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Université Catholique de Louvain, BELGIUM
{xavier.gillard, pierre.schaus}@uclouvain.be

Abstract

Local search is a popular technique to solve com-
binatorial optimization problems efficiently. To es-
cape local minima one generally uses metaheuris-
tics or try to design large neighborhoods around the
current best solution. A somewhat more black box
approach consists in using an optimization solver
to explore a large neighborhood. This is the large-
neighborhood search (LNS) idea that we reuse in
this work. We introduce a generic neighborhood
exploration algorithm based on restricted decision
diagrams (DD) constructed from the current best
solution. We experiment DD-LNS on two sequenc-
ing problems: the traveling salesman problem with
time windows (TSPTW) and a production planning
problem (DLSP). Despite its simplicity, DD-LNS is
competitive with the state-of-the-art MIP approach
on DLSP. It is able to improve the best known so-
lutions of some standard instances for TSPTW and
even to prove the optimality of quite a few other
instances.

1 Introduction

Local search is a popular approach to quickly obtain good so-
lutions to combinatorial optimization problems [Hentenryck
and Michel, 2009; Hoos and Stützle, 2004]. Unfortunately, a
simple gradient descent based on simple perturbations such as
2-exchange moves can quickly get trapped into a local min-
ima. Metaheuritics such as Tabu Search or Simulated An-
nealing can help escape from local minima. Another alterna-
tive is to explore larger neighborhoods to improve the current
best solution. By exploring larger neighborhoods, the need
for metaheuristics becomes less important, as the search is
less myopic. Building larger neighborhoods, however, often
requires a great deal of expertise. A successful one for vehi-
cle routing problems is the Lin-Kernighan neighborhood [Lin
and Kernighan, 1973] that generalizes the 2-OPT move to K-
Opt. For some problems, exponentially sized neighborhoods
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can be explored in polynomial time using algorithms such as
max-flow or path algorithms in graphs. We then speak of very
large-scale neighborhood search [Ahuja et al., 2002]. These
complex neighborhoods are often problem specific and dif-
ficult to adapt. A more generic approach based on this idea
of enlarging the neighborhood uses an optimization solver to
explore the neighborhood [Shaw, 1998]. The main advantage
is that the user expertise can be limited to the modeling of
the problem rather than the design of complex move algo-
rithms. This approach, alternates between two phases: the
random relaxation of a fraction of the decision variables, and
the assignment of those variables using the solver as a black-
box tool. This large neighborhood approach has been used
with great success using constraint programming (CP) solvers
to solve scheduling [Laborie et al., 2018] or vehicle routing
problems [Jain and Van Hentenryck, 2011]. Similar ideas
have also been used with Mixed Integer Programming (MIP)
solvers under the name of local branching [Fischetti and Lodi,
2010]. Recently, some combinatorial optimization problems
have been solved efficiently using DD approach [Bergman et

al., 2016]. Generic solvers for these approaches have also
been developed [Gillard et al., 2020]. It is thus a natural idea
to attempt exploring large neighborhoods using DD solvers.

Contributions We show how to design an efficient DD
based neighborhood exploration reusing the idea of restricted
DD introduced in [Bergman et al., 2016]. We demonstrate
the performances of the approach experimentally on two con-
strained optimization problems: a discrete lot sizing and
scheduling problem (DSLP) [Gent and Walsh, 1999, Problem
58] and the traveling salesman with time windows (TSPTW)
[Gonzalez et al., 2020]. Despite the simplicity and genericity
of the approach, it appears to be competitive with the state-
of-the-art MIP models for the DSLP [Pochet and Wolsey,
2006]. It is able to improve some best known solutions for
the TSPTW [Gonzalez et al., 2020] and to prove the optimal-
ity of some benchmark instances.

2 Discrete Optimization

A discrete optimization problem is a constraint satisfaction

problem with an associated objective function to be mini-
mized. The discrete optimization problem P is defined as
min {f(x) | x 2 D ^ C(x)} where C is a set of constraints,
x = hx0, . . . , xn�1i is an assignment of values to vari-



ables, each of which has an associated finite domain Di s.t.
D = D0⇥ · · ·⇥Dn�1 from where the values are drawn. The
function f : D ! R is the objective to minimize.

