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Abstract

In this paper we propose a technique to automate the process of building trans-
lators between operations languages, a family of DSLs used to program satellite
operations procedures. We exploit the similarities between those languages to semi-
automatically build a transformation schema between them, through the use of
annotated grammars. To improve the overall translation process even more, re-
ducing its complexity, we also propose an intermediate representation common to
all operations languages. We validate our approach by semi-automatically deriving
translators between some operations languages, using a prototype tool which we
implemented for that purpose.
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1 Introduction

1.1 Motivation

As opposed to general-purpose programming languages, which are designed to
solve computing problems in any domain, domain-specific languages (DSLs)
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are typically smaller programming languages dedicated to a specific task or
application domain [21]. An example of such a specific application domain is
that of spacecraft mission planning, where spacecrafts receive commands from
so-called operators. These commands are described in DSLs called operations
languages (OLs). OLs have been designed with the purpose of regrouping the
commands sent to a spacecraft into operations, which are specialized programs
that describe an organised procedure for a spacecraft.

In the domain of spacecraft mission planning there exist probably as many
OLs as there are spacecraft operators. These languages can have very different
syntaxes and language constructs. Nevertheless, since they all have the same
goal and respect known standards on satellite construction and operation,
all of them share many features. More precisely, all OLs share a common
semantical foundation and programming paradigm: they are all imperative
and flow-driven languages.

In an attempt to make the design and testing of spacecraft procedures
easier, many operators use specialized software applications. Designers and
implementers of such applications are confronted with the need of making
them generic, so that they can be employed by as many operators as possible,
regardless of the actual operations language they prefer to use. Although
these applications already allow operators to design and edit procedures in
any OL, they lack the ability to translate these procedures between OLs.
In addition, these applications should be easily extendable to support new
operations languages.

1.2 Approach

The approach we propose in this paper is a generic technique to semi-automa-
tically derive translators from one OL to another, based on the corresponding
context-free grammars of those languages annotated with extra information
at the production and non-terminal level.

The proposed technique does more than providing an alternative solution
to the old problem of language translation. It also helps reducing development
time of a rather time-consuming part of the process of building program trans-
lators. Furthermore, the modularity of our technique enables future reuse of
translation modules, when writing or deriving new translators for other lan-
guages.

We implemented a prototype of an algorithm that semi-automatically de-
rives translators, by using Asf+Sdf [4,11] and the Asf+Sdf Meta-Environ-
ment [5].

In summary, the main contributions of our technique are :

(i) a mechanism that automates the process of building translators between
different operations languages, based on the ideas of grammarware devel-
opment [12];

(ii) a common intermediate representation for all operations languages;
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(iii) a prototype implementation of the derivation tool that could be incorpo-
rated as a library into the Asf+Sdf Meta-Environment.

Although we validate and illustrate our approach and algorithm only on
the case of operations languages, there exist other families of languages that
have a common semantical foundation, e.g. databases design languages or
query languages. We conjecture that our technique could be applied in such
domains too.

The remainder of this paper is structured as follows. In Section 2, we
analyse the research problem in more detail and take a closer look at the
domain of satellite missions and procedures. The annotated grammars tech-
nique, our solution to the research problem, is explained in detail in Section 3,
and validated on the case of operations languages. We introduce our common
intermediate representation for OLs in Section 4. Finally, in Sections 5 and 6
we present the results of the first experiments performed with our approach,
highlight advantages and shortcomings of our technique, and summarize our
contributions.

2 Context

2.1 Operations languages

Spacecraft mission operations are all activities related to the planning, execu-
tion and control of satellite behavior. One major element of mission operations
is the flight operations plan which contains all information required to exe-
cute the operations, including all flight control procedures and contingency
recovery procedures. A procedure is the specified way to perform an activity,
and is the principal mechanism employed by the end-user to control the space
system during the execution of an operation. These procedures are written,
depending on the mission control center that operates the satellite, using one
among the multitude of operations languages that exist.

As an example, Figure 1 shows part of a test procedure written in the
Pluto [10] language. Pluto supports instructions that can be found in many
other languages, like control flow statements (while, if), variable assignments
and logging. It also supports dedicated instructions, provided by most OLs,
to communicate directly with the satellite. Examples of the latter are the
instructions Get Engineering Value of DHT30100 at line 5 and initiate and

confirm PHC10117 at line 11.

