
Solving the Constrained Single-Row Facility Layout
Problem with Decision Diagrams
Vianney Coppé �

UCLouvain, Louvain-la-Neuve, Belgium

Xavier Gillard �

UCLouvain, Louvain-la-Neuve, Belgium

Pierre Schaus �

UCLouvain, Louvain-la-Neuve, Belgium

Abstract
The Single-Row Facility Layout Problem is an NP-hard problem dealing with the ordering of
departments with given lengths and pairwise tra�c intensities in a facility. In this context, one seeks
to minimize the sum of the distances between department pairs, weighted by the corresponding
tra�c intensities. Practical applications of this problem include the arrangement of rooms on a
corridor in hospitals or o�ces, airplanes and gates in an airport or machines in a manufacture. This
paper presents two novel exact models for the Constrained Single-Row Facility Layout Problem, a
recent variant of the problem including positioning, ordering and adjacency constraints. On the
one hand, the state-of-the-art mixed-integer programming model for the unconstrained problem is
extended to incorporate the constraints. On the other hand, a decision diagram-based approach
is described, based on an existing dynamic programming model for the unconstrained problem.
Computational experiments show that both models outperform the only mixed-integer programming
model in the literature, to the best of our knowledge. While the two models have execution times of
the same order of magnitude, the decision diagram-based approach handles positioning constraints
much better but the mixed-integer programming model has the advantage for ordering constraints.

2012 ACM Subject Classification Mathematics of computing æ Combinatorial optimization

Keywords and phrases Discrete Optimization, Mixed-Integer Programming, Decision Diagrams,
Constrained Single-Row Facility Layout Problem

Digital Object Identifier 10.4230/LIPIcs.CP.2022.3

Supplementary Material https://github.com/vcoppe/csrflp-dd, https://github.com/vcoppe/csrflp-
mip

1 Introduction

The Single-Row Facility Layout Problem (SRFLP) is an ordering problem considering a set of
departments in a facility, with given lengths and pairwise tra�c intensities. Its goal is to find
a linear ordering of the departments minimizing the weighted sum of the distances between
department pairs. The SRFLP is applied in di�erent fields to arrange items such as rooms
on a corridor in hospitals or o�ces [52], airplanes and gates in an airport [53], machines in a
manufacture [30], books on a shelf and files in disk cylinders [50]. When all facilities have
equal lengths and the tra�c intensities are binary, the problem is known as the Minimum

Linear Arrangement Problem (MinLA). It is a well-known graph layout problem which has
been proved to be NP-hard [20] and consequently, so is the SRFLP.

Due to its di�culty in being solved by exact methods, many heuristic techniques have
been designed to find good quality solutions to the SRFLP problem [19, 28, 29, 41] and
more recently [18, 23, 40, 47, 51]. The first attempt to solve the SRFLP optimally was a
branch-and-bound algorithm with interesting lower bounds [52]. Later, the DP approach
presented in [39] was applied to the SRFLP in [50]. More recent techniques include non-linear

© Vianney Coppé, Xavier Gillard and Pierre Schaus;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

3:2 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

programming [31], linear mixed-integer programming (MIP) [2, 3, 46], branch-and-cut [4, 5]
and semidefinite programming [7, 8, 9, 35, 36].

In [37], positioning, ordering and relation constraints were suggested for the SRFLP to
model real-life situations. The resulting problem is called the Constrained Single-Row Facility

Layout Problem (cSRFLP). They also proposed a permutation-based genetic algorithm to
solve this new problem and reported very good results, with objective values deviating by
only a few percents from the best known solutions to the unconstrained problem for instances
with up to 100 departments. In [44], the first MIP model solving the cSRFLP is introduced
and a constrained improved fireworks algorithm is described. The latter is shown to find
solutions of better quality than the genetic algorithm of [37].

This paper begins with a formal definition of the SRFLP in Section 2 and of the constraints
that constitute the cSRFLP. We then present two novel exact models to solve the problem.
In Section 3, we model the constraints of the cSRFLP on top of the state-of-the-art MIP
model for the SRFLP [4]. Likewise, Section 4 recalls the dynamic programming (DP) model
for the SRFLP from [50] and shows how the new constraints can be integrated. This DP
model will be used as the basis of a decision diagram-based approach described in detail in
Sections 5 and 6.

A decision diagram (DD) is a data structure used to encode sets in a compressed form
through a graphical representation. They first appeared as binary decision diagrams for
the representation of Boolean functions and were successfully used for circuit design and
formal verification [1, 15, 34, 43]. Among the wide variety of domains in which the DDs
were applied through the years [45, 56], the compactness which they provide was exploited
in constraint programming [32, 48, 55] and optimization [10, 25, 26, 27, 42]. Recently, a
complete framework for discrete optimization with decision diagrams was introduced in [13].
It relies on a DP model of the problem, which can represent the solution space in a compact
form. In spite of their compactness, DDs encoding hard optimization problems may not fit
in memory. The exact optimization method is therefore built upon relaxed and restricted

DDs. These approximate DDs were introduced in [6, 11, 14] for their ability to provide tight
lower and upper bounds [16, 17, 33, 54]. An adapted branch-and-bound algorithm based
exclusively on DDs was presented in [13].

In Section 7, the results of our computational experiments are presented. They show that
our two new models outperform the MIP model from [44] in terms of solving time. Other
than that, there is no clear winner between the DD approach and the new MIP model. The
former seems to handle positioning constraints better while the latter is particularly e�cient
for relation constraints. However, the ability to parallelize the DD approach is unmatched
by the MIP solver. The paper concludes with a summary of our contributions and directions
for future work.

2 Problem Definition

This section is organized as follows, a formal definition of the SRFLP is given in Section 2.1
which is then completed in Section 2.2 with the constraints that constitute the cSRFLP.

2.1 SRFLP
The SRFLP is a linear ordering problem considering a set N = {1, 2, . . . , n} of departments in
a facility. Each department i has a given length li and is connected to all other departments
by a tra�c intensity cij . Both the lengths and the tra�c intensities are positive integers. It

V. Coppé, X. Gillard and P. Schaus 3:3

c12 = 8

c13 = 3

c14 = 5

c23 = 1

c24 = 4

c34 = 6

1 2 3 4

l1 = 5 l2 = 3 l3 = 2 l4 = 6

center-to-center

end-to-start

Figure 1 An instance of the SRFLP with 4 departments ordered optimally. The lengths of
the departments are noted below them and the pairwise tra�c intensities are given on the edges
connecting pairs of departments. Center-to-center and end-to-start distances between departments
one and three are shown.

is imposed that cij = cji but it is not a modeling restriction since a trip in any direction
covers the same distance, the tra�c intensities can thus concentrate both directions [52].

