
14/12/2022

1

The ΔQSD Paradigm
for System Development

LINFO2345
Lectures 9 & 10

November 15 & 22, 2022

Peter Van Roy, UCLouvain
Neil Davies, Peter Thompson, PNSol Ltd

Seyed Hossein Haeri, PLWorkz
1

1

Table of contents
I. Introduction
II. Case studies

1. Small cells
2. Cardano Shelley

III. Compositional systems
(no dependencies)

1. Quality attenuation (ΔQ)
2. Outcome diagrams
3. Some typical ΔQs
4. Cardano Shelley block diffusion

IV. Systems with dependencies
1. Shared resources (congestion,

shared CPU)
2. Variable load (iterative query)
3. Risk management (hazards)
4. Limitations of ΔQSD

V. Conclusions
2

Designing with ΔQ
Diagnosing with ΔQ

Client/server example
General system design
Cache memory example
Semantics of outcome diagrams

Some typical distributions
ΔQ for a typical component
Load balancing example
ΔQ for a typical network

Measuring ΔQ
Designing with outcome diagrams

2

14/12/2022

2

Part I
Introduction

3

3

Systems with many users
� ΔQSD targets systems with many independent

users where real-time performance is important
◦ Systems with large flows of independent data items
◦ Systems that are subject to overload situations

� Examples of systems where ΔQSD works well
◦ Distributed systems that perform tasks for many

independent users, such as cryptocurrency platforms
◦ Large-scale communications networks including telephony,

mobile telephony, and publish/subscribe
◦ Client/server systems, often with networked connections

and databases
◦ Distributed sensor networks with real-time data streams

and analysis

4

4

14/12/2022

3

PNSol Ltd
� Predictable Network Solutions (PNSol) is a UK

company that specializes in system performance of
large-scale distributed systems
◦ PNSol was founded in 2003 by a small group of people

from the University of Bristol
� PNSol has solved problems in many systems

including at British Telecom, Vodafone, Boeing
Space and Defence, and IOG (formerly IOHK)
◦ Performance under high load, scalability effects, managing

graceful degradation under adverse operational conditions
◦ Development of the ΔQSD methodology for design and

diagnosis of large systems with predictable performance
under high-load conditions

5

5

ΔQSD paradigm
� ΔQSD is an industrial-strength paradigm for system design that

can predict performance and feasibility early on in the design
process
◦ Developed over 30 years by a small group of people around

Predictable Network Solutions Ltd.
◦ Widely used and validated in large industrial projects, with large

cumulative savings in project costs

� ΔQSD properties
◦ Compositional approach that considers performance and failure as

first-class citizens
◦ Stochastic approach to capture uncertainty throughout the design

process
◦ Performance and feasibility can be predicted at high system load for

partially defined systems
◦ Dependencies and multiple timescales are defined as extensions of

the compositional approach

6

6

14/12/2022

4

Goals of these lectures
� Understand the basic principles of the ΔQSD

paradigm for system design
� Understand the two main concepts of ΔQSD, namely

quality attenuation (ΔQ) and outcome diagram
� Understand how to design systems as independent

parts with dependencies added where needed
� Understand the main principles of system design with
ΔQSD using refinement

� Understand how to compute performance and
determine infeasibility of partially designed systems

� Give enough concepts and examples so you can
start using ΔQSD in your own designs

7

7

Two main concepts of ΔQSD
� Quality attenuation (ΔQ)
◦ A ΔQ is a cumulative distribution function that defines both the delay

and failure probability between a start event and an end event
◦ Because the ΔQ combines delay and failure in a single quantity, it

makes it easy to examine trade-offs between them

� Outcome diagram
◦ An outcome is any well-defined system behaviour with observable

start and end events; each outcome has a ΔQ
◦ An outcome diagram is a causal directed graph that defines the

relationships between all system outcomes; it allows computing ΔQ
for the whole system

◦ The outcome diagram can be used during the whole design process.
It can express partially defined systems and it can be refined from an
initial unknown design up to the final, constructed system.

8

8

14/12/2022

5

Quality attenuation ΔQ

� Given a system component, for example a database
◦ What is the delay between a query and its response?
◦ It is not constant!
◦ Sometimes there is no response (component failure)!

� We represent the delay as a cumulative distribution
function ΔQ (actually, an improper random variable because max<1)
◦ This represents both the variability and the failure probability

DB

ΔQ

1

0 delay
d

p

f
percent

query response

ΔQ

Quality attenuationSystem component

9

Outcome diagram

� Given a system with a frontend and database
◦ What is the total delay from u1 to r1?

� We represent the system as a graph, called outcome
diagram, that shows how the delays combine
◦ Total delay ΔQSystem is the “sum” of delays ΔQFE and ΔQDB

◦ ΔQSystem = ΔQFE ⊕ΔQDB

◦ How do we calculate this sum? We will see it later!

10

FE OFEDB ODB

q1 r1u1

q1 r1u1

Outcome diagramSystem block diagram

ΔQFE ΔQDB

ΔQSystem

10

14/12/2022

6

To the case studies…
� Now we know enough for the case studies

� We will combine ΔQi of components Ci to
get the ΔQS of the whole system
◦ If there is something wrong with ΔQS , we will

reason backwards to pinpoint the problem

� After the case studies, we will study ΔQ and
outcome diagram in depth

11

11

Part II
Case Studies

12

12

14/12/2022

7

Case studies
� As motivation for ΔQSD we present two case studies
◦ Small cells
◦ Cardano Shelley

� These are industrial case studies done by PNSol that have
limited documentation and are partially covered by NDA

� In these scenarios, the ΔQSD paradigm is used in two ways
◦ Small cells: debugging of existing systems with problems
◦ Cardano Shelley: designing systems from the start

� We encourage the use of ΔQSD for design!
◦ This is one of the motivations of these lectures: to disseminate

the ΔQSD paradigm so it can be used during the design process
◦ Prevention is much better than cure!

13

13

1. Small Cells Case Study

14

14

14/12/2022

8

Small cells case study
� A major MNO (Mobile Network Operator), who shall

remain unnamed, deployed small cells
◦ Small cell: low-powered cellular radio access nodes with

range 10m-3km
◦ Backhaul using consumer DSL broadband

� The system worked but did not scale
◦ Voice quality had major problems, cells were failing
◦ What part of the system is the cause and who is to blame?

� PNSol was brought in to investigate
◦ Determined outcome diagram for complete system
◦ Measured ΔQ across system to pinpoint the problem
◦ Focus on problematic behavior shown by ΔQ
◦ ΔQSD led to successful diagnosis and cure proposal

15

15

Who is to blame for my system crashing?

MNO (erroneously) believed that: (1) its contracts would deliver
the service & contain the hazards; and (2) there were no residual hazards.

