drawing application written for QTk before 
migratable UIs existed to solve the Painter’s Palette prob-
lem. In the real world, a painter uses an uncluttered draw-
ing area, its tools and colors are on a separate palette so 
they don’t get in the way of the drawing. On the contrary, 
computer’s drawing applications use the screen to repre-
sent both: the drawing area is reduced by the place taken 
to display the different toolboxes. QTkDraw was modi-
fied so that the left and right toolboxes of the window are 
now migratable. A user can send them for example to an 
external iPaq handheld: this is the digital version of the 
Painter’s Palette [1,4]. The modifications in the original 
code were: 
• extract the toolboxes part of the description record of 

the window, and replace them by receiver widgets 
• create migratable windows from the extracted defini-

tions 
• create the main application window using the modi-

fied description 
• place the migratable windows in the corresponding 

replacement receivers At this stage, there is no visual 
difference between the original version of the appli-
cation and the migratable one. 

• offer the universal references to the outer world by us-
ing a tcp socket. 

A small palette application was created: it builds a win-
dow with two receivers, connect to the socket of the main 
application to get the universal references back, and in-
jects them to the receivers widgets. All these modifica-
tions required changing and writing less than 40 lines of 
code for an application of more than 8000 lines of code. 

Stationary User Interface Migrated User Interface 

 

  
Also if new functionalities are included into the applica-
tion, they can be implemented as if the user interface was 
purely stationary. In a sense, QTk provides a migratable 
capability to user interfaces, that is decided at the win-
dow’s construction time. Because of the way windows are 
first constructed, it is a straightforward and low-cost proc-
ess to take advantage of. 

RELATED WORK 
The first steps that have been made towards migratory 
UIs where those virtual window managers capable of re-
motely access an application over the network. Some rep-
resentative examples include: X11 remote displays [15], 
VNC [16], Windows Terminal Server [17]. These solu-
tions are based on a service external to the user’s applica-
tions. This type of control is under the responsibility of 
the underlying operating system. Therefore, an interactive 
application cannot control its own migration. Pioneering 
work in migration has been done by Bharat & Cardelli 
[3]: their migratory applications are able to move from 
one platform to another one at run-time, provided that the 
operating system remains the same. While this is probably 
the first truly migrating applications, the main restriction 
is that it requires to migrate the whole application from 
one point to another, including the UI. It is the same case 
when an application should be transferred to another user 
[5]. In [2], only the UI is migrated from one computing 
platform to another, all being web-based. At run-time, the 
user can choose the platform where to migrate. 
In this paper, migratable UIs go one step further: they can 
migrate partially or totally, from one platform to many 
others, even with different operating systems. At run-
time, they can be decomposed and recomposed when 
needed. 

 7



Recent studies clearly demonstrate the need and the op-
portunity of having user interfaces distributed across sev-
eral displays, both theoretically [4] and empirically 
[7,10,11]. The notion of several displays has been ex-
panded into the notion of multi-interaction surfaces [4,8], 
beautifully exemplified in the Pick & Drop interaction 
technique [9]. 

3. Bharat, K.A., Cardelli, L. Migratory Applications Distrib-
uted User Interfaces, in Proc. of UIST’95 (Pittsburgh PA, 
November 14-17, 1995), ACM Press, 133-142. 

4. Coutaz, J., Lachenal, C., Calvary, G., Thevenin, D., Soft-
ware Architecture Adaptivity for Multisurface Interaction 
and Plasticity, in Proc. of IFIP WG2.7 Workshop on Soft-
ware Architecture Requirements for CSCW–CSCW’2000 
Workshop (Philadelphia, December 2-6, 2000), ACM Press, 
New York, 2000. Accessible at 
http://iihm.imag.fr/coutaz/ifipcscw2000/work shop.html  

CONCLUSION 
This paper presents a graphical toolkit supporting migrat-
able user interfaces. From the application point of view, 
this is a transparent process : there is no difference be-
tween using a stationary UI, and a migratable one. A 
drawing application has been changed to behave like the 
painter’s palette : the toolbox and the color selection bar 
can be taken away from the main window, and migrated 
to any other computer like a handheld PDA for example. 
The difference between the stationary version of the ap-
plication and the migratable one is around 20 lines of 
code out of more than 8000. The application that receives 
the migrated UI is also around 20 lines of code.  Note that 
the core of the application can be extended as if the whole 
application was purely stationary. As a window can con-
tain an arbitrary number of migrated UIs at the same time, 
it is also possible to dynamically compose a UI from dif-
ferent migrated components. One could imagine several 
different applications managing different aspects of a 
unique problem : their UIs are conveniently migrated to a 
single place. For example, an application could dynami-
cally probe the wealth of a system (free ram space, free 
disk space, CPU occupation), and be run in several in-
stances on several computers. The system administrator 
migrates the UIs from all these applications into a single 
window. This window is migrated between his office 
computer when (s)he is in front of his desk, and his or her 
laptop computer when (s)he is away. Also the develop-
ment cost of this application is almost the same as the de-
velopment cost of a stationary diagnostic tool, very little 
change is required to make the UI migrate. In summary, 
this toolkit provides low cost migration mechanism that 
enables us to have more freedom with multi-platform 
ubiquitous user interfaces. 

