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Abstract
Constraint Programming (CP) is one of the most flexible approaches for modeling and solving vehicle
routing problems (VRP). This paper proposes the sequence variable domain, that is inspired by
the insertion graph introduced in [4] and the subset bound domain for set variables. This domain
representation, which targets VRP applications, allows for an efficient insertion-based search on a
partial tour and the implementation of simple, yet efficient filtering algorithms for constraints that
enforce time-windows on the visits and capacities on the vehicles. Experiment results demonstrate
the efficiency and flexibility of this CP domain for solving some hard VRP problems, including the
Dial-A-Ride, the Patient Transportation, and the asymmetric TSP with time windows.
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1 Introduction

Vehicle routing problems (VRP) [27] are of great importance for the distribution of goods in
the supply chain. In order to cope with increasing urbanization and ecological challenges, it
is also expected that flexible transport offers for people, such as on-demand transport, will
have to be further developed in the future [12]. This raises new challenges for optimization,
in particular the development of generic and reusable tools in many contexts and variants of
VRP.

Constraint Programming (CP) is one of the most flexible approaches for modeling vehicle
routing problems (VRP). One standard model consists in using the so-called successor model
with one variable for each visit that represents the next visit in the tour of a vehicle [3]. Due
to its simplicity, this model has two practical limitations involving both the modeling and
research components of CP. At the modeling level, it is not straightforward to represent the
optional aspect of some visits in the successor model. This requires the introduction of a fake
vehicle visiting all excluded visits. At the search level, sub-chains formed by fixed successors
do not allow any insertion in the middle of a partial tour during the search. Sub-chains that
are formed close to the root during the search are fixed with little information and hardly
reconsidered in large search spaces explored with a backtracking search. The goal of the
sequence variable is to address those two limitations.
1. It can easily model the exclusion of visits not inserted in a tour similarly to a set variable.
2. Inspired by the idea of the insertion graph [4], it allows the insertion of a visit in the

middle of the partial tour enabling the implementation of a depth first tree search insertion
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38:2 Sequence Variables for Routing Problems

exploration algorithm similar to the ones used in [4, 15] to reinsert optimally a set of
relaxed visits in a large neighborhood search (LNS).

We introduce the Sequence Variable domain as well as the mechanism to make the domain
reversible in a trail-based solver. Two important constraints and their associated filtering
algorithms are described: The TransitionTimes constraint links the time window constraints
of the visits to a distance matrix, removing insertions that would process a request outside
of its time window; The Cumulative constraint ensures that the load change performed in
each visit never exceeds the maximum capacity of a vehicle. We model three constrained
VRP problems with the Sequence Variable that are illustrative of the functionality offered
for both the modeling and the search flexibility: The Dial-A-Ride Problem (DARP) [8, 15],
the Patient Transportation Problem (PTP) [5, 19] and the Traveling Salesman Problem
with time windows (TSPTW). Experimental results demonstrate the effectiveness of the
approach. It obtains better results than baseline models with sequences of conditional task
interval variables in CP Optimizer [18] and obtains results competitive with the state-of-the
art results published in the literature on the DARP and PTP. For TSPTW we improve the
best know solutions for 32 out of the 205 instances tested in the standard benchmark suite
[20].

The rest of the paper is organised as follows. Section 2 details related work on VRP and
existing Sequence Variables. Section 3 dives into the definition of a Sequence Variable, its
interface and implementation. Section 4 shows how VRP constraints are implemented using
the variable. Lastly, our models and experimental results for DARP, PTP and TSPTW are
presented in Section 5.

2 Related Work

In [26], the authors introduced a Sequence Variable for scheduling and routing problems.
This domain representation directly extends the subset bound domain representation for
set variables [14] by partitioning the visits into a required, possible and excluded set plus a
partial sequence and a set of insertion points. In this work we simplify this idea by getting
rid of the required set. As a consequence, a possible visit must be directly scheduled in
the partial sequence but cannot be required without being inserted in the sequence. This
modification, despite its simplicity, greatly eases the reasoning made by the constraints,
their time complexity and the implementation of search heuristics, while losing little to
no flexibility in practice. The proposed sequence domain can be seen as the making of
the insertion graph idea introduced in [4] more generic and encapsulated as the internal
implementation of the sequence variable domain.

Although not published, IBM ILOG CP Optimizer [18] also proposes sequence variables
to decide the order of visits. The functionalities and constraints of this sequence variable are
briefly described [16, 17], no details are given about the exact implementation. According to
their documentation [6, 7], they use a Head-Tail structure, maintaining a separate growing
head and tail to add new Interval variables to the beginning or end of the sequence, respectively.
The head and tail merge to form the final sequence once no Interval can be added to either
of them. This implementation appears to be similar to Google OR-Tools [23] and its own
Sequence Variables [24]. Although more targeted to scheduling problems, this sequence was
used for solving the PTP in [5] and [19], and is suitable for VRP.
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3 Sequence Variable

We first introduce useful notations related to sequences and operations on these. We then
formally define the domain of a sequence variable before considering the practical algorithmic
details for implementing this domain in a constraint programming solver.

