
Workshop Report | ECOOP'98 Workshop 7

Tools and Environments for Business Rules

Kim Mens1, Roel Wuyts1, Dirk Bontridder2, and Alain Grijseels2

1 Vrije Universiteit Brussel, Programming Technology Lab

Pleinlaan 2, B-1050 Brussels, Belgium

kimmens@vub.ac.be rwuyts@vub.ac.be

http://progwww.vub.ac.be/
2 Wang Global Belgium,

System Integration & Services Division, Application Engineering

Madouplein 1 box 8, B-1210 Brussels, Belgium

dirk.bontridder@wang.com alain.grijseels@wang.com

Abstract. This workshop focussed on the requirements for tools and

environments that support business rules in an object-oriented setting

and attempted to provide an overview of possible techniques and tools for

the handling, de�nition and checking of these rules and the constraints

expressed by them during analysis, design and development of object-

oriented software.

1 Workshop Goal

Business rules are nothing new. They are used by every organisation to state

their practices and policies. Every business application contains many business

rules. One of the current problems with business rules is that code, analysis and

design models specify business rules only implicitly and that current software

engineering tools provide inadequate support to explicitly and automatically deal

with business rules when building object-oriented business applications. With

this workshop we intended to investigate which tool and environmental support

for handling business rules during software development and evolution is needed

and/or desired and which is already available. To come to a categorisation of

available support tools and techniques, position papers were solicited from both

academia and industry. In our call for contributions, we asked the participants

to focus on the following topics:

1. What tools and environments currently exist to handle business rules?

2. Which extra support is needed or desired?

3. How can business rules be made explicit during the di�erent phases of the

software life cycle?

4. How to specify business rules and the constraints they express in a rigorous

way?

5. How can we deal with enforcement of business rules, compliance checking,

reuse and evolution of business rules?



6. How can code be generated automatically from business rules or how can

business rules be extracted from existing software systems?

We agree with Margaret Thorpe that tool support for business rules is im-

portant: \Giving the business community the tools to quickly de�ne, modify and

check business rules for consistency as well as get those changes quickly imple-

mented in the production environment has made them able to respond much

more quickly to changes in the business environment." [6]

2 About the Organisers

We were interested in organising this workshop for several reasons:

{ Kim Mens' [4] current research interests go out to intentional annotations

and the semantics thereof. He thinks that business rules could provide some

insights in this matter: what extra \intentional" information do business

rules provide and how?

{ Roel Wuyts' research focusses on the use of declarative systems to reason

about the structure of object-oriented systems [10]. He is particularly inter-

ested in business rules that can be expressed declaratively and then used to

extract or view particular information from an object-oriented system.

{ Dirk Bontridder and Alain Grijseels wanted to validate their current experi-

ences on business rules in object-oriented framework-based software develop-

ment projects with the insights of other people working on or with business

rules.

3 About the Workshop

About twenty persons actually participated in the workshop, with an equal

amount of participants from industry and the academic world. Eight of them

were invited to present a position statement during the �rst part of the work-

shop. We categorised the di�erent presentations based on the topics on which

they focussed. Bruno Jouhier [2], Paul Mallens and Leo Hermans [1] reported on

existing tools and environments for dealing with business rules, and on the qual-

ities and shortcomings of these tools and the applied techniques. Michel Tilman

[7], Hei Chia Wang [9] and Stefan Van Baelen [8] discussed some techniques for

dealing with business rules (based on their experience or inspired by their re-

search interests). Gerhard Knolmayer [3] and Brian Spencer [5] related business

rules to data base rules. These presentations certainly gave an inside in some

of the topics enumerated in section 1. For more details we refer to the position

statements which are included at the end of this chapter.

