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Abstract. The amount and diversity of mobile and IoT location and
trajectory data are increasing rapidly. As a consequence, there is an
emerging need for flexible and scalable tools for analyzing this data. In
this work we focus on an important building block for analyzing location
data, that is, the problem of partitioning a space into regions of inter-
est (ROIs) that are densely visited. The extraction of ROIs is of great
importance as it constitutes the first step of many types of data analysis
on mobility data, such as the extraction of trajectory patterns expressed
in terms of sequences of ROIs. However, in this paper we argue that
unconstrained ROIs are not meaningful and useful in all applications.
To address this weakness, we propose the problem of constraint-based
ROI mining, and identify two types of constraints: intra- and inter-ROI
constraints. Subsequently, we propose an integer linear programming for-
mulation of the task of discovering a fixed number of constrained ROIs
from a binary density matrix. We extend the approach to discover auto-
matically the number of ROIs by relying on the Minimum Description
Length Principle. Our experiments on real data show that the approach
is both flexible, scalable and able to retrieve constrained ROIs of higher
quality than those extracted with existing approaches, even when no
constraints are imposed.

Keywords: Data mining · Constrained optimization · Integer linear
programming · Regions of interest · Constrained clustering

1 Introduction

The number and diversity of tracking devices are constantly increasing and so does
the volume of recorded location data. Innovative applications exploiting these data
can be imagined if some form of meaningful aggregated information can be discov-
ered. An important building block for summarizing trajectory data is the extrac-
tion of regions of interest (ROIs). Informally, a ROI is a densely visited space. The
discovery of ROIs is of practical importance as it can be instrumental for other
tasks. Examples of such tasks related to trajectory mining are:
– In [8], the authors propose to discover trajectory patterns expressed in terms

of ROIs. They first rewrite the trajectories as a sequence of the extracted
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ROIs. A frequent sequence mining algorithm [1,4] can then be applied on the
sequence database to extract sequential patterns with a minimum support.

– Another possible use of ROIs is location prediction. This task consists in,
given a database of trajectories and the start of a new trajectory of a moving
object, predicting what will be the next location of the moving object [12,15].

– In the area of urban management [18], the authors proposed a system relying
on ROIs to help taxis to wait in a region likely to contain their next trip
request.

However, not all ROIs are equally useful and meaningful in all applications. For
example, in the case of tourist spot recommendation, it may be desirable that the
extracted ROIs are close to public transport access; in an application suggesting
visiting a city by bicycle it is useful to impose a constraint that extracted ROIs
are close enough to bike paths, and are within reasonable distance from each
other. No existing approaches for identifying ROIs take such constraints into
account. For this reason, in this paper we introduce the problem of constraint-
based ROI mining. We categorize these constraints into two types: intra-ROI
constraints, which impose requirements on the individual ROIs, and inter-ROI
constraints, which impose requirements on the relationships between ROIs. In
this work, we propose an Integer Linear Program, that can directly incorporate
the two types of constraints, to solve this problem.

2 Preliminary Concepts

A well-known algorithm for identifying ROIs is the PopularRegion algorithm [8]
that is both easy to implement and scalable. This algorithm extracts non-
overlapping rectangular ROIs from a 2D grid of density values G of size N × M
(N rows and M columns). This grid-based approach enables application depen-
dent density definitions. For analyzing trajectory data, the density of a cell can
be the number crossing trajectories with or without interpolation between con-
secutive points. If one is rather interested to detect geographic regions where
users stay for a significant amount of time (Stay Points) [11], one can define the
density as the relative fraction of time spent in the cell by a trajectory.

The PopularRegion algorithm works as follows. Starting from a small ROI,
it greedily expands the rectangle ROI in one of the four directions as long as the
average density of the rectangle remains above a given threshold. Using the same
notation as in [8], cij is the cell at row i and column j (1 ≤ i ≤ N , 1 ≤ j ≤ M),
θ is a user defined minimum density threshold and G∗ = {c ∈ G | density(c) ≥ θ}
is the set of all dense cells. The algorithm works as follows:
1. Take the cell in G∗ with the highest density that is not already in a ROI. If

there is none, return the set of ROIs.
2. Create a ROI with this single cell.
3. While there is a direction in which we can extend the ROI, extend it in the