3.1 Sequence notations
The notations are largely borrowed from [26] but reintroduced in this paper for reading
convenience. The set of locations that can be visited by a vehicle are referred to as nodes
and the set of all nodes is denoted as X . A sequence over X is denoted by −→S and the set
of all sequences of X by −→P (X ). The sequence −→S defines an order over the elements of S.
The set of elements in the sequence −→S is denoted S. All the entries of the sequence are
different and therefore |−→S | = |S|. The notation p

−→
S

≺ q means that the node p precedes node q

in −→S and p
−→
S−→ q means that p directly precedes q in −→S . Those notations are simply written

p ≺ q and p −→ q when clear from the context. If the nodes can be equal, the relation is
written p ⪯ q. A sequence can be grown by using an insertion operation insert(−→S , p, q) with
p ∈ S, q /∈ S that results in inserting q just right after p in the sequence. More exactly
assuming −→S = −→S 1 · p ·

−→
S 2 the resulting super-sequence is −→S ′ = −→S 1 · p · q ·

−→
S 2. The operation is

also noted −→S =⇒
(p,q)

−→
S ′. Given I, a set of pairs of type (p, q), each corresponding to a potential

insertion in −→S , −→S =⇒
I

−→
S ′ means that −→S ′ could be produced by applying one insertion from

I on −→S : ∃(p, q) ∈ I | −→S =⇒
(p,q)

−→
S ′. More generally the zero or more derivation steps is defined

as −→S ∗=⇒
I

−→
S ′ ≡ −→S = −→

S ′ ∨
(
∃(p, q) ∈ I | −→S =⇒

(p,q)

−→
S ′′ ∧ −→S ′′ ∗=⇒

I\{(p,q)}

−→
S ′

)
. Note that I may

contain tuples that do not correspond to a possible insertion in −→S but instead to a possible
insertion in a super-sequence of −→S . Also note that several sequences of insertions in I may
lead to an identical super-sequence.

3.2 The sequence domain
The formal definition of a sequence domain is given next.

▶ Definition 1. The domain of a Sequence Variable Sq is represented as ⟨−→S , I, P, E⟩,
with −→S a sequence of nodes forming a partial tour, insertion points I ⊆ X × X and two
subsets of nodes P, E ⊆ X for nodes that can possibly be inserted and nodes that are
excluded from the sequence, respectively. The domain of Sq, also noted D(Sq), is defined as
⟨−→S , I, P, E⟩ ≡

{−→
S ′ ∈ −→P (P ∪ S) | −→S ∗=⇒

I

−→
S ′

}
and capture all the possible valid derivations

from the partial tour −→S using insertions of I.

At its initialization the Sequence Variable is composed of a partial tour of two nodes
α · ω for the beginning α and ending ω of the tour and no insertions are allowed after ω

to ensure ω remains the last visited node. P is thus equal to X \ {α, ω}, E = ϕ and the
set of insertions is I = {(p, q) ∈ P × X | p ̸= ω}. Imposing a first and last node in the
sequence conveniently allows the modeling of problems where the route taken by a vehicle
needs to end at its starting point (α lies at the same location as ω) or at another location
(α ≠ ω) and prevent the API to deal with the special case of empty sequences that require
the introduction of a dummy symbol as in [26]. This use of beginning and ending nodes is
also used in CP Optimizer and is described as sinks in their API [18].

CP 2022
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Different forms of consistency could be imagined ensuring for instance that, for all pairs
of nodes (p, q) ∈ I, both p and q are reachable from α by using the arcs defined in I and −→S .
Checking this consistency would relax the constraint that sequences only visit each node at
most once.

In practice we use an even weaker form of consistency on the sequence domain, that is
cheap to compute and is captured by the following invariant:

S ∪ P ∪ E = X ∧ S ∩ P = S ∩ E = P ∩ E = ϕ (1)
∀(p, q) ∈ I : p /∈ E ∧ q ∈ P (2)
∀q ∈ P : ∃p ∈ S ∪ P | (p, q) ∈ I (3)

(1) Nodes in the partial sequence S, in the possible set P and the set of excluded E form
a partition of X ; (2) valid insertions are constituted of possible nodes after non excluded
nodes (thus not necessarily present in the partial sequence); any excluded node cannot be
inserted in −→S and is not a valid predecessor; any possible element can be inserted after a
node (3). This weak consistency can for instance not detect situations where all the edges
in I are disconnected from the partial sequence S, forming a disconnected cluster of nodes
whose members should be excluded.

3.3 Implementation and data-structures
The implementation of the domain ⟨−→S , I, P, E⟩ should be reversible for trail-based solver
such as MiniCP [21] and most of the update and domain iteration operations should be as
efficient as possible.

The set partitioning between the sets S, P, E is implemented using a single reversible
sparse-sets data-structure as described in [10] ensuring removal and state restoration in
constant time.

The insertion points set I is partitioned with one set Ix = {p ∈ (S ∪ P ) : (p, x) ∈ I} for
each node x ∈ X composed of the valid predecessors for node x. Those sets are implemented
using reversible sparse-sets ensuring removal and state restoration in constant time. The
lower-level consistency invariant expressed in terms of these data structures are given next
in equations (4) to (7).

S ∪ P ∪ E = X ∧ S ∩ P = S ∩ E = P ∩ E = ϕ (4)
p ∈ E =⇒ Ip = ϕ ∧ ∀x : p /∈ Ix (5)
p ∈ S =⇒ Ip = ϕ (6)
Ip = ϕ =⇒ p ∈ S ∨ p ∈ E (7)

Through the use of the reversible sparse-set, (1) is directly equivalent to (4). (2) is respected
through (5) (∀(p, q) ∈ I : p /∈ E) and through (4), (5), (6) and (7) (q ∈ E ∪ S ⇔ q /∈
P =⇒ Iq = ϕ =⇒ ∀(p1, q1) ∈ I : q1 ̸= q). Finally (3) is retrieved by combining (4) to (7)
(Ix ̸= ϕ =⇒ x /∈ (S ∪ E) ⇐⇒ x ∈ P ).

