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Abstract. Decision trees that minimize the error on the training set
with a depth limit have been found to be generally superior to those
found by more standard greedy algorithms. However, when the search
space to be explored is too large, the depth-first search used by exact
algorithms can get trapped in left most branches. Consequently, when
the user stops the algorithm, the best tree found so far may be unbal-
anced and poorly minimize the error. Our work aims to improve the
anytime behavior by introducing the limited discrepancy search ingre-
dient in these algorithms. This allows to explore the search space by
waves increasingly deviating from standard heuristics such as informa-
tion gain. Our experimental results show that the anytime behavior of
the state-of-the-art exact method DL8.5 is greatly improved.

Keywords: Optimal Decision Trees · Limited Discrepancy Search · Knowl-
edge Discovery.

1 Introduction

Decision trees are among the most popular models in machine learning. In par-
ticular, their simplest form, the boolean decision trees are considered in this
paper since every dataset can be binarized. Each node represents an attribute
or feature of the dataset, and each branch represents the selection made for the
boolean attribute. The classification of a new instance is obtained by following
the path from the root to the leaf node that gives the predicted class to the in-
stance. Decision trees have become increasingly popular since their introduction
[21]. Their simplicity, interpretability, and the number of algorithms to induce
decision trees make them a preferred method for many applications. Learning a
decision tree that minimizes the error on a training set is NP-hard. This is why,
since their introduction, greedy algorithms have been used mainly to induce de-
cision trees from a training set [7, 20]. Despite the lack of optimality guarantees,
these algorithms, choosing top-down recursively the feature to split based on a
heuristic such as information gain [15], offer a good trade-off between accuracy
and scalability.
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Recent advances in hardware and mathematical optimization libraries have
made it possible to reconsider exact approaches to induce decision trees [5,
19]. Beyond the theoretical and algorithmic aspects, this field is getting more
interest, mainly motivated by the fact that minimizing the error of the tree on the
training set also allows to reduce the error on unseen data [5]. Several approaches
based on Mathematical Programming [2, 5, 8, 19], Constraint Programming [18],
and SAT solvers [16] have been proposed. Solver-based approaches are flexible
and require less expertise to develop, but dedicated algorithms such as DL8.5
[3] and Murtree [9] based on branch-and-bound and dynamic programming have
achieved the best results so far. They used a depth-first search to explore the
search space of decision trees branching on the feature decision variables at each
node. The performances for finding a provable optimal tree are generally good
when the depth limit of the decision tree to discover is not too high (typically 3
or 4). However, for larger depths, when the training set is large and has many
features, there is little hope to find and prove the optimal tree. In such cases, the
search can get trapped in the left parts of the search tree exploration without
having enough time to reconsider decisions close to the root. Stopping the search
before its completion can therefore result in unbalanced decision trees (leaning
to the left), with an error that is even larger than the ones the user would obtain
with a greedy algorithm.

This work aims to improve the anytime aspect of the exact algorithm to
induce decision trees by incorporating a limited discrepancy search [11], a well-
known technique in combinatorial optimization, to improve depth-first search
when an efficient heuristic is available. The article focuses on adapting the strat-
egy to DL8.5 [3] but this idea can be applied to similar algorithms such as
MurTree [9] or the AND-OR search Constraint Programming approach [18].

The adapted algorithm is called LDS-DL8.5. In this setting, the depth-first
search also takes the decisions guided by a standard heuristic (information
gain [15]) but does not allow to deviate too much from it according to a bud-
get (called the discrepancy limit) per branch. With a discrepancy limit of zero,
the algorithm discovers the same decision tree as C4.5. Then by gradually in-
creasing the budget and restarting the search, the approach is able to deviate
from the greedy tree and even possibly discover an optimal tree and prove its
optimality when no pruning occurred because of the discrepancy limit. We show
experimentally that the advantage of this approach is that the user can set an
optimization time budget and still obtain a tree that is generally of better qual-
ity than the one obtained with a pure greedy algorithm such as C4.5 and CART.
The trees discovered with LDS-DL8.5 are also in general better than those with
DL8.5 for hard settings where it is not possible to find and prove optimality
in a reasonable amount of time. Our implementation is publicly available at
https://github.com/haroldks/lds-dl85.