direction that gives the highest average density.
4. Add the ROI to the set of ROIs and go to 1.
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The main advantage of the PopularRegion algorithm is its scalability and ease
of implementation. However, it clearly also has a number of weaknesses. First its
output is ill-defined; there is no clear characterization of an objective function
that is minimized. Furthermore, as explained in [9], it is easy to create examples
where the greedy algorithm ends up finding very large ROIs that may hinder
the creation of interesting subregions. This is illustrated in Fig. 2 and 3, which
show the initial dense cells as well as the regions discovered by PopularRegion,
for two different data sets. As can be observed, for both data sets PopularRegion
identifies regions that cover large part of the city, which is not satisfying. Finally,
PopularRegion does not allow constraining the discovered ROIs and it can only
generate rectangular ROIs.

Candidate ROIs
Generation
Algorithm

Grid with 
dense cells

Intra ROI
constraints

Integer Linear Program Final
ROIs 

Inter ROI
constraints

ROI 
Candidates

Grid
Computation

Algorithm

Geo-Data Map
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Fig. 1. Our approach is decomposed into consecutive steps: (a) The grid G is created
from the geolocalized data; (b) A set of candidate ROIs is generated satisfying intra-
ROIs constraints; (c) The set of ROIs is selected among the candidate ROIs solving
the Integer Linear Program taking into account inter-ROI constraints.

Our contribution is the process for discovering constraint-based ROIs given
in Fig. 1:
– The grid and the dense cells are computed based on the map and the geo-

localized data. Many alternatives are possible depending on the application.
– A set of candidate ROIs are computed. The final ROIs will be selected from

this set. These ROIs must satisfy the intra-ROI constraints such as the mini-
mum distance to public transportation, the shape constraints, etc.

– An Integer Linear Program (ILP) selects the final ROIs. It consists in finding
the most parsimonious representation of all the dense cells. Two variants are
proposed: one with a fixed number K of regions and one in which this number
is chosen automatically by relying on the minimum description length (MDL)
principle [14]. The ILP can easily accommodate inter-cluster constraints such
as the minimum distance between any two selected ROIs.

This paper focuses mainly on the generation of candidate ROIs and the ROI
selection algorithm (the ILP). The grid and dense cells generation is left to the
user: it is an orthogonal task which must be adapted to the task at hand.

This approach for detecting ROIs addresses a number of weaknesses of the
PopularRegion algorithm. In particular, it can easily accommodate constraints
on ROIs and the optimization problem for discovering the ROIs is well-defined.
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We evaluate the new approach qualitatively and compare it with the Popular-
Region and OPTICS [3] algorithms on real-life data. As alternative approaches
do not support constraints, we also evaluate our approach without constraints.

An example of regions discovered by our method is illustrated in Figs. 2c
and 3c. As can be seen, our method finds more fine-grained ROIs and avoids
selecting all the isolated cells.

Related work is discussed in Sect. 3. Our optimization model is introduced in
Sect. 4. The candidate ROIs generation is discussed in Sect. 5, as it is dependent
on the optimization model, and the addition of constraints is describe in Sect. 6.
The experiments are described in Sect. 7. We conclude in Sect. 8.

Fig. 2. Visualization of the output of the different methods for the Kaggle data set.

Fig. 3. Visualization of the output of the different methods for the T-Drive data set.

3 State of the Art and Related Work

Like PopularRegions, Gorawski and Jureczek [9] proposed a grid-based approach
to identify ROIs. The algorithm is essentially PopularRegions with a limit on
the size of the rectangles during the extension process. It requires additional
parameters and does not permit constraining the ROIs.

The approach of [5] is not grid-based. Starting from geo-tagged locations on
the map, it discovers dense convex polygons around predefined points-of-interest
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(PoI). The fixed PoI setting limits the use cases of the approach and the fact
that it is not grid-based also limits the possible applications. Furthermore, shape
constraints on the ROIs are not possible.

The task of finding ROIs on a grid is similar to clustering. Starting from
a grid of dense cells, any clustering method can be used to group dense cells
close to each other. However, the problem is not exactly the same. Clusters of
dense cells are not necessarily connected regions. DBSCAN [7] is one of the most
popular density-based clustering algorithms. It does not require to specify the
number of clusters and is also able to identify outlier points. OPTICS [3] is
another well-known method to perform density-based clustering that is able to
deal with clusters of varying density. Examples of output of OPTICS are shown
in Figs. 2d and 3d. OPTICS identifies clusters of various forms since they are
not constrained by the algorithm.