The internal partial sequence −→S of nodes is implemented using an array of reversible
integers, as in [26]. This array stores the current successor of a node, and an element without
successor points towards itself.

Additionally, the implementation maintains two reversible integers for every node x ∈ X :
nx

s for the size of Ix ∩ S and nx
p for the size of Ix ∩ P . Those values are useful during the

search to implement heuristics, for instance when searching the node i ∈ P | ni
s ≤ nj

s ∀j ∈ P

having the least predecessors in the current ordering −→S .
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A domain representation example for a Sequence Variable is depicted in Figure 1.
Table 1 highlights the most important operations available on a Sequence Variable and

their associated time complexity.

α a b ω

c d e

node x Ix nx
s nx

p

a ϕ 0 0
b ϕ 0 0
c ϕ 0 0
d {α, a} 2 0
e {a, b, d} 2 1

dcωb e a α

a b c d e α ω

−→
S

P = {d, e}, E = {c}

α a b ω

c d e

node x Ix nx
s nx

p

a ϕ 0 0
b ϕ 0 0
c ϕ 0 0
d ϕ 0 0
e {b, d} 2 0

acωb e d α

a b c d e α ω

−→
S

′

P = {e}, E = {c}

Figure 1 Representation of the implementation of a Sequence Variable. The left part shows a
sequence ordering as well as possible insertions (dashed lines) for nodes x ∈ P . Below is a table
showing the insertions for the nodes, the successor of the sequence (only relevant for nodes /∈ P ∪ E)
and the split of nodes between S, P and E. The right part shows a modification −→

S =⇒
(α,d)

−→
S ′ where

node d has been inserted after node α, changing its status and removing insertion a from Ie due to
some constraint.

Operation Description Complexity
isBound(Sq) return true iff |P | = 0 Θ(1)
is{Member/Possible/Excluded}(Sq, x) return true iff x ∈ {S/P/E} Θ(1)
get{Member/Possible/Excluded}(Sq) enumerate over {−→

S /P/E} Θ(|{−→
S /P/E}|)

succ(Sq, x) return q | x −→ q Θ(1)
pred(Sq, x) return p | p −→ x Θ(1)
insert(Sq, p, x) insert x into Sq such that p −→ x holds Θ(P )
exclude(Sq, x) exclude x from Sq Θ(P )
nMemberInserts(Sq, x) return nx

s = |Ix ∩ S| Θ(1)
nPossibleInserts(Sq, x) return nx

p = |Ix ∩ P | Θ(1)
getMemberInserts(Sq, x) enumerate over Ix ∩ S Θ(min (|Ix|, |S|))
getPossibleInserts(Sq, x) enumerate over Ix ∩ P Θ(min (|Ix|, |P |))
canInsert(Sq, p, x) return true iff p ∈ Ix Θ(1)
removeInsert(Sq, p, x) remove p from Ix O(P )

Table 1 Operations on a Sequence Variable Sq with domain ⟨−→
S , I, P, E⟩.

Any global constraint interested to be notified on domain modification of the Sequence
Variable can do it using the three following hookup events:

The sequence is bound, that is the set of possible nodes is empty;
A node has been inserted / excluded and this node is provided as a parameter of the
event to allow incremental updates;
The number of elements within a set Ix has changed, and the corresponding node is
provided as a parameter of the event to allow incremental updates.

CP 2022
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In the next section, we describe the filtering algorithms of some important constraints on
the sequence variables.

4 Global constraints

This section defines and explains the filtering algorithm for some constraints on the Sequence
variables. Some were already introduced in [26] but the filtering algorithms are adapted to
reflect the removal of the required set. Some constraints reason over a list of values, written
[x] when x is a list, or a matrix of values, denoted by [[x]].

Dependency

Despite the removal of the required set, one might still want to require a particular node to be
inserted in one specific sequence. The Dependency constraint allows this. This constraint
takes a list Dep of nodes as parameter that must all be member of the sequence or excluded
from it. It is formally defined as

Dependency(Sq, [Dep]) ≡
{−→

S ∈ D(Sq) | Dep ∩ S ̸= ϕ⇔ Dep ∩ S = Dep
}

. (8)

Filtering The filtering is triggered when a node d ∈ Dep is either excluded or inserted
into the sequence. If it is excluded, it excludes all other nodes d′ ∈ Dep | d ̸= d′. If it is
inserted, it ensures that excluding any other node d′ ∈ Dep | d ̸= d′ results in a failure. The
complexity of this filtering is O(|Dep|).

Disjoint

This constraint ensures that every node x ∈ X can be inserted once and only once across all
sequences Sq ∈ SQ:

Disjoint([SQ],X ) ≡
∀Sq, Sq′ ∈ [SQ],∀x ∈ X , Sq ̸= Sq′ =⇒ x ∈ Sq =⇒ x /∈ Sq′ (9)

Filtering The filtering is triggered when a node i ∈ X is inserted in a Sequence Sq ∈ SQ. It
excludes i from all other Sequences Sq′ ∈ SQ | Sq ≠ Sq. As the constraint can be notified of
the value of i when an insertion occurs through the hookups events, we only need to iterate
over SQ for checking the consistency. The complexity of the filtering when a single node is
inserted is therefore O(|SQ|).

This constraint can optionally enforce that nodes must be inserted in exactly one of
the sequences: ∀x ∈ X ∃Sq ∈ SQ | x ∈ D(Sq). If this is the case, the constraint fails if a
mandatory node is excluded from all sequences .