Among all feasible solutions Sol(P) ✓ D (i.e. satisfying
all constraints in C), we denote the optimal solution by x⇤.
That is, x⇤

2 Sol(P) and 8x 2 Sol(P) : f(x⇤)  f(x).

3 Dynamic Programming

Dynamic programming (DP) was introduced in the mid 50’s
by Bellman [Bellman, 1954]. This strategy is significantly
popular and is at the heart of many classical algorithms (e.g.,
Dijkstra’s algorithm [Cormen et al., 2009, p.658] or Bellman-
Ford’s [Cormen et al., 2009, p.651]).

Even though a dynamic program is often thought of in
terms of recursion, it is also natural to consider it as a la-
beled transition system. In that case, the DP model of a given
discrete optimization problem P consists of:

• a set S = {S0, . . . , Sn} of state-spaces among which
one distinguishes the initial state r, the terminal state t
and the infeasible state ?.

• a set ⌧ of transition functions s.t. ⌧i : Si ⇥Di ! Si+1

for i = 0, . . . , n� 1 taking the system from one state si

to the next state si+1 based on the value d assigned to
variable xi (or to ? if assigning xi = d is infeasible).
These functions should never allow one to recover from
infeasibility (⌧i(?, d) = ? for any d 2 Di).

• a set of transition cost functions hi : Si ⇥Di ! R rep-
resenting the immediate reward of assigning some value
d 2 Di to the variable xi for i = 0, . . . , n� 1.

• an initial value vr.
On that basis, the objective function f(x) of P can be for-

mulated as follows:

minimize f(x) = vr +
n�1X

i=0

hi(s
i, xi)

subject to

si+1 = ⌧i(s
i, xi) for i = 0, . . . , n� 1;xi 2 Di ^ C(xi)

si 2 Si for i = 0, . . . , n

where C(xi) is a predicate that evaluates to true when the
partial assignment hx0, . . . , xii does not violate any con-
straint in C.

The appeal of such a formulation stems from its simplicity
and its expressiveness, which allows it to effectively capture
the problem structure. Moreover, this formulation naturally
lends itself to a DD representation; in which case it represents
an exact DD encoding the complete set Sol(P).

4 Decision Diagrams

In all generality, a decision diagram (DD) is a kind of layered
automaton s.t. a path between the source and a terminal node
traverses one node from each layer of the graph. In this struc-
ture, the labels on the arcs are interpreted as the affectation of
a value to a variable. Hence, the DD as a whole is seen as a
compact encoding for a set of solutions to a given problem.

Formally, a DD B is a layered directed acyclic graph B =
hn,U,A, l, d, v,�i where n is the number of variables from
the encoded problem, U is a set of nodes; each of which is as-
sociated to some state �(u). The mapping l : U ! {0 . . . n}
partitions the nodes from U in disjoint layers L0 . . . Ln s.t.
Li = {u 2 U : l(u) = i} and the states of all the nodes be-
longing to the same layer pertain to the same DP-state-space
(8u 2 Li : �(u) 2 Si for i = 0, . . . , n). Also, it should be
the case that no two distinct nodes of one same layer have the
same state (8u1, u2 2 Li : u1 6= u2 =) �(u1) 6= �(u2),
for i = 0, . . . , n).

The set A ✓ U ⇥ U from our formal model is a set of
directed arcs connecting the nodes from U . Each such arc
a = (u1, u2) connects nodes from subsequent layers (l(u1) =
l(u2)� 1) and should be regarded as the materialization of a
branching decision about variable xl(u1). This is why all arcs
are annotated via the mappings d : A ! D and v : A ! R
which respectively associate a decision and value (weight)
with the given arc.
Example 4.1. An arc a connecting nodes u1 2 L3 to u2 2

L4, annotated with d(a) = 6 and v(a) = 42 should be under-

stood as the assignment x3 = 6 performed from state �(u1).
It should also be understood that ⌧3(�(u1), 6) = �(u2) and

the benefit of that assignment is v(a) = h3(�(u1), 6) = 42.

Because each r-t path describes an assignment satisfying
P , we will use Sol(B) to denote the set of all the solutions
encoded in the r-t paths of DD B. Also, because unsatisfiabil-
ity is irrecoverable, r-? paths are typically omitted from DDs.
It follows that a nice property from using a DD representation
B for the DP formulation of a problem P , is that finding x⇤

is as simple as finding the shortest r-t path in B (according to
the weight v on arcs).
Exact-DD. For a given problem P , an exact DD B is one
that exactly encodes the solution set Sol(B) = Sol(P) of
the problem P . In other words, not only do all r-t paths en-
code valid solutions of P , but no feasible solution is present
in Sol(P) and not in B. An exact DD for P can be com-
piled in a top-down fashion1. This naturally follows from the
above definition. To that end, one simply proceeds by a re-
peated unrolling of the transition relations until all variables
are assigned as shown per Algorithm 1.

