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Abstract. Deviation is a recent constraint to balance a set of variables
with respect to a given mean. We show that the propagators recently
introduced are not bound-consistent when the mean is rational. We in-
troduce bound-consistent propagators running in linear time with respect
to the number of variables. We evaluate the improvement in terms of ef-
ficiency and pruning obtained with the new propagators on the Balanced
Academic Curriculum Problem.

1 Introduction

Global constraints to obtain a balanced assignment on a set of variables has
not received much attention up to now. Some possible applications for such
constraints are the following: fairly distribute the night and weekend shifts in
physician scheduling in emergency rooms [2], balance the tardiness of tasks in a
scheduling problem, balance the violations among soft global constraints, balance
the load of work between periods in a timetabling problem [1], and generate
spatially balanced scientific experiments [3].

The constraint deviation has been recently introduced in [7]. This con-
straint guarantees an assignment on a set of variables to be balanced around a
given mean. More precisely deviation constrains a set of variables to present a
given mean and constrains the sum of deviations to this mean. A closely related
constraint using a different measure of balance is spread [5, 6]. The propagators
for spread run in quadratic time with respect to the number of variables against
linear time for deviation . The semantic of deviation is given in the following
definition.

Definition 1. Given n finite domain variables X = (X1, X2, ..., Xn), one inte-
ger value s and one finite domain variable ∆, deviation(X , s, ∆) holds if and
only if

n∑
i=1

Xi = s and ∆ ≥
n∑

i=1

|n ·Xi − s|.

In other words, deviation(X , s, ∆) is the conjunction of two constraints. One
sum constraint enforcing the sum of the variables to be equal to s and one
deviation constraint enforcing the sum of absolute deviations of n · Xi to the
sum s to be less than or equal to ∆ 1. Another formulation is that the mean
1 Bound-consistency is NP-Complete when it is constrained to be equal to ∆ [7]



(or average) of variables Xi must be equal to s/n and the sum of deviations
to this mean must be smaller than ∆/n. The definition of deviation might
seem restrictive since the sum is fixed. However in many practical applications
the sum is known: one often needs to distribute (weighted) items into categories
(nurses, shifts,...) and balance the loads of the categories.

The domain of a variable A is denoted Dom(A), the maximum and minimum
values in Dom(A) are denoted Amin and Amax respectively.

Two propagators can be imagined for the deviation constraint:

1. Increasing of ∆min given domains of variables in X and value s.
2. Narrowing of Dom(Xi) given the values ∆min, s and the domains Dom(Xj)

with Xj ∈ X and i 6= j.

This paper gives bound-consistent filtering algorithms for both propagators run-
ning in linear time Θ(n).

Section 2 motivates the need for new propagators by explaining the weak-
nesses of the bounds computed in [7]. The improved bound-consistent ones con-
sidered in this paper are introduced. Section 3 and 4 give linear time filtering
algorithms for propagators 1 and 2 respectively. Finally, Section 5 experiments
the improvement made by the new propagators on the Balanced Academic Cur-
riculum Problem.

2 Weakness of existing propagators

This section starts with some notations useful for the rest of the paper. Then
the weaknesses of the bounds computed in [7] are explained and the improved
bound-consistent ones considered in this paper are introduced.

An integer interval between integer numbers a and b is denoted [a..b] ⊆ Z
while the rational interval is denoted [a, b] ⊆ Q. An assignment on the variables
X = (X1, X2, ..., Xn) is denoted by the tuple x and the ith entry of this tuple
by x[i]. We denote by s↓ the largest multiple of n from s not larger than s:
s↓ = bs/nc · n and by s↑ the value s↓ + n. The rational interval domain of Xi is
IQ
i = [Xmin

i , Xmax
i ] and its integer interval domain is IZ

i = [Xmin
i .. Xmax

i ].

Definition 2 (Bound Consistency). A global constraint C(X1, ..., Xk) is bound-
consistent if and only if the minimum value and maximum value of every variable
Xi with i ∈ [1..k] has a support in the constraint assuming the other variables
Xj 6=i take their value from [Xmin

j ..Xmax
j ].

