
Modeling and Exploiting Dominance Rules for
Discrete Optimization with Decision Diagrams

Vianney Coppé[0000−0001−5050−0001], Xavier Gillard[0000−0002−4493−6041], and
Pierre Schaus[0000−0002−3153−8941]

UCLouvain, Louvain-la-Neuve, Belgium
{vianney.coppe,xavier.gillard,pierre.schaus}@uclouvain.be

Abstract. Discrete optimization with decision diagrams is a recent ap-
proach to solve combinatorial problems that can be formulated with dy-
namic programming. It consists in a branch-and-bound algorithm that
iteratively explores the search space by compiling bounded-width deci-
sion diagrams. Those decision diagrams are used both to subdivide a
given problem into smaller subproblems – in a divide-and-conquer fash-
ion – and to compute primal and dual bounds for those. It has been pre-
viously shown that pruning performed during the compilation of those
decision diagrams can greatly impact the quality of the bounds, and con-
sequently the performance of the branch-and-bound algorithm. In this
paper, we study the integration of dominance rules inside the decision
diagram-based optimization framework. We propose a modeling language
for consistently formulating dominance rules for dynamic programming
models, and describe how they can be exploited to systematically detect
and prune dominated nodes during the search. Furthermore, we explain
how to combine this additional filtering mechanism with caching tech-
niques to further improve the performance of the algorithm. Dominance
rules are shown to significantly reduce the number of nodes expanded
and the running time of the algorithm on four optimization problems.

Keywords: Decision diagrams · Branch-and-bound · Dominance rules.

1 Introduction

Discrete optimization with decision diagrams (DDs) [3] is a recent framework
for solving dynamic programming formulations of discrete optimization problems
through branch-and-bound (B&B). It relies on bounded-width DDs to subdivide
the problem into smaller subproblems and compute bounds for those. In par-
ticular, the compilation of restricted DDs generates feasible solutions in a beam
search fashion. Inversely, relaxed DDs automatically compute dual bounds by
means of a problem-specific state merging operator. As shown in [9,14], filtering
techniques that prune nodes a priori during the top-down compilation of ap-
proximate DDs can greatly impact the performance of the B&B algorithm. On
the one hand, restricted DDs produce better solutions because they are guided
towards promising parts of the search space. On the other hand, the pruning

2 V. Coppé et al.

performed inside relaxed DDs further shrinks the areas of the search space that
effectively needs to be explored, which facilitates the work of the B&B algorithm.

Dominance rules are another well-known ingredient that can reduce the size
of the search tree by filtering subproblems leading to redundant solutions. They
were first formalized in [19,20] in the general case of a B&B framework. Sev-
eral optimization paradigms successfully applied them, including MIP [12], CP
[8,23,25] and DP [4,7,16,31]. In any of those technologies, dominance rules play
a crucial role in facilitating the solving process when applicable. Therefore, it is
a very natural step to incorporate this ingredient inside DD-based B&B solvers.
This paper is, to the best of our knowledge, the first to fill this gap for this
particular field of research, although similar work has already been done for
the neighboring line of research on state space search for optimization [21]. Af-
ter a brief summary of the DD-based B&B algorithm in Section 2, it starts
by providing general definitions about dominance rules within the context of
DD-based optimization in Section 3, and describe how dominance rules can be
formulated for DP models. Section 4 then explains how they can be exploited
to systematically detect and prune dominated nodes during the search. Next, a
brief explanation on how to combine this additional filtering mechanism with the
caching techniques proposed in [9] is given in Section 5. Finally, we present in
Section 6 the experimental evaluation of the integration of dominance rules for
four different optimization problems, and discuss the results before concluding.

2 Preliminaries

Dynamic Programming The DD-based optimization framework introduced
in [3] manipulates a discrete optimization problem P through a DP model com-
posed of the following elements:

– a vector of control variables x = (x0, . . . , xn−1) with x ∈ D = D0×· · ·×Dn−1

and xj ∈ Dj for each j ∈ {0, . . . , n− 1}.
– a state space S partitioned into n + 1 sets S0, . . . ,Sn corresponding to the

successive stages of the DP model. In particular, we define the root – or
initial – state r̂, the terminal state t̂ and the infeasible state 0̂.

– a set of transition functions tj : Sj × Dj → Sj+1 with j = 0, . . . , n − 1
encoding the transition from one state sj to another sj+1, according to the
decision d made about variable xj .

– a set of transition value functions hj : Sj ×Dj → R that specify the reward
of assigning some value d ∈ Dj to the variable xj for each j = 0, . . . , n− 1.

– a root value vr to model constant terms in the objective.

Given such a DP model, the optimal solution can be obtained by solving:

maximize f(x) = vr +

n−1∑
j=0

hj(s
j , xj)

subject to sj+1 = tj(s
j , xj), for all j = 0, . . . , n− 1, with xj ∈ Dj

sj ∈ Sj , s
j ̸= 0̂, j = 0, . . . , n.