This similarity in instructions and semantics among OLs makes it feasible
to translate from one to another in a highly automated way (even though the
problem of automatically translating from any language to any other is, in
general, unsolvable).
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log "PROCEDURE PlutoTest 45 03 Step 1";
relVAR := 3600 sec;
bootNotRealised := TRUE;
while (bootNotRealised AND relVAR > 0 sec ) do

bootNotRealised := ((Get Engineering Value of DHT30100)=ACTIVE);
if (bootNotRealised) then
wait 1 sec; relVAR := relVAR - 1 sec ;
end if;

end while;
if bootNotRealised then

initiate and confirm PHC10117;
end if

Fig. 1. Code fragment of a test procedure in the Pluto operations language.

2.2 The research problem

This research addresses two related problems. One is the classical prob-
lem of generic language translation, which is still under active investiga-
tion [14,19,20]. A second problem is, when defining translators between many
different languages in a same family of languages, many of the translators will
have similar fragments. To avoid having this repetition a modular translation
technique is beneficial.

To address the problem of translating between arbitrary OLs, providing
a specific translator for every source and target language combination would
obviously lead to a combinatorial explosion of translators. An alternative
approach — that is part of our final solution — is to introduce an additional
language that can act as intermediate representation when translating between
any two OLs. We need to design this intermediate representation in such a
way that it allows to reuse language and transformation components, in order
to decrease the manual effort when adding additional languages to our set of
translators.

But even when passing via such an intermediate representation, the core of
our translation problem remains. Although it reduces significantly the number
of translators that need to be implemented, we still need to build an important
amount of them. Taking into account the fact that all languages in our domain
share many features, we hypothesize that the translators themselves are also
similar to a large extent, and that we can exploit this similarity to automate
the process of building them.

This similarity in the translators was confirmed by an experiment, where
we programmed a set of translators by hand. During that experiment we
observed that in many of the translators certain coding patterns appeared
over and over again. It was precisely this repetition that we wanted to exploit
to further automate the process of building language translators between any
two OLs.
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2.3 Our solution in a nutshell

Our solution to the automated translation of procedures between multiple OLs
is composed of the following steps, each of which is explained in more detail
in the subsequent sections.

(i) We automate the process of building program translators between two
OLs, by taking advantage of language similarities. We map source to
target languages by annotating their grammars, and we provide these
annotated grammars to our system, which then produces an automatic
translator. This automatic translator is built in a modular way and
can easily be extended with further transformation rules to complete the
translator.

(ii) We design an intermediate representation common to every OL. Like this
we can translate from any of these languages to this representation, as
well as from the intermediate representation to any such language. This
intermediate representation provides a generic syntactic and semantic
model for the family of OLs, in terms of which to define translators for
languages in that family.

3 Annotated Grammars

Syntax-directed translation [1] is a common mechanism used, mainly in com-
piler construction, to translate from a source to a target language. A particular
instantiation of this technique is the use of syntax-directed transduction [15]
that specifies the input-output relation of the translation and deduces the
actual translator from that relation.

Our approach builds on these techniques to develop a simple and easy-to-
use mechanism to semi-automatically build source-code translators between
two related languages, taking as input the grammars of both languages, pre-
viously annotated with constructor and label information to establish a map-
ping [16] between corresponding language constructs. The mechanism pro-
vides a way to automatically generate the translator for some of the produc-
tions in the grammars, as well as basic support to extend that translator with
the necessary transformations for the remaining productions.

Although many existing tools could be used to implement this solution,
as for instance [3,7,9,23], we have chosen Asf+Sdf and the Asf+Sdf Meta-
Environment for implementing our prototype. Asf+Sdf is a specification
formalism composed of the Algebraic Specification Formalism (ASF) and the
Syntax Definition Formalism (SDF), allowing the integrated definition of syn-
tax and semantics of a programming language [6] in a modular way.

The modularity of Asf+Sdf enables reusability, at the syntactic as well
as at the semantic level, which is one of the advantages of using it as our im-
plementation medium. Furthermore, Asf+Sdf has a strong notion of syntax-
directed translation both on input and output sides. We discuss SDF in more
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detail in Section 3.1, followed by a brief summary of ASF in Section 3.2.

3.1 SDF

The Syntax Definition Formalism is a formalism for the definition of gram-
mars, that combines completely lexical and context-free syntax definition. It
supports arbitrary context-free syntax, because of the underlying generalized
parsing algorithm, and provides several disambiguation methods to deal with
ambiguous grammars. It also supports modularization and reuse of syntax
definitions [22].