Filtering algorithms from [7] are simple and efficient (run-time in Θ(n)).
However, for integer finite domains, these algorithms are bound-consistent only
when s mod n = 0 that is when the mean s/n is an integer. The reason is the
relaxing assumption that the domains are rational intervals instead of integer
intervals when computing the bounds. Definition 3 gives the expressions of the
computed bounds in [7] and the bound-consistent ones considered in this paper.



Definition 3. ∆Q denotes the minimal sum of deviations with rational interval
domains:

∆Q = min
x
{

n∑
i=1

|n · x[i]− s|
∣∣ ∀i : x[i] ∈ IQ

i and
n∑

i=1

x[i] = s}. (1)

∆Z denotes the minimal sum of deviations with integer interval domains
obtained by substituting Q by Z in equation (1).

X
Q
i denotes the maximal consistent value for Xi with rational interval do-

mains:

X
Q
i = max

x
{ x[i]

∣∣ ∀j : x[j] ∈ IQ
j and (2)

n∑
j=1

x[j] = s and
n∑

j=1

|n · x[j]− s| ≤ ∆max}.

X
Z
i denotes the maximal consistent value for Xi with integer interval domains

obtained by substituting Q by Z in equation (2).
Corresponding definitions for XQ

i and XZ
i are obtained by replacing maxi-

mization over x by minimization in equation (2).

The two propagators described in [7] filtering ∆ and X apply respectively
the filtering rules

∆min ← max(∆min,∆Q) and (3)

Dom(Xi)← Dom(Xi) ∩ [XQ
i , X

Q
i ] ∀i ∈ [1..n]. (4)

These filtering rules are bound-consistent if the domains of the Xi’s are ratio-
nal intervals [Xmin

i , Xmax
i ]. When the domains of the Xi’s are integer intervals

[Xmin
i ..Xmax

i ], the corresponding bound-consistent filtering rules are obtained
by substituting Q by Z in equations (3) and (4). Nevertheless, rules (3) and (4)
can be used for integer domains as well since they are obtained by relaxing the
domains to rational intervals. The relations between the bounds are XZ

i ≥ XQ
i ,

X
Z
i ≤ X

Q
i and ∆Z ≥ ∆Q. In the particular case of s mod n = 0, the bounds are

completely equivalent. As illustrated in the two following examples, the relaxing
assumption of rational interval domains can lead to miss some possible filtering
with respect to a bound-consistent filtering.

Example 1 (Filtering of ∆). Assume two variables X = (X1, X2) with domains
[−5..5] and a sum constraint s = 1. Obviously ∆Q = 0 is obtained with the tuple
x = (0.5, 0.5) while ∆Z = 2 is obtained with the tuple x = (1, 0) or x = (0, 1).

Example 2 (Filtering of X ). Assume ten variables with domains [−5..5], a sum
constraint s = 7 and a maximum sum of deviations ∆max = 42. One can see
that X

Q
i = 7

10 + 21
10 = 2.8 and XQ

i = 7
10 −

21
10 = −1.4. This solution is obtained



if eight variables are assigned to the mean 7/10 and the other two are as far
as possible from the mean that is one above the mean and the other below the
mean at an equal distance 21

10 . For this configuration, the maximum deviation
∆max = 42 is reached. When only integer assignments are permitted, the result
is X

Z
i = 1 and XZ

i = 0. Indeed, for an assignment composed of seven values 1
and three values 0, the maximal deviation is reached (∆max = 42). Clearly there
is no other integer assignment with a lower deviation. Hence the filtering of [7]
would achieve Dom(Xi) = [−1..2] while a bound-consistent filtering would give
Dom(Xi) = [0..1].

3 A bound-consistent lower bound for the deviation.

The previous section shows in Example 1 that when every domain overlaps the
mean, the lower bound for the deviation computed by propagators in [7] is equal
to 0 since every variable can be assigned to the mean s/n. This lower bound
is not bound-consistent when the mean is rational (when s mod n 6= 0). Next
theorem gives a lower bound for ∆ that can be computed in constant time and
greater than 0 in this case.