This paper is organized as follows. In the next section, we present the related
works, mainly works on optimal decision trees. We then explain the technical
background by briefly discussing some notions of frequent itemset mining and
the functioning of DL8.5 and the Limited Discrepancy search. Finally, we provide
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some experimental results that show the efficiency and interest of LDS-DL8.5
w.r.t. DL8.5 and the state-of-the-art greedy algorithms CART and C4.5.

2 Related Works

Decision trees are built in most cases using heuristic algorithms such as CART [7]
and C4.5 [20]. While highly scalable, the constructed tree may not be the most
accurate, in particular in the presence of constraints, such as on the depth of the
trees. Optimal decision tree algorithms aim to address this issue by exhaustively
exploring the search space at runtime cost. They have seen a resurgence in
prominence in recent years as algorithms and technology have improved. Most
popular methods use a mixed integer programming-based approach. Bertsimas
and Dunn [5] in their work encoded the problem of finding optimal decision trees
with respect to misclassification error by fixing a maximum depth in advance and
creating a number of variables to represent the predicates for each node. Verwer
and Zhang [19] later proposed BinOCT, which reduces the number of variables
and constraints present in the model by taking advantage of the binarization of
the data. Aghaei et al. [2] suggested a MIP-based approach based on maximum
flow formulation and Benders decomposition to tighten the relaxation of binary
decision trees. Boutilier et al. [8] introduced valid inequalities for learning optimal
multivariate decision trees. Other approaches, such as the work of Verhaeghe et
al. [18], induced optimal decision trees with constraint programming principles.
They developed models with maximum depth and minimum support constraints
while using a branch-and-bound strategy to prune the search space.

Another class of methods used SAT solvers to induce optimal decision trees.
Narodytska et al., [16] modeled the decision tree as a propositional logic to
construct the smallest tree in terms of the total number of nodes that perfectly
describes the given dataset. At first, a tree is learned by using some heuristic
method. The SAT-solver is then called multiple times to find each time a perfect
tree with one less node.

Researchers also develop specialized algorithms for decision trees. In their
work, Nijssen and Fromont [17] developed DL8, an algorithm inspired by ideas
from the pattern mining literature that can support a wide range of constraints.
Their approach allowed to evaluate the different branches of a node individually
while saving the obtained subtrees using a new caching technique to reuse them
later. In a later work, Aglin et al. [3] developed DL8.5, an improved version of
DL8. The main contributions are the introduction of an upper bound that limits
the tree error allowed for a child node as soon as an optimal subtree has been
determined for one of its siblings and a lower-bound technique that allows the
algorithm to store information on both optimal and pruned subtrees to provide
a lower bound on the tree error. These improvements lead to a method that
outperformed previous approaches by several margins when used with a depth
constraint. Demirovic et al. [9] advanced the DL8.5 algorithm by adding support
to limit the number of nodes in the tree, an efficient procedure to compute the
tree of depth two, and a novel similarity-based lower bounding approach.
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3 Technical Background

DL8.5 induces boolean decision trees by relying on itemset mining concepts.
It starts with the transactional dataset, where each transaction is an itemset
indicating the existence or absence of each feature. Formally, it is defined as a
collectionD = {(t, I, c) | t ∈ T , I ⊆ I, c ∈ C}, where T represents the transaction
sets or row identifiers, I is the set of possible items, and C is the set of class labels;
within I there are two items (one positive, the other negative) for each original
Boolean feature, and each itemset I contains either a positive or a negative item
for every feature. As an illustration, Table 1b shows the transactional database
representation of the binary matrix of Table 1a. The tids are the identifiers of
the transactions, which can also be row numbers. For each itemset I:

– the cover of an itemset is the set of transactions that contain this itemset:
cover(I) = {(t,X, c) | (t,X, c) ∈ D and I ⊆ X}

– the class-based support of an itemset is the number of examples in its cover
with the given class c: Sup(I, c) = |{(t,X, c′) ∈ cover(I) and c = c′}|.

