
Reverse Engineering Aspectual Views using Formal Concept Analysis

Kim Mens
Département d’Inǵenierie Informatique

Universit́e Catholique de Louvain
Place Sainte Barbe 2

1348 Louvain-la-Neuve, Belgium
E-mail: kim.mens@info.ucl.ac.be

Tom Tourẃe
Centrum voor Wiskunde en Informatica

P.O. Box 94079
NL-1090 GB Amsterdam

The Netherlands
E-mail: tom.tourwe@cwi.nl

Abstract

In this position paper, we report on an initial experiment
using the technique of formal concept analysis for reverse
engineering aspectual views from object-oriented source
code. An aspectual view is a set of source code entities, such
as class hierarchies, classes and methods, that are struc-
turally related in some way, and often crosscut a particu-
lar application. Initially, we follow a lightweight approach,
where we only consider the names of classes and methods.
This simplistic technique already results in the discovery of
interesting and meaningful aspectual views, leaving us con-
fident that more complex approaches will perform even bet-
ter, and should be studied in the future.

1 Introduction

The success of aspect-oriented programming [8] raises
the important issue of how to turn existing software systems
into aspect-oriented systems. Performing this transforma-
tion can be decomposed in two different tasks:

Aspect reverse engineering:identify relevant aspects in
the source code;

Aspect restructuring: define the appropriate aspects and
restructure the base code in an aspect-oriented way.

Although each of these tasks could be performed manu-
ally, significant benefits would be gained from automating
them. Preliminary support for aspect restructuring has only
been proposed by [5]. Research on aspect reverse engineer-
ing is still in its infancy. Some advanced browsers have
been proposed [4, 7], but these require a lot of pre-existing
knowledge from the developers. To the best of our knowl-
edge,automatedsupport for aspect reverse engineering has
not yet been studied. In this paper we propose a formally-
founded approach as a first step in this direction..

More precisely, we report upon an initial experiment as-
sessing the feasibility offormal concept analysis(FCA) [3]
to discoveraspectual viewsin the source code of Smalltalk
applications automatically. We define an aspectual view
as a set of source code entities that are structurally related
in some way. These entities can be any Smalltalk source
code artifact, such as a class hierarchy, a class, a method,
a method parameter or an instance variable. The structural
relation between these source code entities is arbitrary. An
aspectual view can contain all source code entities that par-
ticipate in aVisitor design pattern, for example. Hence, as-
pectual views offer a view on the source code that is often
crosscutting and that complements standard views offered
by traditional Smalltalk browsers. As such, these views im-
prove software understandability and maintainability.

The main goal of our experiment was to assess whether
FCA could be used to analyse object-oriented source code
and to discover meaningful aspectual views automatically.
The contribution of this paper is thus twofold. First of all,
we define a specific configuration of the FCA algorithm that
can be used for aspect reverse engineering. One of the main
benefits of FCA is that it can be used for many different pur-
poses. This also implies that the FCA algorithm should be
tuned specifically to the purpose for which it is used. Sec-
ond, we show which aspectual views can be discovered us-
ing this specific configuration. If the results are satisfactory,
we might be able to extend our approach to perform real as-
pect reverse engineering, or at least use it as a technique to
increase program comprehension.

The use of formal concept analysis in software engineer-
ing is of course not new. An overview of the use of this tech-
nique for several purposes can be found in [10]. We only
list the ones most related to our work here. [9] used con-
cept analysis to re-engineer class hierarchies in C++. [11]
used concept analysis to detect instances of design patterns
in source code, while [1] investigates the source code by
means of concept analysis. to study how classes in object-
oriented programs are reused. [2] used formal concept

PL OO Functional Logic Static typing Dynamic typing

Java X - - X -
Smalltalk X - - - X

C++ X - - X -
Scheme - X - - X
Prolog - - X - X

Table 1. Programming languages and their supported programming paradigms

analysis to reveal the structure of classes.
The remainder of this paper is structured as follows. In

the next section, we give a brief introduction to formal con-
cept analysis. Section 3 presents the approach we propose
to discover aspectual views, while Section 4 discusses some
of the more interesting views that were discovered. Sec-
tion 5 discusses some limitations of the current approach,
based on the results obtained. Section 6 discusses some ex-
tensions to our approach and we draw our conclusions in
Section 7.