Theorem 1. A lower bound for the deviation ∆ is:

0 ≤ 2 · (n− s mod n) · (s mod n) ≤ ∆Z.

Proof. This lower bound is obtained by enlarging every domain Dom(Xi) such
that s/n gets inside: ∀i ∈ [1..n] : s/n ∈ [Xmin

i , Xmax
i ]. Then in an assignment of

minimum deviation, every variable are either assigned to s↓ or to s↑ = s↓ +n. If
we denote by y the number of variables (n·Xi) assigned to s↓ , the sum constraint
can be written: y·s↓+(n−y)·(s↓+n) = s·n. Hence y = n−(s−s↓) = n−s mod n.
Using this, a lower bound of ∆Z is (n− s mod n) · (s mod n) + (s mod n) · (n−
s mod n) = 2 · (n− s mod n) · (s mod n). ut

The lower bound introduced in Theorem 1 is bound-consistent only if every
domain overlaps the mean s/n. The remaining of this section introduces a linear
time algorithm to compute a valid assignment satisfying the sum constraint and
minimizing the sum of deviations in the general case when the domains do not
necessarily overlap the mean. More formally the algorithm computes a tuple x
satisfying the relation 2:

argmin
x
{(

n∑
i=1

|n · x[i]− s|)
∣∣∀i : x[i] ∈ IZ

i and
n∑

i=1

x[i] = s}.

To alleviate notations, the tuple n · x is used instead of x. Note that n · x
corresponds to an integer assignment only if it is composed of values which are
multiple of n. The algorithm executes in two phases: a greedy part followed by
a repair part.
2 argminx f(X) is the set of x such that f(x) is minimal.



– Greedy: The sum constraint is dropped. Each n · x[i] is set to the closest
multiple of n from s in Dom(n ·Xi).

– Repair: If the sum constraint is satisfied that is
∑n

i=1 x[i] = s, then n · x
is a solution to the problem. Otherwise the sum is larger or smaller than s.
We consider the larger case:

∑n
i=1 x[i] > s (the other case is similar). Then

some entries of n · x must be decreased until the sum constraint is satisfied.
An entry n · x[i] = s↑ > n ·Xmin

i is called an overlapping entry. The choice
of the entries to decrease is important. Decreasing an entry which is smaller
than s by n results in an augmentation by n of the sum of deviations. But
decreasing an overlapping entry by n (that is from n · x[i] = s↑ to s↓) only
increases the sum of deviations by (2 · (s mod n) − n) (see Figure 1). This
last quantity is smaller or equal to n. Consequently, all overlapping entries
are first considered in any order to be decreased by n to satisfy the sum
constraint. If the sum constraint is not yet satisfied after this operation, the
following property holds:

∀i : n · x[i] ≤ s or n ·Xmin
i ≥ s.

In other words, each entry n · x[i] lies either on the lower bound of the
corresponding variable domain or lies below s and can if necessary be further
decreased. Consequently every entry below s, not yet on its lower bound,
can be decreased at most to its lower bound (n · Xmin

i ). This results in an
augmentation of the sum of deviations equal to the amount of the decreasing.
These entries are used to satisfy the sum constraint. They are decreased
maximally in an arbitrary order until the sum constraint is satisfied.

The greedy part is achieved by iterating once over the variables. There are at
most n overlapping variables candidates to a repair. Finally, there are at most
n variables needed to be further decreased to satisfy the sum constraint. Hence
the total complexity is Θ(n) to compute the bound-consistent lower bound ∆Z.

Lemma 1. The greedy + repair algorithm computes an assignment x such that∑n
i=1 x[i] = s and

∑n
i=1 |n · x[i]− s| = ∆Z.

Proof. It can be verified that tuple x after the greedy part until the termination
of the algorithm satisfies the following invariant:

x ∈ min
y
{(

n∑
i=1

|n · y[i]− s|)
∣∣ n∑

i=1

y[i] =
n∑

i=1

x[i] and ∀j : y[j] ∈ IQ
j }.