A solution to the SRFLP is an ordering of the departments on a line, defined by the
bijection fi : N æ {1, 2, . . . , n}. If dfi

ij is the center-to-center distance between departments i
and j for ordering fi, the cost function to minimize is formulated as follows:

SRFLP (fi) =
nÿ

i=1

nÿ

j=1
i<j

cijdfi
ij . (1)

It is a measure of the total distance traveled by components or products within the
facility. Using center-to-center distances implies that we must deal with half department
lengths. However, one can notice that wherever a department i is placed with respect to a
department j, the center-to-center distance between i and j will be at least li+lj

2 . This leads
to a reformulation that simplifies the coming formulas:

SRFLP (fi) =
nÿ

i=1

nÿ

j=1
i<j

cij d̃fi
ij + K with K =

nÿ

i=1

nÿ

j=1
i<j

cij
li + lj

2 (2)

where d̃fi
ij is the end-to-start distance (see Figure 1) separating departments i and j and K

is a constant accounting for all contributions of half department lengths [52].

I Example 1. Let us illustrate the computation of the objective function on the facility
given in Figure 1. We first compute the value of the constant K:

K = c12
l1 + l2

2 + c13
l1 + l3

2 + c14
l1 + l4

2 + c23
l2 + l3

2 + c24
l2 + l4

2 + c34
l3 + l4

2
= 85 + 3

2 + 35 + 2
2 + 55 + 6

2 + 13 + 2
2 + 43 + 6

2 + 62 + 6
2

= 8 · 4 + 3 · 3.5 + 5 · 5.5 + 1 · 2.5 + 4 · 4.5 + 6 · 4 = 114.5

CP 2022

3:4 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

and then the cost of the ordering fi(i) = i, ’i œ N as shown in Figure 1:

SRFLP (fi) = c12d̃fi
12 + c13d̃fi

13 + c14d̃fi
14 + c23d̃fi

23 + c24d̃fi
24 + c34d̃fi

34 + K

= c12 · 0 + c13l2 + c14(l2 + l3) + c23 · 0 + c24l3 + c34 · 0 + K

= 8 · 0 + 3 · 3 + 5 · (3 + 2) + 1 · 0 + 4 · 2 + 6 · 0 + 114.5 = 156.5.

2.2 cSRFLP
The cSRFLP is obtained by adding three types of constraints to the SRFLP:

Positioning constraints: A department is forced to be located at a specific position within
the ordering. These constraints are described by a function position : N æ N fi{0} which
maps positions to their corresponding department or to 0 if there is no constraint on
the position. To simplify the coming equations, we also define the function department :
N æ N fi {0} which is the inverse mapping, between departments and positions.
Ordering constraints: These constraints impose that some department must come before
another one in the ordering. Formally, the function predecessors : N æ 2N gives the set
of predecessors of each department, i.e. all departments that must be placed on the left
of the given department.
Relation constraints: Similarly to ordering constraints, relation constraints impose a
relative ordering between a pair of departments. In this case, however, the two departments
are required to be adjacent in the ordering. The function previous : N æ N fi {0} maps
departments to the department that must be placed right before, or to 0 if there is no
such constraint.

3 Mixed-Integer Programming Model

In this section, we integrate the constraints of the cSRFLP to the MIP model for the SRFLP,
used within the branch-and-cut framework of [4]. This model uses betweenness variables ’ijk

which describe the relative ordering of departments i, j, k œ N in an ordering fi:

’fi
ijk =

;
1, if fi(i) < fi(k) < fi(j) or fi(j) < fi(k) < fi(i)
0, otherwise. (3)

Using those variables, the objective function can be formulated as follows:

SRFLP (’) =
ÿ

iœN

ÿ

jœN
i<j

cij

ÿ

kœN

’ijklk + K (4)

and is to be minimized under the following constraints:

’ijk = ’jik ’{i, j, k | i < j} ™ N (5)
’ijk + ’ikj + ’jki = 1 ’{i, j, k} ™ N (6)
’ijd + ’jkd ≠ ’ikd Ø 0 ’{i, j, k, d} ™ N (7)
’ijd + ’jkd + ’ikd Æ 2 ’{i, j, k, d} ™ N. (8)

Equation (5) follows from the definition of the betweenness variables in Equation (3).
Equation (6) states that only one department among i, j, k lies between the two others.
Finally, Equations (7) and (8) express the fact that when a department d is placed between

V. Coppé, X. Gillard and P. Schaus 3:5

departments i and k, then the department d must either lie between departments (a) i and j
or (b) j and k, but not both (a) and (b).

We now present how the constraints of the cSRFLP can be integrated in the model.
A solution to the original model specifies a relative ordering of the departments. Yet,
it does not impose one extremity to the left of the arrangement. As we will need this
information in the constraints presented in Section 2.2, we solve this issue by adding two
dummy departments L and R. For the cSRFLP, the set of departments is thus defined as
N = {1, . . . , n} fi {L, R} and departments L and R also obey Equations (3)–(8). We set
lL = lR = 0 and cLi = ciL = cRi = ciR = 0, ’i œ N so that the dummy departments have no
impact on the objective function. Department L and R are respectively forced on the left
and right side of the arrangement by adding the constraints:

’LRi = 1 ’i œ N \ {L, R} (9)
’ijL = 0 ’i, j œ N (10)
’ijR = 0 ’i, j œ N. (11)

Equation (9) imposes that all other departments are placed between departments L and
R. Inversely, Equations (10) and (11) ensure that departments L and R are not placed
between any two departments.

We can now write the additional constraints of the model for the cSRFLP:

nÿ

k=1
’Lik = j ≠ 1 ’i œ N, position(i) = j ”= 0 (12)

nÿ

k=1
’iRk = n ≠ j ’i œ N, position(i) = j ”= 0 (13)

’Lij = 0 ’i, j œ N, i œ predecessors(j) ‚ i = previous(j) (14)
’Lji = 1 ’i, j œ N, i œ predecessors(j) ‚ i = previous(j) (15)
’iRj = 1 ’i, j œ N, i œ predecessors(j) ‚ i = previous(j) (16)
’jRi = 0 ’i, j œ N, i œ predecessors(j) ‚ i = previous(j) (17)
’ijk = 0 ’i, j œ N, i = previous(j), k œ N \ {i, j}. (18)

Equations (12) and (13) ensure that j≠1 departments are located on the left of department
i and n≠ j on the right, given that i must be placed at the j-th position. Equations (14)–(17)
impose that i is placed between L and j and that j is placed between i and R, when either i
is a predecessor of j or i must be placed right before j. Finally, Equation (18) is added for
relation constraints to avoid having any departments placed between the two departments
involved in the constraint.