2 Formal Concept Analysis

The technique of formal concept analysis is fairly sim-
ple. Starting from a (potentially large) set of elements
and properties of those elements, FCA determines maximal
groups of elements and properties. These maximal groups
are called concepts. Every such concept consists of a set of
elements that have one or more properties in common and
such that no other elements have those properties nor are
there any other declared properties they have in common.

As an example, consider as elements particular program-
ming languages, such as Java, Smalltalk and C++, and as
properties of these elements the programming styles they
support, such as logic programming, object-oriented pro-
gramming, etc. (See Table 1.) The concept lattice, that is
computed by the FCA algorithm based on these elements
and properties, is depicted in Figure 1. The bottom con-
cept contains those elements that share all properties. Since
there is no such programming language in our example, that
concept contains no elements. Similarly, the top concept
contains the properties shared by all elements. Since there
is no such property, the concept contains no properties. But
the concept ({ Java, C++}, { static typing, object oriented
}), for example, groups all statically-typed object-oriented
languages.

3 Experiment

Now that we have explained the essence of FCA, we turn
our attention to how it could be used to reverse engineer as-

pectual views from source code and give a detailed expla-
nation of the setup of our initial experiment.

3.1 Approach

We divided our aspectual view reverse engineering pro-
cess into the following different phases:

Generate elements and properties. In this first phase,
we inspect the Smalltalk source code and generate the el-
ements and properties to be considered, in a format that is
processable by the FCA algorithm. The elements can be any
source code artifact, such as classes, methods, variables, in-
dividual statements, etc. In our initial experiment, we only
consider classes, methods and formal parameters, and their
associated properties are the substrings appearing in their
name (as will be explained later on). In general, however,
we could consider any structural property of these elements,
derived from the source code. Such properties could be the
class in which a method is defined, or the methods a partic-
ular method invokes.

Generate the concept lattice. In the second phase, we
apply a concept analysis algorithm to the elements and
properties generated by the previous phase, resulting in a
concept lattice.

Filter out unimportant concepts. If a software system of
significant size is considered, the number of concepts gen-
erated by the FCA algorithm (i.e., the number of concepts
in the concept lattice) may be quite high. Therefore, the
lattice needs to be inspected and analysed further in order
to find the information of interest. We define a number of
heuristics that enable us to discard unimportant concepts au-
tomatically. These heuristics can depend on the particular
elements and properties that are considered, but can they
can also be more general. For example, if the top and bot-
tom concept contain no elements or properties, respectively,
they can be filtered out. Moreover, we are not interested in
concepts containing only one element, since such concepts
represent one single source code artifact that has no rela-
tions to other artifacts (according to the selected properties).

{}
{object oriented, functional,

logic, static typing,
dynamic typing}

Java Smalltalk C++
Scheme Prolog

{}

Scheme

{dynamic typing,
functional}

Prolog

{dynamic typing,
logic}

Java C++

{static typing,
object oriented}

Smalltalk

{dynamic typing,
object oriented}

Scheme Prolog Smalltalk

{dynamic typing}

Java C++ Smalltalk

{object oriented}

Figure 1. Concept lattice generated based on Table 1

In our initial experiment, these general filters are the only
ones we used. As a result, the number of remaining con-
cepts is still quite high, so there is still a need to define
more (domain-)specific filters. Given the preliminary status
of our research, we chose to explore all remaining concepts
manually, to enable us to gradually define more specific fil-
ters.

Analyse and classify remaining concepts. The concepts
that remain after filtering are analysed and classified, ac-
cording to some desired criteria. When dealing with con-
cepts containing only methods, for example, we can classify
them according to the classes in which they are defined. In
this way, we can distinguish between concepts containing
methods that are all defined in the same class, concepts con-
taining methods all defined in a particular hierarchy, or con-
taining cross-cutting methods that are defined in different
classes not related by inheritance. Of course, other criteria
can be defined, since these can depend upon the particular
situation at hand.

