Towards a taxonomy of tools for documenting code design

Sergio Castro,Kim Mens,Johan Brichau
Université Catholique de Louvain
Louvain-la-Neuve, Belgium
{Sergio.Castro — Kim.Mens — Johan.Brichau } @uclouvain.be

Abstract

Numerous tools for documenting code design exist. Each
of these proposes different techniques and attempts to deal
with different aspects regarding code design documenta-
tion. Though this abundance of tools and techniques is a
clear sign of the importance of such kind of tools in real
life software implementation, it also creates confusion when
trying to decide which one best suites the specific needs of
a project. Adding to this confusion is the fact that different
tools often use a different terminology for similar problems.
Furthermore, the support offered by most of these tools is
limited, since it is often based either on verifiable documen-
tation that is not highly customizable, or customizable doc-
umentation that cannot easily be verified. This paper takes
initial steps in the direction of establishing a common vo-
cabulary for describing code design documentation tools,
and highlights the features that a verifiable and highly cus-
tomizable tool should provide in order to satisfy most of the
code design documentation requirements present in the im-
plementation of complex software systems.

1 Introduction

Appropriate documentation of the program design of
complex software systems is crucial for its late maintenance
and evolution. However, in order for this type of documen-
tation to be truly useful, it must be verifiable so that it can be
used to test the quality of software, it should minimize du-
plication and scattering of documentation artifacts, it should
be malleable enough for describing different kinds of imple-
mentation details, it should avoid repetitive and error prone
activities as much as possible.

There exists a large number of code design documenta-
tion tools and techniques that attempt to cope with subsets
of these ideal properties, ranging from very sophisticated
tools relying on advanced code querying techniques and
meta-programming as a mechanisms for defining and veri-
fying constraints over source code elements, to very simple

ones that just describe ways of writing code design docu-
mentation in a textual representation and a mechanism for
exporting this documentation to a human-readable format.

This work describes an initial taxonomy of the most rele-
vant features of these tools, trying to center our attention on
the concepts used by the most sophisticated tools, but with-
out ignoring completely the conceptually simple ones, since
even those occasionally describe a feature that is not taken
into account by the more complete ones. Our second goal is
to build a common vocabulary for describing all these fea-
tures, providing in this way basis for further discussion. We
have structured this paper as follows: Section 2 explains our
proposed taxonomy, section 3 describes how sixteen docu-
mentation tools were classified according to this taxonomy,
and section 4 mentions our conclusions and future work.

2 Towards a taxonomy of code documenta-
tion tools

We intensionally focused this work on features
of implementation-level program-design documentation'
tools. Therefore, we excluded from our study features re-
lated to reverse engineering activities that, although asso-
ciated with documentation tasks, would force us to deviate
the discussion to other phases of the development life cycle
(i.e., analysis and design) that are out of the scope of this
paper (i.e., implementation).

With this focus in mind, our study and comparison of
different program documentation tools allowed us to clas-
sify these tools according to different documentation di-
mensions, each of which will be discussed in more detail
in the remainder of this section. A list of all the found di-
mensions and the researched tools is shown in the appendix
A.

Ireferred as just documentation in the rest of this paper

2.1 Documentation retrieval

This dimension describes how documentation is re-
trieved. At a very high level, we found that all tools we
examined produce the documentation by either extracting
it from an already documented system or by attempting to
generate new documentation. We can thus distinguish:

Extracted documentation: Existing documentation is ex-
tracted from code already documented (e.g., a legacy
system), and usually formatted in a human readable
format (e.g., [23], [2], [20])

Generated documentation: Newly generated documenta-
tion is added to the source code.

The latter category, generated documentation tech-
niques, can be further decomposed:

Mined documentation: New documentation is mined
from the code with little manual intervention (e.g.,
[22]). However this generated documentation is often
incomplete.

Library oriented documentation: A reusable library of
documentation patterns is applied over different pieces
of software [11]. Typically this documentation library
covers implementation design patterns or bad smells
in code that are applicable across different software

projects (e.g., [4], [1], [18]).

Manual documentation: The documentation is written
from scratch. No mining nor documentation libraries
are present.