In [6], the authors propose a clustering method computing connected compo-
nent sets of dense cells starting from the rectangular regions found by Popular-
Region. This method is not able to filter outlier cells like DBSCAN or OPTICS
and does not accept constraints on the ROIs.

4 An Optimization Model for ROIs

This section describes the optimization model used in step (c) of Fig. 1. The
model is in charge of selecting the final ROIs from a set of precomputed candidate
ROIs denoted S (shapes). We formalize the problem as an integer linear program
(ILP). For simplicity we first assume that S is composed of rectangles and that
the desired number of ROIs to select is fixed to K. Subsequently, we will extend
the approach to discover automatically the number of regions K, by using the
Minimum Description Length Principle [14]. We will first introduce our approach
when no constraints are given; how to deal with constraints is discussed in Sect. 6.

4.1 Selection of K ROIs

Assuming that the set of candidate rectangles is composed of all the possible
rectangles, our approach aims to find K non-overlapping rectangles that cover
the dense cells well and avoid covering the non-dense ones. For a N × M grid,
there are less than N2M2 = |G| × |G| such rectangles, that is, the total number
of possible pairs of coordinates.

The approach can be interpreted as discovering a classification model for pre-
dicting the dense-non-dense status of a cell solely based on its coordinates. The
prediction function to discover is chosen from a hypothesis space composed of the
power-set of non-overlapping shapes from S. Of course, such a prediction model
will make a number of errors: the non-dense cells contained in some selected
rectangle and the dense cells not covered by any selected rectangle. In the exam-
ple of Fig. 4, the model has selected two rectangles and makes four prediction
errors: the cells (4, 3) and (6, 7) are non-dense cells covered by a rectangle, and
the cells (6, 2) and (7, 8) are dense cells not covered by a rectangle.
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Fig. 4. Model example

The Integer Linear Program. The selection status of every candidate Ri ∈ S is
modeled with one binary variable xi ∈ {0, 1}. The set of selected shapes is noted
R = {Ri ∈ S | xi = 1}. By abuse of notation, we also use R to denote the set of
covered cells

⋃
xi=1 Ri. (Un)covered cells are captured in the model using binary

variables covc ∈ {0, 1}, where covc = 1 ⇐⇒ c ∈ R.
Given that G (G∗) is the set of (dense) cells, the dense cells not covered by

any rectangle are denoted as error+ = {c ∈ G∗ | covc = 0} and the non-dense
cells covered by some rectangles are denoted as error− = {c ∈ G \ G∗ | covc =
1}. We hence wish to discover the set of rectangles that minimizes the error:
arg minR |error+| + |error−|. The complete model is given next.

minimize
∑

c∈G∗
(1 − covc) +

∑

c∈(G\G∗)

covc (1a)

subject to
∑

Ri∈S xi ≤ K (1b)
∑

Ri∈S|c∈Ri
xi ≤ 1 ∀c ∈ G (1c)

xi ≤ covc ∀Ri ∈ S,∀c ∈ Ri (1d)
covc ≤ ∑

Ri∈S|c∈Ri
xi ∀c ∈ G (1e)

xi ∈ {0, 1} ∀Ri ∈ S (1f)
covc ∈ {0, 1} ∀c ∈ G (1g)

The constraint (1b) limits the number of selected rectangles to K. The
constraints (1c) prevent selecting overlapping rectangles. The constraints (1d)
and (1e) ensure covc = 1 ⇔ ∃xi = 1 : c ∈ Ri.

We further improve this model to get rid of the |G| × |S| constraints (1d)
and (1e), and the binary variables covc. This new model relies on the next
theorem stating that the value |error+| + |error−| can be inferred solely based
on the number of dense and non-dense cells covered by the rectangles.
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Theorem 1. By denoting di (resp. ui) the number of dense (resp. non-dense)
cells covered by the rectangle Ri, it follows that

arg min
R

|error+| + |error−| ⇔ arg min
R

∑

Ri∈R
(ui − di).