Dominance Rules for Discrete Optimization with Decision Diagrams 3

Decision Diagrams DDs are used in a variety of domains to compactly encode
a set of solutions, and that also applies to those induced by a DP model. With
this specific application in mind, a DD B = (U,A, σ, l, v) is defined as a layered
directed acyclic graph with U the set of nodes and A the set of arcs. The state
function σ maps each node u ∈ U to a DP state σ(u) ∈ S. The set of nodes
U is partitioned into a set of layers L0, . . . , Ln that correspond to stages of the
DP model. Each transition between pairs of states sj ∈ Sj and sj+1 ∈ Sj+1 is
materialized by an arc a = (uj

d−→ uj+1) that connects the corresponding nodes
uj ∈ Lj , uj+1 ∈ Lj+1, with σ(uj) = sj and σ(uj+1) = sj+1. The label l(a) = d
of each arc represents the assignment of decision d ∈ Dj to variable xj , and
its value v(a) captures the transition value. Both the first and last layer – L0

and Ln – contain a single node, respectively the root r and the terminal node
t. Consequently, each r ⇝ t path p = (a0, . . . , an−1) that connects the root
and the terminal node through the arcs a0, . . . , an−1 encodes a solution x(p) =

(l(a0), . . . , l(an−1)) with value v(p) = vr +
∑n−1

j=0 v(aj). DD B is said exact if it
exactly represents the set of solutions of the corresponding problem, i.e. Sol(B) =
Sol(P) and v(p) = f(x(p)),∀p ∈ B, with Sol(B) = {x(p) | ∃p : r ⇝ t, p ∈ B}. We
denote by v∗(u | B) the value of the longest path that reaches node u within a
DD B, and define v∗(B) = v∗(t | B) for conciseness.

Example 1. Given a set of items N = {0, . . . , n− 1}, along with their weights
W = ⟨w0, . . . , wn−1⟩ and values V = ⟨v0, . . . , vn−1⟩, the goal of the 0–1 Knap-
sack Problem (KP) is to select a subset of items that maximizes the total value
while keeping the total weight under a given capacity C. In its well-known DP
formulation, each item j ∈ N is associated with a binary variable xj that de-
cides whether to include it in the knapsack. States simply contain the remaining
capacity of the knapsack. The state space is thus defined as S = [0, C], with the
root state r̂ = C starting at maximum capacity, and with root value vr = 0. The
transition functions are given by:

tj(s
j , xj) =

{
sj − xjwj , if xjwj ≤ sj ,
0̂, otherwise,

meaning that the weight of item j is subtracted from the remaining capacity
when it is added to the knapsack. If the capacity constraint is violated, the tran-
sition is redirected to the infeasible state. Likewise, the transition value functions
hj(s

j , xj) = xjvj add the value of item j if it is included in the knapsack.
Let us consider an instance of the KP with n = 4, C = 12, W = ⟨6, 5, 6, 6⟩

and V = ⟨5, 6, 1, 6⟩. Figure 1(a) shows the exact DD for that problem. The
longest path corresponds to the optimal solution x∗(B) = (0, 1, 0, 1) for a value
of v∗(B) = 12 and a total weight of 11.

DD compilation Algorithm 1 describes the top-down compilation of a DD B
for a given DP model. It takes a root node ur and a maximum width W as
input and recursively builds the DD by applying all valid transitions to the last
completed layer. When the number of nodes in the last completed layer exceeds

4 V. Coppé et al.

0 5

0 6 0 6

0 01 01 01

0
6 0 6 00

6 0

120

120 65

120 76 65 111

120 76 65 111 06

t12

(a) Exact

L0

L1

L2

L3

L4

x0

x1

x2

x3

0 5

6 6

0 1 0

0 6 0

120

120 65

76 111

76 111

t12

(b) Restricted

0 5

0 6 0 6

0 1 0

00 6

120

120 a1 65 a2

126 111

127 111

t13

(c) Relaxed

Fig. 1. Exact, restricted and relaxed DDs for the KP instance of Example 1. The value
inside each node u corresponds to its state σ(u) – the remaining capacity – and the
annotation on the left gives the value of the longest path that reaches it v∗(u | B). For
clarity, only arc values are present. The longest path is highlighted in bold.

the parameter W at line 7, the algorithm compiles an approximate DD, as will
be detailed next. To create the next layer, the algorithm iterates over all nodes of
the last completed layer and applies all valid DP transitions to them at lines 10
to 10 before encoding them as arcs and nodes. Note that a single node is created
for each distinct state reached by the transitions. The last step of the algorithm
is to merge all nodes of the terminal layer into a single terminal node t at line 15.

Approximate DDs When the size of a layer exceeds the parameter W at line 7
of Algorithm 1, two procedures exist to reduce the number of nodes in the layer.
Restricted DDs adopt a simple strategy that consists in heuristically removing
the least promising nodes of the layer, as described by Algorithm 2. They thus
produce a subset of the solutions of the problem, which provide lower bounds on
the optimal solution. For a restricted DD B, we thus have that Sol(B) ⊆ Sol(P)
and v(p) = f(x(p)),∀p ∈ B. On the other hand, relaxed DDs over-approximate
the set of solutions of the problem by locally relaxing the problem by merging
surplus nodes together. To this end, state merging operators ensuring that no
feasible solutions are removed must be defined for each DP model. If M is the set
of nodes to merge and σ(M) = {σ(u) | u ∈ M} the corresponding set of states,
the operator ⊕(σ(M)) gives the state of the merged node. In Algorithm 2, this
operator is used at line 4 to create a single meta-node and at lines 5 to 6, the arcs
pointing to the merged nodes are redirected to it. A second operator denoted

Dominance Rules for Discrete Optimization with Decision Diagrams 5

Algorithm 1 Compilation of DD B rooted at node ur with max. width W .
1: i← index of the layer containing ur

2: Li ← {ur}
3: for j = i to n− 1 do
4: pruned← ∅
5: perform dominance pruning using Algorithm 3
6: L′

j ← Lj \ pruned
7: if |L′

j | > W then
8: restrict or relax the layer to get W nodes with Algorithm 2
9: Lj+1 ← ∅

10: for all u ∈ L′
j do

11: for all d ∈ Dj do
12: create node u′ with state σ(u′) = tj(σ(u), d) or retrieve it from Lj+1

13: create arc a = (u
d−→ u′) with v(a) = hj(σ(u), d) and l(a) = d

14: add u′ to Lj+1 and add a to A
15: merge nodes in Ln into terminal node t

Algorithm 2 Restriction or relaxation of layer L′
j with maximum width W .