Since each modification of x make the sum over x strictly closer to s and since
the algorithm terminates whenever the sum is equal to s, the correctness follows.

ut

Example 3 (Computing ∆Z). Assume six variables with domain bounds repre-
sented on Figure 2 and given in the following table:
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Fig. 1. Decreasing of an overlapping variable by n. The horizontal plain line represents
the sum constraint s. The horizontal dashed lines are placed at s↑ and s↓.
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Fig. 2. Illustration of Example 3 to compute ∆Z. Horizontal lines represents the mul-
tiples of n = 6. On the left, the result of the greedy part and on the right the result of
the repair part are represented with symbol ◦

i 1 2 3 4 5 6
Xmax

i 16 12 14 16 12 15
Xmin

i 11 10 12 15 10 12
n ·Xmax

i 96 72 84 96 72 90
n ·Xmin

i 66 60 72 90 60 72

The sum constraint is s = 76. After completion of the greedy part, the tuple
n · x is equal to (78, 72, 78, 90, 72, 78). An illustration of n · x is given on the left
of Figure 2 (symbols ◦). For this tuple

∑n
j=1 n · x[j] = 468 > 456. Since the

sum is too high, some entries of n · x must be decreased. First candidates are
overlapping entries n ·x[1], n ·x[3] and n ·x[6]. The decrease by n = 6 of any two
of them is sufficient to satisfy the sum constraint. The right of Figure 2 shows
the final tuple n · x. The value of ∆Z is then

∑n
j=1 |n · x[j]− s| = 32.



4 Bound-consistent lower and upper bounds for Xi

This section explains how to compute X
Z
i the maximum value in IZ

i consistent
with deviation(X , s, ∆) . Note that computing XZ

i is a similar problem sym-
metric with respect to s. The previous section gives an algorithm to find the
minimum deviation in linear time. A shaving process using this algorithm can
be sketched:

– Assign Xi successively to increasing values of its extended domain IZ
i .

– For each value compute ∆Z.
– X

Z
i is the largest value in IZ

i with ∆Z ≤ ∆max.

The complexity of this shaving procedure is O(e · n) for Xi where e is the the
size of the largest domain over X and O(e · n2) for all variables in X .

A better algorithm is possible to lower the complexity to Θ(n). Indeed, for
each variable Xi, it is possible to compute a function over the domain interval IZ

i

giving for each value the minimum deviation if Xi were assigned to that value.
As shown in Subsection 4.1, this function has a simple analytical form composed
of two contiguous increasing linear functions. Given this function, X

Z
i is found

in constant time by intersecting it with the horizontal line at ∆max (see Figure
3). Subsection 4.2 gives an algorithm to compute the function for every variable
in Θ(n).
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Fig. 3. Computation of X
Z
i on basis of the minimum deviation function defined on IZ

i .

4.1 Function of the minimum deviation on IZ
i

The computation of the function giving the minimum deviation on the domain
of Xi is conceptually based on any assignment mi on X which maximizes the
ith entry among all the assignments of minimal sum of deviations ∆Z :

mi ∈ argmax
n·x

{x[i]
∣∣∀j 6= i : x[j] ∈ IZ

j and
n∑

j=1

|n · x[j]− s| = ∆Z

and
n∑

j=1

x[j] = s}.



Any assignment with the ith entry larger than mi[i] has a deviation larger than
the deviation of mi. If mi[i] ≥ n · Xmax

i , then X
Z
i = Xmax

i . We now assume
mi[i] < n ·Xmax

i .
The minimum deviation function on [mi[i], n ·Xmax

i ] can take different forms
following the value mi[i]. Three cases are possible for mi[i] given in Property 1.

Property 1.

– If mi[i] < s↓ then mi[i] = n ·Xmax
i .

– If mi[i] = s↓ then ∀j 6= i : either mi[j] = n ·Xmin
i or mi[j] ≤ s↓.