Because we wanted to come to understand what characteristics and proper-

ties tools and environments for handling business rules should have, we took the

following approach in the remainder of the workshop. The goal was to obtain

a list of requirements for tools and environments. To this extent, we assigned



the participants to di�erent working groups, composed of both industrial partic-

ipants and researchers, to construct such lists from di�erent perspectives. The

perspectives adopted by the di�erent working groups were:

Function of the person. Di�erent kinds of persons may have a di�erent per-

spective on the kinds of requirements that are essential for tools and envi-

ronments for business rules. We asked the members of this working group to

assume the role of a particular kind of person (e.g. project manager, problem

domain expert, application developer, end user, business manager, ...), and

to reason about requirements from that perspective.

Nature of the application. We assumed that the particular nature of an ap-

plication might have an impact on the requirements for tools and environ-

ments for business rules. Therefore, we asked the di�erent members of this

working group to reason about such requirements from the perspective of

particular kinds of applications (e.g. administrative, �nancial, telecom, ...)

Software life cycle. This workshop group focussed on �nding the require-

ments for tools and environments to support business rules throughout the

entire software life cycle.

In a concluding session, the results of the di�erent working groups were

merged and discussed with the other working groups.

4 Requirements for Tools and Environments for Business

Rules

4.1 Initial List of Requirements

This initial list of requirements for tools and environments was intended to serve

as the basic input for discussion in the di�erent working groups. It was extracted

from the position papers submitted by the participants. First of all we wanted to

know whether this list was complete or not (if not, participants were encouraged

to add to this list). Secondly, we were interested in the participants' motivations

why (or why not) the listed requirements were deemed necessary in tools and

environments supporting business rules. The initial list of tentative requirements

is given below:

(Centralised?) repository: There should be a (centralised?) repository of bu-

siness rules.

Adaptable: Allow for easy changing, re�ning and removing of existing rules.

Conict detection: Support for detecting conicting rules is needed.

Debugging facilities: Provide support for debugging systems containing lots

of business rules.

Declarative language: Use a declarative language to express business rules.

Dedicated browsers: Use dedicated browsers for \querying" business rules.

E�ciency: Achieve an \acceptable" e�ciency in tools and environments for

business rules.



Explicit business rules: Make business rules explicit in the software.
First class business rules: Business rules should be �rst class.
Formal and rigorous foundation: Need for formal and rigorous foundation

of business rules.
Identi�cation and extraction: Support for identi�cation and extraction of

business rules from the real world.
Maintain integrity and consistency: Support for maintaining software in-

tegrity and consistency.
Representation: Use of metaphors of business rule representation that or more

interesting than \if-then-else" constructs.
Open: Easily allow new rules as well as rules about new items.
Reasoning engine (or mechanism): Use a reasoning engine to allow infer-

encing about rules (rather than having \stand-alone" rules).
Scope/views of rules: Support di�erent scopes or views of business rules (e.g.

application dependent as well as independent).
Integration with existing tools: Provide a symbiosis between business rule

tools and environments and integrated development environments for man-

aging the rest of the software.

Every working group took these initial requirements and separately discussed

them according to their perspective. This resulted in an annotated requirements

list, containing extra comments or considerations made by some groups accord-

ing to their viewpoint. The working groups also added new requirements they

deemed important from their perspective. The next two subsections present the

annotated requirement list everybody agreed on and a list of added requirements.

4.2 Annotated Requirement List

(Centralised?) repository: Every group agreed on this, without much dis-

cussion. The \Function of the Person" working group (FoP) stated that the

repository should not necessarily be physically centralised, but certainly vir-

tually. The other two groups explicitly mentioned that the repository should

contain all business rules, about software components at any phase of the

software life cycle.
Adaptable: Everybody agreed on this obvious requirement.
Conict detection: The \Software Life Cycle" working group (SLC) argued

that conict detection is important, but further investigation should make

clear what kinds of conicts are interesting or important to be detected. The

FoP group mentioned that they currently see two di�erent levels where rules

can conict: at the business level or at the technological level.
Debugging facilities: Everybody agreed that there certainly is need for de-

bugging support, for example for prototyping business rules, or for tracing

facilities.
Declarative language: Was considered important by all working groups.
Dedicated browsers: Dedicated browsers for several types of users should be

available. The FoP group related this to the scope/view requirement: brow-

sers should support di�erent scopes or views of business rules as well.



