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Abstract

Ambient Intelligence scenarios can be deployed even
when the environment lacks of a underlying network in-
frastructure. This can be done using distributed ad-hoc
networks. Ambient Intelligence applications can be highly
variable and networks can have an unanticipated number
of members. Inappropriate distributed network topologies
can lead to unstable and inefficient communication. We
propose PALTA, a decentralized and self-adaptable network
topology. We use feedback loops to model its self-adaptable
behaviour and we evaluate its performance using different
simulations and measurements. PALTA allows the construc-
tion of distributed networks using self-management tech-
niques and maintaining a good overall performance on the
network communication.

Index Terms: Ambient intelligence, Decentralized sys-
tems, Self-management, Network variability

1. Introduction

The Ambient Intelligence (AmI) field envisions people
constantly surrounded by hardware technology in the form
of interconnected mobile and embedded devices [3]. AmI
applications have been proposed for a diverse number of ev-
eryday situations ranging from small and close applications,
e.g. home and office applications [4, 7], to large and open,
such as traffic and massive-events applications [1].

AmI applications can be deployed in any kind of net-
work. Devices can use networks with a defined structure
using routers and access points or they could just create they
own ad-hoc networks in the absence of such an underlying
infrastructure. We are interested in the latter case where the
generation and organization of ad-hoc distributed networks
is defined by the network members (i.e. peers or nodes) and
not by a pre-defined infrastructure.

As mentioned above, AmI scenarios are intended to be
deployed in many different situations. In addition, Applica-
tions can vary on the functionality given to the users. Since
we cannot anticipate the network conditions for each case,

we need to define a self-adaptable network capable of opti-
mizing resources depending on the current amount of par-
ticipants.

We propose PALTA: Peer-to-peer AdaptabLe Topology
for Ambient intelligence, a dynamic topology intended for
highly variable networks like in AmI scenarios. It combines
already developed distributed topologies: fully connected
networks and the Relaxed-ring [6]. PALTA manages the net-
work configuration in order to optimize the communication
between peers depending on the network size.

We have submitted a first paper [2] where we provide a
detailed motivation for this research and highlight the al-
gorithmic aspects of this approach1. In this work, we ex-
tend the analysis of PALTA using feedback loops in order to
study its self-managing properties. Since PALTA has self-
adapting facilities for join events and crash recoveries, it is
possible to model these features as an automatized system
which changes its behavior according to the input it gets
from the network state.

We also extend the measurements and analysis of the
results obtained from simulations running fully connected,
relaxed-ring and PALTA network topologies. We study the
efficient use of resources, the network traffic generated, and
the routing efficiency. We discuss each set of results and
show the advantages provided by PALTA in the optimization
of ad-hoc distributed networks.

Section 2 presents the main concepts behind PALTA. Sec-
tion 3 describes how PALTA can be seen as a feedback loop.
In Section 4 we show the simulations performed over PALTA
comparing and discussing the results against the other ap-
proaches. We conclude in Section 5.

2. A self-adaptable network topology

In this section we review the main concepts behind
PALTA. This is a hybrid topology that optimizes the use of
the device’s capacity depending of the network conditions.
First we present the already existing topologies on which
PALTA is based, and afterwards, we present our approach.

1This paper have not been published yet, a copy of it can be obtained
from the authors of this work.
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2.1. Fully Connected topology

When we define a peer-to-peer networks, we can try im-
plementing a direct communication between all the differ-
ent peers in order to guarantee the network accessibility.
These are called fully connected networks.

A fully connected network means that every peer has an
open channel (i.e. a bidirectional link) to every other peer in
the network, allowing a direct communication between all
the network members. When a new node wants to join the
network, it contacts an arbitrary peer sending a join mes-
sage. The contacted peer responds with a join ok message
including its full list of connected peers, propagating the
join message over the rest of the connected peers.

2.2. Relaxed-ring

The Relaxed-Ring topology [6] is a Chord-like [8] ring,
where every peer has a successor (succ) and a predecessor
(pred). It is a structured overlay network providing a Dis-
tributed Hash Table (DHT) where every peer is responsible
for a certain range of hash-keys, which is delimited by its
own key and the key of its predecessor, pred. In order to ef-
ficiently route messages in the network, every peer has a set
of fingers to jump across the ring. When a new peer joins
the network, it uses a hash key as identifier, joining between
its corresponding succ and pred. In addition, the relaxed-
ring allows loosely coupled peers that can be attached in
branches when they cannot contact their predecessors. This
property makes the system more robust and fault-tolerant.

