
Prototypes with Multimethods
for Context-Awareness

Sebastián González1?, Kim Mens1, and Stijn Mostinckx2??

1Département d’Ingeniérie Informatique 2Programming Technology Lab
Université catholique de Louvain, Belgium Vrije Universiteit Brussel, Belgium

{s.gonzalez,kim.mens}@uclouvain.be smostinc@vub.ac.be

Abstract The paper proposes a concrete notion of context as an ob-
ject graph which allows the representation of different sub-domains of
contextual information. The behaviour of the system is implicitly influ-
enced by such context. System behaviour can be adapted dynamically by
manipulating the context graph, and also by introducing multimethods
specialised on desired sub-contexts. The proposed approach aligns natu-
rally with the underlying computation model of prototypes with multiple
dispatch.

1 Introduction

The introduction of mobile devices equipped with wireless network provisions,
allows for present-day mobile applications to become aware of their environment
and to interact with it. Unfortunately, the incorporation of context information
into running mobile applications is currently often achieved using ad hoc mech-
anisms. To allow for an application to behave differently in a given context, this
context-specific behaviour is typically hard-wired in the application under the
form of if-statements scattered in method bodies or by using design patterns [8]
(e.g. Visitor, State, Strategy) and best-practice patterns [2] (e.g. Double Dis-
patch). As an alternative solution, in this paper we explore the Prototypes with
Multiple Dispatch (PMD) object model [13] under the light of context-aware
mobile applications. Our proposal provides a structured mechanism to deal with
contextual information in a flexible and fine-grained manner.

Context-aware mobile applications rely on a context architecture that repre-
sents the input from sensors (and possibly other applications) in a way that is
accessible to the application. The architecture used in this paper is akin to that
of the Context Toolkit [6], using objects to aggregate the context derived from
different (interpretations of) sensor data. The chief difference with our approach
lies in the way the context architecture will be employed by the applications

? S. González is funded by the Fonds pour la Formation à la Recherche dans l’Industrie
et dans l’Agriculture (FRIA, Belgium).

?? S. Mostinckx is funded by the Institute for the Promotion of Innovation through
Science and Technology (IWT, Belgium).

2

relying on it. To avoid hard-wiring context-related behaviour inside the appli-
cation, the aggregated context directly influences the dispatch of methods. In
other words, the programming model directly supports Context-Oriented Pro-
gramming [4].

The structure of the paper is as follows. Section 2 presents the PMD model,
the basis of our approach to context-awareness. Section 3 suggests the realisation
of the application context as a simple object which affects system behaviour.
Section 4 is about the aggregation of different kinds of context information into a
single context object, reusing basic PMD mechanisms. Sections 5 and 6 show how
the proposed model helps solving the problem of dynamic application adaptation
to context. Section 7 reports on the current status and future plans for our work,
section 8 reports on related work, and section 9 concludes the paper.

2 The PMD Model

The PMD model relies on a prototype-based object model, inspired by the pro-
gramming language Self [17,12]. In prototype-based programming, objects are
entirely self-sufficient such that they can properly function without requiring a
class definition. Hence, each object contains its own variable and method slots.
New objects are created by cloning existing prototypes, objects that act as repre-
sentative examples of domain entities. However, prototypes do not have a special
status in the language, as any object can be cloned and therefore serve as a pro-
totype.

Objects in a prototype-based language can extend other objects by delegat-
ing to them [11]. The delegating object reuses the methods and variables of the
delegate object. The relation between delegator and delegate is established us-
ing special delegation slots. Since delegation slots may change at run-time, this
extension scheme is called dynamic inheritance, in contrast with standard in-
heritance in class-based languages, where inheritance relationships are defined
statically.

The prototype-based object model of PMD is complemented with multimeth-
ods to avoid hard-wired dispatch code. Multimethods specify the kind of argu-
ments for which they are designed to work, by means of argument specialisers.
An argument specialiser is simply an object, usually a prototype. The follow-
ing Smalltalk-inspired example shows a print:on: multimethod whose value and
stream arguments are specialised on the string and output-stream prototypes re-
spectively:

print: value (string) on: stream (output-stream)
[. . . print the string . . .]