An important difference between SDF and (E)BNF notation is that the left
and right-hand sides of the production rules are swapped. The SDF equivalent
of a BNF production X ::= A B C is the production A B C → X. In
addition, the right-hand side of an SDF production can be decorated with a
list of attributes that characterise that production. An example of such an
attribute is the constructor attribute cons which is used when building an
abstract syntax tree (AST) from a parse tree:

A B C → X{. . . , cons(ConstructorName), . . .}

where ConstructorName will be used as node name in the AST.

Another important feature of SDF is the possibility to annotate non-
terminals in the left-hand side of a production with labels:

labela: A labelb: B labelc: C → X{. . . , cons(ConstructorName), . . .}

This last feature is specially handy to avoid certain mapping problems when,
for instance, matching non-terminals in source and target productions do not
appear in the same order.

3.2 ASF

ASF is a formalism for defining conditional rewrite rules. These rewrite rules
can be used to define a semantics, for a language specified in the SDF part,
through equations that can be executed as rewrite rules of the form

L = R when C1, C2, . . .

stating that whenever L is matched, it can be rewritten to R, on the condition
that C1, . . . , Cn all evaluate to true. A simple form of equation is the uncondi-
tional one L = R. In the left-hand side, right-hand side and conditions of an
equation, variables can be used. Matching a left-hand side of an equation im-
plies binding of the variables to the matched subterms in the concrete syntax
tree. See [6] for a more detailed description.

Figure 2 shows the context-free syntax rules for two different occurrences
of conditional language constructs (i.e., an if statement and a conditional eval-
uation), and the rewrite function f for mapping one of the language constructs
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context-free syntax
"if" Expr "then" StatsS "fi" -> IfS
"eval(" Expr "," BlockT ")" -> EvalT

context-free syntax
f(IfS) -> EvalT

variables
"$Expr$" -> Expr
"$StatsS$" -> StatsS

equations
f(if $Expr$ then $StatsS$ fi) = eval( $Expr$ , f($StatsS$) )

Fig. 2. An example of a simple translation function expressed in ASF+SDF.

If EvalBlock eval( Condition ) {
then TrueBlock iftrue( StatementList )
else FalseBlock otherwise( StatementList ) }

Fig. 3. Conditional constructs in two different languages.

to the other. It illustrates the unconditional rewrite rules in ASF as well as
the use of variables.

3.3 Preliminary Experiment

During a preliminary experiment, eventually leading to the work presented in
this paper, we manually built translators from the operations languages Pluto
and UCL [2] to and from an intermediate representation language IRL, ex-
plained in more detail in Section 4. We started with a subset of constructs for
these languages, consisting mainly of control flow structures, and programmed
four translators: Pluto to IRL, IRL to Pluto, UCL to IRL, and IRL to UCL.

The sum of the number of ASF transformations we had to implement for
the four translators was 91, but the implementation of 73 of these transforma-
tions (about 80%) followed a repeatable pattern. It was like the rewriting rules
were acting as a bridge between source and target grammars, with an almost
one-to-one correspondence between productions and non-terminals. Only 18
of all the transformations (slightly less than 20%) were “non-trivial”, requir-
ing more knowledge than that could be deduced from the grammar. This
observation led us to the solution proposed in Section 3.4.

3.4 Grammar Annotations

Now that we have explained all preliminaries, let us return to the core of the
problem, which is to provide automated support for building source-to-source
translators for operations languages. Since these languages belong to the same
family, they have many commonalities, and thus the translators involve a lot
of trivial transformations that could be generated automatically.

For example, the language constructs shown in Figure 3 belong to two
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EvalBlock ⇔ Condition
{TrueBlock, FalseBlock } ⇔ StatementList

Fig. 4. Equivalent non-terminals in Figure 3.
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eval( ) { iftrue( ) otherwise( ) }

Fig. 5. Abstraction of a common construct.

"if" EvalBlock "eval(" Condition ")" "{"
"then" TrueBlock "iftrue(" StatementList ")"
"else" FalseBlock "otherwise(" StatementList ")"
-> If "}" -> Eval

Fig. 6. The SDF rules for the two different conditionals

different languages. Although the syntactic structure of both differ, both
constructs have the same semantics: they evaluate a boolean condition, and
depending on its truth value, they execute one of the statement blocks. In
this example it is easy to establish that the productions for this construct are
equivalent, as well as they are their non-terminals, like in Figure 4.