Precedence

For some applications, visiting a set of nodes in a specific order is important and those nodes
must all be inserted or not at all. This constraint is similar to the Dependence constraint
but is done over an ordered set −→D of nodes, ensuring that the order in the set appears within
the sequence if some node n ∈ −→D belongs to the Sequence. It is formally defined as

Precedence(Sq,
−→
D) ≡

{
−→
S ∈ D(Sq) | −→S ∩ −→D ̸= ϕ =⇒ ∀i, j ∈ −→D : i

−→
D

≺ j =⇒ i
−→
S

≺ j

}
(10)
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Filtering The filtering is triggered whenever a node is inserted into the sequence or excluded
from it. It iterates over the nodes in −→D and ensures that they appear in the same order in −→S
if they belong to D(Sq). It then removes the insertions that would prevent the order from
being respected:

∀i, j ∈ −→D ∀p ∈ −→S |
(

i
−→
D

≺ j ∧ p
−→
S

≺ i =⇒ p /∈ Ij

)
∧

(
i

−→
D

≺ j ∧ j
−→
S

≺ p =⇒ p /∈ Ii

)
(11)

Furthermore, if some node in −→D is excluded from the Sequence, all nodes from −→
D are

excluded as well. The time complexity is O(|D| · |S|) as the constraint considers the insertions
Ix ∩ S for every node x ∈ −→D .

Transition Times

The TransitionTimes constraint is used for problems where nodes are related to a time
window and where transitions from one node to another take a certain duration specified in
a distance matrix. This constraint ensures that the order defined by the successor set −→S is
feasible: all nodes in S must be visited within their time window.

More formally, each node x ∈ X is attached to a time window variable [startx] and
a duration durationx. A matrix trans ∈ Rn×n with n nodes defines the transition times
between elements and satisfies the triangular inequality. The sum of transition times when
following the path described by the sequence is defined by a variable transitionT ime. The
constraint is defined as

TransitionTimes(Sq, [start], [duration], [[trans]], transitionT ime) ≡{
−→
S ∈ D(Sq)

∣∣∣∣∣∀i, j ∈ −→S , i
−→
S
≺ j =⇒ starti + durationi + transi,j ≤ startj

transitionT ime =
∑

i,j∈−→
S | i−→j transi,j

}
(12)

We consider that waiting at a given node (i.e. reaching it before its time window without
beginning the task related to it) is possible, which is why (12) uses inequalities.

Filtering The pseudo code for the filtering is shown in Algorithm 1. It first ensures that
a Sequence respects its time windows: an iteration over −→S is done, updating the bounds
for starti ∀i ∈

−→
S (line 2). No time window update is done for nodes ̸∈ −→S . Afterwards, it

computes the current length of the sequence as the sum of transitions between elements in
S and uses it to update the bounds of transitionT ime (line 4). Only the lower bound is
updated, as we could exclude all remaining nodes in P and still get a valid solution. Then,
the algorithm starts removing invalid insertions. An insertion p ∈ Ix ∩ S for a node x ∈ P is
invalid if reaching x through p would violate its time window (line 8), prevent the current
successor q | p −→ q of p to be reached within its own time window (line 13) or exceed the
maximum traveled distance (line 17). Line 12 uses a max because reaching a node before its
time window is possible: if reachingx < min(startx), the departure occurs at min(startx),
otherwise it happens at reachingx.

The time complexity of this filtering is O(|P | · |S|). However, the effective complexity
is slightly lower as Ix ∩ S is retrieved in Θ(min (|S|, |Ix|)). A similar pruning can also be
defined for predecessors p ∈ Ix ∩ P of x ∈ P , ensuring that doing the transition from p to
x would not exceed startx. Because we do not reason over a set of Required nodes as in
[26], we do not need to ensure that a valid transition exists among those Required nodes,
removing the NP-complete problem of checking such transition.

CP 2022
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Algorithm 1 TransitionTimes(Sq = ⟨−→
S , I, P, E⟩, [start], [duration], [[trans]], transitionT ime)

filtering.

1 for i ∈ −→S do
2 update time windows starti

3 length← current distance of the sequence
4 min (transitionT ime)← length

5 for x ∈ P do
6 for p ∈ Ix ∩ −→S do
7 reachingx ← min(startp) + durationp + transp,x

8 if reachingx > max(startx) then
9 remove p from Ix

10 else
11 q ← succ(Sq, p)
12 reachingq ← max (reachingx, min(startx)) + durationx + transx,q

13 if reachingq > max(startq) then
14 remove p from Ix

15 else
16 detour ← transp,x + transx,q − transp,q

17 if detour + length > max(transitionT ime) then
18 remove p from Ix

Cumulative

Common variations of VRP include pickup and delivery occurring at nodes, consuming
a certain amount of load available in a vehicle. By analogy to scheduling problems, this
constraint is called the Cumulative constraint: when providing a set of activity consuming
a certain load loadx, it ensures that a maximum capacity is never exceeded and filters
insertions that would exceed the available capacity. As our filtering is close to the one
presented in [26] but more enhanced, we will borrow their notation.