Display concepts Finally, once the concepts have been
analysed and classified, they are ready to be inspected by
the developer(s). To this extent, we display the concepts in
a graphical user interface (i.e., the StarBrowser1), that al-
lows a developer to browse, inspect and even regroup the
concepts, as desired.

3.2 Setup of the Experiment

In our initial experiment, we deliberately chose a rather
lightweight technique to discover related classes and meth-

1http://homepages.ulb.ac.be/ ∼rowuyts/StarBrowser/

ods in the source code of a software system. The software
system we studied was Soul [12], a logic programming en-
vironment written in VisualWorks Smalltalk. We chose this
application, because it is a small to medium sized applica-
tion (consisting of 111 classes and 1335 different method
definitions), and because we know its implementation quite
well. This allows us to fine tune the FCA algorithm as much
as needed to achieve satisfactory results. Note that this does
not mean that the algorithm will only work for this partic-
ular application. Once a well-working configuration of the
algorithm has been identified, it can of course be reused for
reverse engineering other applications.

The elements we feed into the FCA algorithm are all
classes the Soul system implements, as well as all methods
these classes define, together with their method parameters.
The properties we consider for those elements are based on
a decomposition of their names in relevant substrings:

• For a class, we consider its name and, according to
the capitals occurring in it, split it into substrings.
For example, the properties associated with the class
QuotedCodeConstant are that its name has the substrings
’quoted’, ’code’ and ’constant’.

• For a (Smalltalk) method, we also consider as prop-
erties that it contains certain substrings, and gen-
erate these properties by taking the method’s name
and splitting it according to its keywords and the
capitals occurring in them. For example, the
method unifyWithDelayedVariable:inEnv:myIndex:his-

Index:inSource: has 5 keywords, which are split into
the following substrings: ’unify’, ’delayed’, ’variable’,
’env’, ’index’ and ’source’. Note that we discard
strings with little conceptual meaning, such as ’with’

and ’in’ and short words like ’my’.

• In addition to a method’s name, we also take into ac-
count (the names of) its formal parameters. For exam-
ple, theinEnv: keyword of the above method defines
a formal parameteranEnvironment , for which we obtain
the substring ’environment’. Of course, if the name of
the formal parameter contains multiple capitals, multi-
ple substrings and their corresponding properties will
be generated.

The motivation behind this rather simplistic scheme for
generating properties for classes and methods is that we
hope that standard Smalltalk coding conventions can be re-
lied upon to group related classes and methods into aspec-
tual views. Particular coding conventions we are aiming at
are, amongst others, the following:

• Method overriding, or polymorphism in general, is an
intrinsic property of any object-oriented programming
language, that is based on a simple naming conven-
tion. That is, two classes can only be used polymorphi-
cally, if (some of) their methods have exactly the same
name. By exploiting this convention, we can detect
classes that can be used polymorphically. Note that
these classes need not necessarily reside in the same
class hierarchy. Since Smalltalk is dynamically typed,
it allows any class to be substituted for another, as long
as it defines the required methods.

• Since Smalltalk is a dynamically typed language, for-
mal parameter definitions do not have an associated
(static) type. To improve program understanding, a
widely accepted programming convention is to name
a parameter after the class whose objects should be
passed. For example, the keywordinEnv: discussed
above should be passed an instance of theEnvironment

class. To reflect this, the developer named the param-
eter ’anEnvironment’. Relying on this convention, we
hope to be able to relate a class to the methods that use
its objects.

• Some programming idioms, such as thedouble dis-
patch idiom, and design patterns likeVisitor or Ab-
stract Factory, also make heavy use of so-called ’inten-
tion revealing selectors’, meaning that the names of the
methods they define are chosen meticulously to reflect
the intention of the pattern. In particular, many of these
methods include the name of the class they are deal-
ing with, such asmakeTermSequence , which instantiates a
newTermSequence object, orunifyWithDelayedVariable:

inEnv: myIndex: hisIndex: inSource: , which imple-
ments unification for theDelayedVariable class. Rely-
ing on such conventions, we hope to identify patterns
such as these. Also, it may allow us to relate a class to

the methods that deal with it (without having to do any
type inferencing).