Proof. The term |error+| can be written as |G∗|−∑
Ri∈R di. The term |error−|

is
∑

Ri∈R ui. It follows that

arg min
R

|error+| + |error−| = arg min
R

|G∗| − (
∑

Ri∈R
di) + (

∑

Ri∈R
ui)

= arg min
R

∑

Ri∈R
(ui − di)


�

The linear program to solve is then the following:

minimize
∑

Ri∈S
xi · (ui − di) (2a)

subject to
∑

Ri∈S xi ≤ K (2b)
∑

Ri∈S|c∈Ri
xi ≤ 1 ∀c ∈ G (2c)

xi ∈ {0, 1} ∀Ri ∈ S (2d)

with Eq. (2b) limiting the number of regions and Eq. (2c) enforcing non-overlap
between the regions. The problem of ROI selection is thus reduced to an instance
of the Maximum Weighted Independent Set problem with an additional cardi-
nality constraint [10] that is generally solved with integer programming solvers.

ROIs of Arbitrary Shape. The integer linear model (2) does not require that
candidate regions are rectangular. Any shape that covers a set of cells can
be included in the candidate set S. In particular, a circular region Circ =
(row, col, radius) defined by its center and radius is a natural ROI candidate.
The circular region covers the cells Circ = {cij ∈ G | |i−row|+|j−col| ≤ radius}
(assuming Manhattan distance). We further discuss the generation of candidate
regions in Sect. 5.

4.2 A Parameter-Free Approach

Fixing the limit K for the maximum number of ROIs can in some cases be
an arbitrary decision. We can use the Minimum Description Length (MDL)
principle [14] to determine the size of a model in a principled manner. MDL
trades off the description length of the data given the model, and the description
length of the model itself. More precisely, let us assume that we have a set of
models (hypothesis) H. The description length of the model L(H) is the number
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of bits needed to encode the model; the description length of the data L(D | H)
is the number of bits needed to encode the data given the model H. The MDL
principle tells us to prefer the model that minimizes L(D,H) = L(H)+L(D | H).

The model described in the previous sections is composed of a choice of
multiple ROIs, indicating where the cells must be dense, along with errors of
the model, that is, coordinates of cells which are included in a selected ROI but
are non-dense, and dense cells outside the selected ROIs. Each of these can be
encoded using a different number of integers:
– 4 integers per rectangle (top-left and bottom-right corners’ coordinates)
– 3 integers per circle (center coordinate and radius)
– 2 integers per wrongly classified cells (coordinates of the cell)
A fixed number of bits are used for every integer.

The length to encode the prediction model S (selected ROIs), and the input
cells in this model is:

L(S) =
∑

Ri∈S
size(Ri) L(G | S) = 2 · (|G∗| +

∑

Ri∈S
(ui − di)),

where size(Ri) is the number of integers required to encode Ri (3 if Ri is a circle
and 4 if it is a rectangle, for example). The integer |G∗|+∑

Ri∈S(ui −di) counts
the number of errors made by the model and the factor 2 accounts for encoding
the two coordinates of each exception cell.

We can use the MDL criterion to discover the ROIs without fixing their
number in advance. To find regions that minimize the MDL criterion, we solve
the following ILP model:

minimize
∑

Ri∈S
xi · (2(ui − di) + size(Ri)) (3a)

subject to
∑

Ri∈S|c∈Ri
xi ≤ 1 ∀c ∈ G (3b)

xi ∈ {0, 1} ∀Ri ∈ S (3c)

Note that we do not exactly minimize L(G,S). Indeed we removed the con-
stant 2 · D as it does not impact the optimization. This problem is an instance
of the Maximum Weighted Independent Set problem.

5 Generation of Candidate ROIs

In this work we assume a generic generate and filter approach based on a set
of predicates for the candidate regions. The time needed to solve the ILP grows
with the number of candidate shapes as each one requires the introduction of
one binary decision variable. We show how to reduce the number of candidates
while ensuring that the solution found is still optimal.
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Table 1. Impact of the filtering on the set
of possible candidates before and after the
filtering.

Min.
density
threshold

Grid Size # candidates # remaining
candidates

2 100 25 502 500 17 218

150 128 255 625 7 703

200 404 010 000 3 330

5 100 25 502 500 2 523

150 128 255 625 1 255

200 404 010 000 448

Fig. 5. Output of our method with a
minimum distance constraint of 2 and
a maximum diameter constraint of 5.