E�ciency: The FoP group mentioned that e�ciency should at least be \rea-

sonable", but more importantly, things should remain e�cient when scaling

the system. The SLC group recognised that there is a subtle trade-o� be-

tween e�ciency versus exibility (e.g. adaptability). Building an application

by generating code for the business rules could make it more e�cient, but

limits its exibility. On the other hand, an application that accesses and

uses the rule-base at run-time is very exible (open, adaptable, ...) but is

probably much less e�cient.

Explicit business rules: Everyone agreed.

First class business rules: Everyone agreed.

Formal and rigorous foundation: Two important remarks were made here.

First, the FoP group mentioned that maybe rules could be informal in an

initial phase during requirements elicitation, but in the end they should

be declared in an explicit, formal and declarative way. The \Nature of the

Application" working group (NoA) noted that it is important to have a

formal notation language, but preferably, it should be a standard one. A

number of potential candidates are: KIF, OCL, UML, ...

Identi�cation and extraction: According to the NoA group, there is a need

for knowledge elicitation tools to extract business rules from human sources,

examples (cases) and electronic sources (reverse engineering). The FoP group

agreed that fully automated extraction of business rules is a beautiful goal,

but seems unrealistic.

Maintain integrity and consistency: To achieve integration and consisten-

cy, only the proper tools should have access to the rule base. It is not allowed

to access the rule base from the outside. A question is what kinds of tools

and techniques are currently available to support consistency maintenance?

Representation: Appropriate representations should be supplied when acces-

sing the rule base (e.g., di�erent representations for di�erent users). These

representations should not necessarily be completely formal, but should best

suit speci�c users (FoP). Possible alternative representations could be tables,

trees or graphs (NoA). One way of allowing di�erent representation schemes

could be to use a single language for internal representation of and reasoning

about business rules, but many di�erent external languages (SLC).

Open: Everyone agreed.

Reasoning engine (or mechanism): It should be investigated which kind of

reasoning mechanism is most appropriate to deal with business rules. (In-

ferencing, constraint solving, event handling, forward or backward chaining,

etc...).

Scope/views of rules: The FoP group stated that mechanisms are needed to

classify the business rules according to di�erent views. This will facilitate in

browsing the rule base and �nding particular rules in the rule base. The NoA

group elaborated further on this by proposing a notion of contexts or scopes

that should allow the classi�cation of business rules in conceptual groups.

Integration with existing tools: All tools should be integrated, and consis-

tent at all times. For example, when changing a view in some tool, it should

be changed automatically in the other tools. It is also important to integrate



the tools and environments for business rules with existing object-oriented

methods, techniques, and notations.

4.3 Additional Requirements

Some of the working groups proposed some additional requirements to be added

to the initial list. For example, the FoP group was able to formulate some extra

requirements by looking at the requirements from a managerial perspective.

The list with all extra requirements formulated by the di�erent working

groups is presented below:

Life cycle support: The SLC group claimed that support for business rules is

needed throughout the entire software life-cycle. The other working groups

agreed on this.
Management decision support : The FoP group mentioned the need for sup-

port for workload assignment, progress management, and decision manage-

ment.
Traceability : There is a need for traceability between a business rule and the

source from which it was extracted, at di�erent phases of the software life

cycle. Furthermore, traceability is not only important within a single phase of

the software life-cycle, but also throughout the di�erent phases. Traceability

is important because it facilitates reasoning about the business application.
Code generation : The application developer could be supported by generat-

ing code, templates or components from the business rules. But although

generating code from business rules seems an interesting issue, some ques-

tions immediately spring to mind: when should code be generated (only at

end?), and what should be generated?
Team development : Tools should provide team development support such as

system con�guration management, multi-user support etc. This additional

requirement was mentioned by several working groups.
Evolution : Support for tracking the evolution of business rules, in and through-

out di�erent phases of the life cycle. (SLC group)
Completeness : Being able to check completeness, i.e. is the business described

completely by the business rules, seems like an interesting requirement but

might not always be feasible (e.g. how to check completeness?), wanted (e.g.

not important in an initial phase) or relevant.
Regression testing : How to build tools for regression testing in the context

of business rules?
Impact analysis : Techniques are needed for analysing the impact of changing

a business rule on the rest of the system, again at all phases of the software

life cycle. (SLC group) Note that this requirement is somewhat related to

the requirements of evolution and conict checking.