The method body (between brackets) has been omitted for clarity.
Given a message, a multimethod is applicable if each argument specialiser

is in the delegation graph starting at the corresponding actual argument of the
message, as illustrated in figure 1. In the example, the print:on: method will
be invoked only if the passed value argument delegates to string, or it is the

3

Actual
argument

Argument
specialiser

Figure 1. Directed (possibly cyclic) delegation graph showing the applicability of an
argument. The dashed paths and nodes represent arbitrarily complex intermediate
subgraphs. The actual argument is applicable if there is a path leading to the argument
specialiser.

string object itself. An analogous rule applies to stream and output-stream. Since
every method argument is treated in the same way, multimethods in PMD are
said to be symmetric, in contrast with asymmetric multimethods where there is
a distinguished receiver to which the method belongs [7]. As a consequence of
symmetry, PMD does not feature a special self or this keyword.

A multimethod can be overloaded by using different combinations of argu-
ment specialisers. Upon a message send, the delegation graph distance between
actual arguments and found argument specialisers is minimised so as to deter-
mine the most-specific applicable implementation. A left-to-right precedence rule
is used where necessary for disambiguation, but further details are irrelevant to
this paper. Again as a consequence of symmetry, the dynamic value of all argu-
ments, rather than only a receiver, is used for method selection. Patterns such
as Visitor [8] and Double Dispatch [10] are unnecessary in the PMD model [3].

The declarative power of multimethods stems from dynamic overloading.
The programmer can add special cases simply by adding new multimethods
specialised on the right set of arguments, without modification of previously
existing code. Multimethods provide a flexible and more declarative mechanism
to describe the interaction of different kinds of objects.

3 Context as an Implicit Behaviour Parameter

Clearly, if a system is to be called context-aware, the current context should be
able to affect system behaviour. The context parametrises the behaviour of the
system. Hence, it is natural to devise the context as an object which is passed
as an extra argument of messages, and correspondingly, which is used as argu-
ment specialiser in method definitions. This object contains all the information
pertaining to the current real-world context, and such information can have an
effect on the behaviour of the system as described below.

Given that the context is used ubiquitously, it is better to pass it as an
implicit parameter, rather than forcing the user to clutter the source code by
passing the context explicitly. Note that the implicit nature of the context has
nothing to do with the semantics of the model, it is just a convenience. Since

4

the context is an implicit method argument, there is no easy way (syntactically)
to explicitly specialise a method on a particular context. Rather, the current
context in which a method definition is found is used as an argument specialiser
of the implicit context argument. As an example, consider a text-user-interface
context, which represents the situation in which the system interacts with the
user by means of text:1

define: #text-user-interface as: object clone.

Observe that text-user-interface is a plain object, created by cloning the prototyp-
ical object.2 Methods whose behaviour is specific to text-based interfaces can now
be defined within this context. In particular, an inform: method, whose purpose
is to give the user a message, can be implemented within text-user-interface:

within: text-user-interface do:
[inform: message

[print: message on: standard-output.
print: newline on: standard-output]]

Syntactically, the method signature “inform: message” followed by the code block
between square brackets [...] represents a method definition. The inform: method
so defined is specialised on the text-user-interface context. The method will print
the given message argument on the console, followed by a newline. Only within
the particular text-user-interface context will this implementation of the inform:
method be applicable. If the following code is executed:

inform: ’ready’.

the text “ready” will be printed on the display of any device with a text-based
display. In a device with a graphical user interface, inform: could be implemented
in a graphical-user-interface context, and open a message box to show the message.
This way, an application can achieve its semantic goal (to tell the user a message)
on both devices without modification. The final application behaviour is not fixed
and can adapt to the environment –the context– in which it runs.