1: while |Lj | > W do
2: M← select nodes from L′

j

3: Lj ← Lj \M
4: create node µ with state σ(µ) = ⊕(σ(M)) and add it to Lj // relaxation only
5: for all u ∈M and arc a = (u′ d−→ u) incident to u do
6: replace a by a′ = (u′ d−→ µ) and set v(a′) = ΓM(v(a), u)

ΓM can be defined to adjust the value of the arcs incident to the merged node at
line 6. For valid relaxation operators, a relaxed DD B verifies Sol(B) ⊇ Sol(P)
and v(p) ≥ f(x(p)),∀p ∈ B. Whereas restricted DDs only contain exact nodes,
relaxed DDs also contain relaxed nodes that are either merged nodes, or nodes
that are reached by at least one path that traverses a merged node.

Branch-and-bound The B&B algorithm introduced in [3] builds upon those
two types of approximate DDs to solve problems to optimality. Restricted DDs
are used to generate feasible solutions from any B&B node, while relaxed DDs
decompose the problem further and provide dual bounds for the subproblems
thus created. Indeed, in a relaxed DD, it is possible to identify a set of exact
nodes whose associated subproblems collectively represent the root problem, and
therefore solving them is equivalent to solving the root problem. The B&B al-
gorithm maintains a queue of such nodes to process, and uses restricted DDs to
try to improve the best solution found so far, and relaxed DDs to further de-
compose the problem and prune unpromising subproblems. When the algorithm
terminates, all solutions have been either enumerated or pruned. For the sake of
conciseness, we do not detail here the additional filtering techniques that have
been proposed in [9,14] to speed up this process.

6 V. Coppé et al.

Example 2. Figure 1(b) shows the result of compiling a restricted DD with max-
imum width W = 2, for the KP instance of Example 1. By applying the greedy
heuristic that deletes nodes with the lowest prefix values, the best solution that
the restricted DD obtains is x∗(B) = (0, 1, 0, 1) with a value of v∗(B) = 12. This
lower bound is actually the optimal solution to the problem.

To compile a relaxed DD for this problem, we first define a state merging op-
erator: ⊕(σ(M)) = maxs∈σ(M) s, which keeps the maximum remaining capacity
among the states to merge. The operator ΓM is the identity function here since
there is no need to modify the arc values. Given those operators, Figure 1(c)
shows a relaxed DD compiled with W = 2. The longest path in this diagram
corresponds to the solution x∗(B) = (0, 1, 1, 1) for a value of v∗(B) = 13 and
a total weight of 17. This solution violates the capacity constraint, which can
happen because the state merging operator relaxes this constraint. Nevertheless,
it provides an upper bound for the problem. If we were to solve the problem
to optimality, a set of exact nodes to explore next would be extracted from the
relaxed DD. For instance, nodes a1 and a2 could be added to the B&B queue.

3 Dominance Rules for Decision Diagrams

Let us now define the concept of node dominance in the DD-based optimization
context. It only concerns exact nodes because relaxed nodes have both a relaxed
value and state representation, and thus do not produce valid dominance rela-
tions. In the following, the operator · denotes the concatenation of two vectors.

Definition 1 (Node Dominance). Let u1 ∈ B1 and u2 ∈ B2 be two exact
nodes respectively obtained in DDs B1 and B2 compiled for a problem P, and
whose states belong to the j-th stage of the corresponding DP model, meaning
that σ(u1), σ(u2) ∈ Sj. We say that u1 dominates u2 – written as u1 ≻ u2
– if for any partial assignment (xj , . . . , xn−1) ∈ Dj × · · · × Dn−1 such that
x2 = x∗(u2 | B2) · (xj , . . . , xn−1) ∈ Sol(P), we also have that x1 = x∗(u1 |
B1) · (xj , . . . , xn−1) ∈ Sol(P) and either:

– σ(u1) ̸= σ(u2) and f(x1) ≥ f(x2),
– or, σ(u1) = σ(u2) and f(x1) > f(x2).

If we are interested in finding a single optimal solution to the problem and
that such dominance relation exists between nodes u1 and u2, then clearly the
exploration of node u2 can be avoided. For some DP models, dominance rules
that systematically identify scenarios where this kind of node dominance rela-
tion exists can be derived. That is, they provide a simple criterion to detect
dominated nodes without needing to expand them in the first place and deter-
mine algorithmically whether such dominance relation arises. We define such
dominance rules through two components:

– The dominance key operator κ : S → S ′ that maps each state of the state
space S of a DP model to a reduced state in a reduced state space S ′. This
operator partitions the state space S in equivalence classes S0, . . . ,SM such

Dominance Rules for Discrete Optimization with Decision Diagrams 7

0 6

0 01

0
6 0

65 a2

65 111

65 c1 111 c2 06

(6, 0) ≺ (11, 1)

c3

t11

(a) Exact DD from a2

0 6

0 01 1

0
6 0

6

120 a1

120 76

120 c4 76 c5 61

(1, 6) ≺ (6, 7)

c6 17

(7, 1) ≺ (11, 1)

c7

t12

(b) Exact DD from a1

Fig. 2. Exact DD compiled from nodes a1 and a2 of Figure 1(b) and exploiting the
dominance rule for this problem.

that ∀s1, s2 ∈ Sm : κ(s1) = κ(s2) for all m = 0, . . . ,M . The dominance key
typically contains a subset of the original state definition and the equivalence
classes group states that are eligible for a dominance relation.