As Figure 5 illustrates, such an equivalence can be regarded as an AST
shared by the corresponding constructs in both languages. Since terminals
(denoted by octagons in the figure) do not interest us when defining this
correspondence, they are left out of the common AST. Like this we build a
bridge between the two languages, allowing us to translate specific instances of
a construct in one language to its counterpart in the other language. Figure 6
shows the SDF productions for the language constructs of Figure 3.

There are equivalences in the left-hand sides of these SDF productions as
well. For simple cases no additional work should be necessary, because once
all productions are matched, often the system can infer how non-terminals
occurring in the left-hand side of both productions can be matched as well.
The mere order in which they appear could be enough to establish a one-to-
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one mapping. However, there can be many exceptions to this general rule:
different number of non-terminals in both productions, different order, more
than one non-terminal of the same type, and so on; a more accurate solution
is needed.

"if" cond:EvalBlock "eval(" cond:Condition ")" "{"
"then" trueb:TrueBlock "iftrue(" trueb:StatementList ")"
"else" falseb:FalseBlock "otherwise(" falseb:StatementList ")"
-> If {cons("If")} "}" -> Eval {cons("If")}

Fig. 7. Two annotated equivalent productions

To address this problem we associate labels to every non-terminal in the
left-hand side of a production. Figure 7 gives an example of two fully anno-
tated equivalent productions. The resulting AST: If(cond, trueb, falseb), is
equivalent for both productions although they belong to different languages.

3.5 Summary of the approach

In summary, to derive a translator with our approach, these are the basic steps
to follow:

(i) Analyze the grammars and look for productions with the same meaning.
This is a manual process that requires good knowledge of both languages
and trusts on the user entirely to match the grammars, thus establishing
the semantic mapping or bridge.

(ii) For every production S in the Source language, find the production T
in the Target language that fulfills the equivalence requirements, and
annotate both productions with constructor information.

(iii) Link the left-hand sides of both productions. For every couple of non-
terminals [A, X] having A in production S (in Source), and X in produc-
tion T (in Target), where A is equivalent to X, label both non-terminals
with the same attribute name.

(iv) Continue this process until every possible equivalence between produc-
tions and non-terminals is defined.

(v) Feed the system with the annotated grammars and as a result an Asf+Sdf
translator system from Source to Target will be returned.

(vi) Manually treat those cases where mappings could not be derived auto-
matically, mainly by adding transformations to the translator.

3.6 Transformation Example

We now illustrate the approach by deriving a translator for the two languages
shown in Figures 8 and 9. Note that, in those figures, we already performed
steps (i) to (iv) of our approach, so the grammars have already been annotated
by the user with constructor information and labels.
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module Source
imports Expr
context-free syntax
"proc" b:StatsS "endproc" -> StartS {cons("Start")}
"if" e:Expr "then" b:StatsS "fi" -> IfS {cons("IfThen")}
"if" Expr "then" StatsS

"else" StatsS "fi" -> IfS {cons("IfThenE")}
"while" e:Expr "do" b:StatsS "od" -> WhileS {cons("While")}
if:IfS | w:WhileS | e:Expr -> StatS {cons("Stm")}
it:StatS* -> StatsS {cons("Block")}

Fig. 8. Part of the source grammar

module Target
imports Expr
context-free syntax
"start(" b:BlockT ")" -> StartT {cons("Start")}
"eval(" e:Expr "," b:BlockT ")" -> EvalT {cons("IfThen")}
"loop(" e:Expr "," b:BlockT ")" -> LoopT {cons("While")}
if:EvalT | w:LoopT | e:Expr -> InstT {cons("Stm")}
it:InstT* -> BlockT {cons("Block")}

Fig. 9. Part of the target grammar

module Expr
context-free syntax
"true" | "false" | "nil" | "nil2" -> Expr
"not" Expr -> Expr

Fig. 10. Part of the common grammar

The transformation system starts by relating productions in the source and
target grammars with the same constructor attribute. The non-terminal at
the right-hand side of the production in the source grammar becomes the ar-
gument of a translation function f , while the right-hand side of the production
in the target grammar becomes the result of that translation function. E.g.,
for the productions with constructor attribute cons("IfThen"), a translation
function f(IfS) -> EvalT will be derived.