MNO’s accountability

RAN supplier Backhaul supplier Core supplier

C1 C2 D EB

A

16

ΔQAB ΔQBC1 ΔQC2D ΔQDE

16

14/12/2022

9

How PNSol gathered the evidence

� Establish end to end measurement
◦ From synthetic traffic generator… (A)

� includes an observer
◦ …to reference point (E)

� reflects traffic, acts as a protocol peer, and includes an observer
◦ Add internal observers to get spatial discernment (B, C, D)

� Analyse measurements to obtain ΔQ distributions
◦ Outcome diagram A → B → C1 → C2 → D → E
◦ Measure quality attenuation ΔQ for outcomes
◦ Identify issues and anomalies for further investigation

� Each added observation point doubles the spatial fidelity
◦ Example: even with just A and E there is definitive

knowledge as to whether the effect is occurring upstream or
downstream.

17

17

Which direction has issues?

Mean upstream
variability is 5 times
greater than
downstream;
tail variation is x10

Decompose round
trip time variability

18

Problem in upstream?
No, actually not!

0

ΔQAE

1

Each slice gives an
instantaneous ΔQAE

18

14/12/2022

10

Who is to blame for the system failing?

Examine sub-paths to isolate the issue

19

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 100 200 300 400 500 600

Observ
ed Dela

y Betw
een En

d Point
s (s)

Experiment Run Time (s)

B->C->D delay

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500 600

O
bs

er
ve

d
De

la
y

Be
tw

ee
n

En
d

Po
in

ts
 (s

)

Experiment Run Time (s)

D->C->B delay

Small cell fails
shortly after this

Upstream Downstream

Resized to
same scale
Resized to
same scale

19

• The instantaneous ΔQ is measured as a function of experiment run time
• We find that the ΔQ is not stationary: it changes during the run
• There are times when the ΔQ has strong anomalous behavior

19

Where is the issue?

20

National Interconnect Wholesale Access Core

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600

O
bs

er
ve

d
De

la
y

Be
tw

ee
n

En
d

Po
in

ts
 (s

)

Experiment Run Time (s)

C->B delay

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 100 200 300 400 500 600 700

Observ
ed Dela

y Betw
een En

d Point
s (s)

Experiment Run Time (s)

D->C delay

Resized to
same scale

Here is the
problem

Resized to
same scale

Use spatial resolution to isolate the problem

20

14/12/2022

11

Zoom in on the issue

21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 590 591 592 593 594 595 596 597 598 599 600

Ob
se

rve
d D

ela
y B

etw
ee

n E
nd

 P
oin

ts
(s)

Experiment Run Time (s)

C->B delay

Typical queue overload pattern:
get into ‘trouble’ very quickly, get out of it far more slowly

Temporary overloads have long-lasting effects!

Expand temporal resolution to examine the problem

⇒ Later in the lecture we will study queues to understand this

Buffer fills quickly Buffer empties slowly

21

Actual + predicted measures

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 590 591 592 593 594 595 596 597 598 599 600

O
bs

er
ve

d
De

la
y

Be
tw

ee
n

En
d

Po
in

ts
 (s

)

Experiment Run Time (s)

C->B delay

Measured delay
in access network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 590 591 592 593 594 595 596 597 598 599 600Ca
lcu

la
te

d
Q

ue
ui

ng
 D

el
ay

 D
ue

 T
o

Ar
riv

al
 R

at
e

Ex
ce

ed
in

g
Li

nk
 C

ap
ac

ity
 (s

)

Experiment Run Time (s)

calculated queueing delay

Calculated delay
(from mathematical model)

due to arrival pattern of traffic
exiting MNO security gateway

Use predictability of ∆Q to check the conclusion

22

14/12/2022

12

Technical diagnosis

� A queue is forming in the wholesale access network
◦ This is because the arrival rate from the MNO security boundary

exceeds the sync rate (service capacity) of the xDSL line
◦ The queue exhibits temporary overloading, which degrades

overall behaviour for long time periods
◦ This is in breach of the wholesaler’s technical terms & conditions

� This queue delays all traffic, including small cell control traffic
◦ Small cells are known to fail if their control loops exceed a given

round trip time. The figures here are 5x that limit.
� System reset is just the extreme failure case
◦ Delays of that magnitude adversely effect voice quality as well
◦ Causes small cells to “breathe” inappropriately
◦ Dramatically weakens deployment business case

23

Systemic diagnosis and cure

� Why is the system crashing?
◦ There is an unmanaged hazard that sits with the MNO

� Root cause is that the subsystems don’t compose
◦ The pre-requisites for use of one element are not met by other elements

of the system
� This is a common structural problem, not unique to this MNO or technology

◦ They believed that they only had to match bandwidths (numbers!)
� They should be matching ΔQ (CDFs!) (Quality Transport Agreements)

� Recommendations to the MNO:
◦ Note on corporate risk register: records the risks and opportunities

that may affect the delivery of the Corporate Plan
◦ Technical training to improve contractual processes & hazard

management

24

14/12/2022

13

2. Cardano Shelley
Case Study

25

25

Cardano Shelley case study
� The previous case study used ΔQSD for diagnosis
◦ PNSol was brought in to diagnose problems in a running system

� Cardano Shelley used ΔQSD for the system design
◦ Design is the preferred way to use ΔQSD (“prevention, not cure!”)

� Cardano Shelley is part of the Cardano blockchain, supporting
the Ada cryptocurrency developed by IOG
◦ An important part of Cardano is block diffusion, to allow whichever

node is authorized to create a block to add it to the previous block
◦ Previous block must have been copied to all block-producing

nodes; this is called block diffusion
◦ The initial implementation of block diffusion, Jormungandr, did not

achieve sufficient performance
◦ A further implementation, Shelley, was done using ΔQSD to guide

the design from early on, and achieved adequate performance in a
decentralised environment

◦ We give the Shelley block diffusion example later on in the lecture,
as soon as we have introduced the necessary concepts

26

26

14/12/2022

14

Part III
Compositional Systems
(No Dependencies)

27

27

Systems with no dependencies
(compositional systems)
� ΔQSD approach is done in two steps
◦ First, design the system with independent parts
◦ Second, add dependencies where they are needed

� We start with systems of independent parts
◦ Most systems consist largely of independent parts
◦ Dependencies will be treated later (in Part IV)

� Topics
◦ Quality attenuation (ΔQ)
◦ Outcome diagrams
◦ Some typical ΔQs
◦ Cardano Shelley block diffusion

28

28

14/12/2022

15

1. Quality Attenuation
(ΔQ)

29

29

Quality attenuation (ΔQ)

� Message min enters component A and mout exits
� How do we characterize the message traveling through A?
◦ The delay between entry and exit: delay value (a number)
◦ The message might be dropped: chance of failure (a percentage)
◦ The delay is not always the same for all messages: jitter

� We combine all this into a single quantity ΔQ
◦ p percent of messages have delay ≤ d and f percent of messages fail
◦ Delay and failure are considered together, not separately
◦ This helps to examine trade-offs delay/failure in the same design

30

A

?