Algorithm 1 Top Down Compilation of an Exact DD

1: Input: a DP-model P = hS, r, t,?, vr, ⌧, hi
2: L0  {r}
3: for i 2 {0 . . . n� 1} , u 2 Li, d 2 Di do

4: u0
 ⌧i(�(u), d)

5: if u0
6= ? then

6: Li+1  Li+1 [ {u0
}

7: a (u, u0)
8: v(a) hi(�(u), d)
9: d(a) d

10: A A [ a

1 An incremental refinement a.k.a. construction by separation

procedure is detailed in [Cire, 2014, pp. 51–52] but we will not
cover it here for the sake of conciseness.



Restricted DD In spite of the compactness of their encod-
ing, the construction of DD suffers from a potentially expo-
nential memory requirement in the worst case. Thus, using
DDs to exactly encode the solution space of a problem is of-
ten intractable. This is why bounded-size approximation of
the exact DD have been devised. While there exists several
such approximations, this paper uses Restricted DD only. As
shown in Algorithm 2, these are compiled by inserting a call
to a width-bounding procedure (namely, restrict) to ensure
that the width (the number |Li| of distinct nodes belonging to
the Li) of the current layer Li does not exceed a given bound
W . This procedure heuristically selects the most promising
nodes and discards the others.

Formally, it is thus the case that given an exact DD B en-
coding the solutions of some given problem P , and the re-
stricted counterpart B of B; we have Sol(B) ✓ Sol(B). Con-
sequently, the longest r� t path in B denotes a feasible solu-
tion of P . And its length yields an upper bound on the optimal
objective value.
Rough Lower Bound Recently, [Gillard et al., 2021] pro-
posed to use a rough lower bound (RLB) as a mean to speedup
and tighten the bounds derived from bounded-width DDs.
The intuition is that assuming the knowledge of an upper
bound v on the optimal solution, and assuming that one is
able to swiftly compute a rough lower bound vs on the short-
est r � t path going through node s; s and all its descendants
may be discarded whenever vs � v since all paths going
through s are guaranteed not to improve v.

Algorithm 2 shows how a restricted decision diagram is
compiled taking an RLB into account. In practice, it suffices
to include an additional check rlb(u0)  f(s⇤) to discard
node u0 if its RLB is worse than the best known solution s⇤

(line 7). The rest of this paper refers to an invocation of Al-
gorithm 2 as CompileRestrictedDD(P, s⇤) where P and
s⇤ respectively denote the (sub-)problem to consider and its
current best known solution.

Algorithm 2 Top Down Compilation of a Restricted DD

1: Input: a DP-model P = hS, r, t,?, vr, ⌧, hi
2: Input: s⇤  the best known solution or none.
3: L0  {r}
4: for i 2 {0 . . . n� 1} do

5: for u 2 Li, d 2 Di do

6: u0
 ⌧i(�(u), d)

7: if u0
6= ? ^ rlb(u0)  f(s⇤) then

8: Li+1  Li+1 [ {u0
}

9: a (u, u0)
10: v(a) hi(�(u), d)
11: d(a) d
12: A A [ a
13: if |Li+1| > W then

14: Li+1  restrict(Li+1)

5 Large Neighborhood Search

As explained in the introduction, LNS is an incomplete opti-
mization method that aims at being able to escape local min-

ima while avoiding the need for the practitioner to devise spe-
cialized metaheuristics. To this ends, LNS attempts to find a
balance between intensification (apply advanced inference al-
gorithms to explore promising neighborhoods) and diversifi-
cation (explore different neighborhoods). This is why starting
from an initial solution s⇤, LNS alternates between a relax-
ation phase and an reoptimization phase. During the relax-
ation phase, decisions made in s⇤ are challenged for a small
fraction of the variables. Then, during the reoptimization,
a solver operates a ”black box” resolution of the remaining
(sub-)problem. Whenever a solution s0⇤ improving the best
known objective is discovered (f(s0⇤) < f(s⇤)); the incum-
bent best solution is updated.
Our Approach This paper proposes to use restricted DDs
as a means to explore sets of solutions in a large neighborhood
of s⇤. Algorithm 3 shows how this is done in practice. Simi-
lar to vanilla LNS, our method must strike a balance between
intensification and diversification. In our case, the intensifica-
tion target is achieved through the compilation of a restricted
DD (Algorithm 3 lines 10-11).

