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Abstract. In computer networks, swift recovery from failures requires
prompt detection and diagnosis. Protocols such as Bidirectional For-
warding Detection (BFD) exists to probe the liveliness of a path and
endpoint. These protocols are run on specific nodes that are designated
as network monitors. Monitors are responsible for continuously verifying
the viability of communication paths. It is important to carefully select
monitors as monitoring incurs a cost, necessitating finding a balance be-
tween the number of monitor nodes and the monitoring quality. Here,
we examine two monitoring challenges from the Boolean network to-
mography research field: coverage, which involves detecting failures, and
1-identifiability, which additionally requires identifying the failing link or
node. We show that minimizing the number of monitors while meeting
these requirements constitutes NP-hard problems. We present integer
linear programming (ILP), constraint programming (CP) and MaxSAT
formulations for these problems and compare their performance. Using
625 real network topologies, we demonstrate that employing such exact
methods can reduce the number of monitors needed compared to the
existing state-of-the-art greedy algorithm.

Keywords: Integer linear programming · Constraint Programming ·
MaxSAT · Boolean tomography · Network supervision.

1 Introduction

Computer networks form the backbone of modern digital communication, and
their reliability is crucial for maintaining seamless connectivity across various
sectors. Failures within these networks can have significant consequences, leading
to service disruption and potential financial loss. As such, it is essential to develop
efficient and accurate methods for detecting and diagnosing network failures,
enabling swift recovery and minimizing the impact on end-users.

Various protocols enable to monitor the liveliness of Internet paths from
the well-known ping utility present in most operating systems, and used by
measurement infrastructures such as RIPE Atlas [23], to more recent protocols
such as BFD [15]. In addition to fasten link failure detection when deployed
on adjacent routers, BFD enables to quickly detect failures along a path, such
ability being leveraged in Software Defined Networks (SDN) to quickly detect
and report failures to a network controller.
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In this study, we focus on Boolean network tomography, a research field that
holds great promise for enhancing the resilience of networks. Boolean network
tomography combines end-to-end measures, performed with ping or BFD, for
example, with inference algorithms to estimate the state of different elements
in the network. Its advantage is that it only requires a subset of nodes to be
monitors and supervise an entire network. With this approach, monitors send
messages to each other through measurement paths. When a failure occurs on a
node, all paths that cross it fail. Thus, the failure can be detected by observing if
some measurement paths are not working. If the set of failed measurement paths
forms a unique signature, then it is even possible to identify the failed node.

In the remaining of the paper, we treat the case of node failures. Indeed,
we can easily account for edge-failure considerations by transforming the net-
work graph. Adding dummy nodes to represent each link, enables to transform
the node failure detection, respectively localization, problem, into detecting and
locating link failures, applying the approach in this paper.

Our investigation focuses on minimizing the number of designated monitor
nodes while ensuring some level of quality of network monitoring. This is crucial
for minimizing monitoring costs without compromising the network’s overall
health and performance. We explore two critical monitoring challenges: the cover
problem, which seeks to detect failures, and the 1-identifiability problem, which
requires pinpointing the exact failing node. Figure 1 illustrates these concepts.
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Fig. 1. Illustration of 1-identifiability: (1) All nodes are covered but not 1-identifiable.
(2) All nodes are 1-identifiable. Each color represents a path. In the situation (1), the
path linking nodes B and H is not a measurement path because H is not a monitor.
Each node is covered because they are all crossed by a path linking two monitors, but
if D or F fails, in each case the paths between A and G and between B and G will both
fail. The failure will thus be detected, but it would not be possible to know which of the
two nodes is the origin of the failure. The problem is the same with nodes E and H. In
the situation (2), H is a monitor, thus the path linking B and H is a measurement path
(in dashed orange). Therefore each non-monitor node is now crossed by a unique set of
paths : If D fails, paths (A,G) and (B,G) will fail; if E fails it will be paths (C,G) and
(B,H); if F is not functional, paths (A,G), (B,G) and (B,H) will not work. By looking
at which paths are not working versus the alive paths, it is possible to infer without
ambiguity which node is the origin of the breakdown.
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Conceptually, a node failure in a network results in the disruption of all paths
traversing it. These affected paths collectively constitute the symptom associated
with the failing node. A network is covered if there is a non-empty symptom
for each node. Additionally, a network is considered 1-identifiable if every node
possesses a unique, non-empty symptom, thereby serving as an identifier for
the node in the event of a failure. By compiling a comprehensive list of these
identifiers, one can efficiently diagnose a failure by simply observing the disrupted
paths and cross-referencing a precomputed table that maps the failed paths
(symptoms) to the corresponding node.