1

0 delay
d

p

f
percent

min mout

30

14/12/2022

16

Combining delay and failure
� Delay and failure are combined in one quantity ΔQ
◦ Two parts of system design that are usually separate are

considered together
◦ This allows to easily examine trade-offs between delay and

failure in the design
� Performance and fault tolerance should not be separate
◦ They are two sides of the same coin
◦ For example, failure can be reduced by increasing delay,

which is all part of one ΔQ
� By changing the maximum delay threshold: increasing delay tolerance

will reduce the percentage of messages that are considered failed
� By retrying: failure can be made arbitrarily small by increasing delay
� Both of these techniques are captured by the ΔQ quantity

31

31

Partial order of ΔQ comparison
If we compare the CDFs
of two ΔQs, then one is
less than the other if its
CDF is everywhere to the
left and above the other
◦ Mathematically, this

relation between two
ΔQs is a partial order
◦ If the ΔQs intersect then

they are not ordered

This provides a criterion
for ‘good enough’
performance

ΔQ1

ΔQ2

ΔQ1 < ΔQ2

32

14/12/2022

17

Combining ΔQs

� Given components A and B
◦ ΔQA from m1 to m2

◦ ΔQB from m2 to m3

� We connect them together
◦ What is ΔQAB from m1 to m3?

33

ΔQA ΔQB

A B

ΔQAB ?

m1 m2 m3

0

ΔQA

1

0

ΔQB

1

0

ΔQAB

1

⊕

=

?

33

“Sum” of two ΔQs: convolution

� How likely is a total delay t?
� Total delay t is split over A and B:
◦ t = δ + (t–δ)

� The probability density is
therefore the product for A and B:
◦ pAB(t) = pA(δ)⋅pB(t–δ)

� We sum over all the values of δ:
◦ pAB(t) = ∑0≤δ≤t pA(δ)⋅pB(t–δ)

◦ PDFAB(t) = ∫ PDFA(δ)⋅PDFB(t–δ)dδ

◦ This is a convolution

34

0

ΔQA

1

0

PDFA

dA dA

0

PDFB

dB

0

PDFAB

dAB

derivative

t

t

0

t-δ

δ

probability
density

cumulative probability

t

34

14/12/2022

18

Designing with ΔQ

35

35

Designing with ΔQ
� We can use ΔQ to help design a system
� Let’s start with a simple system that is just a connection

of two components
◦ We will show both a top-down and a bottom-up design

� In both cases, we determine the behavior of a new component
◦ We will determine when the top-down design is infeasible:

when there is no possible way to build it (because a
component must have negative delay and/or negative loss!)

� We will use a simple ΔQ in these examples, namely a
Uniform distribution
◦ This is a reasonable approximation for components, but of

course many other ΔQs occur in practice!
◦ We will “add” and “subtract” ΔQs in the examples, note that

technically this is convolution and deconvolution

36

36

14/12/2022

19

Uniform distribution

� For our two examples, we use a Uniform distribution for ΔQ
◦ It is one of the simplest distributions and it is useful in practice: many

components have approximately a uniform distribution
◦ Uniform distributions are good for “back-of-the-envelope” ΔQ

computations; an automated tool can of course compute with a full ΔQ
� In this lecture, we will do back-of-the-envelope computations
◦ It is easy to extend this and do the full computations

37

1

0
a a+sa

Uniform
spread sa

� A Uniform distribution approximates
a component with buffer and server
◦ a is the minimum time in the component

◦ sa is the spread of times in the component

◦ a+sa is the maximum time in the component

37

Bottom-up design with ΔQ

� We know component A has
ΔQA and component B has
ΔQB

◦ What is ΔQC?

� We assume Uniform
distributions for A and B
and “add” them to get C:
◦ Assume (a,sa) and (b,sb)
◦ We can approximate (c,sc):

c = (a + b) + m/4
sc = max(sa,sb) + m/2
where m=min(sa,sb)

◦ Overall delay c is a bit more
than the sum of the two delays

◦ Overall spread sc is a bit wider
than the worst spread

38

ΔQC = ΔQA ⊕ ΔQB

ΔQA

Already known

Compute ΔQC

ΔQB

Already known

A B

38

14/12/2022

20

Top-down design with ΔQ

� There is a global overall
requirement of ΔQC and
component B is known to
have ΔQB

◦ What ΔQA is needed for A?
� We assume Uniform

distributions and “subtract”:
◦ a ≤ (c – b) – m/4

� Remember that m=min(sa,sb)
� A’s delay must be less than c–b

◦ If sa ≤ sb then sa ≤ 2(sc–sb)
If sa > sb then sa ≤ sc–sb/2
� This follows from

max(sa,sb)=sc – m/2

39

ΔQC = ΔQA⊕ ΔQB

Already known ΔQC

Compute ΔQA ΔQB

Already known

A B

39

Check for infeasibility
� Let us compute the conditions on B and C for feasibility
◦ If they are not satisfied, then no component A is possible so

the design is certainly infeasible!
� We start with two simultaneous equations in (a,sa):

c = a + b + min(sa,sb)/4
sc = max(sa,sb) + min(sa,sb)/2

� We solve this by distinguishing two cases
� First, assume sa≤sb :

sa = 2(sc – sb) > 0 which implies sc > sb [1]
a = (c–b)–(sc–sb)/2 > 0 which implies (c–b) > sc/2–sb/2 [2]

� Second, assume sa>sb :
sa = sc – sb/2 > 0 which implies sc > sb /2 [3]
a = c–b–sb/4 > 0 which implies (c–b) > sb/4 [4]

� The design is infeasible if (¬[1] ∧ ¬[3]) ∨ (¬[2] ∧ ¬[4])
sc ≤ sb or (c–b)≤min(sc/2–sb/2, sb/4)

40

40

14/12/2022

21

“Subtracting” Uniform distributions
� When doing top-down design, we do the opposite of addition
◦ Mathematically, we are doing deconvolution which is much harder

to compute than convolution
◦ However, for specific distributions like Uniform it is easy
◦ It is also not a problem for a tool, because even though it needs

much more computation, the user does not notice
� It is a really good use of computation power to help a system designer

� Top-down design introduces a new subtlety: “goodness”
changes direction
◦ Bottom-up (addition): we compute the known behavior of a

component, so decreasing sa means it is performing better
◦ Top-down (subtraction): we compute a requirement on a new

component, so decreasing sa makes it harder to satisfy

41

41

Diagnosing with ΔQ

42

42

14/12/2022

22

Diagnosing with ΔQ

� Consider a pipeline of components that has a bad overall ΔQ
◦ This happens often in practice, e.g., the small cells case study

� Since adding a component can only make ΔQ get worse, we can
find the faulty component(s) by binary search

� This technique can be generalized to follow the path of messages
through the system
◦ This technique was used in the small cells case study

43

C1 C2 Cn-1 Cn

ΔQ

ΔQ1 ΔQ2 ΔQn-1 ΔQn

…

…

43

2. Outcome Diagrams

44

44

14/12/2022

23

Outcome diagrams
� Now let’s combine components (defined by ΔQ)

into full systems (defined by outcome diagrams)
� Outcome diagrams define systems by looking at

their behaviours from the outside
� They are purely observational
◦ They are very different from UML diagrams
◦ They say nothing about system state