After filtering, the remaining generated concepts were
classified automatically according to the following criteria:

class name in keyword conceptscontain both classes and
methods, where the class names form a substring of
the methods’ names.

class name in parameter conceptscontain both classes
and methods, where the class names occur in one or
more parameter names defined by the methods.

classes only conceptscontain only classes.

accessor conceptscontain only methods, defined in the
same class, that are named after an instance variable
of that class.

methods in single class conceptscontain only methods
that are all defined in the same class, but that are not
accessor methods.

hierarchy method conceptscontain only methods, de-
fined in different classes, where all these classes share
a common superclass not equal toObject 2, unless Ob-
ject itself also defines the method.

crosscutting method conceptscontain only methods, de-
fined in different classes, where the common super-
class of all these classes isObject and where none of
methods in the concept is defined on theObject class
itself3.

In what follows, we will present some of the concepts
that we identified as important, each time indicating to
which category they belong.

4 Discovered Aspectual Views

In this section, we discuss some of the most interesting
aspectual views that were discovered by applying the above
approach on the Soul system. Subsequent subsections dis-
cuss aspectual views dealing withprogramming idioms, de-
sign patterns, featuresandcode duplication.

The concept lattice was computed using 1446 different
elements and 516 properties in total. The fact that the num-
ber of properties is one third of the number of elements al-
ready indicates that many properties are shared among ele-
ments. The FCA algorithm created 1212 concepts in total,
of which 760 remained after filtering.

2the superclass of all classes in the system
3which would be a degenerate case of ahierarchy methodconcept

4.1 Programming Idioms

As a good indication that our approach seems to produce
some relevant results, we discovered several occurrences of
typical programming idioms, of which we discuss theac-
cessor methodsandpolymorphic methodsprogramming id-
ioms in this section.

4.1.1 Accessor Methods (accessor concepts)

Accessor methods are methods defined by a class to manip-
ulate its instance variables. For each instance variable of
the class two methods are defined: anaccessingmethod,
that simply returns the value of the particular variable, and
amutatormethod that can change this value. In Smalltalk it
is custom to use the name of the instance variable for both
the accessor and mutator method.

For example, the following concept we discovered
groups thecallStack accessing andcallStack: mutator
methods of thecallStack instance variable defined in the
Environment class:

Environment >> callStack
ˆ callStack

Environment >> callStack: aStack
callStack := aStack

The structural form of these methods is typical for acces-
sor methods. However, several other forms exist, and were
identified by the FCA algorithm as well. For instance, the
following concept was identified and groups accessors for
the outputStream instance variable of theLogicTestNotifier

class. The difference with the former accessors is that this
instance variable is initialised in a lazy way (i.e. if it is ac-
cessed before it is initialised, it is first initialised and only
then its value is returned):

LogicTestNotifier >> outputStream
outputStream isNil

ifTrue: [outputStream := Transcript].
ˆoutputStream

LogicTestNotifier >> outputStream: aStream
outputStream := aStream

4.1.2 Polymorphism (hierarchy method concepts)

Because the properties we considered were based on sub-
strings, methods with the exact same name are of course
grouped by the FCA algorithm. Such methods allow the
classes that define them to be used polymorphically. Not
surprisingly, a number of such concepts were identified,
since any well-designed object-oriented software applica-
tion uses method overriding and polymorphism, and Soul
is not an exception. Such concepts are interesting, because
they offer a view on methods that implement related be-
haviour, not offered in traditional IDEs,

It is interesting to note that two different cate-
gories of concepts containing polymorphic methods can

be identified: concepts that group methods defined
in the same class hierarchy and concepts that group
methods not defined in the same class hierarchy. A
standard example of the former category is the con-
cept containing all methods of classAbstractTerm that
are overridden in its various subclasses: the selector
smalltalkBlockString that is implemented inAbstractTerm,