4 Context Aggregation

In reality, the context is a complex entity, comprising information of various
kinds. In our approach, the context –as any normal object– can delegate part
of its behaviour to other objects. These objects can be seen as sub-contexts,
entities which represent subdomains of larger context domains. Sub-contexts
can delegate in their turn to further refined sub-contexts, up to any desired level
1 The syntax we use is similar to Smalltalk’s. Statements read almost like sentences

in English.
2 In prototype-based programming, objects are created by cloning existing objects.

This mechanism substitutes class instantiation, given that classes are not used in
this paradigm.

5

of granularity. Hence, a given context object effectively aggregates all the sub-
contexts specific to the current situation. The main context, which ultimately
aggregates all context information, can be conveniently passed as one simple
argument in method invocations.

We illustrate context aggregation by continuing the example of section 3.
Suppose an application runs in a mobile device with a text user interface and
it is held by an English-speaking user. This can be implemented by aggregating
two delegates into the current (main) context:

current-context define-delegate: #user-interface as: text-user-interface.
current-context define-delegate: #localisation as: english.

The define-delegate:as: message is analogous to the message define:as: used above,
excepting that the created slot is a delegation slot rather than plain slot. The
slot named user-interface references the sub-context text-user-interface already
introduced. The slot named localisation references the english sub-context. This
sub-context represents an English-speaking environment. Suppose we want to
localise the inform: method so that it prints monetary values according to the
English language standards. The print:on: method introduced above (see the
implementation of inform:) can be specialised on monetary values within the
english context, as follows:

within: english do:
[print: amount (money-amount) on: stream (output-stream)

[print: ’$’ on: standard-output.
print: amount value on: standard-output]].

The money-amount and output-stream objects specialise the amount and stream
arguments. If the following code is executed:

inform: 5 dollars.

“$5” is printed on the text-based interface.
The same print:on: method can be defined for a Spanish-speaking context:

within: spanish do:
[print: amount (money-amount) on: stream (output-stream)

[print: amount value on: stream.
print: ’ dólares’ on: stream]].

Upon executing a change of localisation to Spanish:

current-context localisation: spanish.

the same application code (inform: 5 dollars.) will print “5 dólares” instead of
“$5”.

6

5 Dynamic Fine-grained Adaptation to Context

Adaptation to context occurs by altering the sub-contexts of the current (main)
context, i.e., by changing delegation links as illustrated in section 4 with the lo-
calisation slot of current-context. Such context changes should occur dynamically,
in order to reflect real world changes. Furthermore, adaptation to context must
take place as transparently as possible to the user. Obviously, the user must
not be queried by the system to find whether e.g. she is currently talking on
the phone or reading news. Rather, this information is to be supplied by agents
which monitor the environment and the user. The agents should dynamically
modify context delegation links according to the information they sense or infer.
Some delegation links of context objects might vary constantly. For instance, a
user-activity context link will change whenever the user switches activities (read-
ing, talking, walking, entering a given room, etc.). Other delegation links may
remain relatively stable, such as the localisation link introduced above. Changes
in the context’s delegation graph reflect immediately on the behaviour of the
application. This is our approach to realising dynamic application adaptation
to context. We limit our attention to context changes which are easy to detect.
The way sophisticated monitor agents should detect environment changes by
analysing sensor data and affect delegation links accordingly is out of the scope
of our work.

Every message send is a potential hook in which behaviour can be adapted,
since any method can be overridden in particular contexts. Such high level of
granularity in the hook points of a system benefits unanticipated, non-intrusive
application adaptation (unanticipated because hook methods need not be planned
in advance, non-intrusive because application code does not need to be modified,
as illustrated with the inform: example in section 4).

6 Support for Explicit and Implicit Context Handling

There are two possible ways the context can affect system behaviour. The first
(preferred) way to affect system behaviour is implicit and more declarative, and
has already been described above. By means of multiple dispatch and implicit
context arguments, the system can “take decisions” and change behaviour with-
out hard-coded control flow, according to the current context.

Despite our preference for implicit context handling, we would like to note
that explicit context handling by imperative means (i.e. hard-coded control flow)
is supported as well. Since (sub)contexts are normal objects, they can contain
not only delegation slots, but also plain slots with information about the current
environment. This information can be queried programmatically and appropriate
action can be taken, hence supporting explicit context handling. The context
object graph can contain at the same time the information used for both implicit
and explicit context handling.