4.4 Further Remarks

A conclusion of the working group NoA group was that the requirements of

business rule tools and environments seem rather independent of the applica-

tion domain. However, there was some disagreement with this conclusion by the



other working groups. For example, they mentioned the example of real-time

applications which seem likely to give rise to more speci�c requirements.

The FoP group not only formulated extra requirements by reasoning (for

example) from a managerial perspective but also remarked that new jobs (such

as an auditing or rule manager) may need to be de�ned when adopting a business

rules.

The SLC group e�ectively identi�ed several additional requirements by fo-

cussing on the use of tools for business rules throughout the software life cycle:

support for traceability, evolution, conict checking, impact analysis, ... not only

at a single phase of the software life cycle, but also between di�erent phases in

the life cycle.

There was some unresolved discussion about the internal language that should

be used for representing business rules. One viewpoint was that a standard lan-

guage or notation (such as UML) should be used in which it is possible to declare

as many (kinds of) business rules as possible. The opponents of this approach

preferred the complete openness of a meta-approach.

5 Conclusion

During the workshop, there seemed to be a lot of agreement regarding the con-

structed list of requirements for business rule tools and environments. This is a

hopeful sign indicating that there is a clear feeling of what characteristics such

tools and environments should have, despite of the fact that there still is no

precise and generally accepted de�nition of what a business rule is.

6 Acknowledgements

Thanks to all workshop participants for making this a great and successful work-

shop.

References

1. Hermans, L., van Stokkum, W.: How business rules should be modeled and imple-

mented in OO. Position paper at the ECOOP'98 Workshop on Tools and Environ-

ments for Business Rules. Published in this workshop reader (same chapter).

2. Jouhier, B., Serrano-Morale, C., Kintzer, E.: Elements Advisor by Neuron Data.

Position paper at the ECOOP'98 Workshop on Tools and Environments for Business

Rules. Published in this workshop reader (same chapter).

3. Knolmayer, G. F.: Business Rules Layers Between Process and Workow Modeling:

An Object-Oriented Perspective. Position paper at the ECOOP'98 Workshop on

Tools and Environments for Business Rules. Published in this workshop reader (same

chapter).

4. Mens, K.: Towards an Explicit Intentional Semantics for Evolving Software. Re-

search abstract submitted to the ASE'98 Doctoral Symposium. To be published in

the Proceedings of Automated Software Engineering 1998 (ASE'98).



5. Spencer, B.: Business Rules vs. Database Rules | A Position Statement. Position

paper at the ECOOP'98 Workshop on Tools and Environments for Business Rules.

Published in this workshop reader (same chapter).

6. Gottesdiener, E.: Business Rules show Power, Promise. Cover story on software

engineering, Application Development Trends (ADT Magazine), March 1997.

7. Tilman, M.: A Reective Environment for Con�gurable Business Rules and Tools.

Position paper at the ECOOP'98 Workshop on Tools and Environments for Business

Rules. Published in this workshop reader (same chapter).

8. Van Baelen, S.: Enriching Constraints and Business Rules in Object Oriented Anal-

ysis Models with Trigger Speci�cations. Position paper at the ECOOP'98 Workshop

on Tools and Environments for Business Rules. Published in this workshop reader

(same chapter).

9. Wang, H.-C., Karakostas, V.: Business-Object Semantics Communication Model in

Distributed Environment. Position paper at the ECOOP'98 Workshop on Tools and

Environments for Business Rules. Published in this workshop reader (same chapter).

10. Wuyts, R.: Declarative Reasoning about the Structure of Object-Oriented Sys-

tems". Proceedings of Technology of Object-Oriented Languages and Systems

(TOOLS'98), 1998, pp. 112-124.