2.3. PALTA

PALTA maintains a fully connected network topology
when the amount of peers is smaller than a certain ω value.
This is because the network is small enough to handle such
a topology. The ω value is defined as a threshold where the
fully connected topology can affects the devices and net-
work performance. Therefore, when the ω value is reached,
PALTA switches its joining algorithm in order to transform
the current network topology into a Relaxed-ring. In order
to perform a correct transition, PALTA always organizes its
peers like a ring, assigning hash-key responsibilities to each
one of them. The number of fingers in a fully connected
network equals the number of connected peers, but when
the network becomes a Relaxed-ring the number of connec-
tions per peer decreases, generating lookups requiring more
than one hop to reach its destination.

Algorithm 1 shows that the join event in PALTA can be
seen almost as a method dispatcher, with the subtlety that
it checks its predecessor and predecessor pointers in every
join before triggering the join event of the FULL module.

Algorithm 1 Join for PALTA: Adapted fully connected al-
gorithm with transition to relaxed-ring

1: upon event 〈 join | new 〉 do
2: if size(peers) < ω then
3: check succ pred(new)
4: trigger 〈 FULL.join | new 〉
5: else
6: trigger 〈 RING.join | new 〉
7: end if
8: end event

9: procedure check succ pred(id) is
10: if better successor(id) then
11: succ := id
12: end if
13: if better predecessor(id) then
14: pred := id
15: end if
16: end procedure

In case that ω is already reached, it is the relaxed-ring al-
gorithm in the RING module who will take care of pred
and succ accordingly. The procedure that checks prede-
cessor and successor uses functions better successor and
better predecessor, to verify whether the key belongs to
the range where it is inserted.

The algorithm is written using the event-driven notation.
Events are triggered at every node upon the reception of
a message. The signature of the event is written between
symbols 〈 and 〉. What is before | is the name of event.
What is after corresponds to the list of arguments.

Figure 1. Failure recovery in PALTA.

In order to solve possible inconsistencies due to failures
of peers, PALTA uses a failure recovery mechanism based
on the Relaxed-ring. We can observe the basic action of
the failure recovery mechanism in Figure 1. It works as
follows: when peer p suspects the failure of its successor
q, q is removed from p’s routing table. Then, p will search
for a new successor in its successor list. Being t the best
candidate, p sends a join message to t in order to fix the
ring. Algorithm 2 shows how this recovery is implemented
in PALTA.

The failure recovery relies on a complete and eventually



Algorithm 2 Failure Recovery in PALTA

1: upon event 〈 crash | p 〉 do
2: if (p == succ) ∨ (p == succ cand) then
3: succ := nil
4: succ cand := getFirst(succList)
5: send 〈 join | self 〉 to succ cand
6: end if
7: end event

accurate failure detector, which is the best you can have in
scenarios such as Internet. It means that all crashed peers
will be detected and false suspicious will eventually be cor-
rected. Figure 2 depicts a false suspicion of p about a fail-
ure of q. In such case, t will refuse the new connection
request from p, offering to retry a connection with q. Since
the failure detector will eventually provide accurate infor-
mation about q, the algorithm will eventually converge to a
fixed ring. There are more complex approach to converge
more efficiently, but that is out of the scope of this paper.

Figure 2. False suspicion of a failure.

3. PALTA as a feedback loop

Now we present the relationship between PALTA and the
feedback loop technique and how PALTA can be modeled
in such systems. Feedback loops are used in systems the-
ory to automatized systems such as air-conditioning or ABS
breaks. They can also be found in nature as in our breath-
ing system. Several examples of this can be found in [9],
where feedback loops are introduced as a designing model
for self-managing software. The loop consists out of three
main concurrent components interacting with the subsys-
tem. There is at least one agent in charge of monitoring the
subsystem, passing the monitored information to a another
component in charge of deciding corrective actions when
needed and an actuating agent is used in order to perform
the corrective actions in the subsystem. These three compo-
nents together with the subsystem forms the entire system.
It has similar properties to PID-controllers, with the differ-
ence that the evolution of a running software application is
measured discretely.

Let us consider the example of an acclimatized room.
Since the goal of the system is to keep the room at a certain

desired temperature, the temperature is the value that would
be constantly monitored by the loop. This information is
given to a thermostat, which is in charge of deciding the
corrective action in case the temperature is not the ideal one.
If the temperature is too low, the heating system will be
activated, behaving as an actuator. When the temperature is
too high, it is the air-conditioning is activated.

Following the strategy of [6], where the relaxed-ring is
modeled as a feedback loop, we can also model PALTA as
shown in Figure 3. The monitors, actuators and the compo-
nent that decides the corrective actions are placed at every
node. The monitored subsystems correspond to the whole
peer-to-peer network, and the routing table. The last one is
also placed at the node.