More specifically, let us define an activity i as a pair of nodes (si, ei) for its start (pickup)
and end (delivery), respectively. The set of all activities is written A. An activity i ∈ A

consumes a certain load loadi during its execution and can be in one of three states with
respect to a Sequence Variable: fully inserted if si ∈ S∧ei ∈ S, non-inserted if si /∈ S∧ei /∈ S,
and partially inserted otherwise (the pickup or the delivery is inserted but not both). The
Cumulative constraint with a maximum capacity C, with starts start and corresponding
ends end is defined as

Cumulative(Sq, [start], [end], [load], C) ≡−→S ∈ D(Sq) | ∀e ∈ −→S ,
∑

i∈A|starti⪯e⪯endi

loadi ≤ C

 (13)

Checking The checking consists of verifying that an optimistic load profile does not exceed
the vehicle capacity. We introduce two sets of values that represent the accumulated capacity
at each node visited in the order of the partial sequence instead of one as in [26]. This allows
computing a more realistic load profile and filtering more insertion points. Those two sets
are denoted Cb = {Cb

x ∀x ∈
−→
S } for the accumulated capacity just before visiting a given

node and Ca = {Ca
x ∀x ∈

−→
S } for the accumulated capacity just after leaving a given node.
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The computing of those values is presented in Algorithm 2. It looks at the positions
of the start and end of fully inserted activities, and increases Ca from the start until the
node before the end node (line 7). For Cb, it is increased from the node after the start
until the end node, included (line 5). When encountering a partially inserted activity i, our
optimistic load profile considers that a sequence can be formed where starti −→ endi and
thus only increases the value of Ca (line 10) or Cb (line 12) at one node. This setting for
the load profile implies Cb

s < Ca
s for every inserted start s and Cb

e > Ca
e for every inserted

end e. An example load profile is shown in Figure 2. Note that we do not necessarily have
Ca

i = Cb
j | i −→ j, as illustrated in Figure 3.

Cb
s0

Ca
s0 Cb

s1
Ca

s1 Cb
e0

Ca
e0 Cb

e2
Ca

e2

s0 s1 e0 e2

−→
S

C

Figure 2 Load profile for the Cumulative constraint with C = 2 and −→
S = {α, s0, s1, e0, e2, ω}.

Each activity has a load of 1, activity 0 (s0, e0) is fully inserted (dark gray) and both activity 1 and
2 are partially inserted (light gray). e1 is considered to be inserted right after s1, whose load only
affects Ca

s1 . For activity 2, s2 is consider to be inserted before e2, affecting the value Cb
e2 .

Algorithm 2 LoadProfile(Sq, start, end, load, C) computation.

Input : start, end, load: start, end and load of activities, C: capacity,
Sq = ⟨−→S , I, P, E⟩: Sequence Variable.

Output : Cb, Ca: capacity before arriving at a node and after leaving a node,
respectively.

1 Cb, Ca ← 0
2 for i | starti ∈ S ∨ endi ∈ S do
3 if starti ∈ S ∧ endi ∈ S then
4 for x ∈ −→S | starti ≺ x ⪯ endi do
5 Cb

x ← Cb
x + loadi

6 for x ∈ −→S | starti ⪯ x ≺ endi do
7 Ca

x ← Ca
x + loadi

8 else
9 if starti ∈ S then

10 Ca
starti

← Ca
starti

+ loadi

11 else
12 Cb

endi
← Cb

endi
+ loadi

13 return Cb, Ca

Filtering The filtering is triggered whenever new elements are inserted into the sequence. It
uses the load profile computed during the checking to filter two cases: the partially inserted
activities first and the non-inserted activities afterwards.

The partially inserted activities are considered first: we remove the insertions points for
their non-inserted node that would cause the maximum capacity to be exceeded. A filtering
example for removing insertions for starts whose corresponding end is inserted is shown
in Algorithm 3. We iterate over the sequence in backward order (line 9) and compute the
capacity occurring at the node (line 6 and 10). As soon as the maximum capacity would
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be exceeded if the start was inserted there, we remove the corresponding insertions (line 7
and 11). We inspect both the capacity before arriving at a node (line 7) and when leaving it
(line 11) to detect invalid insertions. A load profile example where such filtering is used is
shown in Figure 3. It detects that the starts of partially inserted activities cannot be inserted
everywhere in the sequence. This detection was not possible using the load profile from [26],
illustrated in Figure 4: it only includes the capacity when leaving the node, which is always
zero when no start is inserted. In this case, their algorithm produces an empty profile, which
can be enhanced and more representative, as in Figure 3.

For the non-inserted activities, we use a similar pruning as [26]: we look at every possible
insertions for the start of the activities and see if a matching end can be found. Start
positions that cannot be closed and end positions for which no corresponding start can be
found are removed. The time complexity is dominated by the complexity to check all the
activities, which is O(|S| · |A|).

Algorithm 3 CumulFiltering(Sq, start, end, load, C, Cb, Ca) for partially inserted
activities with end inserted.

Input : Sq = ⟨−→S , I, P, E⟩: Sequence Variable, start, end, load: start, end and load of
activities, C: capacity, Cb: minimum capacity before reaching a node, Ca

minimum capacity after leaving a node.
1 for i | starti /∈ S ∧ endi ∈ S do
2 current← (x ∈ −→S | x −→ endi)
3 if Ca

current + loadi > C then
4 return failure
5 while current ̸= α do
6 if Cb

current + loadi > C then
7 remove all nodes x ∈ −→S | x ≺ current from Istarti

8 break
9 current← (x ∈ −→S | x −→ current)