– Furthermore, the partial dominance utility operator ψ : S → Rk transforms
each state into a vector of k coordinates. Given a node u ∈ B, we also define
the dominance utility operator Ψ(u) = (v∗(u | B))·ψ(σ(u)) that concatenates
the node value with the partial utility vector, producing a vector in Rk+1

that must characterize the utility of the corresponding node.

These modeling ingredients are similar, yet slightly more flexible than the resource-
based approach adopted in [21], since they allow reasoning over quantities other
than state variables. The following definition formalizes the connection between
those operators and Definition 1, and the necessary condition for those model-
ing components to constitute a valid dominance rule. It assumes that, given two
vectors x, y ∈ Rk+1, we write x ≥ y if xi ≥ yi for i = 0, . . . , k and x ̸= y.

Definition 2 (Dominance Rule). The operators κ and ψ define a valid domi-
nance rule for a given DP model if, for any two exact nodes u1 ∈ B1 and u2 ∈ B2

obtained in the j-th layer of DDs B1 and B2, having κ(σ(u1)) = κ(σ(u2)) and
Ψ(u1) ≥ Ψ(u2) implies that u1 ≻ u2 holds.

Example 3. In the case of the KP, a node u1 having both higher value and re-
maining capacity than another node u2 will always produce better solutions. This
dominance rule can be formulated through the following dominance key: κ(s) = 0
for each state s, which is the zero-dimensional vector, since all states of the same
stage can be compared. The partial dominance utility is simply ψ(s) = s so that
for a node u ∈ B, the dominance utility operator compares the value and the
remaining capacity Ψ(u) = (v∗(u | B)) · ψ(σ(u)) = (v∗(u | B), σ(u)). Figure 2(a)

8 V. Coppé et al.

shows a DD compiled from node a2 of Figure 1(c), obtained by performing dom-
inance checks using the rule defined above during the compilation. Node c3 is
dominated by c2 since κ(c3) = κ(c2) = 0 and Ψ(c3) = (6, 0) ≤ Ψ(c2) = (11, 1).
It can thus be pruned, resulting in an exact DD even with W = 2.

4 Filtering the Search Using Dominance Rules

In this section, we explain how to systematically detect and prune dominated
nodes within the DD-based B&B algorithm, based on the modeling ingredients
previously defined. In this regard, we propose two strategies that both fall in the
category of memory-based dominance relations [26].

– The first is to perform dominance checks exclusively for nodes belonging to
the same layer of the same DD. This way, no extra memory is required and
the number of nodes for which dominance relations are checked is kept small.

– On the other hand, the second strategy maintains a persistent collection of
non-dominated nodes during the whole search algorithm, and exploits it to
also detect dominance relations across DD compilations.

Preliminary experiments convinced us to pursue the second strategy because of
its much stronger pruning capacities and relatively small – or even positive –
impact on the memory consumption of the algorithm, as will be discussed in
Section 6. This way of enforcing the dominance rules involves storing all non-
dominated nodes found at any stage of the B&B algorithm. We propose to use
a hash table denoted by Frontsj for each DP stage j. Each of these hash tables
stores key-value pairs of the form ⟨κ, Front⟩ that associate each dominance key
κ with a Pareto front denoted Front containing the set of non-dominated nodes.
The only addition to the DD compilation procedure given by Algorithm 1 is that
each layer is filtered through the dominance checks before expanding each of its
nodes. The pruned set collects the pruned nodes of the layer and is used to define
L′
j at line 6, a clone of the j-th layer from which the pruned nodes have been

removed. In the rest of the algorithm, the pruned layer L′
j is employed instead

of Lj to prevent generating any outgoing transition from the pruned nodes.
Algorithm 3 describes the actual dominance detection procedure, which also

takes care of updating the Fronts. It begins by sorting the nodes of layer in
reverse lexicographic order of dominance utilities Ψ at line 1. This ensures that
if there exist two exact nodes u1, u2 ∈ Lj such that u1 ≻ u2, then u1 will be
processed before u2 since Ψ(u1) ≥ Ψ(u2). Then, the algorithm loops over all
nodes of the layer and first determines whether a front already exists for the
dominance key of the current node. If not, it is simply initialized at lines 18
and 20 as a front containing the utility of the current node only. Otherwise, the
existing front is retrieved as Front at lines 5 and 6 and the dominance check
with respect to this front is initiated. By comparing the utility of the current
node against those of the non-dominated nodes found so far, the node is declared
dominated or not. In the dominated case, it is added to the pruned set at line 15,
and otherwise to the Front at line 17. Along the way, every entry that the current

Dominance Rules for Discrete Optimization with Decision Diagrams 9

Algorithm 3 Dominance-based filtering of layer Lj of a DD B.
1: sort nodes u in Lj in reverse lexicographic order of Ψ(u)
2: for all u ∈ Lj do
3: if u is relaxed then
4: continue
5: if Frontsj .contains(κ(σ(u))) then
6: Front← Frontsj .get(κ(σ(u)))
7: dominated← False
8: for all Ψ ′ ∈ Front do
9: if Ψ(u) ≤ Ψ ′ then // exit if Ψ(u) is dominated

10: dominated← True
11: break
12: if Ψ(u) ≥ Ψ ′ then // remove entries that Ψ(u) dominates
13: Front← Front \ {Ψ ′}
14: if dominated then
15: pruned← pruned ∪ {u}
16: else // add to front if non-dominated
17: Front← Front ∪ {Ψ(u)}
18: else // initialize if first with given key
19: Front← {Ψ(u)}
20: Frontsj .insert(⟨κ(σ(u)), F ront⟩)

node dominates is removed from the Front with line 13 to keep its size as small
as possible. Note that this process is performed both for restricted and relaxed
DDs, meaning that both types of DD benefit from this filtering mechanism. In
addition, the exploratory nature of restricted DDs can help quickly find strong
non-dominated nodes, and thus generate a lot of pruning early in the search.