2.2 Documentation kind

Whereas the previous dimension focused on how to doc-
ument, this dimension focusses on what possible artifacts
can be documented. We distinguish:

Structural documentation [16]: The documentation de-
scribes structural and static relationships in the pro-
gram (e.g., [13], [18], [19]).

Behavioral documentation [16]: The documentation de-
scribes the behavior of the application (e.g., [12], [13]).

Evolutionary documentation [6]: Documents the evolu-
tion of software artifacts or concepts. Note that this
dimension is somewhat orthogonal to the previous two
since we could document the evolution of structural,
behavioral or both kind of documentations. However,
this dimension focusses on different aspects of the evo-
lution history of source code elements, rather than be-
ing fixed to one single version of the code (e.g., [17]).

2.3 Declarative properties

This dimension describes how declaratively and modu-
larized the documentation can be expressed. At a high level
we can classify this dimension in:

Extensional documentation [8] techniques document dif-
ferent software artifacts separately, even if they all
share common properties that could be documented
together (e.g., If all the factory methods should be-
gin with the word ‘factory’, and extensional documen-
tation technique would force us to find every factory
method and document this constraint there).

Intensional documentation [15] techniques provide
mechanisms for declaratively documenting common
properties of a set of software artifacts. (e.g., using
an intensional documentation technique we could
declaratively say with one single rule that every
method belonging to the concept of a factory method,
should begin with ‘factory’). This technique, in
addition of being more concise and less error prone,
has the additional advantage that the documentation
of conceptually equivalent objects is modularized in
one single place, instead of being scattered through
and tangled with the program code. We found that
most of the researched tools implementing support
for intensional documentation, provide some kind
of source code querying facility, that allow the
declarative assertion of constraints and properties over
distinct source code elements.

Intensional documentation techniques can be further
classified by the type of source code querying mechanism
they offer:

Predefined intensions: Where the intensions are selected
from a library of predefined intensional predicates
(e.g., [171, [101, [7D).

Customizable intensions: Where the intensions are user-
customizable and highly adaptable, usually with the
use of a declarative meta-programming language (e.g.,
[14]). Evidently, neither of these categories are mu-
tually exclusive and a simple documentation tool may
provide support for all the above (e.g., [13], [18]).

2.4 Documentation verification

This dimension describes how documentation can be
verified in source code. We will call any documentation
that can be verified active documentation. In the case of
tools that provide no support for verifying the documenta-
tion we talk about passive documentation (e.g., [23], [2],
[20]). In the rest of this section we propose further classifi-
cation dimensions for active documentation.

2.4.1 Verification automatization

Manual verification: When documentation can be
checked upon explicit request by a user (e.g., [21], [3],
[4D.

Automatic verification: When documentation is automat-
ically verified -and sometimes enforced- according
to some policies. Typically, the verification occurs
when an inconsistency between the documentation and
the source code is detected (e.g., [10], [12]). How-
ever, other types of check policies could be foreseen
(e.g., permanent checks in background, checks at spe-
cific points in time, checks whenever something has
changed, etc).

2.4.2 Static and dynamic verification [5]

Static verification: The source code is verified statically,
i.e., without executing it (e.g., [9] [1]).

Dynamic verification: The documentation is verified dur-
ing the execution of the code (e.g., [12]).

Note that these two properties are complementary, since
not all the implementation artifacts can be fully statically
verified, nor can all of them can be dynamically verified.

2.4.3 Verification aim

Symptomatic verification: Shows where the documenta-
tion is not consistent with the source code (e.g., [13]).

Diagnostic verification: Evaluates the inconsistency be-
tween documentation and code, and determines the
cause of the problem (e.g., [7], [1], [12]).

Corrective verification: Attempts to (semi-)automatically
solve the detected inconsistencies (e.g., [10]).

Note that if a tool supports corrective verification, this
implies that it support diagnostic verification as well (since
no correction could be done if the cause of the problem has
not been diagnosed before). In a similar way, if a tool sup-
ports diagnostic verification, this implies that it also sup-
ports symptomatic verification (since diagnosis cannot be
done if the problem is not known).