� They are extremely useful
◦ Many different kinds of component can be brought

together, software, humans, mechanics
◦ They allows estimating performance and feasibility early on

in the design process

45

45

Single outcome

� An outcome O1 is a specific system behaviour, which is
a pair defined by its start event q1 and end event r1
◦ We don’t care how the system is built, we simply observe it
◦ Left figure shows the query and response messages entering

and exiting a component
◦ Right figure shows just the causal connection between the two

events: query causes response, with quality attenuation ΔQ1

46

System
component

(e.g., server)Query q1
(start event)

Response r1
(end event) O1=(q1,r1)

q1 r1

Component performing an outcome
(in the running system)

Causal connection between q1 and r1

(just an abstract relationship)

ΔQ1

Outcome
O1

46

14/12/2022

24

Outcome diagram

� We have a user click u1 causing a query q1 to be sent
causing a response r1 to be received

� An outcome diagram is a graph showing the causal
connections between all the outcomes that we are
interested in
◦ We don’t actually care (yet) how the system is constructed,

we are only interested in the behaviour
◦ Total ΔQ is the convolution of the individual ΔQ1 and ΔQ2

(all delays and failures are “added”)
47

C1 O1C2 O2

q1 r1u1q1 r1u1

Outcome diagramBlock diagram

ΔQ = ΔQ1⊕ ΔQ2

ΔQ1 ΔQ2

47

How outcome diagrams work

� An outcome O1 occurs when event u and event q both occur
◦ Square boxes show where events may occur (locations in the system)
◦ Circles show which outcomes can occur (behaviours we are interested in)

� New instances of O1 can occur later when new instances of u and q occur
◦ Many user clicks and queries can happen when the system is running
◦ If new events u’ and q’ occur then a new outcome O1’ occurs

48

O1 O2

C1 O1C2 O2

u q

event u event q

Outcome O1 occurs when
events u and q both occur

User click u enters C1

and query q exits C1

The outcome diagram shows
the events and outcomes that
we are interested in and how
they are related

Behaviour we are
interested in (outcome)

click query

48

14/12/2022

25

Client/server example

49

49

Generic RPC outcome diagram

� This is a simple client/server shown as an outcome diagram
� Each square is an event and each circle is an outcome
� Each outcome has its own ΔQ
� Total ΔQ from user click to response displayed is addition of all ΔQs

50

O2 O3

O5O6

O1

Browser

O7

O4Server

User
click

Response
displayed

Query
created Query sent Query received

Response sentResponse
received

Response
processed

click

display

Network

50

14/12/2022

26

General system design

51

51

General system design

� We design the system by
designing its outcome diagram
step by step

� We start from an unknown
system and refine it until we
arrive at the actual system

� At each step, we can compute
estimated performance and
feasibility
◦ If we make a mistake, we can

correct it before actually
building the system

52

Unknown system
uin uout

uin uout

uin uout

request

request

reply

replydb-request db-reply

Unknown subsystem

Refinement step

Refinement step

Completely defined system

52

14/12/2022

27

Example top-down design

� We use a top-down design approach
◦ We assume that ΔQsystem , ΔQrequest , ΔQreply are all known: ΔQsystem is the

system requirement, and ΔQrequest and ΔQreply have already been determined
◦ We compute required ΔQunknown for the unknown subsystem to be designed

� If ΔQunknown is infeasible, then go back and change ΔQrequest and ΔQreply

◦ If there is no way to solve the problem by changing ΔQrequest and ΔQreply then
we need to go back even further and change the overall requirement ΔQsystem
or change the outcome diagram (i.e., the system design)

� We navigate by going up and down the refinements until reaching a
satisfactory design or until showing that no design is possible

� This gives a design tree…
53

uin uout
request replyUnknown subsystem

ΔQsystem = ΔQrequest⊕ ΔQunknown⊕ ΔQreply

53

Exploring the design space

� The design space is a tree of partially defined systems
◦ The designer navigates the tree starting with an unknown system, making

design decisions, until arriving at a completely designed system that
satisfies the requirements

� The ΔQSD paradigm allows to compute infeasibility early on, even
for partially defined systems

54

Unknown system

Completely
designed system

…

… … … …… …

… …

…

Infeasibility detected
here with ΔQSD

D1 D2
D3 : Refinement (design decision)

D4

D5

D6

DX

Subtree containing
all designs using DX

Infeasibility detected here
with traditional method

Start here

54

14/12/2022

28

Cache memory example

55

55

Cache memory example

� A cache memory is modeled using probabilistic choice
� ΔQmem = h･ΔQhit + m･(ΔQmiss ⊕ ΔQmain)
� We can see the cache as one component or refine it

56

Cache Main
memory

read

return

main

hit

⇋
miss

miss

read return

main

0.95

0.05

main

Refinement step

mem

56

14/12/2022

29

Cache quality attenuation

Combining the three
ΔQs gives the cache
memory’s overall ΔQmem

57

1

0

hit
(95%)

1

0

miss
(5%)

1

0

mem

1

0

main

1

1.5

4

1 5.5

0.95

57

Semantics of outcome
diagrams

58

58

14/12/2022

30

Semantics of outcome diagrams

� Given an outcome diagram and the ΔQs of all outcomes in the
diagram, we can compute the ΔQ of the complete diagram
◦ Recall that ΔQ(t) is a function of delay t that represents the

cumulative probability distribution of the delay (technically, it is an
improper random variable since the maximum can be < 100%)

� Outcome diagrams have four primitive operators
◦ Sequential composition (convolution)
◦ Probabilistic choice (weighted sum)
◦ Last-to-finish (all-to-finish) (arithmetic product)
◦ First-to-finish (dual of arithmetic product)

� They are defined as a formal language
◦ Outcome diagrams are represented formally by outcome expressions

with a semantics, which allows a software tool to represent outcome
diagrams and do ΔQ computations on them

◦ We only give the semantics of the four operators in this lecture; to
make a practical software tool we need to define more properties

59

59

Sequential composition

� Assume two outcomes OA and OB where the end event of OA
is the start event of OB

� The probability distribution of OAB is the convolution of the
probability distributions of OA and OB

� Therefore:
ΔQ’AB = ΔQ’A ⊕ ΔQ’B
where ΔQ’(t) = dΔQ/dt and ⊕ is the convolution operator

� Convolution is a commutative mathematical operator, but this
does not mean that components can be switched around

60

OA OB

ΔQAB

60

14/12/2022

31

Probabilistic choice

� Assume there are two possible outcomes OA and OB and
exactly one outcome is chosen during each occurrence of
a start event

� OA occurs with probability p/(p+q)
OB occurs with probability q/(p+q)

� Therefore:
ΔQPC(A,B) = ΔQA + ΔQB

61

OA

⇋
OB

ΔQPC(A,B)

p

q

p
p+q

q
p+q

61

Last-to-finish semantics

� Assume two independent outcomes with the same start event
� Last-to-finish outcome occurs when both end events occur
� ΔQLTF(A,B) = Pr[dA≤ t ∧ dB≤ t] = Pr[dA≤ t] × Pr[dB≤ t] = ΔQA × ΔQB