The rewrite equations for the transformation system will now be generated
based on the left-hand sides of both productions. The translation function
f(IfS) -> EvalT will be expressed like
f(if $Expr$ then $StatsS$ fi) = eval( $Expr$ , f($StatsS$) )

where every non-terminal NT has been replaced by a variable $NT $. For every
non-terminal, the corresponding translation function is invoked, except for
non-terminals like Expr, that thanks to languages similarities and environ-
ment modularization, are imported by both the input and output grammars
— this common grammar is shown in Figure 10.
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f(StartS) -> StartT
f(IfS) -> EvalT
f(WhileS) -> LoopT
f(StatsS) -> BlockT

Fig. 11. Signature of translation functions

f(proc $StatsS$ endproc) = start( f($StatsS$) )
f(if $Expr$ then $StatsS$ fi) = eval( $Expr$ , f($StatsS$) )
f(while $Expr$ do $StatsS$ od) = loop( $Expr$ , f($StatsS$) )

f($IfS$ $StatS*$) = f($IfS$) f($StatS*$)
f($WhileS$ $StatS*$) = f($WhileS$) f($StatS*$)
f($Expr$ $StatS*$) = $Expr$ f($StatS*$)

Fig. 12. Equations of translation functions

From: To:
proc start(
if true then nil else nil2 fi eval(true, nil)

eval(not true, nil2)
while true do nil nil2 nil od loop(true, nil nil2 nil)
endproc )

Fig. 13. Translation example

For the grammars of Figures 8 and 9, the signature of the translation
functions (Figure 11) and the actual translation equations (Figure 12) are
generated automatically.

3.7 Example of Manual Intervention

Finally, we illustrate how to handle those cases where we fail to establish a
mapping between productions. Whenever that happens, extra transformations
need to be added manually to the automatically derived translator.

For example, the production with constructor attribute "IfThenE" in Fig-
ure 8 has no equivalent in the target grammar of Figure 9. Manual intervention
is needed to allow the translator to handle this language construct. A possible
solution for this particular example is:

(i) We modify the translation function for IfS by changing the cardinality
of the resulting type: f(IfS) -> EvalT+

(ii) And we add an equation to rewrite the pattern:
f(if $Expr$ then $StatsS$ else $StatsS2$ fi) =

eval( $Expr$ , f($StatsS$) ) eval( not $Expr$ , f($StatsS2$) )

After this manual intervention we have obtained a complete translator that
can translate any program in Source to Target. For instance, the program in
the left column of Figure 13 gets translated to the one on the right.
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4 Intermediate Representation Language (IRL)

Even though we now have an automated mechanism for deriving source-code
translators between any two operations languages, we still have a combinato-
rial explosion of possible translators if we want to translate from any language
to any other language in that family. To address that problem, as announced
in Section 2.2, we designed an Intermediate Representation Language (IRL),
that abstracts the behavior of all languages in our family of operations lan-
guages, and provide translators only for each of the languages to and from
the IRL. As such, we only need to build 2n translators (instead of n(n− 1)),
where n is the number of OLs, and adding a new language to the set requires
adding only 2 extra translators (as opposed to 2n).

To design our IRL we selected a representative sample of OLs like Pluto 5 ,
UCL or Stol [18]. However, we were a bit hindered in our work because for
some OLs no documentation describing their complete grammar and seman-
tics is available. In addition, due to language incompatibilities, in some cases
abstracting the commonalities among grammars may lead to a loss of infor-
mation. For instance, since only one of the OLs allows to associate a name
to every “block of instructions”, this information is not put in the common
grammar and thus will be lost.

Based on the language constructs encountered in Figure 1, for example, we
may decide to include the following constructs in our IRL: Log, Assignment,
Loop, If, GetValue, InitiateCommand. The part of our IRL description for the
If and Loop constructs may look as presented in Figure 14. Notice that in our
SDF representation we already make use of labels and constructs, providing
additional semantic information. The IRL has an XML-like syntax.

We regard our IRL as an evolving system. For its initial design, we consid-
ered a representative set of languages, and commonalities were derived from
this set. However, whenever we want to add another OL to this “system” we
may discover constructs other than those already considered. To deal with
such constructs we designed the IRL in a layered way, as shown in Figure 15.
Language constructs common to most OLs belong to a Core module. Sur-
rounding that module we have an additional layer of Extensions, where we
can add constructs that are shared by some languages but that are not gen-
eral enough to merit being part of the core.