4 Dynamic Programming Model

Dynamic programming is a di�erent technique to tackle this problem. Section 4.1 presents
an e�cient DP model introduced in [50]. We then show in Section 4.2 how the constraints
can be incorporated in this model. As a whole, this formulation will be the starting point for
our DD-based approach.

CP 2022

3:6 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

4.1 SRFLP
Let us first reformulate the cost function:

SRFLP (fi) =
nÿ

i=1

nÿ

j=1
i<j

cij d̃fi
ij + K =

nÿ

i=1

nÿ

j=1
fi(i)<fi(j)

cij d̃fi
ij + K (19)

=
nÿ

i=1

nÿ

j=1
fi(i)<fi(j)

cij

nÿ

k=1
fi(i)<fi(k)<fi(j)

lk + K (20)

=
nÿ

k=1
lk

nÿ

i=1
fi(i)<fi(k)

nÿ

j=1
fi(k)<fi(j)

cij + K. (21)

In Equation (19), we use the bijection fi to sum over unique pairs of positions instead of
unique pairs of departments. We then develop the end-to-start distances d̃fi

ij in Equation (20),
which are equal to the sum of the lengths of departments between i and j in the ordering fi.
Finally, we reorder the summations in Equation (21). This allows reading the cost function
di�erently: for each department k, we add its length lk to the distance between pairs of
departments (i, j) lying on opposite sides of k and multiply it by the corresponding tra�c
intensity cij .

The idea of the DP model is to place the departments one by one on the line from left
to right. From Equation (21), it is clear that the individual cost of placing department k
at position fi(k) only depends on the side on which all other departments are located with
respect to k. If the state of the DP model is the subset of departments which remain to be
placed – called free departments from now on, as opposed to fixed departments – we can
compute this individual cost and recursively find the optimal ordering of each subset of N .
Formally, the components of the DP model are:

The control variables xj œ Dj with j œ {0, . . . , n ≠ 1}. Variable xj represents the
department placed at position j + 1 on the line. All variables have the same domain
Dj = N since departments can appear anywhere in the ordering.
The state space S which contains all subsets of N . It includes a root state r̂ = N , a
terminal state t̂ = ÿ and an infeasible state 0̂. The state space is partitioned into the sets
S0, . . . , Sn where Sj contains all states with j variables assigned.
The set of transition functions tj : Sj ◊ Dj æ Sj+1 for j = 0, . . . , n ≠ 1 which rule the
transition between the states of consecutive stages:

tj

!
sj , xj

"
=

;
sj

\ {xj}, if xj œ sj

0̂, otherwise. (22)

The set of transition cost functions hj : Sj ◊ Dj æ R for j = 0, . . . , n ≠ 1 which associate
a value to each transition:

hj

!
sj , xj

"
=

I
lxj

q
iœsj

q
kœsj\{xj} cik, if xj œ sj

0, otherwise.
(23)

This formula immediately follows from Equation (21) since sj – the complement of
sj – contains fixed departments placed before position j and sj

\ {xj} contains free
departments, which will be placed after position j.
The root value vr = K from Equation (2).

V. Coppé, X. Gillard and P. Schaus 3:7

To solve an instance of the SRFLP using this DP model, one needs to apply the following
recurrence:

min f̂(x) = vr +
n≠1ÿ

j=0
hj

!
sj , xj

"

subject to sj+1 = tj

!
sj , xj

"
, for all xj œ Dj , j = 0, . . . , n ≠ 1

sj
œ Sj , j = 0, . . . , n. (24)

Speeding up the computation of transition costs We also store in the states an array
containing the cut values of each free department: the sum of all tra�c intensities from
the fixed departments and each free department. It allows to reduce the computational
complexity of the transition costs from O

!
n2"

to O(n) and will also be useful when designing
a lower bound in Section 6.2. For a state sj and each department i œ N , we define:

sj
cut[i] =

; q
jœsj cij , if i œ sj

0, otherwise (25)

which can be updated in O(n) during a transition tj

!
sj , xj

"
:

sj+1
cut [i] =

;
sj

cut[i] + cixj , if i œ sj
\ {xj}

0, otherwise (26)

and the transition costs become:

hj

!
sj , xj

"
=

I
lxj

q
iœsj\{xj} sj

cut[i], if xj œ sj

0, otherwise.
(27)

I Example 2. Considering the instance shown on Figure 1, we compute the cut values for
the state s = {3, 4}. We have that scut[1] = scut[2] = 0 since departments 1 and 2 are already
placed. For the free departments, we apply Equation (25) and obtain: scut[3] = c13 + c23 =
3 + 1 = 4 and scut[4] = c14 + c24 = 5 + 4 = 9.

4.2 cSRFLP
Adding constraints to the DP model is done through the predicates validj : Sj ◊ Dj æ

{true, false} for j = 0, . . . , n ≠ 1. They are used in the transition functions to filter out
infeasible solutions:

tj

!
sj , xj

"
=

;
sj

\ {xj}, if xj œ sj
· validj(sj , xj)

0̂, otherwise. (28)

For clarity, we split the predicates validj into several conditions, corresponding each to a
specific constraint:

validj(sj , xj) = pj(sj , xj) · oj(sj , xj) · rj(sj , xj) (29)

with pj , oj and rj concerning respectively positioning, ordering and relation constraints:

pj(sj , xj) = (position(xj) = 0 · department(j + 1) = 0) ‚ position(xj) = j + 1 (30)
oj(sj , xj) = predecessors(xj) ™ sj (31)
rj(sj , xj) = (previous(xj) = 0 · @k œ sj : previous(k) œ sj) ‚ previous(xj) œ sj . (32)

CP 2022

3:8 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

r

u1{2, 3, 4}
(0, 8, 3, 5) u2{1, 3, 4}

(8, 0, 1, 4) u3{1, 2, 4}
(3, 1, 0, 6) u4{1, 2, 3}

(5, 4, 6, 0)

v1{3, 4}
(0, 0, 4, 9) v2{2, 4}

(0, 9, 0, 11) v3{2, 3}
(0, 12, 9, 0) v4{1, 4}

(11, 0, 0, 10) v5{1, 3}
(13, 0, 7, 0) v6{1, 2}

(8, 5, 0, 0)

w1{4}
(0, 0, 0, 15) w2{3}

(0, 0, 10, 0) w3{2}
(0, 13, 0, 0) w4{1}

(16, 0, 0, 0)

t

K = 114.5

1,0 2,0 3,0 4,0

2,24

3,26

4,66

1,25

3,24

4,54

1,35

2,27
4,24

1,50 2,33

3,18

3,18

4,24
2,33 4,54 2,27

3,24

1,50

4,661,35

3,26 1,25

2,24

4,0 3,0 2,0 1,0

{1, 2, 3, 4}
(0, 0, 0, 0)

ÿ
(0, 0, 0, 0)

Figure 2 The exact DD associated with the instance shown on Figure 1. Arcs are annotated
with their label (in bold) and cost. Next to each node, a gray box contains the corresponding state:
the set of free departments and the cut values. Arcs in bold are part of an optimal solution.