� Therefore:
ΔQLTF(A,B) = ΔQA × ΔQB
where × is simple multiplication

62

OA

∀
OB

ΔQLTF(A,B)

62

14/12/2022

32

First-to-finish semantics

� Assume two independent outcomes with the same start event
� First-to-finish outcome occurs when at least one end event occurs
� We compute the probability that there are zero end events
� (1–ΔQFTF(A,B)) = Pr[dA> t ∧ dB> t]

= Pr[dA> t] × Pr[dB> t] = (1–ΔQA)×(1–ΔQB)
� Simplifying gives:
ΔQFTF(A,B) = ΔQA + ΔQB – ΔQA × ΔQB

63

OA

∃
OB

ΔQFTF(A,B)

63

Timeout example
� Timeout is modeled using first-to-finish
� Assume a send request to “Cloud” that

waits for a response or a timeout
� This gives:

ΔQCT = ΔQC + ΔQT – ΔQC × ΔQT

64

OC

∃
OT

ΔQCT

send

response
or

timeout

Timer

Merge

init

timeout

response

Cloud

0

ΔQT

timeout threshold

0

ΔQC

0

ΔQCT

1

1

1

ΔQCT ΔQC

response
timeout

64

14/12/2022

33

Inverse computations
� When designing a system, it is common to make

top-down decisions
◦ We have the known ΔQ of a component and we need to

compute the required ΔQ of a subcomponent
◦ For sequential composition, this requires doing a

deconvolution, which is the inverse of convolution

� For the other three operations this also requires
doing an inverse computation
◦ In most cases, there are many possible ΔQs for the

subcomponent. The inverse computation therefore
computes a set of possible ΔQs which defines a range of
possible behaviours for the subcomponent.

65

65

3. Some Typical ΔQs

66

66

14/12/2022

34

Some typical ΔQs
� Introduction to distributions
◦ Gaussian distribution: used for aggregates
◦ Uniform distributions: used for single parts

� Two parts that occur often in systems

◦ Component
� We give the typical ΔQ for a component
� What happens when components are overloaded

◦ Network
� We give the typical ΔQ for a network
� Effects of geography (distance), packet size, and random

fluctuations

67

67

Some typical distributions

68

68

14/12/2022

35

Some typical distributions
� A tool can compute arbitrarily complex ΔQs
◦ There is no limitation on the complexity of the ΔQ

� But it’s still important to know some typical ΔQs
◦ A good engineer always knows when something is possible

or impossible with back-of-the-envelope calculations

� We give theory and intuition for two common
distributions
◦ Gaussian distribution: approximation for aggregates
◦ Uniform distributions: approximation for single parts

69

69

Two important distributions

� A Gaussian distribution approximates the
sum of many independent random
quantities (Central Limit Theorem)
◦ μ is the mean
◦ σ is the standard deviation

� Gaussian is a good approximation for
aggregates, but not for single parts
◦ Gaussians have infinite tails!

� A Uniform distribution approximates one
part of a system (component or network)
◦ a is the minimum time in the part
◦ sa is the spread of times in a part
◦ a+sa is the maximum time in the part

� Uniform is a good approximation for single
parts, but not for many connected parts

70

1

0

1

0

μ

a a+sa

Uniform

Gaussian

μ+σμ−σ

spread sa

70

14/12/2022

36

Convolution of
Gaussian distributions

� Formulas: (exact)
◦ GA = (μA,σA)

GB = (μB,σB)
GC = GA ⊕ GB = (μC,σC)

◦ μC = μA + μB
σC2 = σA2 + σB2

◦ σC = √ σA2 + σB2

� In other words:
◦ Means are added
◦ Squares of standard deviations are

added
� Intuition:
◦ Standard deviation increases more

slowly than addition, because we
are adding independent variables

71

1

0

1

0

1

0
μB

⊕

=

GA

GB

GC

μA

μC

71

Convolution of
Uniform distributions

� Formulas: (approximation)
◦ UA = (a,sa)

UB = (b,sb)
UC = UA ⊕ UB = (c,sc)

◦ M = max(sa , sb)
m = min(sa , sb)

◦ c = (a + b) + m/4
C = (A + B) – m/4
sc = max(sa , sb) + m/2

� In other words:
◦ Starting times are added, plus a

little more
◦ Spread is the maximum of the

spreads, plus a little more
� Intuitions:
◦ Spread causes the delay to be a

bit worse than just a simple sum
◦ If there are several spreads, the

biggest one will dominate
72

1

0
a+b A+B

1

0
a A

1

0 b B

c

C

⊕

=

UA

UB

UC m/2

exact
approximate

sb

sa

M
m/2

72

14/12/2022

37

ΔQ for a typical component
(from queuing theory)

73

73

A component as a queue

� Let’s get some more intuition on how a component works
◦ To get this intuition, we model the component as a queue

� A typical component has four parameters of interest
◦ Offered load a: arrival rate / service rate of messages
◦ Buffer size k: number of messages stored inside
◦ Failure rate f: percentage of messages dropped
◦ Delay d: time delay between input and output message

� These four parameters are all related
◦ ΔQ is function of offered load and buffer size

74

A

ΔQ

min mout

ΔQ

74

14/12/2022

38

M/M/1/K queue

� We model a component as an M/M/1/K queue
◦ M: arriving messages have Exponential distribution with rate λ
◦ M: service time has Exponential distribution with rate μ
◦ 1: one message can be served at a time
◦ k: total buffer size is k (buffer size = queue size k-1 + server size 1)

� Offered load a = λ/μ (arrival rate / service rate)
� The two knobs we control are offered load a and buffer size k
◦ When the component’s buffer is full, new arrivals are dropped (failure)
◦ ΔQ, i.e., failure rate f and average delay d, is function of a and k

75

Queue (size k-1 max) Server (size 1 max)

Arrival rate λ,
time τ=1/λ

Service time s,
Service rate μ, E[s] = 1/μ,
Ns messages in steady state ≤ 1

Queue time q,
Nq messages in steady state

75

Effect of offered load a
� The offered load is the most important parameter
◦ a<1: the component has enough power to service all messages
◦ a>1: the component is overloaded and performs very badly

� Low load (a<0.8)
◦ Failure tends to 0, delay tends to 1 (as k increases)
◦ An underloaded component behaves very well

� High load (a≥0.8)
◦ When a gets close to 1 (around 0.8) things quickly get worse!
◦ When a>>1, failure rate tends to (a-1)/a, up to 100% for high load!
◦ Delay increases very quickly when a approaches 1

� When a=1, delay is already k/2, half of buffer size, which can be huge

� Quick switchover somewhere between a=0.5 and a=1
◦ As the load increases beyond 0.5, the system quickly gets very bad
◦ The exact threshold depends on what you consider bad!
◦ Even a temporary overload causes a big, long-lasting degradation

� This is the cause of the problem in the small cells case study

76

!

