
Optimal Decoding of Hidden Markov Models
With Consistency Constraints

Alexandre Dubray1[0000�0002�3302�870X], Guillaume Derval2, Siegfried
Nijssen1, and Pierre Schaus1

1 Institute of Information and Communication Technologies, Electonics and Applied
Mathematics (ICTEAM), UCLouvain, Belgium

{first.second}@uclouvain.be
2 Department of Electrical Engineering and Computer Science, ULiège, Belgium

gderval@uliege.be

Abstract. Hidden Markov Models (HMM) are interpretable statistical
models that specify distributions over sequences of symbols by assum-
ing these symbols are generated from hidden states. Once learned, these
models can be used to determine the most likely sequence of hidden
states for unseen observable sequences. This is done in practice by solv-
ing the shortest path problem in a layered directed acyclic graph using
dynamic programming. In some applications, although the hidden states
are unknown, we argue that it is known that some observable elements
must be generated from the same hidden state. Finding the most likely
hidden state in this contrained setting is however a hard problem. We
propose a number of alternative approaches for this problem: an Integer
Programming (IP), Dynamic Programming (DP), a Branch and Bound
(B&B) and a Cost Function Network (CFN) approach. Our experiments
show that the DP approach does not scale well; B&B scales better for
a small number of constraints imposed on many elements and CFNs are
the most robust approach when many smaller constraints are imposed.
Finally, we show that the addition of consistency constraints indeed al-
lows to better recover the correct hidden states.

Keywords: Hidden Markov Model · Constrained Viterbi · Branch and
Bound · Cost Function Networks

1 Introduction

Hidden Markov Models (HMM) are a class of probabilistic models in which it
is assumed that symbols in sequences are generated independently from each
other, from hidden states. For a sequence of observed data, it is assumed that
there is a sequence of hidden states that generated it with a given probability;
determining the hidden states that generated the symbols is here useful in un-
derstanding the data. HMMs have been used in various real-world applications
such as protein structure prediction [15], trajectory mining [16], speech recogni-
tion [10] or human activity recognition [6, 9]. The decoding problem in HMMs
is to find the most likely sequence of hidden states, for an observed sequence,

2 A. Dubray et al.

and is usually solved by the Viterbi algorithm [19], which has a polynomial run
time. The decoding problem in HMMs can be reduced to solving the shortest
path problem in a layered directed acyclic graph (DAG). Since in such graphs
the shortest and longest path problems are equivalent, and the applications in
Section 5 are concerned with HMMs, we will refer to this problem as the most
likely path problem in the rest of this paper. However the presented methods
also work for layered DAGs not associated with HMMs.

In this work we argue that in many applications, a better decoding can
be found by exploiting background knowledge stating that symbols in a given
sequence must have been generated from the same hidden state. Such connections
between sequences are not taken into account in classical HMM decoding, in
which multiple sequences are decoded independently. However, in practice such
background knowledge exists. For example, in part-of-speech tagging, it is likely
that within one sentence, multiple occurrences of the same uncommon word must
be given the same tag. Another application can be found in the analysis of traffic
data, where we consider a truck state assignment problem as an example. In this
task, constraints are imposed stating that trucks in the same area at the same
time must be labeled identically. Finally, in human activity recognition problems,
natural consistency constraints also arise when activities are registered near to
each other (e.g., same room, same sensor). To take into account the background
knowledge that symbols in the sequence must originate from the same state, the
Viterbi algorithm cannot be used anymore.

The rest of this paper is organized as follows. The decoding problem under
constraints is presented in Section 3. Then, three of the four approaches for
solving the problem are presented in more detail: Dynamic Programming, a
Branch and Bound and a Cost Function Network approach. These methods are
compared in Section 5 as well as the benefit of the consistency constraints. We
conclude in Section 6.

2 Related Work

As we will see, the decoding problem can be seen as a problem of finding the
most likely path in a DAG under logical constraints between nodes or groups
of nodes. This problem has been studied in multiple contexts. In the case of
HMMs, and more generally conditional random fields, Roth et al. solved the
decoding problem using Integer Programming and proposed constraints useful
for the semantic role labeling problem [11]. With a focus on the alignment of
biological sequences, Christiansen et al. proposed a constrained version of HMMs
[3]. They implemented various constraints in the PRISM language [13], but no
consistency constraint between sequence elements.