Example 4. Using this procedure, we can derive dominance relations between
nodes belonging to the DDs shown on Figure 2. Let us assume that the Fronts
have already been filled with the utilities of the nodes reached by the ex-
act DD of Figure 2(a). We thus have that Fronts3 = {⟨0, {(5, 6), (11, 1)}⟩}.
Now if we consider layer L3 of the exact DD given by Figure 2(b), we can
first compute the utility – given by Ψ(u) = (v∗(u | B), σ(u)) – of each node:
Ψ(c4) = (0, 12), Ψ(c5) = (6, 7), Ψ(c6) = (1, 6) and Ψ(c7) = (7, 1), and then order
the nodes by reverse lexicographic order of those, which produces: ⟨c7, c5, c6, c4⟩.

– Node c7 with Ψ(c7) = (7, 1) is dominated by utility (11, 1) in the front and
is thus added to the pruned set.

– Node c5 with Ψ(c5) = (6, 7) is not dominated by any utility in the front and
is thus added to the front. Moreover, it dominates the utility (5, 6), which is
therefore removed from the front. This gives: Fronts3 = {⟨0, {(11, 1), (6, 7)}⟩}.

– Node c6 with Ψ(c6) = (1, 6) is dominated by the utility that was just added
to the front and is inserted in the pruned set.

– Finally, node c4 with Ψ(c4) = (0, 12) is added to the front because it has the
largest remaining capacity and is therefore non-dominated. The final front
is given by Fronts3 = {⟨0, {(11, 1), (6, 7), (0, 12)}⟩}.

10 V. Coppé et al.

5 Synergy with Caching

In [9], a caching mechanism was proposed to mitigate the number of repeated
expansions of DP states, which are reached by multiple approximate DDs dur-
ing the search. It includes a bottom-up procedure that computes an expansion
threshold for each exact state reached by a relaxed DD, and that exploits the
pruning inequalities of each filtering technique involved. Nodes are discarded
whenever their value is lower or equal to the threshold. To combine dominance
rules with this caching and pruning rule, we specify how expansion thresholds
are computed in case of dominance pruning. Given a relaxed DD B, an exact
node u ∈ B with σ(u) ∈ Sj and a utility Ψ ′ ∈ Frontsj [κ(u)] such that Ψ ′ ≥ Ψ(u),
the dominance pruning threshold of u is defined by, with Ψ ′ = (v′) · ψ′:

θp(u | B) =

{
v′ − 1, if ψ′ = ψ(u),

v′, otherwise.

Indeed, if u is dominated by a utility with the same partial utility, nodes with the
same DP state will always be pruned unless they have a value of v′ or higher. On
the other hand, if u is dominated by a utility with a better partial utility, then
nodes with the same DP state will always be pruned unless their value strictly
exceeds v′. As these thresholds are propagated bottom-up in the relaxed DDs,
dominance rules will also strengthen expansion thresholds for states of earlier
DP stages, and can thus also reinforce the cache-based pruning strategy.

6 Computational Experiments

In this section, we evaluate experimentally the impact of dominance rules within
the DD-based solver DDO [15]. To this end, four DP formulations were imple-
mented and applied to the associated benchmark instances. For all problems,
600 seconds were given to solve each instance to optimality on a single thread,
with the techniques described in [9,14] enabled by default. We first give a high-
level description of the DP models and dominance rules of each problem, and of
the benchmark instances and settings used before discussing the results of the
experiments. Whereas the given definition of the dominance utility assumes that
greater is better, the opposite rule is applied for minimization problems.

6.1 Experimental Setting

TSPTW The Traveling Salesman Problem with Time Windows is a variant of
the well-known Traveling Salesman Problem where the cities are replaced by a
set of customers N = {0, . . . , n− 1} that must each be visited during a given
time window. The objective is to find a tour starting and ending at customer 0 –
the depot – and that visits all customers during their time window in the shortest
possible time. The DP model used in the experiments is the one presented in [13],
which extends the model introduced in [17] for the TSP. However, the present

Dominance Rules for Discrete Optimization with Decision Diagrams 11

description omits state components that are not relevant for the dominance rule,
but are useful to tighten the relaxation of the problem.

– DP model: the state representation contains a tuple (c, t,M), where c ∈ N
and t respectively represent the customer and time of the last visit made
by the salesman. The set M ⊆ N contains the customers that still must be
visited. Starting from the root state r̂ = (0, 0, N), the transitions then model
the possible next visits of the salesman and the associated cost.

– Dominance rule: if two states represent the salesman at the same location
and having visited the same set of customers, then the one arriving earlier
is always preferred. This dominance rule can be expressed by specifying the
following dominance key: κ(s) = (s.c, s.M). Then, the utility of a state is
given by the elapsed time: ψ(s) = s.t. We could also simply have ψ(s) = 0
since the elapsed time is also captured by the node value. However, the
definition given is also valid for the travel time version of the TSPTW.

All configurations of the DD-based solver were tested on a classical set of bench-
mark instances introduced in the following papers [1,11,22,28,30]. A dynamic
width was used, where the maximum width for layers at depth j is given by
n× (j + 1)× α with n the number of variables in the instance.