10 if Ca
current + loadi > C then

11 remove all nodes x ∈ −→S | x ⪯ current from Istarti

12 break
13 return success

Cb
e0

Ca
e0 Cb

e1
Ca

e1 Cb
e2

Ca
e2

e0 e1 e2

−→
S

C

Figure 3 Load profile for a Sequence Variable with −→
S =

{α, e0, e1, e2, ω}, where only ends are inserted. Thanks to the
computation of Cb in addition to Ca and the use of Algorithm
3, we can remove invalid insertions when considering the
starts whose corresponding ends are inserted. This is the
case for the start of activity 2 s2 which cannot be inserted
right after e0, as the capacity before arriving at node e1

would be exceeded. This case would have not been detected
using only Ca, resulting in a load profile similar to Figure 4.

e0 e1 e2

−→
S

C

Figure 4 Load profile from [26]
for a Sequence Variable with −→

S =
{e0, e1, e2}, where only ends are in-
serted. Because the accumulated
capacity at each node is computed
only when leaving a node, partially
inserted activities might not con-
tribute to the profile. In this case,
it does not allow to detect that try-
ing to insert s2 after e0 is invalid.
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5 Experimental Results

The experiments reported in this section were conducted using two Intel(R) Xeon(R) CPU
E5-2687W with 128GB of RAM. The Sequence Variable was implemented in MiniCP solver
[21]. The source code is available for the readers in this anonymous repository [1], or by
contacting the authors directly.

5.1 Dial-A-Ride Problem
We consider the problem described in [9, 15] and borrow the notations from [15]. This
problem consists of m vehicles that must process n requests. Each request has a maximum
ride time L, the vehicles have a maximum route duration D and the planning time is defined
by a value T , representing the time at which the vehicles must be returned back to their
origin. Each request i consists of an associated load and 2 nodes: a pickup pickupi and
delivery dropi that must be visited one before the other. Each node i has an associated
service duration dj ≥ 0 and belongs to one of two categories: non-critical nodes, having a time
window [0, T ] and critical nodes having a tighter time window [si, ei] where si ̸= 0 ∨ ei ̸= T .
Each activity is composed of exactly one critical vertex and one non-critical vertex and
the set of all critical vertices is CV . The nodes define a complete graph: there is always a
transition from one node to another.

A solution for the DARP consists of finding a route such that all vehicles begin and end
at the depot; all requests are serviced; the maximum capacity of a vehicle is never exceeded;
the pickup and corresponding delivery of a request are serviced by the same vehicle; for all
requests i the difference between the arrival time at a dropi and the departure from pickupi

never exceeds L; each node is visited within its time window. The objective consists of
minimizing the routing cost: the sum of traveled distance by each vehicle.

This problem can be modeled easily by introducing one Sequence Variable per vehicle.
Only a few constraints are required, the most important ones being a Disjoint constraint
to ensure that nodes are visited once, a TransitionTimes to prevent visits of nodes
outside of their time window and a Cumulative to respect the maximum capacity of each
vehicle. We compare our results with [15], a state-of-the art approach for DARP and we use
a similar branching strategy, shown in Algorithm 4.

We begin by computing the number of insertions for every request (line 7) as the product
between the insertions for its critical node and for its non-critical node. This can be retrieved
in constant time for one node x through nx

s , introduced in section 3.3. We then select the
request having the least possible insertions (line 8) and branch on every pair of insertions for
its vertices (line 13). Those branching decisions are ordered by increasing value of a heuristic
h for inserting a node x ∈ P between nodes i, j ∈ −→S | i −→ j. This heuristic is defined in
equations (14)-(16), and is similar to [15].

h(x, i, j) = α · costIncrease(x, i, j)− β · slack(x, i, j) (14)
costIncrease(x, i, j) = disti,x + distx,j − disti,j (15)

slack(x, i, j) = max(timej)−min(timei)− disti,x − distx,j (16)

Where timex is an integer variable denoting the serving time of node x and disti,j the
distance between nodes i and j. The values for α and β were kept from [15] and are set to 80
and 1, respectively. We also use Large Neighborhood Search with First Feasible Probabilistic
Acceptance from [15]. For a fair comparison, we have implemented the COMET source code
provided by the authors of [15] in Java. Although not able to run it in COMET, we could
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Algorithm 4 Branching for DARP with a set SQ of Sequence Variables.

1 if no unassigned requests left then
2 return solution
3 for r ∈ unassigned request do
4 nInsertr ← 0
5 cvr, ncvr ← critical node and non-critical node from request r

6 for S ∈ SQ do
7 nInsertr ← nInsertr + nMemberInserts(S, cvr) · nMemberInserts(S, ncvr)
8 r ← argmin {nInsertr | ∀r ∈ unassigned request}
9 branching ← {}

10 for S ∈ SQ do
11 for pcv ∈ getMemberInserts(S, cvr) do
12 for pncv ∈ getMemberInserts(S, ncvr) do
13 branching ← branching + (insert(S, cvr, pcv), insert(S, ncvr, pncv))
14 sort branching by increasing order of heuristic
15 return branching

obtain solution quality similar to the ones reported in [15] with the translated source-code.
It is worth mentioning that the code for [15] is not generic, but custom and optimized for
this sole problem. The filtering of the insertions is done during the search procedure rather
than relying on the generic constraints executed in the fix-point of the solver.

We first compare the number of failures and solutions found using the exact search
described in [15] without LNS with the Sequence Variable implementation. This comparison
was made on a small instance with 2 vehicles and 20 requests and the corresponding results
are reported in Table 2. We observe that the search from [15] finds all solutions to the instance
in less time compared to the Sequence approach, which is ≈ 1.34 times slower. However,
the number of failures is halved using Sequence Variables, resulting in a doubled ratio of
solutions found per failure. This means that the approach performs better at removing
invalid candidates to insert into the routes, although its filtering is slower.