We will show in this work that finding the most likely sequence of hidden
states can be expressed as a weighted constraint satisfaction problem, also known
as a Cost Function Network (CFN). In a CFN, the goal is to find an assignment to
discrete decision variables such that a sum of functions defined on these variables

Optimal Decoding of Hidden Markov Models With Consistency Constraints 3

is optimized while respecting defined constraints. In this work we will rely on
dedicated solvers for CFNs, such as Toulbar2 [4, 8].

In [17], for finding longest paths in a general DAG, the logical constraints
are represented in a Binary Decision Diagram (BDD) and a dynamic program,
taking into account the BDD nodes, is designed to find the optimal solution.
In [20], consistency constraints are imposed between words to improve logical
reasoning from sentences in natural language. They use Dual Decomposition [12]
to solve the problem, which solves a Lagrangian relaxation of the problem; in
contrast to our approach, however, this approach does not guarantee finding the
optimal solution.

3 Problem Definition

In this section we formalize the problem of finding the most likely path in a
layered DAG under consistency constraints. Solving this problem allows to also
solve the HMM decoding problem. We first introduce the notation as well as the
notions of layer and consistency constraints in a DAG, then express the problem
of finding the most likely path in it.

3.1 Most Likely Path in a Layered DAG with Consistency

Constraints

We define the HMM decoding problem over labeled Directed Acyclic Graphs
(DAGs). Let G = (V,E) be a graph with V the set of nodes and E the set of
edges. Each node v 2 V has a label, from a set L, denoted lv and V is divided
into T layers L1, . . . , LT such that V =

S
j=1,...,T Lj and Li \ Lj = ; 8i 6= j.

In each layer, no two nodes have the same label. Thus, when clear from the
context, a node can be identified by its label. We denote by e = (l, l0, t) 2 E
an edge from the node with label l at layer Lt to the node with label l0 at
layer Lt+1 (1 t < T) with weight we, where weights can be both positive and
negative. In the HMM decoding problem, each layer has the same number of
nodes representing the hidden states. An example of such a graph is shown in
Figure 1.

A path in G from L1 to LT selects one node per layer and can be identified by
the sequence of node labels on the path. More formally, let P = hP1, . . . , PT i 2
LT be a path from L1 to LT such that Pi 2 Li. The cost of P , is the sum of the
weights of the arcs in the path:

PT�1
t=1 w(Pt,Pt+1,t).

A consistency constraint is specified in our work by identifying a set of layers
for which the same label must be selected in each layer of the path. More for-
mally, C = {C1, . . . , Ck} are k consistency constraints with Ci = {ci1, . . . , ciki

} ✓
{1, . . . , T} and Ci \Cj = ; for i 6= j. The set of all constrained layers is denoted
LC =

Sk
i=1 Ci. We also define a vector c 2 {0, . . . , k}T that gives for each layer

the index of its constraint or 0 if the layer is unconstrained. For example, in
Figure 1 we have c = h0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0i. A path P is said to be consistent

4 A. Dubray et al.

Fig. 1. Example of a layered DAG for the decoding problem in a HMM with three
hidden states and two consistency constraints. The edges in the DAG are oriented
from left to right and the labels on the nodes represent the hidden states. In this
example, the constraint C1 has node 2 assigned to it, hence the other nodes are faded.

if all the consistency constraints are respected. The problem of finding the most
likely consistent path is thus formalized as follows:

P ? = argmax
P2LT

T�1X

t=1

w(Pt,Pt+1,t) (1)

s.t. Pci1
= . . . = Pciki

8Ci 2 C (2)

The importance of this problem to HMM decoding is that an instance of this
problem, including the DAG and its weights, can be constructed for a specific
HMM decoding problem on a sequence of symbols. Note that the problem defined
by Equation (1)-(2) is NP-hard, as we showed in a technical report [5].

4 Solving the Problem

In this section, three of the four approaches to solve the problem defined by
Equations (1)-(2) are explained. We omit the IP formulation as it is very similar
to the one presented in [11] but with equality constraints. First a Dynamic
Programming approach (DP) is introduced, followed by a Branch and Bound
(B&B) method and finally a model based on cost-function networks (CFN) is
presented.