The 1-identifiability problem can be generalized as the k-identifiability prob-
lem for the localization of up to k simultaneous failures. Most precomputed
failure protection mechanisms today are tailored for single faults. With BFD
and our proposal, locating a single failure enables to use such protections with-
out waiting for the convergence of the routing protocol, speeding up recovery.
However, in case of multiple failures, the protections for recovery are usually not
in place. Hence, in this situation we are forced to wait for the routing protocol
to converge. We have thus limited benefits of quickly identifying k faults. In this
paper, we focus on selecting the smallest set of monitors ensuring that the entire
network is either covered or 1-identifiable. But our approach can theoretically
be extended to k-identifiability.

An important assumption of the considered networks in this study is that
the routes between any pairs of nodes are imposed by the routing protocol and
known by the planning tool that will select the monitors. A pair of monitors
is only able to verify the status of those routes. In practice network operators
usually configure link (IGP) weights to influence where the traffic flows in the
network assuming they follow shortest paths (see for instance [5] for optimizing
IGP weights). Alternatively, other protocols such as segment routing or MPLS
[8, 9, 17] make it possible to introduce deviations or explicit route set-ups be-
tween pairs of nodes, deviating from shortest paths. For all these protocols, the
monitors are able to determine which data paths between them are affected by
a failure.

Our contributions can be summarized as follows.

– We formulate the optimal monitor placement problem for the cover and
1-identifiability (Section 3);

– We demonstrate that the node cover and 1-identifiability problems are NP-
hard (Section 4);

– We introduce an integer linear programming (ILP), a constraint program-
ming (CP) and a MaxSAT model to resolve this problem. We propose re-
dundant constraints and reductions to shrink the search space (Section 5);

– We also introduce a specialized version of the MNMP greedy algorithm [19],
tailored for 1-identifiability, to compare our exact methodologies with this
approach (Section 6).

– We evaluate their performance through a comparative analysis using 625
real network topologies (Section 7).
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Our findings reveal that the introduced models can reduce the amount of
monitor nodes compared to a greedy approach while maintaining coverage or
1-identifiability, paving the way for more robust and reliable telecommunication
networks.

2 Related works

Various methods have been investigated to address the monitor placement issue
for failure detection, beyond utilizing exact methods. For example, the Max-
imum Node-identifiability Monitor Placement (MNMP) [19] is a greedy algo-
rithm that progressively adds monitors to achieve the desired k-identifiability
and subsequently removes any unnecessary monitors. Unfortunately, it does not
guarantee optimality for 1-identifiability problem. Bezerra et al. [2] suggest var-
ious improvements to this algorithm to decrease computational cost and enable
its use in wireless networks that experience more frequent changes. Our approach
here is different, as we use exact methods that allow us to reduce the number
of selected monitors, as shown in Section 7, and also because we are focusing on
coverage and 1-identifiability.

Stanic et al. [25] present an ILP model and a greedy algorithm for the monitor
placement for fault localization in transparent all-optical networks, which is an
analogous problem to ours. The main difference being that, in their context, each
measurement path requires only one monitor. Their model could be applicable
here by having monitors probing non-monitor nodes and waiting for their answer.
However, it requires to assume that the routes are symmetrical which is rare in
practice [14, 12, 26]. Here we consider routes that are not necessarily symmetrical;
for them to be measurement paths, both of their two ends must be monitors.

The dual version of the problem considered in this paper, where the number
of monitors is limited and the number of identifiable nodes or links needs to
be maximized has also been studied. Ren et al. [22] design a greedy algorithm
that chooses monitors such as the number of k-identifiable links is maximized.
Bartolini et al. provide in [1] an upper bound for the maximum number of iden-
tifiable nodes given a specific measurement path budget. Ma et al. propose the
Greedy Maximal identifiability Monitor Placement [18], an algorithm that incre-
mentally adds the monitors that maximize the number of identifiable links, until
the maximal budget of monitors is reached. Here, the definition of identifiable
is extended to all types of additive metrics (delays, packet delivery ratios, ... )
and not only the failure detection.