– If mi[i] ≥ s↑ then ∀j 6= i : either mi[j] = n ·Xmin
i or mi[j] ≤ s↑.

Property 1 can be verified starting from an assignment obtained from the greedy+
repair algorithm from Section 3 and then by increasing the ith entry as much as
possible while keeping the sum constraint satisfied and the deviation unchanged.
Each case from Property 1 is considered in turn in the next three paragraphs
giving the evolution of the minimum deviation on IZ

i for each case.

Case mi[i] < s↓:

In this case, n ·XZ
i = mi[i] because the entry mi[i] cannot be increased since

it is already to its maximum possible value.

Case mi[i] = s↓:

If mi[i] is increased by n, the only entries which can be decreased are below s↓

(Property 1). Consequently when mi[i] is increased by n the deviation increases
by n− (s− s↓) + (s↑ − s). Term n represents the decrease of an entry below s↓

and the term −(s− s↓) + (s↑ − s) represents the increase by n of mi[i]. If mi[i]
is further increased by n, the deviation increases by 2 ·n. Indeed, mi[i] ≥ s↑ and
the other entries candidate to be decreased are below s↓.

Example 4. This example considers 4 variables with domains given in next table:
i 1 2 3 4

Xmax
i 7 5 6 7

Xmin
i 3 0 5 5

n ·Xmax
i 28 20 24 28

n ·Xmin
i 12 0 20 20

The sum constraint is s = 17. Hence s↓ = 16 and s↑ = 20. The assignment
m1 = (16, 12, 20, 20) is represented on Figure 4 with symbols ◦. The deviation
of this assignment is 12. If m1[1] is increased by 4 that is from 16 to 20, the
deviation increases by −(s − s↓) + (s↑ − s) = −1 + 3. For the sum constraint
s = 17 to remain satisfied, another entry must be decreased by 4. The only
possible entry is m1[2] making the deviation increase by 4. The deviation of
m1 is thus increased from 12 to 18 when m1[1] is set to 20 (represented by
the symbols 4 on the Figure 4). If m1[1] is further increased, the deviation is
increased by 2 · 4 = 8 at every step. Hence when m1[1] is increased to 28 the
deviation is 34 (represented by the symbol •)
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Fig. 4. Figure of Example 4. On the left is the representation of m1 with symbols ◦
and the successive values of m1[1]. On the right is the evolution of the deviation with
the successive values of m1[1].

Case mi[i] ≥ s↑:

If mi[i] is increased by n the deviation of mi increases by n. For the sum
constraint to remain satisfied, another entry must also be decreased by n. To
keep the deviation of mi minimal, priority must be given to entries mi[j] =
s↑ > n ·Xmin

j . Indeed, the decrease of such an entry induces a smaller increase
in the deviation than for an entry under s. The whole effect on the deviation
is an augmentation of n − (s↑ − s) + (s − s↓) = 2.(s − s↓). Note that if only
entries n ·Xmin

j < mi[j] ≤ s↓ are available, the deviation augments by 2 ·n. This
reasoning makes it possible to predict the evolution of the deviation in Θ(1) on
basis of two information’s about mi:

– mi[i].
– oi = #{mi[j]

∣∣j 6= i and mi[j] = s↑ and mi[j] > n · Xmin
j }. This number

corresponds to the number of entries in mi that can be decreased by n
causing an augmentation of the deviation of only −(s↑ − s) + (s− s↓).

The minimum deviation increases by 2 · (s − s↓) every n during oi steps. After
that it increases by 2 · n every n.

Example 5. This example considers 4 variables with domains given in next table:
i 1 2 3 4

Xmax
i 10 5 6 2

Xmin
i 3 4 3 0

n ·Xmax
i 40 20 24 8

n ·Xmin
i 12 16 12 0

The sum constraint is s = 17. Hence s↓ = 16 and s↑ = 20. Assignment
m1 = (20, 20, 20, 8) is represented on Figure 5 with symbol ◦. The deviation of
this assignment is 18 and o1 = 2 because of the second and third entries. The
evolution of the deviation is given on the Figure 5.
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Fig. 5. Figure of Example 5. On the left is the representation of m1 and the successive
values of m1[1]. On the right is the evolution of the deviation with the successive values
of m1[1].