4.1 Dynamic Programming

For solving the unconstrained problem, the Viterbi algorithm [19] is the classical
dynamic programming approach. The recurrence relation computes the value of
the most likely path from L1 to a node i 2 Lt from layer Lt�1 and stores it in a
T ⇥ |L| table. The entries of the table are computed as follows:

V [t, i] =

⇢
0 if t = 1
maxj2Lt�1 V [t� 1, j] + w(j,i,t�1) otherwise (3)

Optimal Decoding of Hidden Markov Models With Consistency Constraints 5

and the value of the most likely path is given by maxi2LT V [T, i].
This equation uses the fact that the graph is organized into layers and a path

ending at layer Lt always comes from layer Lt�1. Thus, the most likely path to
a node i 2 Lt is one of the most likely paths to a node in Lt�1 plus the edge
to i. However, when adding consistency constraints, this equation does not work
anymore because it does not take into account consistency. We resolve this by
adding assignments of labels to consistency constraints in the DP; by assigning a
label to a constraint we assign the same label to all layers in the constraint. Let
PC = hPC1 , . . . , PCki 2 (L [{?})k be an assignment of labels to the consistency
constraints with PCi = ? if no label is assigned to Ci. Then if PCi 6= ?, the
path from L1 to LT must pass through PCi for every layer Lt with t 2 Ci. We
define the assignment operator PC |j,l which assigns l to PCj . The values of the
most likely paths can now be stored in a T ⇥ |L|⇥k|L| table, taking into account
the possible assignments of labels to the constraints. The entries in the table are
computed as follows:

V [t, i, PC] =

8
>>>><

>>>>:

0 if t = 1
max
l2Lt�1

V [t� 1, l, PC] + w(l,i,t�1) if Lt�1 /2 LC

V [t� 1, PCc[t]
, PC] + w(PCc[t]

,i,t�1) if Lt�1 2 LC ^ PCc[t]
6= ?

max
l2Lt�1

V [t� 1, l, PC |c[t],l] + w(l,i,t�1) if Lt�1 2 LC ^ PCc[t]
= ?

(4)
The first two cases of Equation (4) are the same as Equation (3) because there
are no constraints to consider. However when the layer Lt�1 is constrained, there
are two situations. If there is a choice for this constraint in PC , then in order to
be consistent with PC , the path must pass by it. In that case there is no need
to consider the other nodes in the layer. However, when there is not yet a node
assigned to this constraint, then every node j 2 Lt�1 must be considered to
compute the most likely path. In this case, the PC vector is updated to reflect
the choice made.

4.2 Branch and Bound

Let PC 2 (L [{?})k be, as for the DP, a vector of node assignments for the
consistency constraint. The search starts from the vector h?, ...,?i. The idea of
this method is to branch on the PCi values and to compute the most likely path
from L1 to LT while being consistent with PC . Initially some PCi are unassigned;
as long as the constraint is unassigned, we ignore the constraint and the cost
is an upper bound on the optimal solution in the branch. An example is shown
on Figure 1 where there are two consistency constraints and PC = h2,?i. The
most likely path from L1 to L11 can be seen as the most likely path from L1 to
L3, then L3 to L9 and finally from L9 to L11. As long as PC2 = ?, we ignore
constraint C2 and an upper bound on the most likely path is obtained.

In practice, a T ⇥ |L| array, denoted V , is used to store the values of the
most likely paths from the layers in Lc to the other layers. At the root of the
search tree, the V array is filled with Equation (3) since there are no consistency

6 A. Dubray et al.

constraints imposed. When a value PCi is assigned, the whole table does not
need to be recomputed. Let us look at Figure 1 as an example. When the search
assigns PC1 = 2, the layers constrained by C1 act as new source layers. The
computed values, in V , for layers L1 to L3 still represent the values a recursive
equation computes for the most likely path from L1 to L3 and thus, need not be
recomputed. Let us assume now that the search assigns PC2 = 1. The values in
V for L1 to L5 and L9 to L11 are still valid, and only the values from L6 to L8

need to be updated.
Notice that when all the edges have a negative weight, as for the HMM

decoding problem, then the values in the V array can be computed between
consistency constraints, even if not assigned. In the example in Figure 1, the
consequence is that when PC1 is set to 2, the values from L3 are only computed
until L5 and not L9. Since the edges only have negative weights, this gives a less
tight upper bound on the optimal solution, but is faster to compute.