Table 1: Example of database formats.

(a) Binary Matrix.

Features
class

A B C

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1

(b) Transactional database.

tid items class

1 abc 1
2 ab¬c 0
3 a¬bc 1
4 a¬b¬c 1

DL8.5 Algorithm

For the sake of completeness, we first explain the DL8.5 algorithm and then
introduce the changes related to the limited discrepancy search. Algorithm 1
shows the pseudocode of DL8.5. This algorithm, in the general case, performs a
recursive depth-first branch and bound search at each node (itemset) to select
the feature at that node that will extend the itemset. The left and right subtrees
are collected, each obtained with a recursive call with the exclusion and inclusion
of the considered item. The base cases ending the recursion occur:

– when the maximum depth constraint is reached, | I |= maxdepth in line 7.
– when the node (itemset) error is already 0 (leaf error(I) = 0) in line 7. The

leaf error here is the misclassification rate, defined as :
leaf error(I) =| cover(I) | −maxc∈C {Sup(I, c)}.
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Algorithm 1: DL8.5(maxdepth,minsup)

1 struct BestTree {ub : float; tree : Tree; error : float}
2 cache← Trie < Itemset,BestTree >
3 bestSolution ← DL8.5− Recurse(∅,+∞)
4 return bestSolution.tree
5 Procedure DL8.5− Recurse(I, ub)
6 leaf error ← leaf error(I)
7 if leaf error = 0 or |I| = maxdepth or timeout is reached then
8 if leaf error ≤ ub then
9 return BestTree(ub, make leaf(I), leaf error)

10 return BestTree(ub, NO TREE, leaf error)

11 solution ← cache.get(I)
12 if solution was found and ((solution.tree ̸= NO TREE) or (ub ≤ solution.ub)) then
13 return solution

14 (τ, b, base ub)← (NO TREE,+∞, ub)
15 for all attributes i sorted by heuristic do
16 if |cover(I ∪ {i})| ≥ minsup and |cover(I ∪ {¬i})| ≥ minsup then
17 sol1 ← DL8.5− Recurse(I ∪ {¬i}, base ub)
18 if sol1.tree = NO TREE then continue
19 sol2 ← DL8.5− Recurse(I ∪ {i}, base ub− sol1.error)
20 if sol2.tree = NO TREE then continue
21 feature error ← sol1.error + sol2.error
22 τ ← make tree(i, sol1.tree, sol2.tree)
23 b← feature error
24 base ub← b− 1
25 if feature error = 0 then break

26 solution← BestTree(ub, τ, b)
27 cache.store(I, solution)
28 return solution

– when the itemset support is below a user-defined threshold on line 16.

In addition, DL8.5 uses an upper bound specified as a parameter of the
recursion procedure. This bound at the root node is initially set to +∞, but is
tightened each time the algorithm finds a better tree. The update is made at
line 21 and the algorithm will continue the search with this new bound (lines 17
and 19). The upper bound ensures the pruning of the search space using the test
in line 18. Here, exploring the second branch for the current attribute is useless
if the quality of the first branch tree is worse than the authorized upper bound.
The error of the left subtree is also used to tighten the maximum error allowed
for the right subtree in line 19.

As several recursion paths can lead to the same itemset and thus the same
cover, DL8.5 avoids useless recomputation by storing the itemset, its associated
upper bound and tree, even if no solution was found. In doing so, DL8.5 will not
continue the search for a stored itemset and bound if it encounters it again later,
considering that for the given bound, a good enough tree could not be found.