4.2 Computation of the evolution of the minimum deviation for
every variable

The previous subsection explains how the minimum deviation on IZ
i evolves

starting from a special assignment called mi. We briefly summarize the possible
cases of evolution of the deviation when mi[i] is incremented by n.

– mi[i] < s↓: The deviation can not increase anymore.
– mi[i] = s↓: The deviation increases first by n − (s − s↓) + (s↑ − s) the first

time m[i] is increased by n. Then it increases by 2 · n every increase by n of
mi[i].

– mi[i] ≥ s↑: The deviation increases by 2 · (s − s↓) every n during oi steps.
After that it increases by 2 · n every increase by n of mi[i].

The only necessary information to predict the evolution of the deviation is the
entry mi[i] and the counter oi. To simplify the notations we denote by m[i] the
entry mi[i] and by o[i] the counter oi. Algorithm 1 computes m[i] and o[i] for
1 ≤ i ≤ n in Θ(n). The algorithm assumes that the deviation constraint is
consistent.

– Lines 4-5 do a greedy assignment for each variable multiple of n closest from
s inside its domain.

– Lines 9-13 consider the case when the sum constraint is (by chance) respected
after the greedy assignment.

– Lines 15-21 try to make the sum constraint satisfied by moving assignment
of variables which overlap the value s.

– Lines 22-23 update the sets overlaps and overlaps(s↑) after the possible
modifications in lines 15-23.

– Lines 24-31 consider the case where the sum constraint could be satisfied
after modifications of lines 15-23.



Algorithm 1: Compute m and o

Data: X and s such that s ∈ [
Pn

i=1 Xmin
i ,

Pn
i=1 Xmax

i ]
Result: m and o
nx, m, o integer arrays of size n1

sum← 0 /*
Pn

i=1 nx[i] */2

s∗ ← (s− s↓) ≤ (s↑ − s) ? s↓ : s↑ /* the multiple of n closest to s */3

for i← 1 to n do4

Set nx[i] to the multiple of n closest to s in [n ·Xmin
i , n ·Xmax

i ]5

overlaps← {i | nx[i] = s↑ > n ·Xmin
i or nx[i] = s↓ < n ·Xmax

i }6

overlaps(s↑)← {i ∈ overlaps | nx[i] = s↑}7

sum←
Pn

i=1 nx[i]8

if sum = n · s then9

for i← 1 to n do10

m[i]← nx[i]11

if i ∈ overlaps(s↑) then o[i]← #overlaps(s↑)− 112

else o[i]← #overlaps(s↑)13

else14

if ( sum > n · s and s∗ = s↑ ) or ( sum < n · s and s∗ = s↓ and s∗ 6= s )15

then
δ ← sum > n · s ? − n : n16

for i ∈ overlaps do17

if sum = n · s then break18

else19

nx[i]← nx[i] + δ20

sum← sum + δ21

overlaps← {i | nx[i] = s↑ > n ·Xmin
i or nx[i] = s↓ < n ·Xmax

i }22

overlaps(s↑)← {i ∈ overlaps | nx[i] = s↑}23

if sum = n · s then24

for i← 1 to n do25

if i ∈ overlaps and #overlaps(s↑) > 0 then26

m[i] = s↑27

o[i] = #overlaps(s↑)− 128

else29

m[i] = nx[i]30

o[i] = #overlaps(s↑)31

else if sum > n · s then32

for i← 1 to n do33

m[i] = nx[i]34

o[i] = 035

else /* sum < n · s */36

for i← 1 to n do37

m[i] = nx[i] + n · s− sum38

if n ·Xmin
i < s < n ·Xmax

i and #overlaps(s↑) > 0 then39

o[i] = #overlaps(s↑)− 140

else o[i] = #overlaps(s↑)41



– Lines 32-35 and 36-41 holds respectively when the sum is too large or too
low even after the modifications of lines 15-23. If the sum is too large, some
entries must be decreased. It is implicitly assumed that entries j 6= i can
be potentially decreased. Hence m[i] = nx[i] and o[i] is 0 because, all other
entries are already at their minimum or under s. If the sum it too small, m[i]
is obtained by increasing nx[i] such that the sum is satisfied. If the ith entry
was overlapping, o[i] is the current number of overlapping entries minus one.