Algorithm 3 LNS with Decision Diagrams

1: Input: a DP-model P = hS, r, t,?, vr, ⌧, hi
2: Input: s⇤  the best known solution or none.
3: MaxDepth |S|� 2
4: d MaxDepth
5: while end criterion not met do

6: r0  r
7: if s⇤ 6= none then

8: r0  s⇤d
9: P

0
 hS, r0, t,?, v(r0), ⌧, hi

10: neigborhood CompileRestrictedDD(P 0, s⇤)
11: neighbor  ShortestPath(neigborhood)
12: if f(neighbor) < f(s⇤) then

13: s⇤  neighbor
14: d MaxDepth
15: else if d = 0 then

16: d MaxDepth
17: else

18: d d� 1

In our method, three mechanisms are relevant to intensi-
fication. The first one is the (optional) use of an RLB pro-
cedure to discard nodes that cannot lead to an objective im-
provement. The second and third mechanisms follow from
the behavior of the restriction procedure. As shown per Al-
gorithm 4, one initially partitions the nodes of a given layer
Li between those nodes which must be kept in the layer, and
the others (Algorithm 4 lines 5-11). This decision is based on
the mustKeep predicate (Definition 5.1) which states that a
node n from the ith layer must be kept if the value associated
to variable xi on the best r � n path (denoted p⇤r�n(i)) is the
same as the value of xi in s⇤ (denoted s⇤(i)). This guarantees
that s⇤ 2 Sol(neighborhood) and hence that neighborhood
is an actual neighborhood of s⇤ (Algorithm 3 line 10).
Definition 5.1.

mustKeep(n, s⇤, i) () p⇤r�n(i) = s⇤(i)



The last of our intensification mechanism consists of the
node selection heuristic which is used to select the nodes re-
maining in a layer after restriction. Algorithm 4 shows at
lines 12-13 that the candidate nodes are filtered to keep only
the best nodes according to their RLB.

There are two mechanisms at play in our method to ensure
a fair amount of diversification. The first one consists of se-
lecting a different root for the compilation of the restricted
DDs. This is done is a systematic manner, optimistically
starting with a node at the bottom of the DD which yielded
the best solution; progressing towards the actual root of the
problem (Algorithm 3 lines 6-9, 14-18). The second mecha-
nism in use consists in the introduction of some randomness
during a layer restriction. As shown in Algorithm 4, any node
not satisfying the mustKeep predicate might still be forced
into the restricted layer with a small probability (line 7).

Algorithm 4 Restrict Procedure
1: Input: Li : the layer that needs to be restricted
2: Input: s⇤ : the best known solution, or none
3: Input: W : maximum layer width
4: Input: p : a small probability (e.g. 10%)
5: frontier  0
6: for k 2 {0..|Li|} do

7: if mustKeep(Li[k], s⇤, i) _ random()  p then

8: swap(Li, frontier, k)
9: frontier  1 + frontier

10: keep nodes[0..frontier[
11: candidates nodes[frontier..|nodes|[
12: sort(candidates based on their RLB)
13: truncate(candidates,max(0,W � |keep|)
14: Li  concat(keep, candidates)

Benefits Our approach offers several benefits. DDs lever-
age their underlying DP model as a mean to explore the
neighborhood of a given best solution. Moreover, as opposed
to vanilla LNS, our approach is sometimes able to prove the

optimality of the instances it solves. This is usually only pos-
sible when using an exact method such as MIP or Branch-
and-Bound [Bergman et al., 2016]. Indeed, our method pro-
ceeds by generating sets of complete solutions at each itera-
tion. Still, because the value of the best incumbent solution is
improving over time, so is the pruning power of the RLB used
when compiling the DD. From there, it follows that some-
times the pruning power of the RLB is sufficient to let the DD
compile without requiring any restriction (when d = 0 and no
layer ever exceeds the maximum width). In that event, the re-
sulting DD is an exact DD which proves the optimality of
the best solution it contains. Naturally, this capability stems
from a tradeoff between the pruning power of RLB and the
maximum layer width of the DD that are used. Therefore, the
algorithm won’t be able to always achieve a formal proof of
optimality. Predicting whether it will succeed in delivering
such a proof is undecidable. Still, we believe that the possi-
bility for a metaheuristic approach to sometimes give a proof
of optimality is an appreciable feature.