2.5 Documentation quality measuring

This dimension is about evaluating the quality of the doc-
umentation itself. It is most of the time present in docu-
mentation tools as a quantitive property (e.g., [21], [1]).
The main measure of quality is the average or the propor-
tion of source code artifacts that are documented in the sys-
tem. Evidently, other documentation quality measures may
be supported as well.

Though we think that this dimension can be classified in
customizable quality measuring and non customizable qual-
ity measuring, we have classified the tools we researched
only as customizable or non-customizable tools. We took
this decision since very few tools provided quality measur-
ing support, and from the ones which did, they all offered
customizable quality measuring.

2.6 Independence of implementation lan-
guage

This dimension is about the flexibility offered by the doc-
umentation tool for being used with more than one imple-
mentation language. We can further classify this dimension
in:

Single language: The documentation targets just one pro-
gramming language (e.g., [7], [20]).

Single paradigm: The documentation targets one object
paradigm and a subset of languages written in this
paradigm (e.g., [13]).

Language and paradigm independent: The documenta-
tion targets multiple paradigms and languages (e.g.,

[2D).
3 Applying our taxonomy to real tools

Appendix 4 shows how different documentation tools
were described according to the documentation dimensions
we found. Although space limitations prohibit us to discuss
this table in detail here, we do highlight some of the main
conclusions drawn from analyzing it.

- Almost no tool exists that provides support for certain
features, such as measuring the quality of the docu-
mentation, proactive verification techniques, and dy-
namic verification techniques.

- Conversely, other dimensions, such as the use of
reusable documentation and symptomatic and reusable
verification, show a high density of tools that support
them.

- Furthermore, we observed that some dimensions are
present in almost all the tools studied, such as struc-
tural and behavioral documentation, and that the tools
we studied that were more close to include all proper-
ties are SemmleCode [18], KlocWork [10], NDepend
[19] and IntensiVE [14].

- Finally, from the tools that were more close to include
most of the properties discussed here, we discovered
that all of them make use of a code querying language

as a mechanism for the declarative documentation of
source code artifacts. That fact triggered the obser-
vation that the use of a sophisticated query language
for a documentation tool, in fact guarantee the support
for other documentation features. For example, ex-
tracted documentation is easily supported, since most
of the times the textual documentation that has to be
extracted from code, is represented by special tags or
comments (e.g., Java Doclets [20]) that can be eas-
ily queried, examined and formatted with an appropri-
ated query language. Also, extensional documentation
is automatically supported, since we can consider the
declarative documentation of source code artifacts ref-
erenced by a query that returns exactly one artifact, as
an extensional strategy.

4 Conclusions and Future Work

In this paper we have presented an initial taxonomy of
different properties of documentation tools.

We have defined with this an initial common vocabulary
for describing this kind of tools, as well as found which are
the properties more common or infrequent and highlighted
some interesting relationships among these properties. We
discovered also that even the most sophisticated tools do
not offer all the features we explored. Taking this into ac-
count, as part of our future work we will attempt to give
an additional step towards the development of a complete
documentation tool. We think that the obvious choice for
this objective is extending the IntensiVE tool suite, since
it already provides most of the properties discussed and it
is an open source project that allows complete access to its
source code. In order to do this, we will look for mech-
anisms to provide in IntensiVE support for documentation
quality measuring, proactive and retroactive documentation,
dynamic documentation support, diagnostic and corrective
verification, and support for evolutionary documentation.

References

[1] Aivosto Oy. Project

http://www.aivosto.com/project/project.html.
[2] E. Artzt. AutoDuck. http://helpmaster.info/hlp-

developmentaids-autoduck.htm.
[3] AxTools.
http://www.aivosto.com/codesmart/net.html.
[4] T. Copeland. PMD. http://pmd.sourceforge.net/.
[5] M. Elaasar and L. Briand. An overview of uml consistency
management. Technical Report SCE-04-18, Carleton Uni-
versity, Ottawa, Canada, 2004.
G. Engels, J. M. Kiister, R. Heckel, and L. Groenewegen.
Towards consistency-preserving model evolution. In /IWPSE
'02: Proceedings of the International Workshop on Princi-
ples of Software Evolution, pages 129-132, New York, NY,
USA, 2002. ACM.

Analyzer.

CodeSMART.