In Equation (30), pj checks that either department xj and position j + 1 are both
unconstrained, or that department xj is constrained to be at position j + 1. As explained
previously, the j-th transition decides which department is placed at position j + 1. For
ordering constraints, Equation (31) verifies that all predecessors of department xj have
already been placed. The predicates rj for relation constraints are slightly more complicated.
Either xj has no relation constraint, then it can only be placed if no other free department has
a relation constraint with a fixed department, or xj has a relation constraint and previous(xj)
must be a fixed department.

5 Decision Diagram Representation

This section explains how a DP model can be used to derive DDs. A weighted decision

diagram is a graphical structure which encodes a set of solutions to a discrete optimization
problem P. Formally, it is represented by a layered directed acyclic graph B = (U, A, d, v, ‡)
where U is the set of nodes, A is the set of arcs. The set of nodes is partitioned into layers
L0, . . . , Ln. In particular, layers L0 and Ln contain only one node, respectively the root
node r and the terminal node t. Each node is mapped to a state by the function ‡. An arc

V. Coppé, X. Gillard and P. Schaus 3:9

a œ A connects a node in a layer Lj to a node in the next layer Lj+1. Its label d(a) œ Dj

represents the assignment of value d(a) to variable xj and v(a) denotes its length. As a
result, each path p =

!
a(0), . . . , a(n≠1)" from r to t is a complete assignment of the variables,

with xj = d
!
a(j)", and has a total length of v(p) = vr +

qn≠1
j=0 v

!
a(j)". The set of all r ≠ t

paths of B encodes the set of possible assignments Sol(B). In an exact decision diagram,
the length of each r ≠ t path is equal to the objective function value of the corresponding
assignment and Sol(B) = Sol(P). Thus, the resolution of discrete optimization problems is
reduced to a shortest-path problem on a directed acyclic graph f (xú) = vú(B).

The size |B| of a decision diagram is the number of nodes it contains in all layers. Its
width is given by maxj |Lj |, where |Lj | is the width of layer j. Arcs leaving a same node
always have di�erent labels, so every node u œ Lj has a maximum out-degree of |Dj |. A
binary decision diagram encodes binary variables only, as opposed to multi-valued decision

diagrams in the general case [38].
Using a DP model, an exact DD can be built layer by layer starting with the first layer

L0 containing the root node r associated to the root state r̂. From a layer Lj , we then fill
Lj+1 with all nodes corresponding to distinct feasible states which can be reached from any
state in Lj . For each of these transitions, we add an arc from the node in Lj to the one in
Lj+1 and its length is given by the transition cost.

I Example 3. The exact DD for the instance shown in Figure 1 is illustrated in Figure 2.
The size of this DD is 16 and its width is 6. On the left side of the DD, the path in bold is
an optimal solution. It corresponds to the ordering displayed in Figure 1 and its length is
equal to 114.5 + 0 + 24 + 18 + 0 = 156.5 as computed in Example 1.

6 Branch-and-Bound

Although DP formulations tend to represent problems in a compact manner, it is usually
intractable to generate exact DDs for combinatorial problems as the size of the state space can
grow exponentially with the number of variables. An adapted branch-and-bound algorithm
exploiting DDs (B&B-DD) was presented in [13] with the potential to solve larger instances
to optimality. The algorithm successively explores subproblems corresponding to nodes in
the exact DD of the problem. As in classical branch-and-bound, two ingredients are used: a
primal upper bound heuristic to discover good feasible solutions, and a lower bound procedure
allowing to prune the nodes with a lower bound larger than the best so far solution. The
major idea of B&B-DD is to limit the width of the DDs to obtain these two ingredients. The
primal heuristic is obtained by discarding nodes of the DD to respect the width limit while
the lower bound procedure consists in discovering the best path in a relaxed DD obtained by
merging nodes. The nodes of B&B-DD are expanded using a classical best-first-search.

Preliminary experiments convinced us to slightly deviate from the generic B&B-DD
framework and specialize it for the SRFLP in order to be competitive with state-of-the-art
approaches. We use a problem specific lower bound rather than the state-merging procedure,
as well as a breadth-first search allowing to better exploit the recursive structure of the
problem. The lower bound and the custom search are detailed in the next sections.

6.1 Primal Upper Bound Heuristic
As explained in Section 6, we rely on restricted DDs to generate good feasible solutions
starting from a given node of the exact DD. To obtain a restricted DD, it is su�cient to
remove nodes of a layer when its width exceeds a given maximum width. The nodes and

CP 2022

3:10 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

r

u1{2, 3, 4}
(0, 8, 3, 5) u2{1, 3, 4}

(8, 0, 1, 4) u3{1, 2, 4}
(3, 1, 0, 6) u4{1, 2, 3}

(5, 4, 6, 0)

v1{3, 4}
(0, 0, 4, 9) v2{2, 4}

(0, 9, 0, 11) v3{2, 3}
(0, 12, 9, 0) v4{1, 4}

(11, 0, 0, 10) v5{1, 3}
(13, 0, 7, 0) v6{1, 2}

(8, 5, 0, 0)

w1{4}
(0, 0, 0, 15) w2{3}

(0, 0, 10, 0) w3{2}
(0, 13, 0, 0) w4{1}

(16, 0, 0, 0)

t

K = 114.5

1,0 2,0 3,0 4,0

2,24

3,26

4,66

1,25

3,24

4,54

1,35

2,27
4,24

1,50 2,33

3,18

3,18

4,24
2,33 4,54 1,50

4,66

1,25

2,24

4,0 3,0 2,0 1,0

{1, 2, 3, 4}
(0, 0, 0, 0)

ÿ
(0, 0, 0, 0)

Figure 3 A restricted DD associated with the instance shown on Figure 1 and built with a
maximum width of 4. Nodes in dotted circles have been removed from the layer.

arcs which remain in the DD are not modified and thus correspond to feasible solutions.
A heuristic is used to select nodes to remove from a layer and attempts to identify nodes
leading to the poorer quality solutions. Restricted DDs also allow to retrieve the set of
subproblems which need to be explored next. In this paper, this set is computed as the set
of direct successors of the initial node of the restricted DD.

I Example 4. Figure 3 shows a restricted DD built for the instance displayed in Figure 1
with a maximum width of 4. The third layer exceeded the maximum width so the nodes v3
and v5 have been removed.

6.2 Lower Bound
In [13], a relaxed DD is used to compute a single lower bound at a given node. Based on
this lower bound, we decide whether to enqueue or prune the open subproblems. Recently,
[22] suggested that we could attach a di�erent lower bound to each node to be added to the
branch-and-bound queue. In our approach, this lower bound is based on a heuristic rough

lower bound (RLB) which can be computed swiftly for any node. As described in [22], the
RLB can also be used to skip nodes during the compilation of restricted DDs.