4.3 Cost Function Networks

In Cost Function Networks (CFNs) [4], a set of functions is defined, each of
which maps a subset of the assignment in Pc to a cost. The goal is to find an
assignment of PC such that the sum of the function’s cost (evaluated on the
assignment) is minimal. We model our problem in CFNs by dividing the graph
into segments between successive constrained layers; a function is defined on each
of these segments. These functions map the choice for the constrained layers at
the start and end of the segment (i.e., a partial assignment of PC) to the value of
the most likely path on the segment, consistent with PC . For a full assignment
of PC , the sum of the most likely path on the segments gives the value of the
most likely path in the full graph.

More formally, let Lt, Lt0 such that c[t] 6= c[t0] and @ t00 : t < t00 < t0 ^ c[t] 6=
c[t00] be two successive constrained layers of different consistency constraints.
A function ft,t0 : L ⇥ L 7! R is defined on the segment between Lt and Lt0 ,
mapping each choice of c[t] and c[t0] to the value of the most likely path from Lt

to Lt0 consistent with the choices. For every node u 2 Lt and v 2 Lt0 , a simple
dynamic program finds the value of the most likely path between u and v and
stores it in a L⇥ L table. Since the table fully defines the function, ft,t0 is used
to refer to the function as well as its table of values and ft,t0(PC) refers to the
value associated with the choices for Lt and Lt0 in PC .

Let Lt1 , . . . , Ltm be all the constrained layers. Without loss of generality, we
assume that they are sorted in chronological order so that t1 < t2, t2 < t3, . . . Let
F = {fstart, fend, ft1,t2 , . . . , ftm�1,tm} be the functions, as defined above, for each
segment of the graph and two additional special functions. The fstart : L 7! R
function maps, for each choice for c[t1], the value of the most likely path from
L1 to Lt1 . The function fend is defined in the same way for the layer Ltm to LT .
The value of a path PC , which we wish to optimize, is then given by

fstart(PC) + fend(PC) +
m�1X

i=1

fti,ti+1(PC). (5)

Optimal Decoding of Hidden Markov Models With Consistency Constraints 7

Proportion of constraints 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
DP 6.00 360.10 324.40 299.30 278.60 255.70 232.70 211.90 192.20 173.90 157.80
IP 588.20 841.67 911.33 926.60 927.20 1007.20 1001.25 1169.67 1061.67 1141.00 1047.00

B&B 2.63 3.59 3.59 3.55 3.43 3.42 3.34 3.31 3.27 3.21 2.93
CFN - 35.94 34.28 32.43 30.92 28.80 26.85 25.15 23.00 20.80 18.93

Table 1. Execution time in seconds of the methods in function of the proportion of
constraints in the model on the truck state assignment problem. The entries for the
CFN method represent the time needed to compute the functions plus the optimization
time by Toulbar2.

Dedicated solvers for CFN are designed to find the assignment to PC such that
the value of Equation (5) is minimal. From this optimal assignment we can easily
recover the solution using a dynamic program.

5 Experimental Results

In this section we analyze the run time of the methods presented in Section 4
on two different HMM applications with different characteristics in terms of
sequence lengths and number of consistency constraints. We finish this section by
analyzing, on a third application, the impact of the consistency constraints on the
output of the decoding problem. The IP is solved with the Gurobi solver [7] and
for the B&B we use the variation of the algorithm that supports only negative
weights, as we experiment only with HMMs and it gives, in our experiments, the
best results.3. For the CFN method the Toulbar2 solver [14] is used.

Truck Trajectory Mining HMMs have been used to identify activity stops
in truck trajectories [16]. Four hidden states represent if the truck is driving, in
a traffic jam, resting or doing work-related actions. In this context, it is natural
to assume that trucks located in similar geographical areas do the same activity.
Four consistency constraints are created based on the type of point (stop or
driving) in some geographical areas (e.g., rest areas, highways).

We experiment on a data set of trajectories of trucks described in [1], which
contains roughly 6 million data points (and thus as many layers in the graph).
We successively kept a given percentage of each constraint in order to evaluate
the impact of the constraints size on the run time.