Weakness of DL8.5

DL8.5 may require high execution times for large datasets with high depth.
The user can specify a timeout to limit the computation time and still get the
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best tree found during this computation time. Unfortunately, this decision tree
can be very unbalanced when the search gets stuck in the deepest branches, as
illustrated in Figure 1. In this example, the time limit occurs when exploring
the subtree below ¬a. As a result, all the examples that fell in nodes a had no
chance of further splitting, and the error in this node can be quite large. Although
DL8.5 is a very powerful algorithm when the search can be terminated with a
chance to optimally split all nodes at best, this is not the case when the search is
interrupted before the end of the search. For each successor of a node, the search
procedure is called on the left and right branches. The depth-first search can get
stuck for a dataset with many features and high depth in the recursive calls of
the line 17. When a timeout occurs at line 7, the search will return all remaining
successors without any further exploration, even when line 19 is called for the
right branch. If an efficient heuristic is available, an extension of the depth-first
search with limited discrepancy allows it to avoid getting stuck in the depths by
allowing a certain number of deviations to each node according to a budget.

...

backtrack 
due to timeout

Fig. 1: Stuck DL8.5.

Limited Discrepancy Search

Many problem-solving approaches in AI use tree-depth-first search methods. It is
common to employ a heuristic to guide the search towards the more promising
search space regions first. For some problems, a good heuristic may directly
lead to the optimal solution in the leftmost leaf node, but, in general, it has no
guarantee of making no mistakes. This means that the search should have taken
a few other rare decisions instead of always trusting the heuristic to discover the
best solution.

By enumerating solutions in increasing order of the number of decisions that
do not agree with the heuristic, the discrepancy search hopes to discover the best
solution quickly. This strategy can be enforced using a depth-first search with
a discrepancy budget along each branch, forcing the search to backtrack when
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the limit is reached. The completeness of the approach is ensured by gradually
increasing the discrepancy limit along the iterations. The first iteration does
not allow any discrepancy and thus is only able to discover the leftmost leaf
node without any backtrack. The next iteration allows one discrepancy and will
enumerate all the possibilities with one allowed discrepancy, and so on for the
subsequent larger discrepancy. Note that we can augment the limit by more than
one increment between consecutive iterations to speed up the process, since each
iteration may visit in theory a super-set3 of the nodes at the previous iteration.

322 211 10

Fig. 2: Limited Discrepancy Search on a binary tree.

Figure 2 shows the result obtained with LDS searching for a binary tree of
depth 3. The numbers at each leaf level give the total number of discrepancies
needed to reach them. At the beginning of the search, the leftmost branch (blue)
is traversed with a discrepancy of 0. The nodes of this branch correspond to the
best results according to the heuristic used. The branches of the discrepancy 1
(green) are traversed when there is no solution at the discrepancy 0. At the root,
it is possible to explore the right node with the discrepancy of 1 and then traverse
the left branch for this node without a discrepancy budget as it corresponds to
the best heuristic value.

Our main contribution is to include the LDS idea into the DL8.5 algorithm
in the next section.

4 LDS-DL8.5

We propose LDS-DL8.5, a decision tree algorithm that improves the anytime
behavior of DL8.5 by using limited discrepancy search. When there is not a time
limit and the search is completed LDS-DL8.5 returns the optimal solution as the
optimal approach like DL8.5. Algorithm 2 describes LDS-DL8.5. The main loop
of the algorithm corresponds to the lines 5 to 9. There, the Search procedure is
called with a discrepancy budget k that increases from 0 to a maximum value
K determined by:

K =

d∑
i=0

A− i− 1, (1)

3 The branch and bound may also prune the search space
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Algorithm 2: LDS-DL8.5(maxdepth, minsup, K)

1 struct NodeTree {ub : float; tree : Tree; error : float, discrepancy : int}
2 cache← Trie < Itemset,NodeTree >
3 result← NodeTree{+∞, NO TREE, 0, 0}
4 k ← 0
5 while k ≤ K do
6 result← Search(root, result.error, k)
7 if result.error = 0 or timeout is reached then
8 return result.tree