5. Dewan, P., Choudhary, R., Coupling the User Interfaces of a 
Multiuser Program. ACM Transactions on Computer-
Human Interaction 2, 1, 1-39. 

6. Grolaux, D., Van Roy, P., Vanderdonckt, J. QTk: A Mixed 
Model-Based Approach to Designing Executable User Inter-
faces, in Proc. of 8th IFIP Working Conference on Engineer-
ing for Human-Computer Interaction EHCI'01 (Toronto, 
May 11-13, 2001), Chapman & Hall, London 

7. Grudin, J. (2001). Partitioning digital worlds: focal and pe-
ripheral awareness in multiple monitor use, CHI’2001, 458 - 
465  

8. Rekimoto, J., Masanori, S. Augmented Surfaces: A Spatially 
Continuous Work Space for Hybrid Computing Environ-
ments, in Proc. of CHI’99 (Pittsburgh, May 15-20, 1999), 
ACM Press, New York, 378-385. 

9. Rekimoto, J. Pick-and-Drop: A Direct Manipulation Tech-
nique for Multiple Computer Environments, in Proc. of 
UIST’97 (Banff, Alberta, Canada, October 14-17, 1997), 
ACM Press, 31-39. 

10. Strope, J., Putting Usage-Centered Design to Work: Clinical 
Applications, in Proc. of 1st Int. Conf. on Usage-Centered, 
Task-Centered, and Performance-Centered Design fo-
rUSE’2002, Constantine, L. (Ed.), Ampersand Press, Row-
ley, 2002. 

11. Tan, D.S., Czerwinski, M. (2003). Effects of Visual Separa-
tion and Physical Discontinuities when Distributing Infor-
mation across Multiple Displays. INTERACT 2003 Ninth 
IFIP International Conference on Human-Computer Interac-
tion, Zurich, Switzerland. 

12. The Mozart Programming System, accessible at 
http://www.mozart-oz.org/ 

13. Window Programming in Mozart, accessible at 
http://www.mozart-oz.org/documentation/wp/index.html 

Acknowledgment 
14. Tool Command Language, accessible at http://www.tcl.tk/ This work was funded at CETIC (www.cetic.be) by the 

Walloon Region (DGTRE) and the E.U. (ERDF and 
ESF). 

15. The X11 Consortium, accessible at http://www.x.org/ 
16. Virtual Network Computing, accessible at 

http://www.uk.research.att.com/vnc/ REFERENCES 
17. Windows Terminal Server, accessible at 

http://www.microsoft.com/windows2000/technologies/termi
nal/default.asp 

1. Ayatsuka, Y., Matsushita, N., Rekimoto, J. HyperPalette: a 
Hybrid Computing Environment for Small Computing 
evices, in Proc. CHI’2000 Extended Abstracts (The Hague, 
April 1-6, 2000), ACM Press, 133-134. 18. Distributed Programming in Mozart - A Tutorial In-

troduction, chapter 3: Basic Operations and Examples, 
accessible at http://www.mozart-
oz.org/documentation/dstutorial/node3.html#chapter.e
xamples

2. Bandelloni, R., Paternò, F., Platform Awareness in Dynamic 
Web User Interfaces Migration, in Proceedings of Mobile-
HCI2003. 

 8

http://www.cetic.be/
http://iihm.imag.fr/coutaz/ifipcscw2000/work shop.html
http://www.mozart-oz.org/
http://www.mozart-oz.org/documentation/wp/index.html
http://www.tcl.tk/
http://www.x.org/
http://www.uk.research.att.com/vnc/
http://www.microsoft.com/windows2000/technologies/terminal/default.asp
http://www.microsoft.com/windows2000/technologies/terminal/default.asp
http://www.mozart-oz.org/documentation/dstutorial/node3.html%23chapter.examples
http://www.mozart-oz.org/documentation/dstutorial/node3.html%23chapter.examples
http://www.mozart-oz.org/documentation/dstutorial/node3.html%23chapter.examples

	ABSTRACT
	Keywords

	INTRODUCTION
	INTRODUCTION TO QTk
	MIGRATION PROCESS API
	Handles of migratable windows

	MIGRATION WITH QTK
	Stationary case
	Remote case
	Callbacks
	Implementation of remote user interfaces with the QTk toolki
	Migration process
	Implementation of the migration using QTk and OZ
	Widget manipulations
	Implementation of widget manipulations
	Fault tolerance and performance issues

	Painter’s Palette problem
	RELATED WORK
	CONCLUSION
	Acknowledgment
	REFERENCES