Table 1 shows the run time of the methods with different proportions of
states included in constraints, where constraints are larger if they involve more
states. The run time of the DP and IP methods both increases with the size of
the constraints. For the DP method, more choices must be propagated through
the recursion while in the IP model there are more linear constraints. The run
time of the B&B method is stable with the constraint size. The size of the
constraints only impacts the computation of the V array in each node of the
3 The source code and the data sets can be found at

https://github.com/AlexandreDubray/consistent-viterbi.

8 A. Dubray et al.

dataset conll2000 treebank brown
Number of layers 25 9104 100 676 1 161 192
number of constraints 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
DP 153.2 128.7 O.O.M O.O.M O.O.M 56.0 1132.0 O.O.M O.O.M O.O.M 1047.4 O.O.M O.O.M O.O.M O.O.M
IP 97.6 137.6 86.0 128.1 130.6 34.6 33.4 32.1 32.2 47.6 485.3 480.9 790.1 O.O.M O.O.M
B&B 19.6 30.75 290.25 T.O. T.O. 14.95 66.94 116.93 777.78 T.O 81.66 1054.34 T.O. T.O. T.O.
CFN 52.33 72.56 72.22 72.59 71.88 7.64 29.58 31.2 29.8 29.93 294.71 301.91 293.4 294.31 297.66
Table 2. Run time in seconds of the methods in function of the number of consis-
tency constraints for the POS tagging problem. Timeout has been set to 1 hour and is
indicated by T.O. while out of memory errors are indicated by O.O.M.

search tree. As the whole array still needs to be computed in order to have
a feasible solution, the impact is limited. Finally, the run time of the CFN
method decreases with the size of the constraints. In that case, the run time
is dominated by the computation of the local functions F . Once computed,
Toulbar2 is able to find the optimal solutions in a few milliseconds. With more
constraints, the segments are shorter and thus faster to compute, which makes
the overall approach faster.

Overall the B&B method is the fastest on this data set because there are few
constraints and few choices per constraint. Thus even if the CFN approach is
much better than the DP and IP, the time needed to compute the local functions
F makes it slower than B&B.

Part of Speech Tagging The goal of this application is to assign to each
word of a sentence, or text, a part of speech (POS) tag. The NLTK Python
package [2] provides data sets of sentences with annotated POS. We experiment
on three data sets with the 12 universal POS tags and consistency constraints
are imposed on layers with the same POS tag.

Table 2 shows the run time of the methods in function of the number of
consistency constraints. First, let us note that only the CFN method is able to
solve the problem for all numbers of constraints on all data sets. The B&B and
DP methods both time-out or reach a memory limit quickly as the number of
constraints increases. For the DP method, with more constraints, the number of
constraint choices to propagate increases exponentially. For the B&B the search
space becomes too large and the upper bound is not strong enough to prune large
part of the search space to make the approach tractable. The IP methods can
handle more constraints but, on the brown data set, which is larger, the amount
of memory needed to model the problem is too large. For these three methods,
the run time increases with the number of constraints which is expected.

On the contrary, the run time of the CFN is stable with the number of
constraints and the method is the most efficient for these data sets. Adding new
constraints has little impact on the time needed to compute F since it is done by
computing the values between successive constrained layers (i.e., all layers of the
graph are processed |L|2 times). In addition to that, Toulbar2 is very efficient
at finding the optimal solution, in few milliseconds. Hence the total run time of
the CFN method is stable with the number of constraints.

Optimal Decoding of Hidden Markov Models With Consistency Constraints 9

Fig. 2. F1-Measure in function of the proportion of constraints for each activity

Human Activity Recognition Finally, in this section we analyze the impact
of the consistency constraints on the output of the decoding problem, using a
real-world data set for Human Activity Recognition (HAR). In HAR the goal is
to find which activities a person is doing based on inputs from sensors which can
be placed on the person (e.g., a smartwatch) or in their environment (e.g., light
sensors in the house). We use the annotated data sets as described in [18] for
this experiment. These data sets provide the activities (based on the activation
of sensors in their house) made by three persons for multiple days.