ALP The Aircraft Landing Problem requires to schedule the landing of a set
of aircraft N = {0, . . . , n− 1} on a set of runways R = {0, . . . , r − 1}. The air-
craft have an earliest and latest landing time. Moreover, the set of aircraft is
partitioned in disjoint sets A0, . . . , Ac−1 corresponding to c aircraft classes. For
each pair of aircraft classes, a minimum separation time between the landings is
given. The goal is to find a feasible schedule for all the aircraft, which minimizes
the total waiting time – the delay between the earliest landing times and sched-
uled landing times – while respecting the latest landing times. The DP model
presented in [24] was implemented, with a slightly different dominance rule.

– DP model: states are pairs (Q,ROP), with Q a vector that gives the re-
maining number of aircraft of each class to schedule and ROP a runway
occupation profile: a vector containing pairs (l, c) that respectively give the
time and aircraft class of the latest landing scheduled on each runway. The
root state r̂ = ((|A0|, . . . , |Ac−1|) , ((0,⊥), . . . , (0,⊥))) corresponds to the
total number of aircraft to schedule for each class and an empty runway
occupation profile, and the transitions model the next possible landings for
each aircraft class and runway.

– Dominance rule: for a fixed remaining number of aircraft to schedule for
each class and a same aircraft class previously scheduled on each runway, it is
always better to have an earlier previous landing time if it comes with a bet-
ter or equal objective function. This is expressed by the following dominance
key and dominance utility vector: κ(s) = (s.Q, (s.ROP0.c, . . . , s.ROPr−1.c))
and ψ(s) = (s.ROP0.l, . . . , s.ROPr−1.l).

A set of 720 random instances was generated, with n ∈ {25, 50, 75, 100} aircraft,
r ∈ {1, 2, 3, 4} runways, and c = 4 aircraft classes. The target landing times

12 V. Coppé et al.

0 250 500
time (s)

0

200

400
#

 in
st

an
ce

s
so

lv
ed

ALP

0 250 500
time (s)

0

500

1000

KP

0 250 500
time (s)

0

20

40

60
LCS

0 250 500
time (s)

0

200

TSPTW

DDO DDO + Dominance

Fig. 3. Cumulative number of instances solved over time by DDO and DDO+D.

were generated by a Poisson arrival process with a mean inter-arrival time of
40/r, instances with more runways thus require producing denser schedules. An
arbitrary width of W = 100 is used for all experiments concerning the ALP.

LCS The Longest Common Subsequence Problem considers a set of m strings
S = {S0, . . . , Sm−1} and asks for the longest subsequence that appears in all of
them. We reproduced the formulation presented in [18] almost identically.

– DP model: states are defined as tuples ⟨p0, . . . , pm−1⟩ that give the cur-
rent position in each string. The root state r̂ = ⟨0, . . . , 0⟩ corresponds to
the beginning of each string, and the transitions model the insertion of one
character at the end of the subsequence and adapt the current positions.

– Dominance rule: Given states with the same current position in string S0,
it is always better to have both lower other positions and a greater objective
value. This is expressed by the following dominance key and dominance
utility vector: κ(s) = 0 and ψ(s) = s.

We used the following classical benchmark instances: BB [6], BL [5], Rat, Virus
and Random [32], Poly and Abstract [27], but limited to instances with
m < 10. A fixed width of 100 is used for all experiments concerning the LCS.

KP We solve the KP with all the ingredients presented in Examples 1 to 3.
In addition, variables are ordered so that the items are considered in decreasing
profit-to-weight ratios and the LP bound of [10] is used as an additional dual
bound. A set of benchmark instances consisting of a random selection of 2% of
the instances from [29] (636 instances) and 10% of the instances from [33] (530
instances). Again, a fixed width of 100 is used for all instances and configurations.

6.2 Results

Number of instances solved Figure 3 shows the number of instances solved by
each solver and configuration with respect to the solving time. For all problems
except the KP, DDO with dominance rules enabled – referred to as DDO+D

Dominance Rules for Discrete Optimization with Decision Diagrams 13

0 1 2
nodes exp.

(DDO)
1e8

0

1

2
#

 n
od

es
 e

xp
an

de
d

(D
D

O
 +

 D
om

in
an

ce
) 1e8 ALP

0.0 0.5 1.0
nodes exp.

(DDO)
1e9

0.0

0.5

1.0

1e9 KP

0 1 2
nodes exp.

(DDO)
1e8

0

1

2

1e8 LCS

0 1 2
nodes exp.

(DDO)
1e8

0.0

0.5

1.0

1.5

2.0
1e8 TSPTW

Fig. 4. Comparison of the number of node expansions performed by DDO and DDO+D
for each instance solved by both configurations.

from now on – solves more instances than DDO, and by a large margin. As a
result, we can confidently say that the integration of dominance rules has a very
positive impact on the performance of the B&B algorithm. In the case of the
KP, this low performance gain can be attributed to the fact that, when using
the profit-to-weight ratio variable ordering and the LP bound, many unpromising
partial solutions are quickly discarded and thus fewer dominance relations arise.

Number of node expansions The impact of the dominance rules can also
be measured in terms of the number of nodes expanded during the successive
approximate DD compilations. Figure 4 shows a pairwise comparison of this
measure for each instance solved by both configurations. It appears that solving
additional instances with DDO+D is made possible by a reduction in the number
of node expansions needed to close them. Moreover, it clearly shows the magni-
tude of the filtering brought by the dominance rules, since for many instances
that are unsolved by DDO, DDO+D requires only a negligible amount of node
expansions to close them. For the KP, however, it seems that the decrease in
node expansions is more significant than the decrease in time. This is probably
due to the formulation of the dominance rule that needs to perform dominance
checks for all pairs of nodes belonging to the same layer. For this kind of dom-
inance checks, it might be worth considering a more specialized data structure
than a simple list for the Fronts, such as k-d trees [2].