7

7 Current Status and Future Work

The computation model partly described in this paper has been implemented in
the Ambience virtual machine. The Ambiance VM consists of a core written in
Common Lisp on top of which we laid a Smalltalk-like syntactic layer (shown
in the paper). Even though the implementation is currently operational, a good
deal of development and research work is ahead of us.

Firstly, we are adding support for distribution. To the extent of our knowl-
edge, the possibilities of multiple dispatch in a distributed setting –let aside a
mobile computing setting– are largely unexplored. Although it is possible to
distribute the delegation relationship across different machines [16,5], we need
to work on the way the multiple dispatch algorithm behaves when a particular
delegate object is unavailable (e.g. because of the temporal disconnection of a
peer device).

Secondly, we will be improving the model from a language security stand-
point. While the basic principle of object encapsulation is supported (by al-
lowing a slot to be visible only from certain contexts), there are some rough
edges concerning security. Our approach to context adaptation in principle al-
lows untrusted clients to override a method implementation with their own, by
(re)defining a method in an appropriate sub-context. Code executing in super-
contexts will start using the overridden version. A second problem is that calling
non-trusted code (e.g. library code received from another device) from a priv-
ileged context will confer the caller’s privileges to the untrusted code, which
should have rather been run with more restricted privileges. To solve these secu-
rity flaws, we are thinking of adapting composable encapsulation policies to our
model [14], so that different clients obtain object references which grant different
capabilities.

Thirdly, we have explored concurrency in our model to a limited extent.
We implemented thread-based concurrency, where multimethods are always ex-
ecuted by the same thread that invoked them, unless a new thread is explic-
itly created. An alternative –perhaps more appealing– solution that aligns well
with the notion of self-sufficient objects is to employ an actor-based concurrency
model [1]. Actors are active objects (equipped with their own thread). However,
since symmetrical multimethods do not distinguish a special receiver, all actors
involved in a message interaction are equally eligible. We see in this choice an
opportunity to explore the possibilities of the mobile computing world. The se-
lection of a particular active object for message execution could be based on
load-balancing criteria, on the reliability of the connection to remote devices,
etc.

8 Related Work

The idea of using the point of view of the caller (in our case the current con-
text) for affecting system behaviour is inspired on the language Us [15]. As the
authors of Us state, there is no single “true” state and behaviour for an object:

8

rather, the state and behaviour of an object depends on a “perspective” which
is reified as an object. Us demonstrated the usefulness of subjectivity in com-
mon scenarios. Our proposal is similar to Us, excepting that Us proposed the
receiver and one extra perspective or “point of view” to be participants in the
lookup algorithm, whereas we use full (symmetric) multiple-dispatch, where all
arguments are dispatch participants.

The closest existing approach to ours is that of ContextL, the implementation
of Context-Oriented Programming in Common Lisp [4]. In ContextL, 1) the in-
fluence of context is described declaratively, 2) context information is passed im-
plicitly through the dynamic invocation chain, 3) layer activations (i.e. within:do:
messages) can be nested, and 4) context objects are aligned with threads, such
that different contexts may be activated in different threads.

Even though there are many similarities with ContextL, some important dif-
ferences take the two approaches apart. Firstly, ContextL is class-based. The
problem of dynamic instance reclassification in class-based languages is not triv-
ial. The State pattern [8] is a symptom of this problem, when systems need to
behave as if they changed classes dynamically. In contrast with ContextL, our
model is prototype-based, which allows us to dynamically manipulate the inheri-
tance (delegation) graph of contexts naturally, avoiding the problems introduced
by classification [12].

Another important difference with ContextL is that in our approach the
context is reified as an ordinary object, which can be handed out to other threads.
Therefore one thread may add or change a sub-context of the context of another
thread. This can be the case of the monitor agents suggested in section 5.