9 k ← augment discrepancy(k, K)

10 return result.tree
11 Procedure Search(I, ub, k)
12 leaf error ← leaf error(I)
13 if leaf error = 0 or |I| = maxdepth or timeout is reached then
14 if leaf error ≤ ub then return NodeTree(ub, make leaf(I), leaf error, k)
15 return NodeTree(ub, NO TREE, leaf error, k)

16 node← cache.get(I)
17 if node was found then

/* The node is full explored */
18 if node.tree ̸= NO TREE and node.discrepancy = K and ub ≤ node.ub then
19 return node

/* List of the current node successors sorted by a heuristic */
20 successors← get successors(I, minsup)

/* Node real discrepancy budget */
21 d← discrepancy limit(size(successors),maxdepth− |I|)
22 k ← min(d, k)
23 (τ, b, base ub)← (NO TREE,+∞, ub)
24 for i in successors do
25 c← successors.index(i)
26 if c > k then break // Discrepancy budget reached
27 first← Search(I ∪ {¬i}, base ub, k − c)
28 if first.tree = NO TREE then continue
29 second← Search(I ∪ {i}, base ub− first.error, k − c)
30 if second.tree = NO TREE then continue
31 feature error ← first.error + second.error
32 τ ← make tree(i, first.tree, second.tree)
33 b← feature error
34 base ub← feature error − 1
35 if feature error = 0 then break

// Current discrepancy budget allows to reach the last successor or node is pure
36 if b = 0 or k = d then k ← K
37 result← NodeTree(ub, τ, b, k)
38 cache.store(I, result)
39 return result

where A is the number of attributes in the dataset, and d is the maximum
depth of the search. The algorithm can iteratively or exponentially increase the
discrepancy with the function augment discrepancy. By doing so, we are able
to limit the number of times the algorithm can restart, which can improve the
runtime. The search loop is stopped when the allowed execution time is reached
or when a null-error optimal solution is found.

Increasing the discrepancies means increasing the number of successors that
the algorithm is allowed to visit at each node. For the classical LDS, zero dis-
crepancies consists in exploring at each level only the first attribute of the list
returned by get successors. The function returns the node successors based on
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the minimum support constraints, sorted or not by a heuristic. If the time budget
allows it and an optimal solution is not obtained, we progressively increase the
discrepancy budget, allowing each node to explore more successors, each having a
discrepancy value corresponding to its position in the list. When the discrepancy
of an attribute exceeds the maximum allowed, the algorithm stops the search,
as indicated on line 26. If the search can continue, the algorithm reduces the
discrepancy budget allocated to this successor by removing its position from the
current maximum. Moreover, contrary to the classical LDS, each branch of an
attribute (for example, x and ¬x) has the same limit of discrepancy (lines 27
and 29) because an attribute is selected only if these two branches respect the
imposed constraints.

The cost of a given iteration of LDS-DL8.5 is higher than the cost of the
previous one due to the recomputing and re-exploration of previously visited
nodes. To mitigate this cost, we use the cache by adding a parameter named
discrepancy to the structure NodeTree. It corresponds to the discrepancy budget
given to the node. This budget is re-evaluated on line 21. The actual number
of successors along with the remaining depths (maxdepth− |I|) are used in the
function discrepancy limit to determine the current node discrepancy budget
value using Equation 1. If the computed budget is larger than the passed budget,
there is a high chance that this node will not be fully explored. The opposite
means that the node will be fully explored. The real budget of the node is set to
the minimum between the computed value and the allowed discrepancy budget
for this node (line 22). When a node error is 0, or the computed budget is the
same as the budget limit for that node not further exploration is needed its dis-
crepancy is set to the maximum possible K in the NodeTree structure in line 36.
The saved value avoids exploring the same nodes in the future iterations of the
search if the upper-bound is worse than the stored value (line 18). Furthermore,
a cached solution cannot be used unless it has not been proven to be optimal
without a discrepancy limit. Thus, as long as the discrepancy is not set to the
maximum value the node is explored.