Related problems, involving tomography for monitoring, have also been ex-
amined. He et al. [10] investigate, in the context of Network Function Virtualiza-
tion (NFV), the challenge of positioning services in a network with a predeter-
mined set of measurement paths to optimize their identifiability while ensuring
a high Quality of Service (QoS). Zhang et al. [27] adapt network tomography
techniques to supervise traffic in smart cities, which includes determining the
optimal placement for monitoring cameras. A possible approach to reduce the
load of Boolean network tomography is to partition the network in multiple ar-
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eas and to locate failures in each area independently. Ogino et al. [20] offer a
procedure to divide the network in such areas and a scheme to manage them.
This partitioning can be run before the monitor selection, then, instead of deal-
ing with a single large instance of the problem considered in this paper, there
would be multiple smaller ones. We refer to chapters 5-6 of the book [11] for a
complete review of Boolean-Network Tomography.

3 Problem formulation

The following two paragraphs formally introduce the problems addressed in this
paper, specifically the monitor cover and the 1-identifiability problems.

The Monitor Cover Problem Assuming that the network topology is known,
it can be represented as a connected graph. We further assume that a given route
exists between every pair of nodes, but only the ones linking monitor nodes
are considered measurement paths. The symptom of a node is defined as the
collection of measurement paths passing through it. The objective of this problem
is to identify the minimum number of monitors from the network’s node set
such that every node is traversed by a minimum of one measurement path. The
problem can be formalized as follows. We consider an oriented graph G = (V,E)
where there is a cycle-free route between each pair of nodes (i, j) ∈ V 2. In this
problem the order in which nodes are crossed by a route does not matter, we
thus represent routes as unordered sets containing all the nodes crossed by these
routes and we denote P (i, j) = {i, . . . , j} the route linking i and j. Routes are
not necessarily symmetric; thus P (i, j) and P (j, i) don’t necessarily contain the
same nodes. The goal is to find the minimal set of monitors M ⊆ V such as
∪(i,j)∈M2P (i, j) = V .

The Monitor 1-identifiability Problem This problem adds one constraint
over the cover problem. If one node fails, we don’t only need the failure to be
detectable, but we also aim to be able to locate it without ambiguity. For the
failure to be identifiable, the symptom of the failure (set of failed measurement
paths) must be unique. The problem can be formalized as follows. We consider
the same oriented graph G = (V,E) and set of routes P as for the monitor
cover problem. For a set of monitors M , we denote by Si the symptom of node i:
Si = {(i′, j′) ∈ M2 | i ∈ P (i′, j′)}. The goal is to find the minimal set of monitors
M ⊆ V such that ∪(i,j)∈M2P (i, j) = V (cover) and ∀i ̸= j ∈ V 2, Si ̸= Sj (1-
identifiability).

4 Complexity of optimal monitor placement

In this section we study the complexity of our two problems and show that they
are both NP-hard.

Theorem 1. The monitor cover problem is NP-hard.
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Proof. We reduce the set cover problem to the monitor cover problem as follows.
Consider an instance of the set cover problem defined by (S = {S1, . . . , Sk}, U),
where S is a set of sets and U is the universe. For the monitor cover problem,
we construct a set of vertices V = S ∪U ∪{T}, including one vertex for each set
in S, one for each element in U , and a special vertex T , designated as a monitor
in every valid solution.

There is an edge between every pair of nodes (i, j) in V 2. The set of routes is
defined as follows. For each pair of nodes (i, j) in U2, the route between them is
direct, i.e., P (i, j) = {i, j} if i ̸= j. In addition to these routes, for each Si ∈ S,
an arbitrary route between Si and T contains all nodes in Si. Finally, a route
P (T, T ) arbitrarily passes through all nodes in S. This set of routes ensures
that in any optimal solution, only nodes in S plus the node T are selected as
monitors.