Variable, SpliceTerm andQuotedCodeConstant , or the selec-
tor transitiveLookupIn:startAt: , implemented in 14 classes
of the AbstractTerm hierarchy, for example. An ex-
ample of the second category is the concept contain-
ing the prettyListPrintOn:scope: method, that is defined
in the ListTerm, UnderscoreVariable andEmptyListConstant

classes. The common superclass of these classes is
AbstractTerm , which does not define that method. This sit-
uation can be due to different reasons: either its is a case
of a bad interface design or of bad naming of some meth-
ods, or it is a case of behaviour that is crosscutting a class
hierarchy. Here, the former case occurs.

4.2 Design Patterns

This section illustrates some design pattern occurrences
that were identified by the FCA algorithm. It should be
noted that Soul contains only three design pattern instances,
two of which were discovered. The one that was not dis-
covered was an instance of theBuilder pattern, used by the
Soul parser. The reason why this instance was not discov-
ered will be explained in Section 5.

4.2.1 Visitor Design Pattern (hierarchy method con-
cepts)

Soul uses an instance of theVisitor design pattern to
perform a number of operations on logic terms. These
terms are represented as subclasses of theAbstractTerm

hierarchy, while the visitor hierarchy is defined by the
SimpleTermVisitor class.

The presence of the Visitor design pattern was recog-
nised by two classifications containing concepts that were
detected separately.

The first classification concerns the visitor hierarchy. It
groups all methods that are defined in theSimpleTermVisitor

hierarchy and that implement behaviour to be executed
when a particular term is visited (e.g. these are thevisit
methodparticipants in the Visitor design pattern). The
classification consists of a number of concepts, each of
which contains all methods defined by subclasses of class
SimpleTermVisitor , dealing with one particular term. For
example, as shown in Figure 2, one such concept is de-
fined by the properties ’visit’ and ’compound’, and con-
tains the various implementations of thecompoundVisit:

method, defined in theSimpleTermVisitor hierarchy and

Figure 2. Classification of concepts related to the Visitor design pattern

responsible for implementing behaviour associated to a
CompoundTerm object. In this particular case, the concept
consists of fourcompoundVisit: methods, implemented
in the classesSimpleTermVisitor, LexicalAddressVisitor,

CopyingVisitor andCompoundTermRenamingVisitor .
The second classification concerns theelementhierarchy

of the visitor design pattern, and contains only one concept.
This concept groups allaccept methods that are defined by
subclasses of theAbstractTerm class. These methods are re-
sponsible for calling the appropriate method, correspond-
ing to the term being visited, in the supplied visitor object.
They are grouped by the FCA algorithm based on the ’vis-
itor’ and ’accept’ substring properties. This concept thus
forms an illustration of a concept that takes into account
both the method’s name and the name of the formal parame-
ter it defines, since theaccept: method in all classes defined
a formal parameteraVisitor .

4.2.2 Abstract Factory Design Pattern (hierarchy
method concepts)

Soul also uses an instance of theAbstract Factorydesign
pattern, that is responsible for creating new instances of
many different classes in the system, among others, sub-
classes defined in theAbstractTerm and HornClause hier-
archies. The instance defines an interface for creating
such objects in theFactory abstract superclass, and imple-

ments this interface concretely in theStandardFactory sub-
class. The interface consists of methods such asmakeCut and
makeQuotedCodeTerm , that are responsible for instantiatingCut

andQuotedCodeTerm objects.

The presence of this abstract factory design pattern in-
stance was recognised by one classification that groups dif-
ferent concepts, and that looks similar to the first classifica-
tion for the visitor design pattern. The classification groups
all concepts that contain methods that instantiate new ob-
jects. Each such concept groups an abstract method of the
Factory class and its concrete counterpart defined in the
StandardFactory class. For example, a concept based on the
properties ’make’ and ’cut’ is identified, that contains the
two implementations of themakeCut method in theFactory

hierarchy.