In the worst case, without any filtering, the number of possible rectangles is
still polynomial in the size of the grid; more precisely, for a N ×M grid, there are
less than N2M2 possible rectangles (all the coordinates (x1, y1), (x2, y2)). There
is also a polynomial number of circles. Fortunately, one can avoid generating
all the candidates. Obviously, we can directly filter out all the candidates Ri

for which 2(ui − di) + size(Ri) > 0. Indeed, in that case the cost of taking
the candidate (2ui + size(Ri)) is higher than the cost of not selecting it (2di).
Moreover if a rectangle contains a set of contiguous rows (or columns) that cover
u non-dense cells, d dense cells and the inequality u > d + 2 holds, then this
rectangle is not part of the optimal solution. The intuition behind this property
is that by removing the rows (or columns) from the rectangle, we create two
rectangles that yield a smaller description length. Indeed, the gain in description
length (2u) is higher than its increase (2d + 4).

As an example of the effectiveness of the filtering, Table 1 shows, for multiple
configurations on a Kaggle data set, the total number of distinct rectangles before
and after the filtering.

6 Finding Constrained ROIs

As explained in Fig. 1 the ROIs can be constrained in two different ways: with
intra- or with inter-ROI constraints.

Intra-ROI Constraints are the ones that must be satisfied independently by
each ROI such as “a ROI contains at least one bus stop” or “is at a distance
less than 100 m from a train station”. These constraints define predicates that
must be satisfied by each region. These constraints are taken into account by
the algorithm that generates the set of candidates; in its most basic form, this
algorithm generates candidates which are filtered using the constraints.
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Inter-ROI Constraints are the ones that involve more than one ROI. For
instance, “two ROIs must be separated by a minimum distance to ensure diver-
sity in a tourist recommendation system”. Such constraints can be modeled in
the integer linear program within the non-overlapping constraint (3b) by also
including in the sum range all the candidate ROIs within a given radius distance
from the cell. The ILP model can also be extended to accommodate constraints
that concern only a subset of the regions that cover a cell; in principle, any con-
straint that can be modeled using linear equations can be added to the model.

Figure 5 shows the output of our method with a minimum distance constraint
of 2 between the ROIs and a maximum diameter of 5, and illustrates how the
introduction of constraints allows the ROIs to be more diverse.

7 Results and Comparison

Our experiments compare the PopularRegion algorithm with our new approach
on both real and synthetic data. Clustering techniques are not producing ROIs
with predefined shapes and thus explore an incomparable hypothesis space. We
nevertheless include the OPTICS clustering algorithm as an optimistic baseline
in our comparisons, assuming that the clusters discovered constitute the predic-
tion function for the density status of cells.

We did not include in this experiments the works of [2,13] since they use
application dependent semantic information. The method proposed in [6] also is
not evaluated as it finds an exact cover of all the dense cells without generalizing
with regions excluding outlier cells like OPTICS.

For the rest of this section, we denote by ILP our full model (i.e. Eqs. (3a)–
(3b) that includes rectangular and circular ROIs while ILP-rectangles denote a
restricted model containing only rectangular ROIs1. In both models we impose a
ratio constraint on the width and height of the rectangles (one can not be more
than two times the other) to avoid pathological solutions.

In this section we will address the following questions: i) How well does our
method perform compared to PopularRegion and OPTICS? ii) How efficient is
our approach and what is the computation bottleneck ? iii) Is our method robust
to noise in data?

7.1 Performances with Respect to the MDL Criterion

We first describe an experiment performed on two real-world data sets. The first
one comes from the taxi destination prediction challenge that was organized by
the 2015 ECML/PKDD conference and proposed as a Kaggle competition. This
data set contains more than 1.6 million trajectories from taxis of the city of
Porto2. The second data set is the T-Drive data set from Microsoft and contains
1 The Python code of our model is accessible here https://github.com/

AlexandreDubray/mining-ROI.
2 The data set can be downloaded at this link https://www.kaggle.com/crailtap/taxi-

trajectory/home. We filtered out incomplete trajectories and the few trajectories
that went too far away from Porto.

https://github.com/AlexandreDubray/mining-ROI
https://github.com/AlexandreDubray/mining-ROI
https://www.kaggle.com/crailtap/taxi-trajectory/home
https://www.kaggle.com/crailtap/taxi-trajectory/home
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GPS traces from taxis of Beijing [16,17]. For the Kaggle data set, the density
threshold will be expressed as a percentage of the total number of trajectories
and we used a 100 × 100 grid. For the T-Drive data set, we used a 200 × 200
grid and, since we do not have separate trajectories, the density threshold is a
percentage of the maximum density in the grid.