First, observe that T necessarily needs to be a monitor, as it is only traversed
by routes for which it is the origin or the destination. The simple selection of T
also ensures the coverage of all the nodes in S. Then, choosing a node Si ∈ S
as a monitor to cover a node Uj ∈ U is at least as cost-effective as choosing Uj

itself as a monitor. Since we ensured by construction that choosing a set vertex
Si ∈ S as a monitor covers all nodes in Si, the optimal solution to the set cover
problem can be retrieved from the set of nodes in S designated as monitors. ⊓⊔

Example 1. As an example, consider a set cover problem where U = {1, 2, 3, 4, 5}
and the collection of sets is S = {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}}. The correspond-
ing vertex set is V = S∪U ∪{T} = {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}, 1, 2, 3, 4, 5, T}.
In our example, the path P ({1, 2, 3}, T ) includes nodes 1, 2, and 3 in an arbitrary
order and finishes at T . Similar paths are built from the other nodes in S. The
path P (T, T ) includes {1, 2, 3}, {2, 4}, {3, 4}, and {4, 5} in an arbitrary order.
It is easy to see that selecting {1, 2, 3} as a monitor is more cost-effective than
selecting 1, 2, and 3 individually.

T1

5 4

3

2

{3,4}{4,5}

{2,4}{1,2,3}
(1) (2)

Non-monitor nodes Monitors

1

5 4

3
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{3,4}

{2,4}{1,2,3}

{4,5}

T

Fig. 2. Illustration of a monitor cover problem. (1) shows the instance with all major
paths (2-nodes paths and edges are not shown for readability). (2) shows the optimal
solution.
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Theorem 2. The monitor 1-identifiability problem is NP-hard.

Proof. We reduce the monitor cover problem (known to be NP-hard from theo-
rem 1) to the monitor 1-identifiability problem. Consider a monitor cover prob-
lem instance (G = (V,E), P ), where G is the graph and P is the set of routes.
We construct a monitor 1-identifiability problem (G∗ = (V ∗, E∗), P ∗) as fol-
lows. The set of vertices is V ∗ = V ∪ V ′ ∪ {T} where V is the set of vertices
of the monitor cover problem, V ′ is a set of companions vertices for V (each
vertex i ∈ V has its companion i′ ∈ V ′, thus |V | = |V ′|) and T is a special
vertex that is linked to each node in V . Nodes in V ′ will be designated as mon-
itors in every valid solution. The set of edges E∗ is composed of the edges in
E ∪ {(i, T ),∀i ∈ V } ∪ {(i, i′) ∈ V × V ′ such as i′ is the companion of i}.

The routes connecting each pair of nodes (i, j) ∈ V 2 are inherited from the
monitor cover problem, i.e., P ⊂ P ∗. The other routes are represented by the
sets in P ′ = P ∗\P . For all nodes in V ′, the route linking them is defined as
P ′(i′, j′) = {i′, i, T, j, j′} ∀(i′, j′) ∈ V ′2. Every other routes in P ′ are segments of
those routes, e.g., the route linking a node i ∈ V to a companion node j′ ∈ V ′ of
another node j ∈ V is defined as P ′(i, j′) = P ′(j′, i) = {i, T, j, j′}, or the route
linking T to a companion node i′ ∈ V is P ′(i′, T ) = P ′(T, i′) = {i′, i, T}.

First, note that every node in V ′ is necessarily a monitor, as they are only
present at the extremities of routes. Their selection allows each node in V ∗ to
be covered. T is also 1-identifiable as it is the only node crossed by each of these
routes. The nodes in V are distinguishable from every other node in the exception
of their companion node. Choosing T as a monitor is not effective as the only
routes that cross nodes in V without necessarily crossing their companions (and
thus make them 1-identifiable) are the routes imported from the cover problem.
We ensured by construction that selecting a pair of node i, j ∈ V 2 enables 1-
identifiability for every node covered by P (i, j), hence the optimal solution to
the monitor cover problem can be retrieved from the nodes in V designated as
monitors in the 1-identifiability problem. ⊓⊔

Example 2. As an example, consider a monitor cover problem where V = {A,B,
C,D,E} and E = {(A,B), (B,C), (C,D), (A,D), (C,E)}. Figure 3 presents the
corresponding topology in the 1-identifiability problem. A′, B′, C ′,D′ and E′ are
necessarily monitors, T is thus covered by all the paths connecting them and has
a unique symptom. A′ and A are both covered by every path starting or ending
from A′ (P ′(A′, B′), P ′(B′, A′), . . .). Their symptoms are equal but different from
each other node. Every node in V is in a similar situation, distinguishable from
all the other nodes except their companion. If P (D,B) = {D,A,B}, selecting
D and B as monitors allows covering A, B and D in the cover problem. In the
1-identifiability problem, it makes them 1-identifiability because P (D,B) does
not contain A′, B′ and D′.
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Fig. 3. Illustration of the transformation of a cover problem to an 1-identifiability prob-
lem. The routes are not represented. (1) shows the graph for the monitor cover problem.
(2) shows the corresponding graph for the monitor 1-identifiability problem, edges from
the graph (1) are identifiable by their colors.

