
Declarative Meta Programming to Support Software Development:

Workshop Report

Tom Mens∗

Programming Technology Lab
Vrije Universiteit Brussel, Belgium

tom.mens@vub.ac.be

Roel Wuyts

Software Composition Group
University of Bern, Switzerland
roel.wuyts@iam.unibe.ch

Kris De Volder

Department of Computer Science
University of British Columbia, Canada

kdvolder@cs.ubc.ca

Kim Mens

Département d’Ingénierie Informatique
Université catholique de Louvain, Belgium

kim.mens@info.ucl.ac.be

Abstract

This paper reports on the results of the workshop on Declara-
tive Meta Programming to Support Software Development in
Edinburgh on September 23, 2002. It enumerates the presen-
tations made, classifies the contributions and lists the main
results of the discussions held at the workshop. As such it
provides the context for future workshops around this topic.
Keywords: meta programming, declarative languages,

software development

Introduction

The workshop on Declarative Meta Programming to Sup-
port Software Development (DMP 02) was co-located with
the 17th International Conference on Automated Software
Engineering (ASE 2002), and took place at the Heriot-Watt
University in Edinburgh, United Kingdom, on September 23,
2002. There were 13 participants, most of which contributed
with a position paper that was reviewed and revised before
the workshop. The participants originated from Belgium,
Canada, France, Switzerland, Israel, United Kingdom, and
the USA.
The workshop focused on declarative meta programming

(DMP) techniques and tools to support software develop-
ment. Such techniques and tools are meta programming be-
cause they reason about or manipulate program code at a
meta level to automate some aspect of the software develop-
ment process. The fact that they are declarative means that
they focus on what is being done rather than how it is done.
The workshop had the following explicit goals:

• Get an overview of existing DMP approaches.

• Delineate for which software development activities
DMP could be used.

• Compare existing approaches (tools, techniques and for-
malisms) and identify commonalities and differences.

∗Tom Mens is a postdoctoral fellow of the Fund for Scientific Re-
search - Flanders (Belgium).

• Discuss advantages and shortcomings of DMP for sup-
porting software development.

Workshop presentations

The morning session was devoted to four long presentations
of 20 minutes and four short presentations of 10 minutes,
each followed by 5 minutes of discussion. The long presen-
tations were chosen by the organisers because they offered
different or novel perspectives on the workshop topic, and
because they had a higher potential for generating issues
that would stimulate the discussions.
The papers and their authors were as follows, with the

names of the actual presenters during the workshop un-
derlined. The papers were collected in a technical report
[WMDM02].
Long presentations:

LP1 Toacy Oliveira, Paulo Alencar, Donald Cowan (Univer-
sity of Waterloo, Canada). Towards a declarative ap-
proach to framework instantiation.

LP2 Yann-Gaël Guéhéneuc (École des Mines de Nantes,
France). Meta-modelling, logic programming, and
explanation-based constraint programming for pattern
description and detection.

LP3 Tom Tourwe, Johan Brichau, Tom Mens (Vrije Univer-
siteit Brussel, Belgium). Using declarative metapro-
gramming to detect possible refactorings.

LP4 Gopal Gupta (University of Texas, Dallas, USA). A
language-centric approach to software engineering: do-
main specific languages meet software components.

Short presentations:

SP1 Tom Tourwé, Tom Mens (Vrije Universiteit Brussel,
Belgium). A declarative meta-programming approach
to framework documentation.

SP2 H. Akehurst, Behzad Bordbar, P.J.Rodgers, N.T.G.
Dalgliesh (University of Kent, United Kingdom). Au-
tomatic normalisation via metamodeling.

1

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 1

SP3 Robert Filman, Klaus Havelund (NASA Ames Research
Center, California, USA). Realising aspects by trans-
forming for events.

SP4 Greg Michaelson (Heriot-Watt University, United King-
dom). SML prototypes from Z specifications.

SP5 Cordell Green (Kestrel Institute, USA). SpecWare: Au-
tomatic formal specifications into hardware.

According to the workshop topic, the papers could be clas-
sified according to two dimensions: the kind of DMP tech-
nique they use (see Table 1) and the kind of support for
software development they provide (see Table 2).

Presentation DMP approach used
LP1 annotated UML, XML, XSLT
LP2 meta modelling, logic programming,

explanation-based constraint program-
ming

LP3 logic meta programming
LP4 constraint logic programming, denota-

tional semantics
SP1 logic meta programming
SP2 OCL, graph rewriting
SP3 declarative language
SP4 translation scheme
SP5 theorem provers

Table 1: Declarative Meta Programming approach used

In Table 1 we observe that most of the presented declar-
ative meta programming approaches use some variant of
logic meta programming (LP2, LP3, LP4, SP1). Other ap-
proaches use more trendy languages and standard technolo-
gies such as UML, OCL, XMI, XML and XSLT (LP1, SP2).