It can be seen that Algorithm 1 has a time complexity of Θ(n). Indeed, in all
cases a constant number of operations is performed for each variable.

Example 6. This example considers the following domains:

i 1 2 3 4 5 6
Xmax

i 16 11 14 14 12 15
Xmin

i 11 9 12 13 10 12
n ·Xmax

i 96 66 84 84 72 90
n ·Xmin

i 66 54 72 78 60 72

The sum constraint is s = 74, n · s = 444 and s∗ = s↓ = 72.

– Lines 4-8: After the greedy assignment, nx = (72, 66, 72, 78, 72, 72). The sum
is 432 which is smaller than 444. Hence the condition to execute lines 9-13
is not satisfied. We have also overlaps = {1, 3, 6} and overlaps(s↑) = φ.

– Lines 15-23 will result in nx = (78, 66, 78, 78, 72, 72). The sum is now 444,
overlaps = {1, 3, 6} and overlaps(sup) = {1, 3}.

– Since sum = n.s is satisfied, lines 24-32 are executed next. Entries 1, 3 and
6 satisfy the if statement line 26 while entries 2, 4 and 5 does not. Hence
results are m = (78, 66, 78, 78, 72, 78) and o = (1, 2, 1, 2, 2, 1)

5 Experimental results

This section compares the existing propagators from [7] with the presented
bound-consistent propagators on the Balanced Academic Curriculum Problem
(BACP). We also give an expression of the minimum difference between two de-
viation values and experiment the usage of this difference to speed up the Branch
and Bound search. All experiments were performed on an Intelr Pentiumr M
1.86GHz with 1GB of memory and with the Gecode 1.3.1 Solver.

The objective of the BACP is to assign courses to periods while balancing
the workload of periods and respecting prerequisites relations between pair of
courses. The CP model we consider to solve BACP is precisely the one introduced
in [4]. The objective function in [4] is to minimize the maximum load over periods.
In contrast, our objective function is to minimize the deviation of loads of periods
from the mean load.

The search performed to solve BACP is a DFS Branch and Bound search.
Hence, each time a solution is found, the next solution is constrained to have
a smaller deviation. More information can be given on the next solution to be
found. Indeed the smallest difference δ between two possible deviation values is



δ = min{2 · s mod n , 2 · (n− s mod n)} when s mod n 6= 0.
δ = 2 · n when s mod n = 0.

The expression min{2 ·s mod n , 2 · (n−s mod n)} can be understood easily.
The value 2·s mod n corresponds to the move represented by arrows labeled 1 on
Figure 6 while the value 2 · (n− s mod n) corresponds to the move represented
with arrows labeled 2. The value δ can be used to speed-up the Branch and
Bound search. Indeed, if a solution is found with a deviation of ∆, the next
solution can be constrained to present a deviation less than or equal to ∆− δ.

s
n

s mod n

n−s mod n
1

s 

s 

2

1

2

Fig. 6. Illustration of the smallest distance between two possible deviations.

Three real instances are available on CSPLIB. These instances are summa-
rized in the following table:

n (#periods) #courses #prerequisites s (total load) s mod n
8 46 38 133 5
10 42 34 134 4
12 66 65 204 0

We report here the instances of 8 and 10 periods because the instance with
12 periods presents an integer mean load (s mod n = 0). Hence proposed prop-
agators, as checked experimentally, behave exactly as the ones from [7] on the
instance with 12 periods.

The two instances were solved with 4 configurations:

– the propagators proposed in [7] (Deviation),
– the bound-consistent propagators (BC Deviation),
– the propagators proposed in [7] with the lower bound from Theorem 1 and

the value δ during the Branch and Bound search (Deviation*) and
– the bound-consistent propagators and the value δ during the Branch and

Bound search (BC Deviation*).