With this scheme, the cost of each search iteration is reduced, mainly the
latter one, because it is more likely that the left part of the search space will be
fully explored from some value of the discrepancy.

5 Results

This section presents the results of various experiments that we conducted. Ex-
periments were carried out to answer the following questions:

– Q1 How does the performance of LDS-DL8.5 compare with DL8.5 and
greedy algorithms in a time-limited configuration?

– Q2 What happens when the DL8.5 recursion budget is limited to match a
number of LDS-DL8.5 discrepancies?

– Q3 How does LDS-DL8.5 perform compared to DL8.5 in the search for the
optimal solution?
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All experiments were carried out on 23 CP4IM datasets4. For the comparison
of DL8.5 and LDS-DL8.5, the information gain was used as a heuristic. The
algorithms were run on a server with an Intel Xeon Platinum 8160 CPU, 320
GB of memory, running Rocky Linux version 8.4.

To answer Q1, all algorithms were run with a minimum support of 1 and a
maximum depth of 9. Each method runs with different time intervals of 30, 60,
and 90 seconds on the whole dataset to compare the optimal methods with the
greedy ones. Table 2 compares the error obtained by each algorithm according
to the allowed time limit (TL). The datasets are sorted by their number of at-
tributes (Feat.) and we show for each of them the number of transactions (Trans.)
and the errors for each method. For LDS-DL8.5, two discrepancy augmentation
schemes were used:

– inc where the discrepancy increases iteratively by one at each restart;
– exp where the discrepancy doubles at each restart.

These tests show the efficiency of LDS-DL8.5 in a time-sensitive configuration.
Regardless of the discrepancy augmentation scheme used, LDS-DL8.5 always has
the lowest errors on the 23 instances. The greedy algorithms CART and C4.5 are
fast enough to end in a few seconds. The errors will remain the same regardless
of the time allocated to these algorithms. CART has the lowest performance
among all algorithms, with a higher error in all instances except 2 where it was
able to find the optimal solution (with an error of 0) together with the other
methods, thanks to the heuristics used. C4.5 performs better than CART, as
it was able to find the optimal solution for 8 instances. Next, DL8.5 and LDS-
DL8.5 find the optimal solution on 12 instances, but DL8.5 has higher errors
on the remaining 11 instances. Moreover, C4.5 performs better than DL8.5 on
10 instances. This confirms that DL8.5 might get stuck in the deeper branches
of the left part of the search space, as it has to go through all the successors
to select the best. This search costs time and, when the time limit is reached,
DL8.5 will return the current node as the leave. On the contrary, LDS-DL8.5
ensures a minimal quality of the trees obtained. When run with a discrepancy
limit of 0, the algorithm discovers the same tree as C4.5, allowing an immediate
restriction of the upper bound for the next discrepancies and thus a better
pruning of the search space. LDS-DL8.5(inc) generally has better results than
LDS-DL8.5(exp) in this configuration. The way the discrepancy increases with
exp allows the search to explore more nodes, increasing the risk of the search
being stuck.

Regarding the question Q2, we have run LDS-DL8.5 with a limited number
of discrepancies from 1 to 4. For each limit, the number of recursive calls is
evaluated and defined as an additional constraint for DL8.5. The tests were
carried out with the support of 1 and a maximum depth of 3. Table 3 summarizes
the results of the experiment for the ten largest datasets in terms of features.
The RB column corresponds to the recursion budget obtained by LDS-DL8.5
with the discrepancy limits mentioned in the Disc. column. Within the recursion