OPTICS requires two parameters: minPts, a threshold to be a core point,
and ξ, a distance ratio to separate the clusters. Details about the parameters can
be found in [3]. In our experiments, we set minPts = 3 since it is the threshold
at which our method considers a candidate interesting. We set ξ = 0.05, but this
parameter has almost no effect on the results in our experiments.

Figures 6b and 6d show the number of integers needed to encode the errors
made by the models (2 per cell wrongly classified), in function of the minimum
density threshold. As explained before and illustrated in Figs. 2b and 3b, for low-
density thresholds, PopularRegion tends to create large regions, which results in
a high number of errors since it covers many non-dense cells.

OPTICS selects in its clusters all the cells not considered noise; it is thus
expected that it will make few errors, at the expense of a larger model length.
Recall that OPTICS does not explore the same hypothesis space. It can thus only
be interpreted as a baseline when comparing the errors. Our method discovers
regions that generalize well the initial distribution of the dense cells, and allows
some non-dense cells in the ROIs. The number of errors is generally between
the ones of PopularRegion and OPTICS. When the minimum density threshold
increases, OPTICS and our approach perform slightly worse than PopularRegion.
The reason is that PopularRegion will overfit perfectly the isolated dense cells
by creating one region for each, which is obviously not the expected behavior of
an algorithm for detecting ROIs. As expected, the addition of circular shapes
permits decreasing slightly the number of errors over the rectangle model since
it augments the capacity of the prediction function.

Figures 6a and 6c show the number of integers needed to encode the ROIs
(i.e. the first part of the MDL criterion, excluding the values needed to encode
errors). Our method always gives a smaller value, with and without circular
regions. It can be seen that for a high density threshold, the number of ROIs
tends to zero as it is more advantageous to store the exceptions directly rather
than using ROIs (the number of dense cells decreasing). When the minimum
density threshold becomes larger, the dense cells become sparse over the map
and OPTICS considers them as noise without identifying any cluster.

Figure 6 shows that our method outperforms PopularRegion on low threshold
values by having less errors and nonetheless using fewer ROIs. For a higher value,
our methods maintain a similar number of errors as PopularRegion while using
at least four times less ROIs. Compared to OPTICS, we have a more errors
due to the inclusion of non-dense cells in the ROIs, but our ROIs require fewer
integers for their encoding. This is only valid due to the balance imposed by the
usage of MDL: in general, for a fixed number of ROIs our method will have a
smaller error than PopularRegion, and for a fixed error it will have a smaller
number of ROIs, by design.
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Fig. 6. Error percentage and length of the models in function of the minimum density
threshold on the Kaggle data set (a)–(b) and the T-Drive data set (c)–(d).

7.2 Execution Times

Table 2 shows the run time of the methods for two minimum density thresholds
and three grid sizes for the Kaggle data set. We limit the size of the grid to
200 × 200, which corresponds a cell size of 50 × 50 m. Working beyond this limit
seems unreasonable given the accuracy of GPS data. For the ILP model, we
show the time needed to solve the optimization problem defined in Eqs. (3a)–
(3b). The table also shows the total number of dense cells in the grid as well as
the number of candidate shapes.

Table 2. Run time of the methods for different grid sizes and minimum density thresh-
olds for the Kaggle data set.