5 Models for Optimal Monitor Placement

This section gives the models for the resolution of cover and 1-identifiability prob-
lems. We first present the ILP, CP and MaxSAT models. Then we introduce some
reductions and redundant constraints of the problem to tighten the formulation.

5.1 Models Definition

Integer Linear Programming Model The problem is modeled with two bi-
nary variable vectors : x is a vector of size |V | modeling the set of monitors (xi

is true iff node i is a monitor) and y is a vector of size |P | modeling the set of
measurement paths (yP (i,j) is true iff the route P (i, j) is a measurement path).
We denote by Si the subset of P containing all the routes crossing node i; we
also denote by Di,j the set of routes crossing node i without going by j and vice
versa, Di,j = (Si ∪ Sj)− (Si ∩ Sj). The ILP model is composed of the following
constraints:

minimize
∑
i∈V

xi (1)

subject to:

yP (i,j) ≤ xi ∀P (i, j) ∈ P (2)

yP (i,j) ≤ xj ∀P (i, j) ∈ P (3)

yP (i,j) ≥ xi + xj − 1 ∀P (i, j) ∈ P (4)∑
P (i,j)∈Si′

yP (i,j) ≥ 1 ∀i′ ∈ V (5)

∑
P (i,j)∈Di′,j′

yP (i,j) ≥ 1 ∀i′, j′ ∈ V 2 (6)

Equation (1) expresses the objective function that is to minimize the number
of monitors. Equations (2)-(4) link the monitor selection to the measurement
path variables. A route P (i, j) is considered a measurement path (yP (i,j) =
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1) iff both its starting and ending nodes are monitors (xi = 1 and xj = 1).
Equation (5) models the cover constraints. For a node to be covered at least one
route among Si needs to be a measurement path. Thus, for each node i we have
the constraint (5). Finally, equation (6) models the 1-identifiability constraints.
A node is 1-identifiable iff it is distinguishable of each other nodes. Constraining
each node to be 1-identifiable is equivalent to constraint each pair of nodes to be
distinguishable. For two nodes to be distinguishable, it is sufficient that at least
one measurement path crosses one of the nodes without crossing the other. For
the 1-identifiability problem, it is important to keep the cover constraints from
(5), otherwise a solution with one uncovered node would be a valid solution,
as its symptom would be different from each other symptom. Notice that the
constraint (6) is defined for pairs of nodes, but the same idea can be applied
to all combinations of up to k nodes to model the k-identifiability constraints.
Unfortunately, the number of constraints grows exponentially with k.

Constraint Programming Model The CP model follows the same logic as
the ILP model and uses the same set of binary variables x and y. The reified con-
straints (8) ensure that route P (i, j) is considered a measurement path (yP (i,j) =
1) iff both its starting and ending nodes are monitors (xi = 1 and xj = 1). The
sum constraints ensuring the coverage and the 1-identifiability are replaced by
logical or constraints.

minimize
∑
i∈V

xi (7)

subject to:

yP (i,j) ≡ xi ∧ xj ∀P (i, j) ∈ P (8)∨
P (i,j)∈Si′

yP (i,j) ∀i′ ∈ V (9)

∨
P (i,j)∈Di′,j′

yP (i,j) ∀i′, j′ ∈ V 2 (10)

MaxSAT Model The translation of the CP model to a MaxSAT model is
straightforward : there are two sets of literals, x and y, that correspond to the
binary variables of the CP model. The reified constraints in (8) are translated
in three sets of clauses defined by equations (12)-(14). The clauses ensuring the
coverage and the 1-identifiability, in equations (15) and (16), are inherited from
the or constraints. All the clauses defined by the equations (12)-(16) are hard
constraints that must be satisfied. To translate the objective function we add
one weighted clause for each node i ∈ V . Each one of them only contains one
literal, xi, and their cost is fixed to −1. Hence, to maximize the sum of the
satisfied constraints’ weights, we need to minimize the number of nodes selected
to be monitors.
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maximize
∑
i∈V