Quality of the first solution Another important dimension for a solver is the
quality of the first solution found, which captures its anytime behavior. Figure 5
compares the value of the first solution found by DDO and DDO+D for each
instance, as well as the iteration – in terms of B&B nodes – at which this solution
is found for the TSPTW and the ALP. Indeed, those problems both have time
window constraints that can make it difficult to find feasible solutions. This
comparison allows us to make several observations for each problem:

– ALP: the quality of the first solution found by DDO+D is in general slightly
better than the one obtained by DDO – in 314 cases, while the opposite

14 V. Coppé et al.

0.0 1.4 2.8 4.2
first sol. value

(DDO)
1e4

0.0

1.4

2.8

4.2
fir

st
 s

ol
. v

al
ue

(D
D

O
 +

 D
om

in
an

ce
)

1e4 ALP

0 1 2 3
first sol. value

(DDO)
1e8

0

1

2

3 1e8 TSPTW

0 2 4
first sol. value

(DDO)
1e10

0

2

4

1e10 KP

0 3 6 9
first sol. iter.

(DDO)
1e4

0

3

6

9

fir
st

 s
ol

. i
te

r.
(D

D
O

 +
 D

om
in

an
ce

)

1e4 ALP

0.0 0.5 1.0 1.5
first sol. iter.

(DDO)
1e3

0.0

0.5

1.0

1.5
1e3 TSPTW

0 200 400 600
first sol. value

(DDO)

0

200

400

600

fir
st

 s
ol

. v
al

ue
(D

D
O

 +
 D

om
in

an
ce

)

LCS

Fig. 5. Comparison of the value of the first solution obtained for each instance by DDO
and DDO+D, and of the iteration at which it is found for ALP and TSPTW.

occurs in 118 cases. Furthermore, there are 29 instances for which DDO does
not manage to find a single feasible solution to the problem, unlike DDO+D.
In addition, when comparing the iteration at which the first solution is found,
it appears that DDO+D finds a solution earlier than DDO for 235 instances,
whereas the opposite is true for only 26 instances.

– TSPTW: the quality of the first solution found is only moderately impacted
by the addition of dominance rules. Still, DDO+D finds a better first solution
than DDO in 32 cases, against 4 cases in the other direction. Moreover, when
looking at the iteration at which this first solution is found, we can see that
DDO+D obtains it slightly earlier in the search for 34 instances, whereas
the opposite is true for only 8 instances.

– LCS and KP: they are both maximization problems, so this time DDO+D
compares better for data points located above the diagonal line. Although it
is difficult to distinguish the solution values for the KP on Figure 5, DDO+D
actually finds a slightly better solution than DDO in 229 cases, compared to
only 20 cases in the opposite direction. For LCS, this occurs for 201 instances,
whereas DDO finds a better first solution in 93 cases.

Integrating dominance rules therefore also contributes to quickly producing qual-
ity solutions by moving the compilation of restricted DDs away from parts of
the search space that are not worth spending time on.

Dominance Rules for Discrete Optimization with Decision Diagrams 15

0 2
memory (mb)

(DDO)
1e4

0

1

2

3
m

em
or

y
(m

b)
(D

D
O

 +
 D

om
in

an
ce

) 1e4 ALP

0 2
memory (mb)

(DDO)
1e5

0

1

2

3
1e5 KP

0 1 2
memory (mb)

(DDO)
1e4

0

1

2 1e4 LCS

0.0 2.5 5.0
memory (mb)

(DDO)
1e4

0

2

4

6 1e4 TSPTW

Unsolved by both
Solved by DDO only

Solved by both
Solved by DDO + Dominance only

Fig. 6. Comparison of the peak amount of memory used for each instance by DDO
and DDO+D, shown in different colors depending on which configurations solved it.

Memory consumption Finally, we discuss the memory footprint of main-
taining the Fronts used to continually derive dominance relations with respect
to non-dominated exact nodes previously found. Figure 6 compares the peak
amount of memory used by both configurations for each instance. For all prob-
lems, we observe that a lower amount of memory is used by DDO+D for the
large majority of instances solved by both configurations or only by DDO+D.
Even for instances that both configurations fail to solve, DDO+D does not nec-
essarily require more memory than DDO – the only exception is the TSPTW,
although the maximum amount of memory used by DDO+D in those cases is
not much larger than that reached by DDO for some instances.

7 Conclusion

In this paper, we proposed a formalism for specifying dominance rules of DP
models. We then explained how they can be exploited within the DD compila-
tion algorithm, as well as for the B&B algorithm as a whole by introducing a
persistent data structure used to detect dominance relations across DD compila-
tions. In addition, we showed how to combine this filtering mechanism with the
caching procedure introduced in [9]. The modeling of the dominance rules was
illustrated on four optimization problems and its impact was evaluated through
extensive computational experiments. The results clearly highlight the interest
of this additional ingredient, which significantly reduces the number of node
expansions required by the algorithm to close the instances. This is directly re-
flected by the corresponding solving times, and leads to the resolution of many
instances previously unsolved by DDO. Moreover, the experiments demonstrate
the beneficial effect that dominance rules have in the ability of the algorithm to
quickly find quality solutions, especially when the problem is highly constrained.
Finally, the proposed memory-based dominance filtering procedure was shown
to reduce the memory consumption of the solver in most cases.