[6

—_

(7]
(8]
(9]
(10]
(11]

[12]

[13]

(14]

(15]

[16]

(7]

(18]
[19]

[20]
(21]

(22]

(23]

GrammaTech, Inc. Code Sonar.
http://www.grammatech.com/products/codesonar/.

K. D. Hondt. A novel approach to architectural recovery in
evolving object-oriented systems. PhD thesis, Departement
Informatica, Vrije Universiteit Brussel, 1998.

S. Johnson.
http://en.wikipedia.org/wiki/Lint_programming_tool.
Klocwork, Inc. KlocWork. http://www.klocwork.com/.

W. Liu. Rule-based Detection of Inconsistency in Software
Design. PhD thesis, University of Toronty, Canada, 2002.
M. Martin, B. Livshits, and M. S. Lam. Finding Applica-
tion Errors and Security Flaws Using PQL: a Program Query
Language.

K. Mens and A. Kellens. IntensiVE, a toolsuite for docu-
menting and testing structural source-code regularities. /0th
Conference on Software Maintenance and Re-engineering
(CSMR), pages 239-248, 2006.

K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving
code and design using intensional views - a case study. Com-
puter Languages, Systems & Structures, 32:140-156, 2006.
K. Mens, T. Mens, and M. Wermelinger. Maintaining soft-
ware through intional source-code views. In Int. Conf. Soft-
ware Engineering and Knowledge Engineering, pages 289—
296. ACM Press, 2002.

Ragnhild, T. Mens, J. Simmonds, and V. Jonckers. Using
description logics to maintain consistency between UML
models. In P. Stevens, J. Whittle, and G. Booch, edi-
tors, UML 2003 - The Unified Modeling Language, volume
2863 of Lecture Notes in Computer Science, pages 326-340.
Springer-Verlag, 2003.

M. P. Robillard and G. C. Murphy. Concern graphs: finding
and describing concerns using structural program dependen-
cies. In ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, pages 406416, New
York, NY, USA, 2002. ACM Press.

Semmle Ltd. SemmleCode. http://semmle.com/.

Lint.

SMACCHIA.COM S.AR.L. NDepend.
http://www.ndepend.com/.
Sun Microsystems, Inc. Javadoc technology.

http://download.java.net/jdk7/docs/technotes/guides/javadoc/index.html.

Toolsfactory software, Inc. Doc-O-Matic. http://www.doc-
o-matic.com/start.html.

T. Tourwe, J. Brichau, A. Kellens, and K. Gybels. In-
duced intentional software views. European Smalltalk Users
Group conference, 2003.

D. van Heesch. Doxygen.
doxygen/.

http://www.stack.nl/ dimitri/-

<
<
<

QpoDI[WILAG

<[
<
Il

oM 013

el el

2ovdsAl0d

X IRUOS 9POD

Jury

X X X puadoN

X JRWS 9pOD)

X X 10zKeuy 109l01g

Lol Eal [l Eocll Eacll Eael Eol Eoell P

FAISUAIU]

X<
tad
=
<

10d

=<

dNd

IVEL

tol Eall ol o Ll Eal Lol ol Lol bl bl Lol ad
ol ol ol i [al ol [el Lo ol kel Ll o
ol Ell el Ell ol ol Pl Sl Pl Pl o Pl B

X X oneN-0-00Q

X JopeAe[

X X yonpony

ol el El Ell ol ol Bl ol Pl R ol Pl R P S
bl il ol ol Eal bl bl ol ol Eal Eal [

lol el el fa]
[P [[[
[[

X X X uagAxoq

Areuonnjoag [elo1ARYDg [eamonng JANIALI0D) ansouel onewoydwig srweukq nerg YLIOA uoneoyLIdA JnIssed S I q Kreiqrp Tenuepy paury paroenxg a5en3ue| Aiend)

spewony [enuey S[qeZImOoISn) nozuo_wmi DINA

S|00} UOII_JUBWINDOP S/ SUOISUaWIP UoneJUAWINI0Q ‘| 9|qeL

imensions

In this appendix we list all the documentation dimen-

sions we found in our research, as well as the classified pro-
gramming design documentation tools. These dimensions

Comparing documentation tools and docu-
and tools are showed in table 1.

Appendix A
mentation d