Presentation Kind of development support
LP1 framework documentation
LP2 design patterns
LP3 design patterns, refactoring
LP4 domain-specific languages
SP1 framework instantiation and evolution
SP2 database normalisation
SP3 aspect-oriented programming
SP4 program translation
SP5 code generation from formal specifica-

tions

Table 2: Kind of software development support

As can be seen from Table 2, the bulk of the presented
approaches uses declarative meta programming to provide
support for developing object-oriented software applications
(LP1, LP2, LP3, SP1, SP3). This support includes: docu-
mentation, instantiation and evolution of object-oriented ap-
plication frameworks; description, detection, generation and

conformance checking of design pattern instances; object-
oriented refactoring; aspect-oriented programming.

Workshop discussions

In order to stimulate discussions, some general important
questions were posed to the participants during the work-
shop:

Q1 What are the main advantages of DMP over other ap-
proaches?

The following benefits were mentioned by the partici-
pants:

• Portability and platform independence. For exam-
ple, if we express domain-specific languages with
DMP, they can be automatically translated to any
target platform.

• Declarative programs provide an executable form
of documentation. Executable, since they are pro-
grams; documentation, since the declarative nota-
tion is easy to read and understand.

• Conciseness and complexity reduction. Declarative
programs are often significantly smaller and less
complex than non-declarative programs. Cordell
Green mentioned an experimentally validated fac-
tor 2 to 5 reduction of program dependencies.

• Error reduction. This is a direct consequence of
complexity reduction. Cordell Green cited an ex-
perimentally validated error reduction of a factor 2
to 20.

Q2 What are the potential shortcomings of DMP?

• Performance and efficiency issues were coined as
a potential disadvantage of DMP, but most of the
participants agreed that this was a non-issue. With
the current state-of-the-art in compiler technology,
very efficient logic languages can be implemented.

• Declarative meta programming involves a high de-
gree of sophistication. It requires a deep under-
standing of language semantics. This is even more
the case with hybrid DMP, for example when a
declarative meta language is used on top of an
object-oriented base language. In that case, com-
plex issues such as language symbiosis come into
play. As a result, DMP is not suited for the aver-
age programmer, and it will never find widespread
use. This resulted in the third question to be dis-
cussed:

Q3 How can DMP achieve more widespread acceptance as a
mechanism for supporting software development?

• Lack of standard technologies was suggested as a
reason why declarative languages have not found

2

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 2

wide adoption for software development support.
This can be resolved relatively easy by putting an
XML-syntax on top of the declarative language, at
the expense of losing the more concise and readable
notation.

• A second aspect that strongly affect acceptance of
DMP is the quality and usability of the supported
tools. Two powerful and promising tools for DMP
were presented at the end of the day, and are dis-
cussed later in this paper.

Q4 For which kinds of support for software development is
DMP well-suited/unsuited?

This final question was only discussed very briefly due
to time constraints. Parse tree manipulation was pro-
posed as something for which DMP is particularly well
suited. Indeed, many of the presented approaches used
or proposed some kind of parse tree manipulation for
generating, transforming or reasoning about code.

Tool demonstrations

Upon explicit request by the workshop participants, a spe-
cial tool demonstration session was scheduled at the end of
the day, where two sophisticated DMP tools for reasoning
about object-oriented programs (one for Smalltalk and one
for Java) were demonstrated.
The first tool, Soul [MMW02] was presented by

Johan Brichau. It is a Prolog-like logic meta program-
ming language built on top of, and tightly integrated with,
a Smalltalk object-oriented software development environ-
ment. It enables support for design patterns, coding conven-
tions, programming styles, refactoring, and software metrics.
The second demonstration was made by

Yann-Gaël Guéhéneuc and showed the Patternsbox tool
(that allows to select and instantiate patterns) and the
PtiDej tool (that does program architecture visualization
and patterns detection). These tools allow to specify (pat-
terns), and then use these specifications to generate code
or check the specification against Java source code. One of
the very nice features is that it employs a constraint system
that gives feedback on how well the patterns match the
code. Hence the pattern serves more as a fuzzy definition
that can yield partial matches, and it explains these results.

Acknowledgements

This workshop was supported by the Scientific Research Net-
work on Foundations of Software Evolution [ESF02].

References

[ESF02] Fund for Scientific Research - Flanders (Belgium).
Scientific Research Network on Foundations of Software

Evolution.
http://prog.vub.ac.be/FFSE [1 Oct 2002]

[GDJ02] Yann-Gaël Guéhéneuc, Rémi Douence and Narendra
Jussien. No Java without Caffeine: A tool for dynamic analy-
sis of Java programs. In Proc. Int’l Conf. Automated Software
Engineering, pages 117-126, Edinburgh, United Kingdom, Sep-
tember 2002. IEEE Computer Society Press.

[MMW02] Kim Mens, Isabel Michiels, Roel Wuyts. Support-
ing Software Development through Declaratively Codified Pro-
gramming Patterns. Journal on Expert Systems with Applica-
tions, December 2002. Elsevier Publications.

[WMDM02] Roel Wuyts, Tom Mens, Kris De Volder and
Kim Mens. Proc. of the Workshop on Declarative Meta-
Programming to Support Software Development. Technical Re-
port VUB-PROG-TR-??-2002, Programming Technology Lab,
Vrije Universiteit Brussel, 2002.
http://www.cs.ubc.ca/ kdvolder/Workshops/ASE2002/DMP/
[1 Oct 2002]

3

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 3