V. Coppé, X. Gillard and P. Schaus 3:11

In order to derive the RLB from a node u, the next theorem shows that the cost to
optimally complete the partial solution of node u can be decomposed in two terms: one
solely involving the free departments and the other one involving the cost between free and
fixed departments.

I Theorem 5. Given a node u and its state ‡(u) = s, let fiú
|u be the best ordering one can

obtain when crossing node u. For conciseness, we set fi = fiú
|u. We have the equivalence:

SRFLP (fi) ≠ vú(u) =
ÿ

iœs

ÿ

jœs
fi(i)<fi(j)

cij

ÿ

kœs
fi(i)<fi(k)<fi(j)

lk

¸ ˚˙ ˝
free departments layout cost

+
ÿ

jœs

scut[j]
ÿ

kœs
fi(k)<fi(j)

lk

¸ ˚˙ ˝
cost w.r.t. fixed departments

. (33)

Those two terms of Equation (33) cannot be evaluated exactly in a cheap way as this
would be as di�cult as solving the original problem. Nonetheless one can compute an e�cient
lower bound for each term independently. For a node u, the value of the RLB is given by:

RLB(u) =
;

Œ, if ‡(u) = 0̂
LBedge(u) + LBcut(u), otherwise, (34)

where LBedge(u) is a lower bound on the free departments layout cost and LBcut(u) is a
lower bound on the cost induced by the cut values of free departments.

6.2.1 Free departments layout cost
The first lower bound LBedge is an under-approximation of the internal layout cost of free
departments. Given a subset of departments, we compute a lower bound on the cost of its
optimal layout by multiplying each pairwise tra�c intensity by an optimistic distance. If we
must place n departments on a line, n ≠ k pairs of departments will have k ≠ 1 departments
between them (see Figure 1). In order to under-approximate the layout cost, we greedily
multiply the highest tra�c intensities by the smallest distance possible. Since we cannot
assume any particular ordering of the free departments, the distances between pairs of free
departments are unknown. Still, we can compute lower bounds on those distances if we sort
the free departments by increasing length and assume that a separation of k departments will
be formed by the k shortest departments. This lower bound can be seen as a generalization
of the Edges method [49] designed for the MinLA.

In practice, a list containing all pairwise tra�c intensities in decreasing weight order
is precomputed, as stated by the precondition of Algorithm 1. The same is done for the
department lengths. We then only need to traverse those lists and multiply each tra�c
intensity value by the adequate cumulative length. The complexity of the algorithm is O

!
n2"

since there are n(n≠1)
2 pairs in total.

I Example 6. Let us illustrate the computation of this lower bound on the root node
of the DD in Figure 2. We first create the list of tra�c intensities sorted decreasingly:
edge = [c12 = 8, c34 = 6, c14 = 5, c24 = 4, c13 = 3, c23 = 1] and the list of free department
lengths sorted increasingly: length = [l3 = 2, l2 = 3, l1 = 5, l4 = 6]. There are 3 pairs of
departments with 0 departments in between, 2 pairs with 1 department in between and 1
pair with 2 departments in between.

LBedge(r) = 0 · c12 + 0 · c34 + 0 · c14 + l3c24 + l3c13 + (l3 + l2)c23

= 0 · 8 + 0 · 6 + 0 · 5 + 2 · 4 + 2 · 3 + (2 + 3) · 1 = 19

CP 2022

3:12 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

Algorithm 1 Computation of LBedge(u).
Require: edge = sortedØ ({Èc : cij , dep1 : i, dep2 : jÍ | 1 Æ i < j Æ n})

and length = sortedÆ ({Èl : li, dep : iÍ | 1 Æ i Æ n})
1: s Ω ‡(u), lb Ω 0, cumul_l Ω 0, i Ω 1, j Ω 1
2: for k Ω 1 to |s| ≠ 1 do
3: for l Ω 1 to k do
4: while edge[i].dep1 /œ s ‚ edge[i].dep2 /œ s do
5: i Ω i + 1
6: lb Ω lb + cumul_l · edge[i].c
7: i Ω i + 1
8: while length[j].dep /œ s do
9: j Ω j + 1

10: cumul_l Ω cumul_l + length[j].l
11: j Ω j + 1
12: return lb

6.2.2 Cost with respect to fixed departments
The second term of the RLB is related to the cut values of free departments and a lower
bound is given by the first-generation bound described in [52]. Given a department i placed
first on the line, the minimum total cost with respect to i is defined as:

MTC(i) = min
fi

nÿ

j=1
i ”=j

cij

nÿ

k=1
fi(k)<fi(j)

lk (35)

and Lemma 7 tells us how to find the optimal arrangement fi.

I Lemma 7. Suppose that department i is placed in first position on the line. For every

other department j compute the cost-to-length ratio rj = cij

lj
. The optimal arrangement,

which yields MTC(i) is obtained by ordering the departments according to decreasing values

of this ratio rj, the department with the greatest rj being adjacent to i.

This lower bound can also be used when several departments are placed in the leftmost
positions on the line. We only need to consider all fixed departments as a single department
connected to free departments with tra�c intensities given by the respective cut values,
exactly as in the second term of Equation (33). As the free departments need to be sorted
by decreasing cut-to-length ratios, the time complexity of this lower bound is O(n log(n)).

I Example 8. We compute the lower bound for the node u1 of the DD shown in Figure 2,
with ‡(u1) = s. The departments are first sorted as follows:

order =
5

scut[2]
l2

= 8
3 ,

scut[3]
l3

= 3
2 ,

scut[4]
l4

= 5
6

6
.

We then compute the lower bound as the total cost with respect to all fixed departments:

LBcut(u1) = 0 · scut[2] + l2scut[3] + (l2 + l3)scut[4]
= 0 · 8 + 3 · 3 + (3 + 2) · 5 = 34.

6.2.3 Refining the lower bound
In Section 6.1, we mentioned that for a node uj≠1

œ Lj≠1, its direct successors are added
to the branch-and-bound queue. During the compilation of a restricted DD, not only we
generate these successors in layer Lj but we also create all nodes which we can reach in layer

V. Coppé, X. Gillard and P. Schaus 3:13

Lj+1. As a result, we can compute a tighter lower bound for each node of Lj by taking
advantage of the RLB values of its successors:

LB
!
uj

"
= vú(uj) + min

xjœDj

!
hj

!
‡

!
uj

"
, xj

"
+ RLB

!
tj

!
‡

!
uj

"
, xj

"""
. (36)

I Example 9. Given the restricted DD shown in Figure 3, the local lower bound of node u1
is computed as follows: LB(u1) = 0 + min (24 + RLB(v1), 26 + RLB(v2), 66 + RLB(v3)).