For instance, since not all OLs provide a For loop, we prefer to add this
construct as an extension to the IRL, but not to the core. This extension
can still be reused by all OLs that provide such a construct. Together with a
production describing this language construct as an extension to the IRL, we
provide a transformation from that extension to the core layer of the IRL: Ext1
or Ext2 to Core. This transformation will be a rewriting rule as explained in
more detail in Section 3.2.

5 As one of the goals of Pluto is to become the future standard for OLs, it is a very
representative language to consider.
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%% If statement
"<if-step>"

if:M-Ifonly
else:M-Else?

"</if-step>"
-> M-If {cons("If")}

%% Generic Loop statement
"<loop>"

"<checkbefore/>" | "<checkafter/>"
"<loopiftrue/>" | "<loopiffalse/>"
cond:M-Expression
block:M-Block

"</loop>"
-> M-Loop {cons("Loop")}

Fig. 14. Fragment of the language definition of the Intermediate Representation
Language for the family of OLs

Core

Ext 1

Ext 2 Ext 3

Extensions

Language A Language B

Language C

Language D

Language E

Fig. 15. Intermediate Representation Language structure

There can be cases where no possible transformation exist to go from an
extension to the Core — as illustrated by Ext3 — maybe because it is too
specific to certain languages or implementations (e.g., threading or exception
handling). These “unlinked” extensions will have to be managed as excep-
tional cases, only shared by a subset of the languages and, therefore, not fully
generalizable.

The basic idea behind the IRL structure is to obtain reuse through mod-
ularization. For every language construct present in an extension module, we
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%% While statement

"<while>"
cond:M-Expression
block:M-Block

"</while>"
-> M-While {cons("While")}

Fig. 16. A “while” extension inside the IRL.

%% While

<loop>
<checkbefore/>
<loopiftrue/>
...an expression...
...a block...

</loop>"

Fig. 17. A “while” instance in the core IRL.

provide the syntax of the productions and a semantics by mapping it to more
primitive constructs in the core module. This mapping typically needs to be
implemented by hand; however, once an extension has been defined, it can
be used directly by additional languages implementing the same construct.
To illustrate these ideas, below we give some concrete translation examples
that illustrate the flexibility of the IRL and how to extend it with new con-
structs providing straightforward mappings to the end user, while preserving
generality.

Let us revisit the “generic loop statement” in Figure 14. This is a generic
construct that can express different types of loops (e.g., while-do, do-until)
by using the additional terminal symbols to specify the desired semantics
of a particular type of loop. For instance, by choosing the non-terminals
<checkbefore/> and <loopiftrue/> we can express that we want a typ-
ical while loop, where the condition is checked before the statement block is
executed, and the loop continues only when the condition evaluates to true.

The generality of such a compact loop construct also has some drawbacks.
It may make particular translators that use this generic construct, for exam-
ple, to express a particular type of loop, more difficult to understand than
when a more concrete construct would have been present in the IRL. But
nothing prohibits us from offering such more concrete constructs (together
with their mapping to the more generic construct in the IRL) as extensions
to the IRL. In such an extension, a while construct could for example be ex-
pressed more directly and naturally as shown in Figure 16. This extension
would then transform automatically to the generic loop construct in the core
IRL, producing a structure as in Figure 17.
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%% Do - Until statement

"<do-until>"
block:M-Block
cond:M-Expression

"</do-until>"
-> M-DoUntil {cons("Until")}

Fig. 18. A “do-until” extension inside the IRL.

%% (A) %% (B)
<while> <loop>

A-Bool-Cond <checkbefore/>
A-Stats-Block <loopiftrue/>

</while> A-Bool-Cond
A-Stats-Block

</loop>

%% (C) %% (D)
<if-step> <if-step>

A-Bool-Cond A-Bool-Cond
<loop> <do-until>

<checkafter/> A-Stats-Block
<loopiffalse/> <not/> A-Bool-Cond
<not/> A-Bool-Cond </do-until>
A-Stats-Block </if-step>

</loop>
</if-step>

Fig. 19. A (simplified) chain of transformations (from A to D) performing a loop
inversion inside the IRL.