4 https://dtai.cs.kuleuven.be/CP4IM/datasets/
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budget, DL8.5 has greater difficulty in reducing the error, which remains higher
than the one obtained by LDS-DL8.5. LDS-DL8.5 updates the error faster than
DL8.5 and is more reliable for critical problems with time limits. Moreover,
the trees obtained by LDS-DL8.5 are more balanced than those of DL8.5, as
illustrated in Figure 4. This figure compares the trees obtained by LDS-DL8.5
for the discrepancy limits from 1 to 4 with those of DL8.5 with an equivalent
recursion budget on the mushroom dataset. The trees obtained by DL8.5 are
not balanced, unlike those of LDS-DL8.5. Furthermore, the trees do not change
from discrepancy 1 to 3 with DL8.5 using the recursion budget, whereas LDS-
DL8.5 will quickly improve the results. This is in line with the assumption that
LDS-DL8.5 updates the upper bound and tree error more quickly.

To answer Q3, different algorithms were run to discover an optimal solution
with a time limit of 10 min. Experiments were carried out with support of
1 and maximum depths of 3 and 4. For DL8.5, two versions were used: one
with the information gain as heuristic and the second without any heuristic.
The inc and exp versions of LDS-LD8.5 were also used. Figure 3 presents the
performance profile [10] plots on the 23 instances with a maximum depth of 3 and
4 respectively. A performance profile is a cumulative distribution of the improved
performance of an algorithm s ∈ S compared to other algorithms of S over a set
P of problems: ps(τ) =

1
|P | × | {p ∈ P : rp,s ≤ τ} | where the performance ratio

is defined as rp,s =
tp,s

min{tp,s|s∈S} with tp,s the execution time of each algorithm.

(a) max depth = 3. (b) max depth = 4.

Fig. 3: Runtime performance profile plots.

In Figure 3a (depth = 3), D8.5 without heuristics has the best performance
by solving the most problems in the least time. If a time factor of 2.5 is allowed,
LDS-DL8.5(exp) solves the same amount of problem as the best solver. When
the maximum depth is 4 DL8.5 without heuristics also has the best performance
but in a time factor of 2.5 LDS-DL8.5(exp). LDS-DL8.5(inc) has the worst
performance over time due to the higher number of restarts in this case. LDS-
DL8.5(exp) is faster to prove optimality compared to LDS-DL8.5(inc) but will
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have more difficulties in the early time to update the error due to the large
increase of the discrepancy budget at each iteration, leading to exploring more
of the search space. This experiment shows that LDS-DL8.5 is able to find the
optimal solution in a reasonable amount of time.

Table 2: Comparison of tree errors in the time-limited configuration for CART,
C4.5, DL8.5 & LDS-DL8.5.

Datasets Feat. Trans. TL(s)
Errors

CART C4.5 DL8.5
LDS-DL8.5

inc exp

ionosphere 445 351
30 26 0 0 0 0
60 26 0 0 0 0
90 26 0 0 0 0

splice-1 287 3190
30 258 21 68 1 1
60 258 21 68 1 1
90 258 21 68 1 1

vehicle 252 846
30 62 1 0 0 0
60 62 1 0 0 0
90 62 1 0 0 0

segment 235 2310
30 21 0 0 0 0
60 21 0 0 0 0
90 21 0 0 0 0

letter 224 20000
30 813 171 475 37 37
60 813 171 475 22 37
90 813 171 475 22 37

pendigits 216 7494
30 175 0 0 0 0
60 175 0 0 0 0
90 175 0 0 0 0

audiology 148 216
30 0 0 0 0 0
60 0 0 0 0 0
90 0 0 0 0 0

australian-credit 125 653
30 84 23 81 3 4
60 84 23 81 2 0
90 84 23 81 2 0

breast-wisconsin 120 683
30 24 1 0 0 0
60 24 1 0 0 0
90 24 1 0 0 0

mushroom 119 8124
30 544 0 0 0 0
60 544 0 0 0 0
90 544 0 0 0 0

german-credit 112 1000
30 265 120 174 29 25
60 265 120 174 22 25
90 265 120 174 22 25