6.3 A Breadth-First Branch-and-Bound
In the DP model of the SRFLP, a state sj at level j is the successor of exactly j di�erent states.
More generally, it can be reached by as many as j! di�erent paths since any permutation of
the departments could be a valid solution. The classical branch-and-bound algorithm always
explores the most promising node first with a best-first-search strategy i.e. the one with
the lowest lower bound or lowest shortest-path length. In the context of B&B-DD, nodes
with a same state could be enqueued and explored multiple times during the algorithm.
Preliminary experiments showed that this was often the case for the cSRFLP. This can be
avoided by only exploring a complete layer before considering the next one. Therefore we
suggest exploring the most promising node of what we call the lowest active layer (LAL) –
the layer containing nodes of the queue with the least variables assigned. By doing so, all
ancestors of the chosen node must have already been explored. It also ensures that at most
one node associated with any state of the model will be inserted in the queue. The only
adjustment to make is to maintain an additional data structure keeping track of all nodes in
the queue. In that data structure, exactly like in any layer of a DD, we identify nodes by
their state and keep in memory the path with shortest length to each state. We then only
add one node to the queue for each state, and otherwise update the shortest-path leading to
it. Our strategy is thus equivalent to a breadth-first-search in the exact DD but enhanced by
pruning mechanisms.

This whole procedure is described by Algorithm 2. The index of the LAL is denoted l and
increases throughout the execution of the algorithm. The branch-and-bound queue is split
between Ql and Ql+1 which respectively contain open nodes of layers l and l + 1. For each
layer Lj , Mj is a map containing the node with the shortest path to each state of the level
j. It is used in lines 17-26 to avoid adding multiple nodes in the branch-and-bound queue
for the same state. The loop of line 8 can be parallelized, which is a key asset of B&B-DD
[12, 21]. Each thread is responsible for developing a di�erent restricted DD at line 13 and
synchronization happens when queues, maps and the incumbent solution need to be updated.

7 Computational Experiments

In this section, we draw a comparison between the existing techniques to solve the cSRFLP to
optimality. Namely, the MIP model from [44], the MIP model introduced in [4] and extended
in Section 3 and the DD-based approach presented throughout the rest of the paper. In the
following, they are respectively referred to as Liu, Amaral and DD. The MIP models were
implemented and evaluated using Gurobi version 9.1.2 [24]. Concerning the DD approach, it
was implemented in C++ and the code was largely based on DDO [21], a Rust library for
DD-based discrete optimization. The heuristics selected are the following:

Maximum width: We use fixed-width DDs for all experiments. To that end, we experi-
mentally determined that a narrow maximum width of 3 leads to the best performance.
It may seem very small but as explained in Section 6, the lower bound of a node is

CP 2022

3:14 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

Algorithm 2 The breadth-first branch-and-bound algorithm. select_node is a heuristic used to
select the most promising node of the queue.
1: v(r) Ω vr // root node value
2: Q0 Ω {r} // queue for layer 0
3: M0 Ω {‡(r) : r} // map for layer 0
4: UB Ω Œ
5: for l = 0 to n ≠ 1 do // l is the lowest active layer
6: Ql+1 Ω ÿ // queue for layer l + 1
7: Ml+1 Ω ÿ // map for layer l + 1
8: while Ql ”= ÿ do
9: u Ω select_node(Ql)

10: Ql Ω Ql \ {u}
11: if LB(u) Ø UB then
12: continue
13: B Ω Restricted(u)
14: for all uÕ œ Ln of B do // update best solution
15: if v(uÕ) < UB then
16: UB Ω v(uÕ)
17: for all uÕ œ Ll+1 of B do // enqueue successors of u and update Ml+1
18: if LB(uÕ) < UB then
19: if Ml+1.contains(‡(uÕ)) then // this state is already in the queue and map
20: if v(uÕ) < v(Ml+1[‡(uÕ)]) then // update only if the value is improved
21: Ql+1 Ω Ql+1 \ {Ml+1[‡(uÕ)]}
22: Ql+1 Ω Ql+1 fi {uÕ}
23: Ml+1[‡(uÕ)] Ω uÕ

24: else // this state is not in the queue and map
25: Ml+1[‡(uÕ)] Ω uÕ

26: Ql+1 Ω Ql+1 fi {uÕ}
27: return UB

exclusively based on RLB values of its child nodes. As a result, the quality of the lower
bounds does not depend on the maximum width of the DDs. Moreover, we observed that
we were able to find very good solutions early in the search anyway.
Variable ordering: The vertices must be placed from left to right on the line in the DP
model so it is imposed for this formulation of the problem.
Search node selection: Nodes with the smallest lower bound in the branch-and-bound
queue are explored first in the branch-and-bound.
Node selection for restriction: When the size of a layer exceeds the maximum width of
the DD, we delete the nodes with the largest RLB values.

The instances used in the experiments are classical SRFLP instances taken from [2, 3, 8,
31, 52] with up to 25 departments. We then created admissible sets of constraints for each
problem size:

constraint sets with 2, 4, 6, 8 and 10 positioning, ordering or relation constraints.
constraint sets with 0, 2, 4, 6, 8 and 10 constraints of each type.

For each of these scenarios, 5 di�erent random sets of constraints were generated, except
for the case with no constraints. Note that an instance with n departments can not have more
than n positioning constraints, and that similar limits exist for the other types of constraints,
we thus have up to 101 sets of constraints for each problem size. A link to the source
code along with all the benchmark instances is given in the supplementary material. All
experiments were performed on a machine with two Intel Xeon E5-2640 (2.6GHz) processors.

The three algorithms were executed on all combinations of instances and constraints
with a time limit of 5 hours for each. The first row of Figure 4 shows the cumulative
number of instances solved by each algorithm over time while the second row shows the mean
ratio between the runtimes of each instance and its corresponding unconstrained instance,

V. Coppé, X. Gillard and P. Schaus 3:15

Figure 4 Number of instances solved by each algorithm for the di�erent types of constraints, and
mean ratio between the runtime of each constrained instance and the runtime of the corresponding
unconstrained instance, with respect to the number of constraints of each type.

with respect to the number of constraints of each given type. Our first observation is that
the two models presented in this paper clearly outperform the one from [44], which fails
to solve most of the instances under the time limit regardless of the type of constraints
applied. Next, even if Amaral and DD both succeed in solving all instances, they have
di�erent behaviors depending on the type of scenario. From the graphs of the second row, we
notice that the more constraints we add, the faster the DD approach gets. The constraints
in the DD formulation are indeed handled very e�ciently because all infeasible solutions
are automatically pruned in the transition functions, which results in a smaller DP graph
to explore. The same cannot be said about Amaral, since instances with between 4 and
8 positioning constraints take more time to solve than their corresponding unconstrained
instance on average. This is probably because positioning constraints are modeled with a
sum of n variables on the left side of an equality. On the contrary, ordering and relation
constraints are modeled very naturally in Amaral because it uses relative ordering variables.
Adding these types of constraints thus tightens the model and reduces the execution time. It
allows Amaral to solve hard instances with ordering and relation constraints slightly faster
than DD. However, DD is the first to solve all instances when using 24 threads and seems to
benefit the most from parallelization.