76

14/12/2022

39

ΔQ as function of load a

77

1

0

a<<1
s

� Let’s visualize ΔQ as function
of offered load a

� To make it understandable,
we approximate the ΔQ as a
Uniform distribution and we
give asymptotic behaviors for
three cases, a<<1, a=1, a>>1
◦ We assume constant service

time s and buffer size k=10
◦ We simplify the complicated

formulas of a M/M/1/K queue

as/(1-a) → 0

1

0

a=1
s

k/2 ⋅ s = 5s

f=a10 ≈ 0

a ≈ 0: good behaviour

f=1/(k+1) ≈ 9%

1

0

a>>1
s

(k – 1/(a-1)) ⋅ s ≈ 10s

f=(a-1)/a → 100%

a → ∞: even worse!

delay

delay

delay

a approaches 1: bad behaviour

77

Effect of buffer size k
� The buffer size k is the total number of messages that can

be stored in a component
◦ Manufacturers like to brag about buffer size. It might seem

like a no-brainer that bigger is better, but this is wrong!
� We look separately at low load and high load
� Low load (a<0.8)
◦ Bigger buffer decreases failures and increases delay

� At low load, we can adjust k to trade off failure and delay

◦ As k➞∞ the failure rate f➞0 and delay➞1/(1-a) (close to 1)
� Big buffers are good at low load

� High load (a>0.8)
◦ Failure rate and delay are both high
◦ Bigger buffer greatly increases delay (around k/2 for big a)

� Big buffers are bad at high load
� NICs that can store 1000 packets are especially bad when overloaded
� With temporary overload, buffer will fill quickly, and then empty slowly
� If you want good behaviour:

(1) don’t ever overload not even temporarily, (2) keep buffer size small

78

78

14/12/2022

40

Load balancing example

79

79

Load balancing example
� We illustrate the queue model by

doing load balancing
� Load a is split between pa and pb

for the two servers
◦ Modeled with probabilistic choice
◦ Servers have equal capacity with

normalized load a=1, so p=q=0.5

� All quality attenuations are
function of load

� We have the equation:
ΔQS(a) = p⋅ΔQ1(pa) + q⋅ΔQ2(qa)

� For good performance, both
servers must never be
overloaded, which gives:
◦ p⋅a < 0.8 and q⋅a < 0.8
◦ This results in a < 1.6

� This example can be extended in
many ways, for example to divide
packets into low and high priority

80

ΔQS(a)

Server 1

Server 2

a
pa

qa

ΔQ1(pa)

ΔQ2(qa)

OS1

⇋
OS2

ΔQS

p

q

Splitter

80

14/12/2022

41

ΔQ for a typical network

81

81

ΔQ for network packets

� We can study what the real ΔQ is for networks
delivering packets

� Experience shows that the ΔQ has three
parameters G, S, V:
◦ ∆Q = ∆QG ⊕ ∆QS ⊕ ∆QV

� Again, we add ΔQs using convolution
◦ Because of the simple structure, the equations are simple

82

Packet
source

Packet
destination

ΔQ

network

82

14/12/2022

42

Raw two-point measurements

83

Measurements sorted by packet size

84

14/12/2022

43

Minimum delays for each size

85

Extrapolate to zero size packet: G

86

14/12/2022

44

Extract S

87

V is what remains

88

14/12/2022

45

G, S, V from measured ∆Q

G ∆Q
(geography/given)

S ∆Q (size related)

Variable ∆Q

G

S

V

Each of those
components could
also contribute to

loss.
∆Q is comprised of
these three basic

elements.

89

Overall network ΔQ
� Total network ΔQ is the

sum of the three parts:
◦ Geographic delay G
◦ Size-related delay S(s)

function of packet size s
◦ Variability V function of

contention and noise
� In addition, there is a

percentage L of lost
packets

90

0

ΔQG

1

0

ΔQS

1

0

ΔQV

1

0

ΔQ

1

G

S(s)

G S(s)

V

V

L

⊕

90

14/12/2022

46

4. Cardano Shelley Block
Diffusion Algorithm
(Case Study)

91

91

Context of block diffusion
� Blockchain management in Cardano
◦ We will use ΔQSD to solve a design problem in the Cardano

blockchain, which is an open-source platform using proof of stake
◦ A blockchain is a distributed ledger comprising a chain of data blocks

that are cryptographic witnesses to correctness of preceding blocks
� Ledger = A book in which financial transactions are recorded

◦ A distributed consensus algorithm is used to agree on the correct
sequence of blocks; Cardano uses the Ouroboros Praos consensus

◦ Ouroboros Praos randomly selects a node to produce a new block
during a specific time interval, weighted by distribution of stake

� Shelley block diffusion algorithm
◦ The block-producing node is randomly chosen and needs a copy of

the most recent block
◦ Therefore the most recent block must be copied to all potentially

block-producing nodes in real time, which is called block diffusion
◦ We will design a block diffusion algorithm using ΔQSD to ensure that

the algorithm satisfies stringent timeliness constraints

92

92

14/12/2022

47

Block diffusion problem statement

� Problem:
◦ Determine ΔQAZ for

randomly chosen nodes A
and Z, as function of design

◦ Determine design so that
ΔQAZ satisfies performance
constraints

◦ ΔQXY is known
(measured)

� Design parameters:
◦ Frequency of block production
◦ Node connection graph
◦ Block size
◦ Block forwarding protocol
◦ Block processing time

93

…

… …

…

… …

…

…

…

…

…
A

Z

B C
Sequence of intermediary nodes

Node graph of Cardano blockchain

ΔQAZ

X Y

93

Block diffusion design using ΔQSD

� First step: preparation
◦ Define an initial design and its outcome diagram
◦ Measure ΔQ between two nodes

� Second step: design process
◦ We make design decisions and refine the outcome diagram to take

each decision into account
◦ Each refinement defines a new outcome diagram and computes its ΔQ

� At each step, we decide whether to keep the design or whether to go back to
a previous design and make another design decision

◦ Details given in “Mind Your Outcomes”, Computers 2022, 11, 45
� https://www.mdpi.com/2073-431X/11/3/45

94

Initial design
(one-hop)

Multiple
hops

Header-body
split

Rejoining
network

Neighbor
selection

de
sig

n d
eci

sio
n

return to previous

94

https://www.mdpi.com/2073-431X/11/3/45

14/12/2022

48

Measuring ΔQ

95

95

First step: measuring ΔQ
� First step is to measure ΔQ between two nodes across the

Internet
◦ This requires some preliminary work

� Four main factors
◦ Block size: 64KB to 2048KB (5 steps)
◦ Network speed: measured TCP speeds
◦ Geographical distance (for single packet):

� Short (same data centre), medium (same continent), long (different continents)

◦ Network congestion: initially ignored
� Single-hop ΔQs are approximately step functions
◦ Multi-hop ΔQs computed from single-hop (sequential composition

operator, i.e., convolution)
◦ Random path ΔQs computed from multi-hop (probabilistic choice

operator, i.e., weighted sum)