9 Conclusion

The advantages of multiple dispatch are well known [7], and to a lesser extent,
the advantages of multiple dispatch in combination with prototype-based pro-
gramming [13,3]. Nevertheless, the use of prototypes and multiple-dispatch for
context-oriented programming is largely unexplored. In this paper we have shown
how a context-influenced dispatch mechanism can be used for fine-grained, dy-
namic adaptation of mobile applications to context. The notion of context we
propose allows the aggregation of all necessary context information into one
single entity which is automatically passed around and implicitly influences the
behaviour of the system. Our solution reuses existing language features, avoiding
the addition of complexity to the computation model. Concurrency, distribution
and language-level security are to be further explored in the light of the proposed
approach.

References

1. G. Agha. Actors: a Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

9

2. K. Beck. Smalltalk: best practice patterns. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1997.

3. C. Chambers. Object-oriented multi-methods in cecil. In O. L. Madsen, edi-
tor, Proceedings of the 6th European Conference on Object-Oriented Programming
(ECOOP), volume 615, pages 33–56, Berlin, Heidelberg, New York, Tokyo, 1992.
Springer-Verlag.

4. P. Costanza and R. Hirschfeld. Language constructs for context-oriented program-
ming. In Dynamic Languages Symposium at OOPSLA ’05: Companion of the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications. ACM Press, 2005.

5. T. V. Cutsem, S. Mostinckx, W. D. Meuter, J. Dedecker, and T. D’Hondt. Dis-
tributed proxies as delegation-based descendants. Technical Report VUB-PROG-
TR-05-07, Vrije Universiteit Brussel, 2005.

6. A. K. Dey, D. Salber, and G. D. Abowd. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 16, 2001.

7. B. Foote, R. E. Johnson, and J. Noble. Efficient multimethods in a single dis-
patch language. In A. P. Black, editor, ECOOP ’05: Proceedings of the European
Conference on Object-Oriented Programming), LNCS 3586, pages 337–361, Berlin
Heidelberg, 2005. Springer-Verlag.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

9. W. H. Harrison and H. Ossher. Subject-oriented programming (a critique of pure
objects). In OOPSLA ’93: Proceedings of the 8th annual ACM SIGPLAN Confer-
ence on Object-oriented programming, systems, languages, and applications, pages
411–428, New York, NY, USA, 1993. ACM Press.

10. D. H. H. Ingalls. A simple technique for handling multiple polymorphism. In
OOPLSA ’86: Conference proceedings on Object-oriented programming systems,
languages and applications, pages 347–349, New York, NY, USA, 1986. ACM Press.

11. H. Lieberman. Using prototypical objects to implement shared behavior in object-
oriented systems. In Conference proceedings on Object-oriented Programming Sys-
tems, Languages and Applications, pages 214–223. ACM Press, 1986.

12. J. Noble, A. Taivalsaari, and I. Moore, editors. Prototype-Based Programming:
Concepts, Languages and Applications. Springer-Verlag, 1999.

13. L. Salzman and J. Aldrich. Prototypes with multiple dispatch: An expressive and
dynamic object model. In A. P. Black, editor, ECOOP ’05: Proceedings of the
European Conference on Object-Oriented Programming), LNCS 3586, pages 312–
336, Berlin Heidelberg, 2005. Springer-Verlag.

14. N. Schärli, S. Ducasse, O. Nierstrasz, and R. Wuyts. Composable encapsulation
policies. In Proceedings ECOOP 2004 (European Conference on Object-Oriented
Programming), LNCS 3086, pages 26–50. Springer Verlag, June 2004.

15. R. B. Smith and D. Ungar. A simple and unifying approach to subjective objects.
Theory and Practice of Object Systems (TAPOS), 2(3):161–178, 1996.

16. R. Tolksdorf and K. Knubben. dself - a distributed self. KIT-Report 144, TU
Berlin, 2001.

17. D. Ungar and R. B. Smith. Self: The power of simplicity. In Conference proceedings
on Object-oriented Programming Systems, Languages and Applications, pages 227–
242. ACM Press, 1987.