4.3 Features

In addition to occurrences of well-known programming
idioms and design patterns, a number of interestingfeatures
were also identified. These features manifest themselves
as concepts that group related source code entities that are
spread among many different classes.

4.3.1 Unification (hierarchy method concepts)

Since Soul is a logic programming environment, it im-
plements a general logic unification algorithm. This al-
gorithm is implemented in theAbstractTerm hierarchy,
and is responsible for unifying the different kinds of
terms. The algorithm is spread among different subclasses,
each of which implements aunifyWith: inEnv: myIndex:

hisIndex: inSource: method, that tries to unify the receiver
with the term passed to theunifyWith: keyword. To this ex-
tent, it uses the double dispatch mechanism. TheunifyWith:

inEnv: myIndex: hisIndex: inSource: method defined in
the UnaryMessageFunctor class, for example, thus simply
sends aunifyWithUnaryMessageFunctor: inEnv: myIndex:

hisIndex: inSource: message to the term passed in the first
argument.

One concept is identified that groups all implementa-
tions of the unifyWith:inEnv:myIndex:hisIndex:inSource:

methods spread among theAbstractTerm hierarchy. Several
other concepts are discovered grouping the different parts
of the unification algorithm for particular subclasses.
Typically, these concepts consists of three method def-
initions: one method defined in theAbstractTerm class,
one in the Variable class and one in the specific term
class. For example, a concept exists that groups the
unifyWithQuotedCodeTerm: inEnv:myIndex: hisIndex:

inSource: methods implemented in theAbstractTerm,

QuotedCodeTerm andVariable classes, as shown in Figure 3.
From an aspect-related point of view, these concepts

are particularly interesting. Clearly, different parts of the
unification algorithm (e.g. the wayQuotedCodeTerm s or
CompoundTerms should be unified) are spread over different
classes, and crosscut the existing decomposition. The as-
pectual views allow us to regroup all methods that imple-
ment the algorithm into one single place. Consequently, this
improves program understanding and maintenance: when
changes are needed to parts of the algorithm, the view can
be used to verify what needs to be changed, how this affects
the algorithm and what the possible impact may be.

4.3.2 Crosscutting Class-Related Behaviour (class
name in keyword and class name in parameter)

Many concepts are identified that group a class and all
methods that are related to that specific class. The class
and the methods are grouped because the name of the class
is a substring of the name of the method, or the name of
the class appears in one of the formal parameters of the
method. For example, a concept exists that is based on the
’delayed variable’ substring property, and that contains the
DelayedVariable class and the following methods:

• delayedVariableVisit: that forms part of the Visitor de-
sign pattern;

• buildDelayedVariable that forms part of the Builder de-
sign pattern;

• makeDelayedVariable that forms part of the Abstract
Factory design pattern;

• unifyWithDelayedVariable: inEnv: myIndex:

hisIndex: inSource: that forms part of the unifi-
cation algorithm.

Typically, such concepts always contain these four meth-
ods, albeit with a different class. Other methods may be
present as well, of course. For example, some concepts con-
tain a class testing method, such as the concept containing
the Variable class, which contains anisVariable method,
besides variableVisit:, buildVariable, makeVariable and
unifyWithVariable:inEnv:myIndex:hisIndex:inSource: meth-
ods. Other classes also implement a similar testing method.

Sometimes, not all of the methods in the above enumer-
ation are present in the concept. Most of the time, this is
a sign that common behaviour in the class hierarchy has
been factored out. For example, the concept containing the
QuotedCodeConstant class does not contain the methods be-
longing to the Visitor design pattern and the unification al-
gorithm. This is due to the fact that theConstant superclass
of theQuotedCodeConstant class deals with these issues.

Like the concepts in the previous subsection, the con-
cepts identified here contain behaviour that crosscuts the
existing decomposition. They contain classes and methods
related to these classes, that are implemented in totally dif-
ferent classes. Whenever we change the name of a class,
its instantiation interface or its unification scheme, we can
use this aspectual view to assess the impact of the change
on these methods, for example. Also, the view helps us to
understand the structure and part of the inner working of the
application: if we add a new class, we know which methods
we should implement.