8 Conclusion

In this paper, two novel exact models for the cSRFLP have been presented: an extension
of the MIP model from [4] for the SRFLP and a DD-based approach starting from the
DP model of [50]. The computational experiments have shown that they greatly improve
on the performance of the only MIP model introduced in the literature to the best of our
knowledge. Both models have their benefits, the DD approach incorporates the three types
of constraints very e�ciently, especially positioning constraints, and parallelizes better. On
the other hand, the MIP model integrates ordering and relation constraints very well and
can be easily implemented with any MIP solver. The DD approach can surely be improved
in the future, for instance by taking the constraints into account within the lower bounds. It
would also be interesting to combine the strengths of our two approaches.

CP 2022

3:16 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

References
1 Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on Computers, 27(06):509–516,

1978.
2 André R. S. Amaral. On the exact solution of a facility layout problem. European Journal of

Operational Research, 173(2):508–518, 2006.
3 André R. S. Amaral. An exact approach to the one-dimensional facility layout problem.

Operations Research, 56(4):1026–1033, 2008.
4 André R. S. Amaral. A new lower bound for the single row facility layout problem. Discrete

Applied Mathematics, 157(1):183–190, 2009.
5 André R. S. Amaral and Adam N. Letchford. A polyhedral approach to the single row facility

layout problem. Mathematical programming, 141(1-2):453–477, 2013.
6 Henrik R. Andersen, Tarik HadûiÊ, John N. Hooker, and Peter Tiedemann. A constraint

store based on multivalued decision diagrams. In International Conference on Principles and
Practice of Constraint Programming, pages 118–132. Springer, 2007.

7 Miguel F. Anjos, Andrew Kennings, and Anthony Vannelli. A semidefinite optimization
approach for the single-row layout problem with unequal dimensions. Discrete Optimization,
2(2):113–122, 2005.

8 Miguel F. Anjos and Anthony Vannelli. Computing globally optimal solutions for single-row
layout problems using semidefinite programming and cutting planes. INFORMS Journal on
Computing, 20(4):611–617, 2008.

9 Miguel F. Anjos and Ginger Yen. Provably near-optimal solutions for very large single-row
facility layout problems. Optimization Methods & Software, 24(4-5):805–817, 2009.

10 Bernd Becker, Markus Behle, Friedrich Eisenbrand, and Ralf Wimmer. Bdds in a branch and
cut framework. In International Workshop on Experimental and E�cient Algorithms, pages
452–463. Springer, 2005.

11 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John N. Hooker. Optimization
bounds from binary decision diagrams. INFORMS Journal on Computing, 26(2):253–268,
2014.

12 David Bergman, Andre A. Cire, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, and
Willem-Jan van Hoeve. Parallel combinatorial optimization with decision diagrams. In Inter-
national Conference on AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 351–367. Springer, 2014.

13 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John N. Hooker. Discrete
optimization with decision diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016.

14 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and Tallys Yunes. Bdd-based heuristics
for binary optimization. Journal of Heuristics, 20(2):211–234, 2014.

15 Randal E. Bryant. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on, 100(8):677–691, 1986.

16 Margarita P. Castro, Andre A. Cire, and J. Christopher Beck. An mdd-based lagrangian
approach to the multicommodity pickup-and-delivery tsp. INFORMS Journal on Computing,
32(2):263–278, 2020.

17 Andre A. Cire and Willem-Jan van Hoeve. Multivalued decision diagrams for sequencing
problems. Operations Research, 61(6):1411–1428, 2013.

18 Dilip Datta, André R. S. Amaral, and José R. Figueira. Single row facility layout problem
using a permutation-based genetic algorithm. European Journal of Operational Research,
213(2):388–394, 2011.

19 Zvi Drezner. A heuristic procedure for the layout of a large number of facilities. Management
Science, 33(7):907–915, 1987.

20 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. Books in mathematical series. W. H. Freeman, 1979.

V. Coppé, X. Gillard and P. Schaus 3:17

21 Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and e�cient framework for
mdd-based optimization. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence (IJCAI-20), pages 5243–5245, 2020.

22 Xavier Gillard, Pierre Schaus, Vianney Coppé, and André A. Cire. Improving the filtering of
branch-and-bound mdd solver. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, 2021.

23 Jian Guan and Geng Lin. Hybridizing variable neighborhood search with ant colony optim-
ization for solving the single row facility layout problem. European Journal of Operational
Research, 248(3):899–909, 2016.

24 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2022. URL: https://www.
gurobi.com.

25 Gary D. Hachtel and Fabio Somenzi. A symbolic algorithms for maximum flow in 0-1 networks.
Formal Methods in System Design, 10(2):207–219, 1997.

26 Tarik HadûiÊ and John N. Hooker. Postoptimality analysis for integer programming using
binary decision diagrams. Technical report, Carnegie Mellon University, 2006.

27 Tarik HadûiÊ and John N. Hooker. Cost-bounded binary decision diagrams for 0-1 programming.
In Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 84–98. Springer, 2007.

28 Kenneth M. Hall. An r-dimensional quadratic placement algorithm. Management science,
17(3):219–229, 1970.

29 Sunderesh S. Heragu and Attahiru Sule Alfa. Experimental analysis of simulated annealing
based algorithms for the layout problem. European Journal of Operational Research, 57(2):190–
202, 1992.

30 Sunderesh S. Heragu and Andrew Kusiak. Machine layout problem in flexible manufacturing
systems. Operations research, 36(2):258–268, 1988.

31 Sunderesh S. Heragu and Andrew Kusiak. E�cient models for the facility layout problem.
European Journal of Operational Research, 53(1):1–13, 1991.

32 Samid Hoda, Willem-Jan van Hoeve, and John N. Hooker. A systematic approach to mdd-
based constraint programming. In International Conference on Principles and Practice of
Constraint Programming, pages 266–280. Springer, 2010.

33 John N. Hooker. Improved job sequencing bounds from decision diagrams. In International
Conference on Principles and Practice of Constraint Programming, pages 268–283. Springer,
2019.

34 Alan J. Hu. Techniques for e�cient formal verification using binary decision diagrams. PhD
thesis, Stanford University, Department of Computer Science, 1995.