Another benefit of using our method comes from the con-
figurable aspect of the DD compilation. Which means one

can choose how wide the DD is allowed to be. Thereby arbi-
traging a balance between diversification and intensification.

6 Experimental Study

In order to evaluate the effectiveness of DD-LNS, we con-
sidered two sequencing problems: a discrete lot sizing and
scheduling problem (DSLP) and the traveling salesman prob-
lem with time windows (TSPTW).
DSLP is a multi-item capacited lot sizing problem detailed
in CSPLib [Gent and Walsh, 1999, Problem 58] and studied
in depth in [Pochet and Wolsey, 2006]. It is a production
planning problem where one item needs to be produced on a
machine at each time slot to meet demands at minimal stock-
ing and changeover costs. It is characterized by a 5-tuple
hI,H,S, C,Qi where:

• I = {0, . . . , n� 1} is the set of item types to produce,
• H is the problem time horizon,
• S is a stocking cost vector where Si is the cost of stock-

ing one unit of type i during one period,
• C is a changeover cost matrix where Ci,j is the cost

of changing the machine configuration from producing
item i to producing item j, and

• Q is a vector of demands per item. Given a time period
0  t < H and an item i 2 I, Qi

t is used to denote the
number of items of type i to deliver at time t. Without
loss of generality, the next sections assume normalized
demands. That is, Qi

t 2 {0, 1} 8t, i.

A MIP Formulation is given by equations (1) – (6). In
line with the nomenclature from [Pochet and Wolsey, 2006],
this model will be referred to as PIG-A-1.

minimize
X

i,j,t

Ci,jc
t
i,j +

X

i,t

Sis
t
i (1)

subject to

s0i = 0 8i 2 I (2)

xt
i + st�1

i = Q
i
t + sti 8i 2 I; 0  t < H (3)

xt
i  yt

i 8i 2 I, 0  t < H (4)
X

i,t

yt
i = 1 8i 2 I, 0  t < H (5)

cti,j � yt�1
i + yt

j � 1 8i, j 2 I; 0  t < H (6)

where xt
i is a binary production variable (1 when item i is

produced at time t, otherwise 0). yt
i is a binary setup variable

(1 iff machine is ready to produce i at time t). cti,j is a binary
changeover variable (1 iff configuration changed from i to
j at time t). sti is an integer stocking variable counting the
number of items of type i stored at time t.

In this model, (1) is the objective function to minimize. (2)
is a constraint imposing that the stock of every item is empty
at startup. Equation (3) is a conservation constraint stating
that when an item is produced, it is either delivered or stocked
for later delivery. Constraint (4) forces the consistency be-
tween the production and machine configuration variables.



(5) is a capacity constraint stating that only 1 unit of one
item is produced at each time. Finally, (6) is a constraint that
enforces the consistency between the machine configuration
variables (yt�1

i ,yt
j) and the changeover variables (cti,j).

DP Model
2 It helps to define first from the input data

T
i
t that gives the previous demand time for a given item i and

time 0  t  H.

T
i
0 = �1 T

i
t =

⇢
t� 1 if Qt�1

i > 0
T

i
t�1 otherwise

The elements of a DLSP DP model are the following:
• a state st 2 SH�t is a tuple hk, ui where k denotes the

type produced at time t+1, and u is a vector comprising
the previous delivery date for each item. In particular,
we have r =

⌦
�1,

�
T

0
H
, T 1

H
, . . . , T n�1

H

�↵

• ⌧t(hk, ui , d) =

8
<

:

⌦
d,
�
u0, ...ud�1, T d

ud
, ud+1, ...un�1

�↵

when ud � t
? otherwise

• ht(hk, ui , d) =

⇢
Sd · (ud � t) when k = �1
Ck,d + Sd · (ud � t) otherwise

• vr = 0.

Rough Lower Bound Because DLSP is a simple case
of Wagner-Whitin (WW) [Pochet and Wolsey, 2006] in the
absence of changeover costs, an RLB for some state st =
hk, ui 2 SH�t is given by the WW cost of st plus the total
weight of a minimum spanning tree over the changeover costs
of items i s.t. ui � 0.
TSPTW TSPTW is a popular variant of the TSP where the
salesman’s customers must be visited within given time win-
dows. This problem is notoriously hard to solve considering
that even finding a feasible solution was proved NP-complete
[Savelsbergh, 1985]. Formally, TSPTW is characterized by
N a number of customers to visit, D a square matrix s.t.
Di,j is the distance between customers i and j; H the con-
sidered time horizon and T W is a vector of time windows
s.t. T Wi = (ei, li) where ei is the earliest time when the
salesman can visit i and li the latest.