4.4 Code Duplication (methods in single class con-
cepts and crosscutting method concepts)

An interesting phenomenon we observed is that we can
detect some instances of copy and paste reuse. Several of
the concepts that were discovered contains methods with
nearly the same name, that also define nearly the same be-
haviour. This seems logical: methods that do the same thing
should have the same name. In some cases, duplicated code
may just point out a bad design: methods containing dupli-
cation are defined in the same class, which makes it easy
to refactor the code and remove the duplication. In other
cases, the duplicated code is spread over different classes,
and is not as easy to factor out. These cases may indicate
real crosscutting code that can only be factored using as-
pects.

AbstractTerm

unifyWithVariable:inEnv:myIndex:hisIndex:inSource:
unifyWithCompound:inEnv:myIndex:hisIndex:inSource:
unifyWithSmalltalkTerm:inEnv:myIndex:hisIndex:inSource
unifyWithQuotedCodeTerm:inEnv:myIndex:hisIndex:inSource::

CompoundTerm

unifyWithVariable:inEnv:myIndex:hisIndex:inSource:
unifyWithCompound:inEnv:myIndex:hisIndex:inSource:

Variable

unifyWithVariable:inEnv:myIndex:hisIndex:inSource:
unifyWithCompound:inEnv:myIndex:hisIndex:inSource:
unifyWithSmalltalkTerm:inEnv:myIndex:hisIndex:inSource:
unifyWithQuotedCodeTerm:inEnv:myIndex:hisIndex:inSource:

SmalltalkTerm

unifyWithVariable:inEnv:myIndex:hisIndex:inSource:
unifyWithSmalltalkTerm:inEnv:myIndex:hisIndex:inSource:

QuotedCodeTerm

unifyWithVariable:inEnv:myIndex:hisIndex:inSource:
unifyWithQuotedCodeTerm:inEnv:myIndex:hisIndex:inSource:

Figure 3. Unification in the Soul implementation

An example of a concept of the former category is the
following: two methods of theVariable class were grouped
because they have a similar name, and they clearly have
nearly the same implementation:

unifyWithMessageFunctor: anMPFunctor inEnv: anEnv
myIndex: myIndex hisIndex: hisIndex inSource: inSource

| val |
self halt: ’todo!’.
val := anEnv lookup: self.
val isNil

ifTrue:
[anEnv add:

(Factory current
makeBinding var: self

value: anMPFunctor).
ˆ true]

ifFalse:
[ˆ val unifyWithMessageFunctor: anMPFunctor

inEnv: anEnv myIndex: val envIndex
hisIndex: hisIndex
inSource: inSource]

unifyWithKeywordFunctor: anMPFunctor inEnv: anEnv
myIndex: myIndex hisIndex: hisIndex inSource: inSource

| val |
self halt: ’todo!’.
val := anEnv lookup: self.
val isNil

ifTrue:
[anEnv add:

(Factory current
makeBinding var: self

value: anMPFunctor).
ˆ true]

ifFalse:
[ˆ val unifyWithKeywordFunctor: anMPFunctor

inEnv: anEnv]

The fact that there is a halt statement inside the methods
may point out that this code is still under active develop-
ment.

An example of crosscutting code duplica-
tion can be found in the implementation of the
recursiveDefinitionRepository method, defined by the
MultiPartFunctor and TermSequence classes, among others.

These methods contain exactly the same code, that can not
be factored out in the common superclassAbstractTerm ,
because that class provides another implementation for that
method.

5 Limitations

Because we use a lightweight technique that only consid-
ers substrings of class and method names, it should come as
no surprise that our approach suffers from a lot of false pos-
itives. Even despite the fact that we tried to filter out unim-
portant concepts by using some heuristics. A large num-
ber of the 760 identified concepts are not really meaningful
aspectual views, and are merely generated because some
particular substring is shared between the view’s elements.
For example, a concept containing the classesObjectWrapper

andClauseWrapper exists, simply because those two classes
share the substring ’wrapper’ in their name.