16 V. Coppé et al.

References

1. Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible
manufacturing systems. Ph.D. thesis, University of Technology Berlin (1996)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

3. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS Journal on Computing 28(1), 47–66 (2016)

4. Bianco, L., Mingozzi, A., Ricciardelli, S.: The traveling salesman problem with
cumulative costs. Networks 23(2), 81–91 (1993)

5. Blum, C., Festa, P.: Longest common subsequence problems. Metaheuristics for
String Problems in Bioinformatics pp. 45–60 (2016)

6. Blum, C., Blesa, M.J.: Probabilistic beam search for the longest common sub-
sequence problem. In: International Workshop on Engineering Stochastic Local
Search Algorithms. pp. 150–161. Springer (2007)

7. Chambers, R.J., Carraway, R.L., Lowe, T.J., Morin, T.L.: Dominance and de-
composition heuristics for single machine scheduling. Operations Research 39(4),
639–647 (1991)

8. Chu, G., Stuckey, P.J.: Dominance breaking constraints. Constraints 20, 155–182
(2015)

9. Coppé, V., Gillard, X., Schaus, P.: Decision diagram-based branch-and-bound with
caching for dominance and suboptimality detection (2023)

10. Dantzig, G.B.: Discrete-variable extremum problems. Operations Research 5(2),
266–277 (1957)

11. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for
the traveling salesman problem with time windows. Operations research 43(2),
367–371 (1995)

12. Fischetti, M., Salvagnin, D.: Pruning moves. INFORMS Journal on Computing
22(1), 108–119 (2010)

13. Gillard, X.: Discrete optimization with decision diagrams: design of a generic solver,
improved bounding techniques, and discovery of good feasible solutions with large
neighborhood search. Ph.D. thesis, UCL-Université Catholique de Louvain (2022)

14. Gillard, X., Coppé, V., Schaus, P., Cire, A.A.: Improving the filtering of branch-
and-bound mdd solver. In: International Conference on Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research. pp. 231–
247. Springer (2021)

15. Gillard, X., Schaus, P., Coppé, V.: Ddo, a generic and efficient framework for mdd-
based optimization. In: Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence. pp. 5243–5245 (2021)

16. Haahr, J.T., Pisinger, D., Sabbaghian, M.: A dynamic programming approach for
optimizing train speed profiles with speed restrictions and passage points. Trans-
portation Research Part B: Methodological 99, 167–182 (2017)

17. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied mathematics 10(1), 196–210
(1962)

18. Horn, M., Raidl, G.R.: A∗-based compilation of relaxed decision diagrams for the
longest common subsequence problem. In: International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research. pp.
72–88. Springer (2021)

Dominance Rules for Discrete Optimization with Decision Diagrams 17

19. Ibaraki, T.: The power of dominance relations in branch-and-bound algorithms.
Journal of the ACM (JACM) 24(2), 264–279 (1977)

20. Kohler, W.H., Steiglitz, K.: Characterization and theoretical comparison of branch-
and-bound algorithms for permutation problems. Journal of the ACM (JACM)
21(1), 140–156 (1974)

21. Kuroiwa, R., Beck, J.C.: Domain-independent dynamic programming: Generic
state space search for combinatorial optimization. In: Proceedings of the Inter-
national Conference on Automated Planning and Scheduling. vol. 33, pp. 236–244
(2023)

22. Langevin, A., Desrochers, M., Desrosiers, J., Gélinas, S., Soumis, F.: A two-
commodity flow formulation for the traveling salesman and the makespan problems
with time windows. Networks 23(7), 631–640 (1993)

23. Lee, J.H., Zhong, A.Z.: Exploiting functional constraints in automatic dominance
breaking for constraint optimization. Journal of Artificial Intelligence Research 78,
1–35 (2023)

24. Lieder, A., Briskorn, D., Stolletz, R.: A dynamic programming approach for the
aircraft landing problem with aircraft classes. European Journal of Operational
Research 243(1), 61–69 (2015)

25. Mears, C., De La Banda, M.G.: Towards automatic dominance breaking for con-
straint optimization problems. In: Twenty-Fourth International Joint Conference
on Artificial Intelligence (2015)

26. Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound al-
gorithms: A survey of recent advances in searching, branching, and pruning. Dis-
crete Optimization 19, 79–102 (2016)

27. Nikolic, B., Kartelj, A., Djukanovic, M., Grbic, M., Blum, C., Raidl, G.: Solving
the longest common subsequence problem concerning non-uniform distributions of
letters in input strings. Mathematics 9(13), 1515 (2021)

28. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transportation Science 32(1), 12–29 (1998)

29. Pisinger, D.: Where are the hard knapsack problems? Computers & Operations
Research 32(9), 2271–2284 (2005)

30. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows part ii:
genetic search. INFORMS Journal on Computing 8(2), 165–172 (1996)

31. Righini, G., Salani, M.: Decremental state space relaxation strategies and initial-
ization heuristics for solving the orienteering problem with time windows with dy-
namic programming. Computers & Operations Research 36(4), 1191–1203 (2009)

32. Shyu, S.J., Tsai, C.Y.: Finding the longest common subsequence for multiple bio-
logical sequences by ant colony optimization. Computers & Operations Research
36(1), 73–91 (2009)

33. Smith-Miles, K., Christiansen, J., Muñoz, M.A.: Revisiting where are the hard
knapsack problems? via instance space analysis. Computers & Operations Research
128, 105184 (2021)

	Modeling and Exploiting Dominance Rules for Discrete Optimization with Decision Diagrams