35 Philipp Hungerländer and Franz Rendl. A computational study and survey of methods for the
single-row facility layout problem. Computational Optimization and Applications, 55(1):1–20,
2013.

36 Philipp Hungerländer and Franz Rendl. Semidefinite relaxations of ordering problems. Math-
ematical Programming, 140(1):77–97, 2013.

37 Zahnupriya Kalita and Dilip Datta. A constrained single-row facility layout problem. The
international journal of advanced manufacturing technology, 98(5):2173–2184, 2018.

38 Timothy Kam. Multi-valued decision diagrams: Theory and applications. Multiple-Valued
Logic, 4(1):9–62, 1998.

39 Richard M. Karp and Michael Held. Finite-state processes and dynamic programming. SIAM
Journal on Applied Mathematics, 15(3):693–718, 1967.

40 Ravi Kothari and Diptesh Ghosh. An e�cient genetic algorithm for single row facility layout.
Optimization Letters, 8(2):679–690, 2014.

41 K. Ravi Kumar, George C. Hadjinicola, and Ting-li Lin. A heuristic procedure for the
single-row facility layout problem. European Journal of Operational Research, 87(1):65–73,
1995.

CP 2022

3:18 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

42 Yung-Te Lai, Massoud Pedram, and Sarma B. K. Vrudhula. EVBDD-based algorithms for
integer linear programming, spectral transformation, and function decomposition. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(8):959–975,
1994.

43 C.-Y. Lee. Representation of switching circuits by binary-decision programs. The Bell System
Technical Journal, 38(4):985–999, 1959.

44 Silu Liu, Zeqiang Zhang, Chao Guan, Lixia Zhu, Min Zhang, and Peng Guo. An improved
fireworks algorithm for the constrained single-row facility layout problem. International
Journal of Production Research, 59(8):2309–2327, 2021.

45 Elsa Loekito, James Bailey, and Jian Pei. A binary decision diagram based approach for
mining frequent subsequences. Knowledge and Information Systems, 24(2):235–268, 2010.

46 Robert Love and Jsun Wong. On solving a one-dimensional space allocation problem with
integer programming. INFOR: Information Systems and Operational Research, 14(2):139–143,
1976.

47 Gintaras Palubeckis. Single row facility layout using multi-start simulated annealing. Computers
& Industrial Engineering, 103:1–16, 2017.

48 Guillaume Perez and Jean-Charles Régin. E�cient operations on mdds for building constraint
programming models. In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI-15), pages 374–380, 2015.

49 Jordi Petit. Experiments on the minimum linear arrangement problem. Journal of Experimental
Algorithmics, 8, 2003.

50 Jean-Claude Picard and Maurice Queyranne. On the one-dimensional space allocation problem.
Operations Research, 29(2):371–391, 1981.

51 Hamed Samarghandi and Kourosh Eshghi. An e�cient tabu algorithm for the single row
facility layout problem. European Journal of Operational Research, 205(1):98–105, 2010.

52 Donald M. Simmons. One-dimensional space allocation: an ordering algorithm. Operations
Research, 17(5):812–826, 1969.

53 J. K. Suryanarayanan, Bruce L. Golden, and Qi Wang. A new heuristic for the linear placement
problem. Computers & Operations Research, 18(3):255–262, 1991.

54 Willem-Jan van Hoeve. Graph coloring lower bounds from decision diagrams. In International
Conference on Integer Programming and Combinatorial Optimization, pages 405–418. Springer,
2020.

55 Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Compact-mdd: E�ciently filtering
(s) mdd constraints with reversible sparse bit-sets. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (IJCAI-18), pages 1383–1389, 2018.

56 Ingo Wegener. Branching programs and binary decision diagrams: Theory and applications.
Discrete Applied Mathematics, 2000.

9 Proof of Theorem 5

I Theorem 5. Given a node u and its state ‡(u) = s, let fiú
|u be the best ordering one can

obtain when crossing node u. For conciseness, we set fi = fiú
|u. We have the equivalence:

SRFLP (fi) ≠ vú(u) =
ÿ

iœs

ÿ

jœs
fi(i)<fi(j)

cij

ÿ

kœs
fi(i)<fi(k)<fi(j)

lk

¸ ˚˙ ˝
free departments layout cost

+
ÿ

jœs

scut[j]
ÿ

kœs
fi(k)<fi(j)

lk

¸ ˚˙ ˝
cost w.r.t. fixed departments

. (33)

V. Coppé, X. Gillard and P. Schaus 3:19

Proof.

� = SRFLP (fi) ≠ vú(u) (37)

=
nÿ

k=1
lk

nÿ

i=1
fi(i)<fi(k)

nÿ

j=1
fi(k)<fi(j)

cij + K ≠

Q

cca
nÿ

k=1
fi(k)Æ|s|

lk

nÿ

i=1
fi(i)<fi(k)

nÿ

j=1
fi(k)<fi(j)

cij + K

R

ddb (38)

=
nÿ

k=1
fi(k)>|s|

lk

nÿ

i=1
fi(i)<fi(k)

nÿ

j=1
fi(k)<fi(j)

cij (39)

=
nÿ

k=1
fi(k)>|s|

lk

Q

cca
nÿ

i=1
fi(i)Æ|s|

nÿ

j=1
fi(k)<fi(j)

cij +
nÿ

i=1
|s|<fi(i)<fi(k)

nÿ

j=1
fi(k)<fi(j)

cij

R

ddb (40)

=
ÿ

kœs

lk

Q

cca
ÿ

iœs

ÿ

jœs
fi(k)<fi(j)

cij +
ÿ

iœs
fi(i)<fi(k)

ÿ

jœs
fi(k)<fi(j)

cij

R

ddb (41)

=
ÿ

kœs

lk
ÿ

iœs

ÿ

jœs
fi(k)<fi(j)

cij +
ÿ

kœs

lk
ÿ

iœs
fi(i)<fi(k)

ÿ

jœs
fi(k)<fi(j)

cij (42)

=
ÿ

kœs

lk
ÿ

jœs
fi(k)<fi(j)

ÿ

iœs

cij +
ÿ

iœs

ÿ

jœs
fi(i)<fi(j)

cij

ÿ

kœs
fi(i)<fi(k)<fi(j)

lk (43)

=
ÿ

kœs

lk
ÿ

jœs
fi(k)<fi(j)

scut[j] +
ÿ

iœs

ÿ

jœs
fi(i)<fi(j)

cij

ÿ

kœs
fi(i)<fi(k)<fi(j)

lk (44)

=
ÿ

jœs

scut[j]
ÿ

kœs
fi(k)<fi(j)

lk +
ÿ

iœs

ÿ

jœs
fi(i)<fi(j)

cij

ÿ

kœs
fi(i)<fi(k)<fi(j)

lk (45)

J

CP 2022