Statistic Tree Search [15] Tree Search with Sequence
Time [s] 974.545 1307.447
Choices 153 864 380 120 593 739
Failures 70 033 356 35 751 093

Solutions 66 700 800 66 700 800
Failures / choices 0.455 0.296

Solutions / choices 0.434 0.553
Solutions / failure 0.952 1.866

Table 2 Statistics for finding all solutions on an instance with m = 2 vehicles and n = 20 requests,
without using LNS. Choices refers to the number of branching decisions created during the search.
Best result for each metric are shown in bold.

The next experiment compares the different approaches against instances with more
requests and vehicles. It also includes a baseline comparison with a CP Optimizer model
described in [26]. The solutions found are reported in Table 3 when an initial solution was
provided. From the results, we see that our Sequence Variable does obtain results competitive
with the approach from [15] with a slight advantage on smaller instances but not on larger
ones. For some instances such as the one with m = 8 vehicles and n = 108 requests, finding
a feasible solution is hard. This is why the Sequence Variables from CP Optimizer using a
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black-box search that is not specific to this problem cannot always find a feasible solution.
However, even when providing an initial solution, CP Optimizer sometimes fails to improve
it, whereas our approach is able to get even better results by using it.

15 minutes run - no initial solution provided
class a LNS-FFPA Sequence CPO
m n Mean Best Mean Best Mean Best
3 24 191.59 191.40 190.99 190.79 198.19 198.19
4 36 291.71 291.71 294.48 292.75 313.33 313.33
5 48 308.26 305.98 308.02 305.48 t/o t/o
6 72 531.59 522.00 527.80 518.94 t/o t/o
7 72 553.26 546.63 551.45 544.64 t/o t/o
8 108 741.37 719.24 780.45 758.63 t/o t/o
9 96 625.09 616.47 622.86 612.74 t/o t/o
10 144 949.72 922.32 1005.12 951.33 t/o t/o
11 120 696.33 683.64 715.10 692.71 t/o t/o
13 144 878.10 863.15 913.60 899.12 t/o t/o

Avg. 576.70 566.25 590.99 576.71 t/o t/o

15 minutes run - initial solution provided
class a LNS-FFPA Sequence CPO
m n Mean Best Mean Best Mean Best
3 24 191.76 191.40 190.89 190.21 196.11 196.00
4 36 291.71 291.71 294.72 292.72 318.97 318.97
5 48 308.95 306.97 307.09 304.38 327.37 327.00
6 72 532.55 524.97 531.84 519.76 579.79 579.77
7 72 554.57 550.42 554.65 548.72 614.02 614.00
8 108 752.29 742.08 794.86 755.00 924.04 923.86
9 96 622.19 614.65 625.68 611.15 740.26 740.26
10 144 950.16 929.31 1011.42 962.21 t/o t/o
11 120 699.32 687.99 718.58 709.49 861.74 861.73
13 144 878.33 864.81 901.71 874.56 1042.82 1042.82

Avg. 578.18 570.43 593.14 576.82 t/o t/o

Table 3 Comparison between our LNS-FFPA implementation from [15] (LNS-FFPA), our
Sequence Variable implementation (Sequence) and the model using Sequence variables from CPop-
timizer (CPO). 10 runs per solver were done on each instance, the best results are shown in bold.
The left graph was produced when no initial solution was given, and the right when it was provided.
Time-outs or no improving solution found are indicated by ’t/o’.

5.2 Patient Transportation Problem
This problem, described in [5], is an extension of the Dial-A-Ride problem introduced in
Section 5.1 with a few additional constraints. It considers the transport of patients to a
hospital (described as one activity) and possibly back to a given location (another activity)
by using a limited number of vehicles. The trip to the hospital must therefore always occur
before the return trip and some patients can only be transported in a particular type of
vehicle (patients in wheelchairs for instance). The objective consists of maximizing the
number of transported patients.

We introduce one Sequence Variable per vehicle. We then use a Cumulative constraint
to ensure that a vehicle never exceeds its maximum capacity and serves each activity as well
as a Precedence constraint to guarantee that the trip to the hospital occurs before the
transportation back home. As activities must be serviced within a specific time window,
we use a TransitionTimes constraint and finally a Disjoint constraint to ensure that
the patients are serviced at most once. For cases where a particular patient i can only be
transported in a given type of vehicle t, we simply exclude all nodes n related to i from
Sequence Variables whose related vehicle type is different from t. Our search and LNS uses
works similarly to the one from Section 5.1, by inserting all nodes related to a patient (for
their forward and possibly backward trip) before trying to serve another patient.

The comparison between our model and the results from [5] for the biggest available
instances are reported in Table 4. We have used the same time-out as the one reported in
their paper (30 minutes) and run their model on our setup, finding better solutions than the
ones they reported. We observe that we are able to improve the number of serviced patients
on the most difficult instances by using Sequence Variables.

5.3 Traveling Salesman Problem With Time Windows
TSPTW is a variant of the Traveling Salesman Problem (TSP) where all the customers
must be visited within given time windows. Even finding a feasible solution was proved
NP-complete [25]. As only one vehicle is available, the problem is modeled with a single
Sequence Variable, the TransitionTimes constraint as well as a Disjoint constraint on
the variable with the option that all nodes must be inserted.
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Instances SCHED+MSS Sequence
Difficulty Name |H| |V | |R| Sol Sol
Easy RAND-E-8 32 12 128 128 128
Easy RAND-E-9 36 14 144 144 143
Easy RAND-E-10 40 16 160 158 156
Medium RAND-M-8 64 8 128 89 91
Medium RAND-M-9 72 8 144 89 93
Medium RAND-M-10 80 9 160 109 113
Hard RAND-H-8 128 8 128 77 87
Hard RAND-H-9 144 8 144 78 84
Hard RAND-H-10 160 8 160 76 84

Table 4 Experimental results for the Patient Transportation Problem. |H|, |V |, |R| are the
number of hospitals, vehicles and requests, respectively. The objective is the number of patients
serviced (Sol). SCHED+MSS refers to the best model from [5] while our own model is denoted as
Sequence. Best results are shown in bold, the time-out was set to 30 minutes.