diabetes 112 768
30 170 58 139 18 18
60 170 58 49 18 18
90 170 58 45 18 18

heart-cleveland 95 296
30 63 5 0 0 0
60 63 5 0 0 0
90 63 5 0 0 0

anneal 93 812
30 149 87 140 68 72
60 149 87 140 67 72
90 149 87 140 67 72

yeast 89 1484
30 436 251 432 184 175
60 436 251 432 183 173
90 436 251 432 175 173

hypothyroid 88 3247
30 54 34 63 25 25
60 54 34 63 24 25
90 54 34 63 23 25

kr-vs-kp 73 3196
30 189 18 54 15 15
60 189 18 54 15 15
90 189 18 54 14 15

lymph 68 148
30 18 0 0 0 0
60 18 0 0 0 0
90 18 0 0 0 0

hepatitis 68 137
30 15 0 0 0 0
60 15 0 0 0 0
90 15 0 0 0 0

soybean 50 630
30 50 12 31 2 2
60 50 12 31 2 2
90 50 12 31 2 2

vote 48 435
30 19 1 0 0 0
60 19 1 0 0 0
90 19 1 0 0 0

zoo-1 36 101
30 0 0 0 0 0
60 0 0 0 0 0
90 0 0 0 0 0

primary-tumor 31 336
30 40 24 59 17 17
60 40 24 59 16 15
90 40 24 59 16 15
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Table 3: Experiments with recursion budget results on the 10 most large datasets
in terms of features.

Datasets Disc. RB
Errors

DL8.5 LDS-DL8.5

ionosphere

1 50 32 32
2 127 32 32
3 265 32 32
4 491 32 30

splice-1

1 63 574 268
2 167 574 268
3 358 574 268
4 661 513 267

vehicle

1 55 216 94
2 143 216 76
3 261 216 76
4 450 214 63

segment

1 24 5 5
2 59 5 5
3 121 5 5
4 220 5 5

letter

1 53 801 813
2 140 801 686
3 236 801 686
4 395 801 686

pendigits

1 57 88 84
2 142 88 60
3 268 88 60
4 476 83 51

audiology

1 34 10 6
2 87 10 6
3 174 6 6
4 319 6 5

australian-credit

1 51 87 87
2 139 87 87
3 304 87 87
4 581 87 87

breast-wisconsin

1 61 50 23
2 161 50 16
3 297 30 16
4 521 30 16

mushroom

1 37 376 180
2 67 376 180
3 128 376 24
4 196 120 8
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(a) LDS-DL8.5 tree with discrep-
ancy limit 1.

(b) DL8.5 equivalent
tree of discrepancy
limit of 2.

(c) LDS-DL8.5 tree with discrep-
ancy limit 2.

(d) DL8.5 equivalent
tree of discrepancy
limit of 2.

(e) LDS-DL8.5 tree with discrep-
ancy limit 3.

(f) DL8.5 equivalent
tree of discrepancy
limit of 3.

(g) LDS-DL8.5 tree with discrep-
ancy limit 4.

(h) DL8.5 equivalent
tree of discrepancy
limit of 4.

Fig. 4: Generated LDS trees with discrepancy limits of 1, 2, 3 and 4 with the
DL8.5 equivalents on mushroom dataset.
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6 Conclusion

This paper investigated the interest of using the limited discrepancy search to
improve the anytime aspect of DL8.5. The LDS-DL8.5 algorithm, introduced in
this paper, allows one to set low time limits and get good and balanced decision
trees. Moreover, it mitigates the cost iteration by taking advantage of the cache,
allowing the method to be sufficiently reliable when looking for optimal trees.
Experimentation with 23 different datasets clearly showed the efficiency of LDS-
DL8.5 w.r.t. DL8.5 and the state-of-the-art greedy algorithms CART and C4.5.
LDS-DL8.5 is a reliable approach for finding good decision trees in a limited
amount of time. As a future work, it could be interesting to study other restarting
schemes such as the Luby strategy to improve LDS-DL8.5.
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