CP Model A declarative Minizinc [?] constraint pro-
gramming model of this problem is given next. The decision
variable xi defines the visited customer in ith position of the
tour. The auxiliary variables ai represent the time when the
salesman visits the ith customer of the tour. The constraints
ensure i) that the salesman’s tour starts and ends at the depot
ii) each city is visited exactly once iii) the time window con-
straints and iv) the salesman cannot travel faster than speci-
fied in the distance matrix between two consecutive visits but
is allowed to wait until the beginning of the time window.
Finally, the travel time objective is minimized.

2To the best of our knowledge, this problem has not been solved
with DP before. The introduced model is thus also a contribution.

/* Make it a tour start/ending at city 0 */

constraint (x[0] = 0 /\ x[N] = 0 /\ a[0] = 0);
constraint alldifferent_except_0(x);
/* Enforce time windows */

constraint forall(i in 0..N)(Earliest[x[i]] <= a[x[i]]);
constraint forall(i in 0..N)(a[x[i]] <= Latest[x[i]]);
constraint forall(i in 0..N-1)(
a[x[i+1]] >= a[x[i]] + Distance[x[i],x[i+1]]

);

/* Travel Objective */

int: travel = sum(i in 0..N-1)(Distance[x[i],x[i+1]]);
solve minimize travel;

DP Model There is a long history of DP models for the
TSPTW [Savelsbergh, 1985; Dumas et al., 1995; Mingozzi
et al., 1997]. In the context of this experimental study, we
model it as follows:

• a state st 2 St is a tuple ht, c, ⇢i where t denotes the
current time (a.k.a. makespan), c identifies the current
location and ⇢ is the set of customers remaining to be
visited. In particular, we have r = h0, 0, {1 . . . N � 1}i.

• ⌧t(ht, c, ⇢i , d) =

8
<

:

hmax (ed, t+Dc,d) , d, ⇢ \ {d}i
when ld � t+Dc,d

? otherwise

• ht(ht, c, ⇢i , d) = Dc,d

• vr = 0

Rough Lower Bound A simple yet effective rough
lower bound for some state st = ht, c, ⇢i is given by
the sum of min {Dc,o | o 2 ⇢}, the cost of a minimum
spanning tree over the distance between the nodes in ⇢,
and min {Do,0 | o 2 ⇢ ^Do,0  l0}. Intuitively, these three
terms respectively represent the shortest distance between the
current position and any remaining customer; an estimation
of the shortest travel distance between the remaining cus-
tomers and the shortest distance between a customer poten-
tially preceding the depot and the depot itself.

6.1 Experimental Setup

All our experiments were performed on the same physi-
cal machine equipped with two Intel(R) Xeon(R) CPU E5-
2687W v3 and 128Gb of RAM. On that machine, each con-
sidered solver was given a 10 minutes timespan using a sin-
gle thread and a maximum memory quota of 2Gb in order to
solve each instance. For the evaluation of DD-LNS, all ex-
periments use a generic framework in which we plugged the
DP models given above.

DLSP We compared the performance of DD-LNS against
the state-of-the-art MIP model (PIG-A-3) from [Pochet and
Wolsey, 2006]. Because of the simplicity of our DP model,
and because PIG-A-3 was tuned by MIP experts over a
decade; we also included the simpler MIP models PIG-A-1
and PIG-A-2 in our comparison. These should give an idea
of what a practitioner might reasonably expect when creating
a model for the DLSP. All MIP models originate from [Pochet
and Wolsey, 2006] and are written using FICO Xpress Mosel
v8.11. Our experiments include 500 generated instances



Method W Optimum 1% Gap

PIG-A-1 N.A. 35 232
PIG-A-2 N.A. 97 226
PIG-A-3 N.A. 475 499
DD-LNS 10 167 449
DD-LNS 100 276 489
DD-LNS 1000 368 490

Table 1: Number of DLSP instances for which the optimum solution
has been found and for which the best solution found is within 1%
of the global optimum.