We use LNS to find better solutions over time. The relaxation used by LNS starts from an
initial solution and consists of removing a set C of n consecutive nodes from the solution after
a given node i. Those nodes are then only allowed to be inserted after node i or after another
node in C. To achieve this, we remove the insertions (p, q) | (p ̸= i ∨ p /∈ C ∨ q /∈ C) from
the sets of insertions I. Nodes not belonging to C are ordered according to their previous
best found ordering.

Our LNS, described in Algorithm 5 uses the same structure as the one from [15]. It starts
from an initial solution initSol and relaxes an increasing number of nodes n = i + j (line
7) from it. This process is done numIter times before increasing the number of relaxed
nodes. minSize, maxSize and range provide bounds for the number of nodes that needs
to be relaxed. During our experiments, we have set minSize = 10, maxSize = number of
nodes in the problem, range = 5 and numIter = 300. The branching procedure at line
8 uses a similar branching as the one from the DARP: the non-inserted node x with the
least number of member insertions nx

s = |Ix ∩ S| is selected and branched on according to a
heuristic that is the same as equation (14).

Algorithm 5 LNS(Sq = ⟨−→
S , I, P, E⟩, initSol, minSize, maxSize, range, numIter, dist, timeLimit).

1 bestSol← initSol

2 for i ∈ {minSize . . . (maxSize− range)} do
3 if i = maxSize-range then
4 i← minSize

5 for j ∈ {0 . . . range− 1} do
6 for k ∈ {1 . . . numIter} do
7 relax(i + j) consecutive nodes from bestSol

8 sol← optimize(dist)
9 if the solution has been improved then

10 bestSol← sol

11 if timeLimit is reached then
12 return bestSol

We tested the model on three sets of instances from [20], referred to as OhlmannThomas,
AFG and GendreauDumasExtended and adapted from [22, 11] for the first set, [2] for the



A. Delecluse, P. Schaus, and P. Van Hentenryck 38:15

second set and from [13, 11] for the third set. The number of nodes in those instances varies
from 20 to 232. The LNS was initialized from the best known solutions reported on [20].
The improved solutions were tested using the checker from [20] to ensure their feasibility as
well as their cost.

A set of 20 of the 25 instances from the OhlmannThomas set could be improved, 10 of the
50 instances from the AFG set and 2 of the 130 instances from the GendreauDumasExtended
set. The new objective solutions as well as the solving time to reach them are reported in
Table 5. From our experiments we observe that we converge to a new solution sometimes
rapidly (6 new best solutions are reached in less than 5 seconds and not improved afterwards)
whereas some instances benefit more from the increasing number of nodes relaxed in the
LNS and are still improved after a longer period of time.

Instance Previous New Time [s]
n150w120.001 735 734 0.50
n150w120.002 683 679 290.86
n150w120.003 748 747 41.45
n150w120.005 692 689 7.84
n150w140.001 767 762 134.96
n150w140.002 757 755 34.28
n150w140.003 620 613 64.28
n150w140.004 677 676 12.94
n150w140.005 665 663 167.10
n150w160.001 708 706 2.64
n150w160.002 712 711 162.35
n150w160.003 610 608 0.49
n200w120.001 801 799 194.56
n200w120.002 725 722 12.12
n200w120.003 885 880 51.44
n200w120.005 843 841 202.69
n200w140.001 837 834 35.23
n200w140.002 768 765 14.77
n200w140.003 764 758 298.95
n200w140.005 827 822 33.21

Instance Previous New Time [s]
rbg132.2 8200 8194 37.76
rbg132 8470 8468 0.76
rbg201a 12 967 12 948 152.53
rbg233.2 14 549 14 523 24.20
rbg092a 7160 7158 2.70
rbg152.3 9797 9796 0.41
rbg193.2 12 167 12 159 242.54
rbg193 12 547 12 538 55.57
rbg233 15 031 14 994 264.70
rbg172a 10 961 10 956 113.83

Instance Previous New Time [s]
n80w120.005 597 591 9.09
n100w160.005 587 586 19.59

Table 5 Improved routing cost values found for the TSPTW instances. Previous best objective
values (Previous) are retrieved from [20]. New best objective values discovered are indicated (New)
as well as the time to reach them. The time-out was set to 5 minutes. The Table on the left shows
the values for the OhlmannThomas instances, the top right for the AFG instances and the bottom
right for the GendreauDumasExtended.

6 Conclusions and future work

This paper introduced a simplified version of the Sequence domain introduced in [26] as a
flexible and effective approach for modeling and solving VRP with CP. The filtering algorithms
for constraints imposing time windows and vehicle capacity are described. Experimental
results on three problems show that our models are competitive with existing sequence based
approaches while being effective enough to discover new best solutions to a well-studied
problem such as the TSPTW. Our proposed filtering algorithms are relatively simple and
could most certainly be improved. We plan to enhance them and study the use of Sequence
Variables in more vehicle routing problems, as well as scheduling problems.
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