−1 ∗ xi (11)

subject to:

xi ∨ ¬yP (i,j) ∀P (i, j) ∈ P (12)

xj ∨ ¬yP (i,j) ∀P (i, j) ∈ P (13)

¬xi ∨ ¬xj ∨ yP (i,j) ∀P (i, j) ∈ P (14)∨
P (i,j)∈Si′

yP (i,j) ∀i′ ∈ V (15)

∨
P (i,j)∈Di′,j′

yP (i,j) ∀i′, j′ ∈ V 2 (16)

5.2 Problem reductions and Redundant Constraints

To reduce the search space and thus the computation costs, one can add nodes
that must be monitors and redundant constraints to obtain a tighter model.

Detecting monitors The nodes that are only covered by paths originating
or ending in them must be monitors to be covered. We refer to these nodes as
leaf nodes = {i ∈ V | ∀i′, j′ ̸= i, i /∈ P (i′, j′)}. Clearly, nodes with degree one
are part of the set of leaf nodes. This can be observed in the case of node H in
Figure 4.

A

B

C

D E

F

G

C1

C2

C3

Articulation Points Nodes

H

Fig. 4. Illustration of bi-connected components. C1, C2 and C3 represents the 3 bi-
connected components. Components C1 and C2 are linked together by the articulation
node C. Removing this node would result in two connected parts: the first one only
composed of C1 and the other one composed of C2 and C3.

Redundant Constraints A bi-connected component of a graph is a subgraph
in which every pair of vertices is connected by at least two disjoint paths, mean-
ing that the subgraph remains connected even if any single vertex or edge is re-
moved. These subgraphs are linked together by articulation points, nodes whose
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removal would disconnect the total graph. For example, figure 4 shows a graph
composed of three bi-connected components. The bi-connected components and
their articulation points can be identified in linear time with a depth-first search
[13]. We denote by VC ⊆ V the subset of nodes in the bi-connected component
C that are not articulation points and AC ⊆ V the subset of articulation points
in C.

Lemma 1. For a bi-connected component C with exactly one articulation point,
ensuring coverage implies that at least one node in VC must be a monitor.

Proof. Because routes are cycle-free, a component with only one articulation
point can’t be crossed by a route connecting two nodes outside of a component.
Otherwise, it would require the route to cross the articulation point at least
twice, resulting in the presence of a cycle. Thus, it requires at least one monitor
in the component to cover its nodes. As an example, in Figure 4 component C1

contains only one articulation point (the node C). Because routes are cycle-free,
it is clear that if A and B are not monitors, then no measurement paths will go
through the component. We can thus add a constraint which enforces that at
least one node in such a bi-connected component must be a monitor. ⊓⊔

We thus add the following constraints to the ILP model :∑
i∈VC

xi ≥ 1 ∀ bi-connected(C) ∈ G with |AC | = 1 (17)

Their equivalents in the CP and the MaxSAT models are:∨
i∈VC

xi ∀ bi-connected(C) ∈ G with |AC | = 1 (18)

6 A greedy algorithm for 1-identifiability

To position our models within the state-of-the-art, we compare them with the
greedy algorithmMNMP [19] (more specifically the MNMP-UP version). MNMP
is a generic algorithm introduced to solve the broader k-identifiability problem.
Its complexity is O(|P |2 ·|V |3) = O(|V |7), as |P | = |V |2 in our case. We introduce
a version dedicated to the 1-identifiability problem, as outlined in Algorithm
1, that reduces the complexity to O(|V |5). This is the version we use in our
experimental comparisons.