96

96

14/12/2022

49

Measured ΔQ for fixed paths

97

One-hop ΔQ per block size

Weighted sum of short,
medium, and long hops,
computed using probabilistic
choice operator

Multi-hop ΔQ for 64KB Multi-hop ΔQ for 1024KB

Multi-hop computed
using convolution

Multi-hop computed
using convolution

97

Measured ΔQ for varying paths

� ΔQ computed for
varying path lengths
◦ Percentage of paths of

given length in a
random graph of 2500
nodes of degree 10

◦ Computed using
probabilistic choice
operator

98

98

14/12/2022

50

Designing with an outcome
diagram

99

99

Second step: design process

� For each design decision
◦ Determine a new outcome diagram
◦ Evaluate the effectiveness (ΔQ) using the outcome diagram

� This leads step by step to a final outcome diagram, which
corresponds to the complete distributed system
◦ Let us explain one of the steps, namely obtaining several blocks

from the fastest neighbour
◦ The other steps are explained in the Computers paper

100

Outcome diagram for obtaining three
blocks from the fastest neighbour, where
blocks are divided into header and body
and permission is requested before transmission

100

14/12/2022

51

Obtaining three blocks (1)

101

� We first explain the two
operators that are needed

� Obtaining one block from
each neighbour uses the
all-to-finish operator (∀)

� Obtaining fastest block
from one neighbour uses
first-to-finish operator (∃)

All-to-finish operator

First-to-finish operator

101

Obtaining three blocks (2)

102

Obtain three blocks in order:
- permission request before transmission authorized
- header obtained before body
- body and next block combined using ∀

Obtain one block body
- from fastest neighbour

102

14/12/2022

52

Obtaining three blocks (3)

� The resulting outcome diagram correctly models the causality
and performance of the block transfer; ΔQ is easily computed

� The outcome diagram is complex but it can be simplified by
introducing abstractions

� A software tool would have no problem with it, of course
103

103

Part IV
Systems with
Dependencies (Shared
Resources, Hazards)

104

104

14/12/2022

53

Systems with dependencies
� ΔQSD approach is done in two steps
◦ First, design the system with independent parts
◦ Second, add dependencies where they are needed

� Realistic systems have some dependent parts
◦ Most of the system consists of independent parts
◦ A few dependencies are added, for example where two

message streams use the same database
� Topics
◦ Shared resources
◦ Variable load (iterative query example)
◦ Slacks and hazards
◦ Limitations of ΔQSD

105

105

Shared resources

106

106

14/12/2022

54

Shared resources
� Computing ΔQ is simple if all components are independent

◦ This is the default, compositional approach we have seen so far
� But real systems have shared resources

◦ A resource is part of the system that can potentially be shared
◦ Sharing is modeled by additional variables and their equations
◦ Computing ΔQ is still possible by adding the equations to the solver

� Resource properties
◦ Ephemeral: A resource is ephemeral if it is available at a particular time instant and if not

used at that time, it is lost.
◦ Threshold: A resource is threshold if exceeding a particular limit causes a ΔQ to become

bottom (failure: no result). If there is still some functionality, it is not a threshold resource.
� Examples:

◦ Ephemeral, not threshold: (1) A network connection. When capacity of the line is exceeded
or there is congestion, the ΔQ has larger failure rate, but it still works. (2) A shared CPU.
When too many processes use same CPU, they slow down but still keep going.

◦ Ephemeral, threshold: (1) Working set of a process. When size of working set exceeds
maximum memory available, system will thrash and effectively stops. (2) Mains electricity
at an outlet. When too much power is drawn, a fuse blows and power becomes zero.

◦ Not ephemeral, not threshold: Tidal energy generator with battery storage. Battery charged
periodically, can always take energy from battery. Battery energy goes down until next
charge cycle.

◦ Not ephemeral, threshold: Battery power supply. Battery can supply energy at any time,
until it runs out (total energy needed exceeds energy stored in battery).

107

107

Example 1: congestion

� Assume two message streams entering the same component
(e.g., a router)
◦ Total load is the sum of the two incoming loads: a = ax + ay

◦ Sharing is modeled as the sum of loads
� Congestion, i.e., buffer overflow and message drop, is computed

from ΔQRouter using the queue model we saw before
◦ Router will show congestion if ax + ay ≥ 0.8
◦ Message delay and message failure are computed with the queue

108

Router

ΔQRouter(a)

mx

mout

my

ax

ay

a = ax + ay

108

14/12/2022

55

Example 2: shared CPU

� Assume two components are implemented on the same
processor core
◦ Each component uses fraction ci of the processing power with

the constraint c1+c2=1
◦ ΔQ of each component is function of its processor utilisation

� This gives extra arguments c1 and c2 to the ΔQs and an
equation (constraint) linking them

109

A

ΔQA(c1)

B

ΔQB(c2)

c1+c2=1

109

Variable load
(iterative query example)

110

110

14/12/2022

56

Systems with iterative queries

� Consider an iterative process where user sends query qn to server which
sends response rn back to user, which sends query qn+1 and so forth
◦ This is a common structure: it models many human-computer interactions on

the Web, it models software doing iterative queries to a database, and many
other repetitive processes

� How do we compute the ΔQ for this system?
◦ There are two kinds of outcomes: Os,n=(qn,rn) and Ou,n=(rn,qn+1)
◦ The causal sequence is unbounded: Os,0 < Ou,0 < Os,1 < Ou,1 < …

111

user server

rn

qn

Ou Os

rn

qn

111

ΔQ for iterative queries

� Two equations must be solved simultaneously
◦ The server cdf ΔQs(a) is function of load a (as we saw before)
◦ Because of iterative execution, load a is function of total delay ΔQs+ΔQu

� Load a is the expected rate of queries (queries per second):

112

Ou Os

rn

qn

∞
⌠
⎮1/t P(t,a) dt
⎮
⌡0

• P(t,a) = d(ΔQs+ΔQu)/dt is the pdf which is function of t & a
• Each value of load a gives another pdf P(t,a)
• Computing this integral gives an equation to solve for load a

a =

112

14/12/2022

57

Solving the equations

� Working out the integral gives:

a = 1/s ln(1 +)

(assuming Uniform distribution)
� Let’s look at the solutions
◦ Ratio d/s (user/server time) is important
◦ Solutions give good intuition but to be

precise you need more computation

113

1

0

sas/(1-a)

ΔQs

1

0
ΔQu

d
⊕ =

1

0

sd+as/(1-a)

ΔQs ⊕ ΔQu

1/s

0

sd+as/(1-a)

t t t

t

d/dt

Density P(t,a)

d/s + a/(1–a)
1

113

Solutions

1140.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1/s ln(1 +)
d/s + a/(1–a)

1

d=0, s=1

d=0.5, s=1

d=2, s=1

d=5, s=1

0.18

0.34

d=1, s=1

0.44

0.51

0.57

Fastest speed (no user delay)