which could not be solved with either pure dynamic pro-
gramming or branch-and-bound mdd [Bergman et al., 2016;
Gillard et al., 2021]. These 500 instances have |I| = 10,
H 2 {50, 100} and their Si and Ci,j values range between 10
and 50.
TSPTW We compared the performance of DD-LNS
against an implementation of the CP model from section 6
in Choco 4.10.6 3 using a LNS that re-optimizes a small se-
quence4 of 5 decision variables xi . . . xi+4 randomly selected
at each restart. Our experiments cover the 467 instances of
the benchmark suites which are usually used to assess the ef-
ficiency of new TSPTW solvers.
Results Table 1 shows the number of DLSP instances for
which the best solution found by each solver matches the best
known solution. It also shows the number of instances where
the best solution found was within 1% of the global optimum
( found�best known

best known  1%). From this table, it appears that the
combination of LNS with Decision Diagrams is very efficient
at finding good solutions. Indeed, this method outperforms
the PIG-A-1 and PIG-A-2 models in all situations; even with
a maximum layer width as small as 10 nodes. Furthermore,
in spite of the simplicity of its underlying DP model, our DD-
LNS approach fares comparably to the much more advanced
PIG-A-3 models.

Because the TSPTW satisfiability is NP-complete, and
in order to establish a fair comparison between CP-LNS
and DD-LNS, we bootstrapped the problem resolution of
all solvers with an initial feasible solution computed off-line
(the same for both CP and DD-LNS). These initial solutions
have been computed using a variant of [Da Silva and Urru-
tia, 2010]. Table 2 shows the number of TSPTW instances
for which the best solution found by each solver matches the
published best known solution. It also shows the number of
instances where the best solution found was within 1 % of
the overall best known solution. This table shows that both
methods are highly efficient at finding good solutions to the
TSPTW; DD-LNS having a slight edge over CP-LNS. Dur-
ing this phase of the experiments, DD-LNS proved 105 in-
stances optimal and identified 75 new solutions with an ob-
jective value matching that of the published best known so-
lution. In the same conditions, Choco identified 35 new so-
lutions having an objective value equal to the best known. It
could not prove the optimality of any instance.

3https://choco-solver.org/
4Several alternative relaxation schemes and parameters were ex-

perimented and this one gave the best results.

Method W Optimum 1% Gap

CP-LNS N.A. 144 183
DD-LNS 10 197 245
DD-LNS 100 217 260
DD-LNS 1000 216 248

Table 2: Number of TSPTW instances for which the optimum solu-
tion has been found and for which the best solution found is within
1% of the overall best known value

As a mean to assess the effectiveness of these methods
at optimizing TSPTW independently of the initial solution,
we repeated the experiment; this time initializing the resolu-
tion with the published best known solution of each instance.
This again proved the high efficiency of our method. Indeed
it identified new solutions improving the objective value of
standard benchmark instances. In practice, DD-LNS was able
to identify 8 improving solutions in two benchmarks suites
(AFG and OhlmannThomas).

An interesting general observation to make about our ex-
periments stems from the fact that the maximum width W of
the compiled DDs provides an easy means to tune the diver-
sification level. Indeed, both Table 1 and Table 2 show that
increasing the maximum layer width W improves the solver
performance before it starts hampering it.

7 Related Work

Our approach can be considered as a hybridization of DD for
optimization (DDO), beam search, LNS, and the phase saving
heuristic which is customarily used in SAT solvers [Pipatsri-
sawat and Darwiche, 2007]. Combination of some of these
ingredients have recently been proposed. But, to the best of
our knowledge, no approach ever combined all of them. For
instance, [López-Ibáñez and Blum, 2010] hybridized beam
search with ant-colony optimization (ACO) in order to solve
the TSPTW. As opposed to our method, is was driven by an
ACO component rather than DP.

Articles [Demirović et al., 2018] and [Björdal et al., 2020]
pursue a similar goal. They try to blend constraint program-
ming, phase saving and LNS to solve hard combinatorial
problems but focusing on propagators while this work relies
on a dynamic programming formulation of the problem only.

8 Conclusions

We introduced and evaluated a method combining large
neighborhood search with decision diagrams to solve hard
combinatorial optimization problems having a dynamic pro-
gramming formulation. Its simplicity and good performances
(experimented on two problems) might be appreciable for
practitioners. In particular, when one has to repeatedly
take good decisions quickly; as would for instance be the
case when adapting a production schedule based on an ever-
evolving order book.
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