6.1 Description of the Algorithm

First, the set of monitors is initialized with the set of leaf nodes (i.e., nodes that
only are at extremities of routes) since it is the only way to cover them. Then the
first while loop iteratively adds monitors to the solution until each node in the
network is covered. During each iteration, the node selected for inclusion is the
one covering the maximum number of currently uncovered nodes, considering
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Algorithm 1 MNMP Implementation for the Monitor Cover and 1-
identifiability Problems

1: M ← leaf nodes
2: U ← V ▷ Uncovered Nodes
3: U ′ ← V 2 ▷ Indistinguishable pairs of Nodes
4: U ← U\Ψ(M) ▷ Coverage
5: while U ̸= ∅ do
6: m← arg maxw∈V \M |U ∩ Ψ(M ∪ {w})|
7: U ← U\Ψ(M ∪ {m})
8: M ←M ∪ {m}
9: end while
10: return M if goal is coverage
11: U ′ ← U ′\Ω(M)
12: while U ′ ̸= ∅ do ▷ 1-identifiability
13: m← arg maxw∈V \M |U ′ ∩Ω(M ∪ {w}|
14: U ′ ← U ′\Ω(M ∪ {m})
15: M ←M ∪ {m}
16: end while
17: return M

the present set of monitors. In the pseudo-code, we denote by U the set of
uncovered nodes and Ψ(M) ⊆ V represents the set of nodes covered by the
union of all paths between each pair of nodes in M , i.e., Ψ(M) =

⋃
i,j∈M2 Pi,j .

If the objective is solely to cover the nodes, the algorithm halts at this point.
Otherwise, the algorithm proceeds with the second ’while’ loop, which is designed
to make each node 1-identifiable. Once again, the algorithm adds monitors in
an iterative manner. However, this time the criterion for adding monitors is the
number of pairs of currently indistinguishable nodes that the new monitor would
turn distinguishable, taking into account the current set of monitors. We denote
by U ′ the set of pairs of indistinguishable nodes. Ω(M) ⊆ V 2 contains the pair
of nodes that are distinguishable under the union of all paths between each pair
of nodes in M . The original MNMP algorithm contains a third loop where it
iterates on each monitors and test if it is redundant, i.e., if removing the monitor
would impact the coverage or the 1-identifiability. If the monitor is redundant, it
is then removed from the solution. However, we observed on our instances that
no monitors were removed during this loop. Thus, we removed this last loop.

6.2 Time Complexity

Cover problem Leaf nodes are detected in O(|V 3|). The set of uncovered nodes
U and the routes are represented as bit sets of size |V |, where the bit i is set
if node i is uncovered or if i is in the route. U and Ψ(M) are computed by
logical or and and operations on these bit sets in O(|V |). Therefore, line 4
requires O(|V | · |M |2) operation. For the monitor cover problem, the complexity
is dominated by the loop in lines 5-9. The most computationally demanding step
within the loop is line 6: computing |U∩Ψ(M∪{w}| for all w ∈ V \M requires to
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compute for each route linking a monitor to a non-monitor node (O(|P |)) the set
of uncovered nodes that it crosses ((O(|V |)). If we assume that |P | = |V 2|, the
resulting complexity is O(|V 3|). The worst case for the monitor cover problem
is when O(|V |) monitors are required to cover the graph. In this case, the while
loop takes O(|V |4). The overall time complexity of MNMP for the monitor cover
problem is O(|V |4).

1-identifiability problem Computing the set of pairs made distinguishable by a

route is done in O(|V |2). Thereby, computing Ω(M) requires O(|M |2 · |V |2)
and the reduction of U ′ in line 11 takes O(|V |2 · |M |2). Line 13 is very similar
to line 6. It requires to calculate the set of node pairs (O(|V |2)) that can be
distinguished by every route between a monitor and a non-monitor node. The
resulting complexity is O(V 4). In the worst case (i.e., the first while loop returns
O(1) monitors and O(|V |) monitors are required for 1-identifiability) the while
loop in lines 12 to 16 takes O(|V |5). Hence the time complexity of MNMP for
the 1-identifiability problem is O(|V |5) in the worst case.

7 Experimental Results

In this section we evaluate our different approaches.1. The ILP model relies on
Gurobi [7]. We run the CP model on OR-Tools [21]. For the MaxSAT approach,
we use NuWLS-c [4]. Experiences run on a SkyLake CPU with up to 95 GB of
memory. Every test is limited to a runtime of 3 minutes and is allocated 20 GB
of memory.