As explained in Section 2, when a new node wants to
enter the network, it sends a join message to its succes-
sor candidate. This message is sent through the network.
Since every node is monitoring the network, the join mes-
sage will be received by the PALTA component. PALTA is
also monitoring the load of the routing table. This infor-
mation is used to decide how to react to the join message.
If the load is below ω, PALTA will use the fully connected
mechanism together with its own verification of the prede-
cessor and successor. Both actions are used to update the
routing table, modifying its load, which will be monitored
once again, as in every loop. The fully connected mech-
anism will also trigger some messages in the peer-to-peer
network in order to modify its state. If the load of the rout-
ing table has already passed the ω threshold, PALTA will use
the relaxed-ring joining mechanism, which will also update
the routing table and trigger some messages for the involved
nodes.

We can observe some similitude between PALTA’s feed-
back loop and the acclimatized room. The thermostat in the
room will use the heating system or the air-conditioner de-
pending on whether the temperature is below or above the
desired goal. PALTA decides its actuators according to load
of the routing table with respect to ω. In the acclimatized
room, the temperature is measure periodically, being trig-
ger by a timer. In PALTA, it is the join message the one that
triggers the monitoring process and the rest of the loop.

The loop also monitors failures of peers triggering the
corresponding failure recovery mechanism. This mecha-
nism is chosen by PALTA according to the load of the routing
table, as it is done with the joining process. This is coherent
with what is explained in Section 2. All other messages re-
lated to the joining process and the failure recovery, such as
join ok, new succ, are also present as monitoring event,
but they have been omitted from Figure 3 for legibility.



Figure 3. Self-Adaptable topology as a feedback loop

4. Validation and Discussion

This section presents an analysis of the results obtained
by simulating PALTA, the relaxed-ring and a fully con-
nected network. The simulation is implemented using
CiNiSMO [5], where the code of every node runs in its own
light-weight thread. Peers communicate with each other
by message passing using ports. In order to measure the
efficient use of resources, we have measured the average
amount of active connection a node has in every of these
networks. To study the performance of the topologies, we
have measured the total amount of messages needed to build
the network, and the average hops needed to perform a
lookup.

Every topology is tested by building networks from 20
to 1000 nodes, increasing the size by 20 nodes at every iter-
ation. Plotted values represent the average of running every
experiment with several seeds for random number genera-
tion. In the case of PALTA, we tested the algorithm using
two different values for ω, being 100 and 200. Reaching
1000 nodes might be considered not large enough for large
scale networks, but it is enough to observe the behavior af-
ter the ω threshold is reached and extrapolate the scalability
from the curves obtained.

4.1. Active connections

One of the goals of PALTA is to dynamically adapt its
topology in order to optimize the use of the network. For
small networks that means that we want to directly connect
as much peers as possible, in order to reach every peer in
the minimum amount of hops. Small is defined in terms of
the ω value.

Figure 4 shows the average amount of active connections
per peer in the different topologies. We can observe that the

fully connected network increments the amount of connec-
tions linearly, and therefore, it does not scale at all. Part
of the curve is missing, but it clearly corresponds to n − 1,
being n the size of the network, because every node is con-
nected to all the other peers. As expected, the relaxed-ring
appears as the topology where peers manage the smallest
amount of connections, showing that it has good scalabil-
ity for large networks. Let us analyze now the behavior of
PALTA. In both cases, with ω 100 and 200, we observe that
the amount of connections increases linearly as a fully con-
nected network until reaching ω peers. From that point on,
the average of connections decreases very fast, converging
asymptotically to the values of the relaxed-ring. This is be-
cause all new nodes that join the network after the threshold
of ω is reached, create only the amount of fingers needed by
a relaxed-ring. In fact, ω peers manage ω − 1 connections,
and N − ω peers manage k fingers, with N being the size
of the network. Meaning that the larger the network, the
smallest the average. Of course, this decreasing behavior
continuous until it almost reaches the curve of the relaxed-
ring, then, the average can only increasing according to the
size of the network.

In conclusion, Figure 4 shows us that PALTA uses ac-
tively more resources than a regular ring, but it is capable
of self-adapting when the network becomes too large and
provide a good scalability.

4.2. Network traffic

When peers enter in a distributed network, they gener-
ate a number of messages in order to correctly join without
leading the network to an unstable state. In the case of a
fully connected network, the joining peer will always need
2 ∗ n messages to contact all peers in a network of size n.
Therefore, the cost of a new joining peer increases as the



Figure 4. Average amount of active connec-
tions vs number of peers.

size of the network increases. In our simulation we contact
directly every peer. In case a broadcast mechanism is used
to propagate the join of a new peer, n messages are needed
to reach every peer, plus n message to acknowledge the new
peer, making 2 ∗ n messages.