Table 1 gives statistics on the last 5 bounds found during the Branch and
Bound search for each configuration. The reported statistics are the time and the



8 Periods

Deviation BC Deviation

Bound Time(ms) # L.N. Time(ms) # L.N.

50 20 447 40 441
46 30 454 40 443
40 30 456 40 445
36 40 559 40 450
30 40 561 40 451

proof ∞ ∞ 40 1517

10 Periods

84 50 857 60 857
76 50 862 60 862
64 50 864 60 864
56 70 1060 60 891
48 18370 368486 60 896

proof ∞ ∞ 60 3288

8 Periods

Deviation* BC Deviation*

Bound Time(ms) # L.N. Time(ms) # L.N.

62 20 365 20 320
56 20 370 20 325
50 20 375 20 330
40 20 378 20 332
30 30 483 20 337

proof 30 1644 20 1172

10 Periods

84 40 855 50 770
76 40 860 60 822
64 40 862 60 826
56 60 1058 60 853
48 24660 574539 60 858

proof 24660 2021299 60 3191

Table 1. Instances of 8 and 10 periods. Statistics about the last 5 bounds during the
B&Bound. The time and the number of leaf nodes (# L.N.) are given for each bound.

number of leaf nodes explored so far (# L.N.). The last line gives the statistics
to prove the optimality of the last bound found.

It appears from Table 1 that the new propagators become really useful when
the upper bound ∆max becomes tight. Moreover, the new propagators permit to
prove optimality of the last bound within less than one second for both instances
while it not possible in a reasonable time (not finished after 20 minutes) with
existing propagators from [7]. The usage of the lower bound and the δ value
permits to prove the optimality of the last bound with propagators from [7]. We
can also see that even with the bound consistent propagators, the number of
explored nodes is decreased: 1, 172 < 1, 517 for 8 periods and 3, 191 < 3, 288 for
10 periods.

The objective of the next experiments is to study on more instances the
gain obtained with the new propagators. We generated 500 instances from the
original 8 periods instance. For each instance, the weight given to each course is
a random integer in [1..5] and 30 prerequisites relations are randomly chosen out
the 38. Each instance was solved with the four configurations. The time limit
given is of 5 seconds. Table 2 gives the number of unsolved instances.

s mod n = 0 s mod n 6= 0

Nb instances 55 445

Deviation 0 391
BC Deviation 0 0

Deviation* 0 229
BC Deviation* 0 0

Table 2. Comparison of the propagators on 500 randomized versions of the 8 periods
instance: number of unsolved instances.



It appears that all instances can be easily solved with the bound-consistent
propagators. This is not the case with propagators from [7] since 301 instances
remain unsolved. The use of the lower bound from Theorem 1 and the δ value
permits to solve 162 additional instances with propagators from [7]. The value
s mod n has a strong influence on the old propagators but it does not influence
the new propagators. All the 55 instances with s mod n = 0 could be solved
with all configurations. This is not surprising since propagators proposed in [7]
are also bound-consistent in this case.

6 Conclusion

The deviation constraint recently introduced in [7] guarantees an assignment
on a set of variables to be balanced around a given mean. It constrains the set of
variables to present a given mean and the deviation with respect to this mean.
The main advantage of the propagators proposed in [7] is their simplicity. How-
ever, these propagators are bound-consistent only when the mean is an integer.
We experiment on the Balanced Academic Curriculum Problem (BACP) that
instances are very difficult to solve with propagators from [7] when this property
does not hold. We give a simple lower bound on the deviation which can be found
in constant time and help to solve some additional problems when the sum is
not a multiple of n. Our main contributions are bound-consistent propagators
for any rational mean value running in linear time. In contrast with propagators
presented in [7], bound-consistent propagators solve efficiently any instance of
the BACP from CSPLIB. Finally, we give a way to speedup the Branch and
Bound search when the objective is to minimize the deviation.
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