Dataset We run our models on topologies from Rocketfuel [24], Internet Topol-
ogy Zoo [16] and CAIDA’s ITDK (IPv4 and from February 2022) [3]. We assume
shortest hop-count paths with arbitrary tie breaking when multiple best paths
exist. For an even more realistic set of routes, we use topologies from Repetita
[6], which contain IGP weights. In non-connected topologies, we keep the largest
component. For the largest topologies, the solvers encountered memory issue on
the 1-identifiability problem. To ensure a fair comparison between the solvers,
we removed the instances for which at least one solver faced memory issues. As
a result, for the cover problem we have 625 topologies with up to 960 nodes (the
median number of nodes is 33). For the 1-identifiability problem, there are 587
instances with up to 330 nodes (the median being 31).

Results Table 1 displays the number of instances where the returned solution
is the best among those obtained by different solvers, as well as the number of
instances for which the solvers proved the optimality of their solutions. Since the
solvers established the optimality of their solutions in over 99% of the instances,
the returned solution often corresponds to the optimal one. To compare solvers
when they don’t return the best solution, figure 5 shows the cumulative count
of instances for which each solver provides a solution below a given number of
extra monitors, compared to the optimal.

1 Source code available at https://github.com/BurlatsAuguste/MonitorPlacement
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Solver Goal Best solution found Optimality proven

Gurobi
Cover 623 (99.68%) 621 (99.36%)

1-identifiability 583 (99.32%) 583 (99.32%)

OR-Tools
Cover 624 (99.84%) 624 (99.84%)

1-identifiability 587 (100.0%) 585 (99.66%)

NuWLS-c
Cover 621 (99.36%) 583 (93.28%)

1-identifiability 577 (98.30%) 566 (96.42%)

MNMP
Cover 590 (94.40%) None

1-identifiability 420 (71.55%) None
Table 1. Number of solved instances for each model

Comparison with MNMP Table 1 shows that the greedy algorithm fails to find
the best solution for 6.60% of instances in the monitor cover problem and for
28.45% of instances in the monitor 1-identifiability problem. While all three exact
solvers can find the best solution for a greater number of instances, especially for
the 1-identifiability problem (more than 93%). This highlights the effectiveness of
our models, which have the ability to reduce the number of monitors required in
numerous scenarios. As we can see in figure 5, most of the time the improvement
represents 1 to 3 monitors. Each new monitor adds 2∗|M−1|measurement paths
that need to be regularly probed. Thus, in large topologies that require many
monitors, having some unnecessary monitors can strongly impact the traffic,
especially around the monitors, and congestion can occur. In a context where
minimizing the number of monitor is crucial, the exact solvers are a pertinent
choice, as they are able to offer better solutions than MNMP.
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Fig. 5. Proportion of instances solved against the maximal distance on the objective
with the best solution found (in number of monitors). Because of the logarithmic scale,
the lines start with the proportion of instance for which the solver choose at most one
supplementary monitor.
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Comparison of the Exact Solvers Among the exacts solvers, OR-Tools seems to
be the best approach. It returns the best solution for all the instances in the 1-
identifiability problem and for 99.84% in the cover problem. It is also the model
that proves the optimality of its solution on the most instances (99.84% for the
Cover problem and 99.66% for the 1-identifiability problem). For one particular
instance of the cover problem, Gurobi returns a solution with more than 600
supplementary monitors. What happens is that the solver reaches the time limit
before the end of Gurobi’s presolving. For the 1-identifiability problem, for 3
instances Gurobi returns a solution containing 50 more monitors than the best
solution. The size of the instance is not the problem. Indeed, they contain fewer
than 100 nodes, when the solver is able to find the optimal solution instances
three times larger. Instead the diameter of the graph is determinant here.

8 Conclusion

In this paper, we studied the placement of monitors in a network to ensure
coverage or 1-identifiability of all nodes. We demonstrated that the problem is
NP-hard for both objectives. We proposed three exact models: an Integer Linear
Programming (ILP) model, a Constraint Programming (CP) model, and a Max-
imum Satisfiability (MaxSAT) model. Additionally, we specialized and enhanced
a state-of-the-art greedy algorithm. For most network topologies, all our exact
models were able to find the optimal placement for both problems. Compared to
the current state-of-the-art, an exact approach proved to be valuable, often out-
performing the MNMP greedy algorithm by finding better solutions, frequently
the optimal ones.
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