In a relaxed-ring, the joining peer needs to send mes-
sages for contacting the predecessor, successor and the k
fingers. Therefore, the marginal cost of a joining peer is
almost independent of the size of the network. The only
difference occurs with the amount of messages needed for
localizing the k finger, which increases logarithmically with
respect to the size of the network, as we will see in Section
4.3.

Figure 5 does not show the marginal cost of joining a
network, but the total amount of messages generated to con-
struct every network we have studied in section 4.1. We can
see that with less active connections, as in PALTA or the
relaxed-ring, the number of messages remains small, gener-
ating less network traffic. The curve of the fully connected
network increases quadratically, generating n∗(n−1) mes-
sages, with n being the size of the network, we can conclude
that this network cannot scale.

The curve of the relaxed-ring shows a constant and con-
trolled increment in the amount of messages, keeping them
at a very low rate, showing that it scales very well. Now, the
results obtained from experiments with PALTA are very in-
teresting because both perform better than the ring for larger
networks. One can observe that PALTA with ω = 100 and
ω = 200 increases quadratically the amount of messages,
as in a fully connected network. This happens only until
the network reaches a size of ω peers. Then, the amount of
messages increases slower that in a ring, and furthermore,
after a certain size of the network, both PALTA networks re-
main at better values that the relaxed-ring. The explanation
for this is that when a new peer join in the network, it needs
less messages to find the k fingers. This is because PALTA

has ω peers with a larger routing table (ω > k), making a
more efficient jump during the routing process. We study
this further in the following section.

Figure 5. Total amount of messages to build
the network vs number of peers.

This means that the cost of maintaining a small fully
connected network can help a larger network to be more
efficient for routing, generating less network traffic. We ob-
serve that PALTA could not only be used for ambient in-
telligent networks, but also as the topology for large scale
systems.

4.3. Hops

In order to confirm our conclusions from the previous
experiment, we decided to measure the average amount of
hops needed for a message to reach its destination. This
is known as a lookup operation in a ring. This experiment
does not consider fully connected networks, because there
is no concept of responsibility is such systems. In addition,
because of its characteristics, peers in a fully connected net-
work reach any other peer in the network in 1 hop.

In Figure 6 we can observe the results obtained. The
relaxed-ring shows that the number of needed hops increase
logarithmically when the network size increases. PALTA
performs better than the relaxed-ring due to fact that some
peers have a larger routing table, confirming the results from
the previous experiment. In both cases, PALTA presents an
average number of hops slightly smaller than 2 if the net-
work consist of less than ω peers. This is because the net-
work is fully connected, and therefore, in can reach the pre-
decessor of the responsible of the looked up key in only one
hop. The second hop is needed to reach the responsible.
The average is smaller than 2 because the randomized ex-
periments sometimes generates lookups where the respon-
sible is the peer triggering the lookup.



After the value of ω is reached, the average increases
faster in PALTA with ω = 100 that with ω = 200. This
is clearly due to the amount of peers having a larger rout-
ing table. We observe that in both cases the system behaves
much better than the ring. We expect that for larger net-
works the value would converge to the curve of the ring, but
still performing better. What we cannot currently explain is
the behavior of PALTA with ω = 100 when the network is
in between 100 and 200 nodes. It seems to perform even
better than a ω = 200.

Figure 6. Average number of hops vs number
of peers.

Something that we still need to investigate is the con-
struction of a network where every peer define its own ω
vale according to its own resources. We want to PALTA in
ambient intelligent network formed by heterogeneous de-
vices, each one with its own resources.

5. Conclusions

Ambient Intelligence envisions the ubiquitous presence
and cooperation of computers in order to enhance our qual-
ity of life. Mobile devices are helping us to achieve this
goal because they are becoming more powerful and they
have better communication capabilities. We are interested
in how mobile devices can organize themselves into ad-
hoc networks when the environment lacks of a network in-
frastructure. We present PALTA a self-organized and self-
managed network topology which can optimize the use of
the network and device resources depending on the network
conditions.

In this paper we have presented the main ideas behind
PALTA. We study its self-managing properties by using
feedback loops to model its behaviour. We also presented
and analyzed the results obtained from simulations per-
formed with different network configurations and the dif-

ferent topologies we studied. PALTA shows good results
compared to other approaches: it optimizes the use of the
resources in different network configurations, providing a
better use of the resources in small networks, but when net-
works become bigger it can adapt its organization for pro-
viding better scalability without modifing the connections
links of the already connected peers.

We believe that this approach is useful for the self-
organization of mobile devices in highly variable environ-
ments.
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