Slow user compared to server

User and server similar speed

45° solution line

User
(delay d)

Server
(delay s)

114

14/12/2022

58

Solutions

1150.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1/s ln(1 +)
d/s + a/(1–a)

1

d=0, s=1

d=0.5, s=1

d=2, s=1

d=5, s=1

0.18

d=1, s=1

0.44

0.51

0.57

45° solution line

115

How to measure load
� There are two ways of measuring offered load
◦ Arrival rate: number of events per second

(as function of time)
◦ Interarrival time: interarrival time between events

(as function of time)
� What is the right way to compute average load?
� Usually we are interested in the arrival rate
◦ Rate is a measure for work done per unit of time

� Work done = rate × duration
◦ Rate can be computed using arithmetic average

� Rate a1 for duration d followed by rate a2 for duration d gives average
rate (a1+a2)/2 for duration 2d

116

116

14/12/2022

59

Back-to-back servers

� A similar system is the connection of two servers back-to-back
� This is also a common situation, e.g., two collaborating human

teams that communicate with one another
� If s1 ≠ s2 then we can show that almost all waiting messages will

queue up at the slow server (smallest si)
◦ The slow server sets the pace
◦ This happens even if the difference between s1 and s2 is only a few percent
◦ Making the fast server even faster has no effect on performance

117

server
s1

server
s2

rn

qn

117

Risk management

118

118

14/12/2022

60

Risk management
� What happens when a system is stressed?
◦ Does the system have some “reserve ability” to handle

the stress or not?
� Slacks and hazards
◦ Slack = system has reserve ability to handle stress
◦ Hazard = system cannot handle the stress
◦ Slacks and hazards can be computed by comparing a

delivered ΔQ with a required ΔQ
� Designing for overload
◦ There is a hierarchy of hazards according to seriousness
◦ The system must be designed to deal with these hazards
◦ The system is designed to deal with hazards according to

their timescales

119

119

Slacks and hazards

� We can compare a delivered ΔQ to a required ΔQ
◦ ΔQ1 satisfies the requirement; the green part shows the ‘slack’
◦ ΔQ2 does not satisfy the requirement; the red part shows the ‘hazard’ of

this violation
� When creating a design, keep slack and hazard in mind
◦ Slack gives an extra degree of freedom for the designer, whereas hazard

is a potential problem that may need further attention
120

← required ΔQ

delivered ΔQ1

slack

hazard

delivered ΔQ2

120

14/12/2022

61

Computing hazard from ΔQ

� Risk = impact times probability of occurrence
◦ Hazard = probability of occurrence = p1 – p0
◦ Impact = cost (i.e., delay) when it does occur = i(p)

� Because ΔQ is a probability distribution, this is an integral
� r = ∫ i dp
◦ Total risk is area of orange triangular part
◦ Unit of risk is seconds: weighted expected delay

121

1

0

percent

← required ΔQdelivered ΔQ →

delay

p i

p0

p1

hazard

risk

121

Order of hazards

� We define a hierarchy of performance hazards
� ΔQ computation techniques depend on the order of hazards
◦ Orders 0 and 1 assume independence; orders 2, 3, 4 introduce sharing

122

Order Subject of concern

0: Causality Causal behavior is the only requirement. If ΔQ is best possible,
can the system deliver its successful top-level outcomes, i.e.,
can the system ever work if causality is respected?

1: Capacity Markovian (independent) and linear (superposition) behaviour.
Will the delivered ΔQ be within requirements at expected
loads, i.e., constant average load within capacity constraints?

2: Schedulability Expected variability in behaviour which can be managed by
proper scheduling. Can the QTAs be maintained during
reasonable operational stress, i.e., expected load variability?

3: Behaviour Is the system sensitive to internal correlation effects, i.e.,
interactions between subsystems due to internal effects? For
example, all devices doing http lookup at midnight.

4: Stress Is the system sensitive to external correlation effects, i.e.,
extreme behaviour of the users? For example, all users
placing a call when a natural catastrophe occurs.

C
om

po
si

tio
na

l
D

ep
en

de
nt

122

14/12/2022

62

Design for overload
� The system must be designed to deal with

overload (hazard levels 3 and 4 if long-lasting)
◦ Ideally the load never approaches 1

� As we saw before, when a>0.8 things get bad very quickly
◦ But it will happen

� It is usually too expensive to greatly overdimension the system
� So overallocation must be combined with other techniques

� Solution
◦ Overload must be dealt with at all timescales of interest,

using different techniques at different timescales
� Each level requires its own technique
� Either mitigate at current level or propagate to next level
� ΔQSD is used to do appropriate overload management

◦ Software must be as idempotent as possible and non-
idempotent parts should be isolated

123

123

Overload at different timescales
� Baseline system must obey two rules:

1. When overloaded, the system may behave badly but it must never
break (“weather the storm”)

� If the load fluctuation is temporary, this may be sufficient (system is “ballistic”)

2. When overloaded, the system must provide some guaranteed
minimum functionality (for example, high priority packets will pass)

� Levels w.r.t. individual tasks
◦ Drop nonessential traffic; stop admitting new tasks; kick out tasks

already in progress
� Levels w.r.t. system operation (timescale up to days)
◦ Depending on timescale: reconfiguration, admission control, cold

standbys, data center elasticity, software rejuvenation, put human in
the loop

� Levels w.r.t. system design (timescale from days to years)
◦ One month: add new equipment
◦ One year: system redesign, build new data center
◦ Longer than one year: fire, forest, flood, nuclear accident, Carrington event,

asteroid impact, supervolcano eruption
124

124

14/12/2022

63

Limitations of ΔQSD

125

125

Limitations of ΔQSD
� ΔQSD is a design approach that allows to predict feasibility

and performance at high load for partially specified systems
◦ Default system model is fully compositional with independent components

� Quantitative behaviour of individual components must be known in advance
◦ Dependencies are added where they affect the system

� Forgetting to add some dependencies will reduce prediction accuracy

� ΔQSD is most applicable to systems that execute many
independent instances of the same action
◦ For systems that execute long sequences of dependent actions, the

predictions will be less accurate

� Achieving ΔQSD’s full power requires significant computation
◦ It can be used for back-of-the-envelope design but with loss of accuracy
◦ It is most suitable as foundation for a software design tool

126

126

14/12/2022

64

Part V
Conclusions

127

127

Conclusions and future steps
� These lectures introduce ΔQSD but there is much more:
◦ Practical measurement and computation of ΔQ
◦ Design and diagnosis applied to large systems
◦ Shared resources and timescales applied to large systems
◦ Part IV (Systems with dependencies) is still under development

� PNSol has detailed slide decks and documentation
◦ Theory and practice of ΔQSD
◦ Experience reports for large industrial projects

� Ongoing project to formalize ΔQSD and build tools
◦ We are looking for Ph.D. students to help us
◦ Publication “Mind Your Outcomes”, Computers 2022, 11, 45

https://www.mdpi.com/2073-431X/11/3/45

128

128

https://www.mdpi.com/2073-431X/11/3/45