The F1-Measure per activity is shown in Figure 2 for one of the houses (the
results are similar for the other houses). The F1-Measure was computed, for a
proportion of the constraints, following the same methodology as in [9]. It can
be seen that the activities are better recovered as the proportion of constraints
increases. The biggest impact is on the activities that are not well recovered
using a classical decoding algorithm (e.g. "Go to bed", "Prepare dinner"). The
activities that have a high F1 measure when there are no constraints also benefit
from the constraints, but in a less marked way.

6 Conclusions and Future Work

In many applications using Hidden Markov Models, consistency constraints be-
tween sequences can be found but are not used in the classical decoding algo-
rithm. In this work, we formalized this problem as finding the most likely path
in a layered directed acyclic graph with consistency constraints on the layers
of the graph. We proposed an Integer Programming (IP), a Dynamic Program,
a Branch and Bound (B&B) and a Cost Function Network method to solve
the problem. We showed that Branch and Bound scales better for a few large
constraints, while the CFN is better for many smaller constraints. Finally, our
experiments on a real-world human activity recognition data set showed the
benefit of consistency constraints.

In this work we focused on consistency constraints, imposing that the same
node is selected between different layers. However in some applications, it might
be acceptable to have sets of nodes that can appear together in the layers of a

10 A. Dubray et al.

consistency constraint (e.g., a non-activity stops and a rest stop, in the Truck
Trajectory Mining problem). The impact of additional logical constraints on the
Branch and Bound method could also be investigated.

References
1. Adam, A., Finance, O., Thomas, I.: Monitoring trucks to reveal belgian geograph-

ical structures and dynamics: From gps traces to spatial interactions. Journal of
Transport Geography (2021)

2. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing
text with the natural language toolkit. " O’Reilly Media, Inc." (2009)

3. Christiansen, H., Have, C.T., Lassen, O.T., Petit, M.: Inference with constrained
hidden markov models in prism. Theory and Practice of Logic Programming (2010)

4. Cooper, M.C., De Givry, S., Sánchez, M., Schiex, T., Zytnicki, M., Werner, T.:
Soft arc consistency revisited. Artificial Intelligence (2010)

5. Dubray, A., Derval, G., Nijssen, S., Schaus, P.: On the complexity of the short-
est path problem in a layered directed acyclic graph with consistency constraints
(2022), 2078.1/264677

6. Fallmann, S., Kropf, J.: Human activity recognition of continuous data using hid-
den markov models and the aspect of including discrete data. In: UIC (2016)

7. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022),
https://www.gurobi.com

8. Hurley, B., O’sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M.,
Givry, S.d.: Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints (2016)

9. Kabir, M.H., Hoque, M.R., Thapa, K., Yang, S.H.: Two-layer hidden markov model
for human activity recognition in home environments. IJDSN (2016)

10. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE (1989)

11. Roth, D., Yih, W.t.: Integer linear programming inference for conditional random
fields. In: ICML (2005)

12. Rush, A.M., Sontag, D., Collins, M., Jaakkola, T.: On dual decomposition and
linear programming relaxations for natural language processing (2010)

13. Sato, T., Kameya, Y.: Prism: a language for symbolic-statistical modeling. In:
IJCAI (1997)

14. Schiex, T., de Givry, S., Sanchez, M.: Toulbar2—an open source weighted con-
straint satisfaction solver. URL https://toulbar2.github.io/toulbar2 (2006)

15. Sonnhammer, E.L., Von Heijne, G., Krogh, A., et al.: A hidden markov model for
predicting transmembrane helices in protein sequences. In: Ismb (1998)

16. Taghavi, M., Irannezhad, E., Prato, C.G.: Identifying truck stops from a large
stream of gps data via a hidden markov chain model. In: ITCS (2019)

17. Takeuchi, F., Nishino, M., Yasuda, N., Akiba, T., Minato, S.i., Nagata, M.: Bdd-
constrained a* search: A fast method for solving constrained shortest-path prob-
lems. IEICE TRANSACTIONS on Information and Systems (2017)

18. Van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recog-
nition in a home setting. In: UbiComp (2008)

19. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE transactions on Information Theory (1967)

20. Yoshikawa, M., Mineshima, K., Noji, H., Bekki, D.: Consistent ccg parsing over
multiple sentences for improved logical reasoning. arXiv preprint (2018)