Minimum density threshold 2% 5%

Grid side size 100 150 200 100 150 200

Number of dense cells (|G∗|) 571 597 537 230 178 137

Number of ILP candidates 23 814 7 779 3 399 2 880 1 232 434

ILP optimization time (s) 4.328 0.464 0.109 0.113 0.044 0.029

PopularRegion run time (s) 0.003 0.005 0.006 0.002 0.003 0.004

OPTICS run time (s) 0.209 0.222 0.200 0.084 0.065 0.051
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With its greedy behavior, PopularRegions obtains the best run time for all
configurations. The run time of our method is mostly determined by the number
of candidate shapes as these correspond to the number of variables in the model.
We see that when the number of candidates becomes low enough our method
has a run time that is similar to OPTICS. In a more constrained application, the
set of candidates is expected to be smaller and the constraints stronger, which
makes our method practical for identifying constrained regions of interest.

7.3 Robustness to Noise

To evaluate the robustness of the approaches to noise, we start from the Kaggle
dataset, which consists of trajectories (i.e. series of points in space and time),
and generate the grid by dividing the space in 100×100 cells of uniform size. The
dense cells are chosen as being the ones with a minimum density threshold of 0.05
(i.e. at least 5% of the trajectories visit these cells). By running the methods,
we obtain for each of them a set of selected ROIs R. We then introduce noise
by modifying the trajectory data points: for a level of noise p, each element of
a trajectory has a probability p to be moved; if it is moved, its new position
is chosen randomly in the square of 10 × 10 cells around the initial point. By
running the methods again, we obtain new sets of selected ROIs under noise R′.

We compute the recall |R ∩ R′|/|R|, the precision |R ∩ R′|/|R′| and the F1-
measure (2 · precision · recall)/(precision + recall). Figure 7 shows how these
metrics evolve with the level of noise.

Fig. 7. Recall, precision an F1-measure w.r.t the original data in function of the per-
centage of noise, on the Kaggle data set.

Both PopularRegions and our method obtain almost always a precision of
1.0. This means that these methods do not cover areas that were not covered
before. However, their recalls decrease, meaning that the found regions will tend
to shrink as the amount of noise increases.

While for PopularRegions, the recall decreases smoothly with the level of
noise, it decreases stepwise for our method. The reason is that our method uses
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a threshold to define the binary density status of the cells. It thus requires enough
noise in order to flip the status of a cell. For OPTICS it can be seen that its
precision and recall are lower than for the other two methods, for most of the
noise levels. In the beginning, as for the ILP-based method, it still produces the
same solution since it only considers the state of the cells. But unlike our method,
it is not able to generalize well as it can only cover dense cells. As a consequence,
its recall drops faster. For the same reason, it will never return a non-dense cell
that was initially dense, thus causing a drop in recall. However, it will return
dense cells that were non-dense (and thus not in the initial solution), decreasing
its precision. At the light of the F1-Measure, these combined effects are in favor
of our method. On any of the metrics, the ILP provides better results as long as
the noise remains reasonable. When the noise level becomes significant ( 40%),
the dense cells become very sparse and the results are much less relevant to
interpret.

8 Conclusion and Future Work

Mining approaches for discovering regions of interest (ROIs) are an important
building block for any application wishing to extract knowledge from location
data. In order to be useful, the extracted ROIs generally need to satisfy appli-
cation dependent constraints. This last requirement was missing in existing
approaches. Inspired by the approach introduced in [8], we introduced an alter-
native approach for discovering constrained ROIs. It relies on an efficient Integer
Linear Program (ILP) to extract the ROIs from a set of predefined ROIs candi-
dates. The model can be used in a setting where the number of ROIs is fixed, or
it can work in a parameter free setting by relying on the minimum description
length principle. Our approach is flexible as it can discover ROIs satisfying vari-
ous types of constraints that can be enforced either at the step of the candidate
ROI generation, or directly in the integer linear programming model. We have
reported various experiments showing the flexibility of the proposed approach
on both real and synthetic data sets. The results have shown that it was able to
retrieve constrained ROIs of higher quality than those extracted with existing
approaches such as the PopularRegion algorithm [8] and clustering techniques.
Despite the larger computation time, we showed that the approach is able to
scale on real-world data sets using fine-grained grids.

As future work one could solve the candidate generation problem using a
custom constraint-based search algorithm rather than with a generate and filter
one. Although less generic, this could be more efficient if many regions need to
be filtered out. The ILP does not require the shapes to be defined on the grid.
As future work, it could be interesting to extend our work with ROIs defined
in the continuous space. Finally, it would be interesting to extend the approach
to work with continuous density values rather than binary ones that require a
threshold parameter.
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