Now, let us consider a slightly more complex situation, where we would
want to translate from some language A that provides only “do-until” loops,
to a language B that provides only “while” loops, by passing via the IRL.
First of all, as we already explained for the “while” construct, we would need
an extension like the one in Figure 18, that knows how to translate “do-until”
statements to the generic loop construct in the IRL. Secondly, we need a trans-
formation scheme from such “do-until” statements in language A to “while”
statements in language B, as illustrated in Figure 19. (In this particular case,
this requires a loop inversion.)

It is true that the rewrite rules for this chain of transformations needs to
be written by hand, but once that has been done they can readily be reused
for translating between other languages that have similar constructs.
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5 Discussion

One of the obvious limitations of our approach, as explained in Section 3,
is that the deduction of language translators is not fully automatic. Manual
intervention is needed at the start of the process, to annotate the grammars,
instructing the deduction algorithm how to map constructs. This user inter-
vention, however, is no additional work. Even when manually programming
a translator, a deep understanding of how corresponding constructs in two
languages relate, would be required. In our approach we are just stating these
relations explicitly, to automate further steps. Another manual intervention
is needed at the end of the process, to extend the produced translator(s) with
extra transformation rules for those constructs where no initial mapping could
be provided.

Another issue is that, in order to make it easier to map the grammar of
one language to another, it is important that they have a similar structure.
In our case, we didn’t really suffer from this problem because, for each of the
languages we experimented with, we first designed the grammars for those
languages by hand, based on information from the language manuals and
documentation. This naturally led to a set of grammars that were structured
in a very similar way. If grammars for those languages would already have been
available, however, it would have made sense to first perform a normalization
step, as suggested by [13], to bring the different grammars in a similar form.

The more similar the languages are, the more the process of deducing a
translator between such languages can be automated. We conducted some ex-
periments with lightweight versions of both Pluto and our IRL, and observed
that our approach was highly automatic, being able to deduce most of the
transformation rules to translate from one language to another, without the
need of any human intervention at the end. The few cases where mappings be-
tween language constructs could not be defined straightforwardly, often could
be solved by simple grammar manipulations (adding or removing extra non-
terminals) to make the grammars more similar, thus avoiding the manual
intervention at the end.

More specifically, we achieved good results transforming between command
executions, objects definitions, flow control structures and expressions. All of
these constructs, however, are very local, not needing more information than
provided by the productions themselves. Dealing with more global constructs
like goto-statements, or passing from untyped representations to typed ones,
cannot be accomplished with our simple translation schema, and would require
more complex transformations rules to be programmed by hand.

Finally, our approach could be seen as too focused on syntax, which is
partially true because our particular problem (translating between operations
languages) is mostly syntactic. But even in those cases where the problem
would be more semantic, syntax would need to be taken into account as well,
and our approach could be considered at least for that aspect. One could also
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argue that only trivial translations can be achieved with our technique, but
thanks to the environment we have chosen and the design of our intermediate
representation, we can easily add more complex transformations — as we have
illustrated in Section 4 — which can be reused later on in other translators
with no additional programming effort.

5.1 Related work

A lot of related work exists in the domain of language translation, and it is
not our intention to present an exhaustive survey of the field here. We just
present a few other interesting approaches that are closely related or com-
plementary to ours. In [26] multi-language translation is tackled through a
minimal central representation, and a restricted form of invertible grammars.
An expansion mechanism is proposed in [25] for modularly adding new fea-
tures to a language, using attribute grammars. Graph translators are studied
in [17] where relationships are described through additional correspondence
rules. Finally, [24] provides an alternative way to generate translators based
on syntax-directed rules sets.

5.2 Future work

As our work has a strong practical objective, the next logical step is to turn our
prototype into a production-level tool, that can be incorporated in industrial
tools such as those mentioned in subsection 1.1.

Even though current experimentation has been performed only in the do-
main of operations languages, we believe the approach is generic enough to
be used in many other domains as well. To validate this claim, further ex-
perimentation will be performed to confront our approach with languages in
other domains (e.g. the database domain as in [8]).

6 Conclusions

We have shown how annotated grammar definitions can support automated
generation of translators between languages. Although we have used the fam-
ily of operations languages as a case study throughout this paper, we believe
that our technique would be helpful for other domain-specific language fam-
ilies as well, especially when dealing with intensive translation of programs
between multiple representations having very similar semantics.

We have also shown, using the family of operations languages as an exam-
ple, how an intermediate representation structure can provide an extensible,
modular and reusable “translation system”. Finally, we pointed out some
specific advantages and disadvantages of our technique, and suggested some
interesting avenues for future work in this field.
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