Due to a similar reason, false negatives occur as well.
Some source code artifacts that actually belong together
are divided over different concepts, simply because they
do not share the exact same substring in their name. For
example, a new language feature was incorporated in the
latest Soul version, that deals with language symbiosis be-
tween Smalltalk and Soul. Classes that implement this fea-
ture sometimes contain the substring ’symbiotic’ (such as
the classSymbioticMessageTerm), and sometimes contain the
substring ’symbiosis’ (such as the classSymbiosisFactory).
These classes will thus not end up in the same concept, al-
though they belong together conceptually.

Both problems can be alleviated up to some extent by us-
ing some kind of adomain ontology. This ontology should
contain information about the domain in which the FCA al-
gorithm is applied, to filter out unimportant properties (such
as the ’wrapper’ substring), and linking related properties

(such as the ’symbiotic’ and ’symbiosis’ substrings) so that
they end up in the same concept.

False negatives also occur because our technique relies
heavily on coding conventions and programming idioms. If
these are not strictly adhered to, some important concepts
can be missed. As an example, the Soul parser makes use
of the Builder design pattern for building parse trees, but
this pattern was not detected by our tool. This is due to
the fact that there is only one participant in that particu-
lar pattern instance, theSoulParseTreeBuilder class, that de-
fines the default behaviour and is never subclassed. Con-
sequently, there is no class hierarchy that contains related
behaviour, nor are there polymorphic methods in that class.
Several concepts are generated for that class, but each one
contains only that class or only one of its methods. As such,
these concepts are filtered out.

The most obvious limitation of our current approach is
that we do not reverse engineer real aspects but a more
vague notion of ‘aspectual views’. Although these views
group related entities that are often spread throughout the
code, and are hence crosscutting, they are most of the time
not aspects in the real sense of the word. E.g. there is often
no non-functional requirement implemented by the methods
contained in an aspectual view that should better be cap-
tured in an aspect. It has been argued by some [6], however,
that design patterns such as the Visitor and the Abstract Fac-
tory can better be captured by an aspect. Nonetheless, the
obtained results are quite interesting from a program under-
standing point of view. In Section 6, we will elaborate on
a more sophisticated approach that we want to consider to
reverse engineer real aspects.

6 Future work

Given that our initial experiment was based on a
lightweight approach, but still allowed us to obtain some
interesting and promising results, the question is raised how
we should continue. Most importantly: how can we modify
and refine our approach to be able to detect real aspects, and
not only aspectual views?

An obvious improvement to our approach would be to
go beyond considering only substrings of class and method
names. More structural information can and should be taken
into account. We are currently investigating how parse tree
information can be used, for example. We consider indi-
vidual parse tree statements as the properties of methods,
which enables the FCA algorithm to group methods that
share some statements. In this way, duplicated code can
be detected more easily, which may point out the need for
refactoring or aspects. For example, when only the first and
the last line of code is duplicated in a number of methods,
this may be an ideal candidate for anaroundadvice in As-
pectJ or AspectS.

The approach we advocated in this paper consists of
identifying potentially interesting elements and properties,
and then verifying whether aspects or aspectual views were
discovered. A complementary approach can be interesting
as well: taking an existing application, built using aspect-
oriented technology, and deduce which elements and prop-
erties the FCA algorithm would need in order to detect the
aspects as concepts. This would also allow us to fine tune
and tweak the approach to ensure that false negatives and
false positives are avoided as much as possible.

Although we experimented with a Smalltalk application
only and we relied on specific coding conventions, our tech-
nique is programming language independent. Similar con-
ventions then the ones we relied on also exist in Java. For
example, the names of accessor methods should start with
a particular prefix (e.g.get or set), and the name of visit
method participants in the Visitor design pattern should also
contain the class to be visited as a substring. Given the
widespread use of AspectJ, and the sheer number of appli-
cations using aspect technology, we would thus also like to
experiment with Java code.

7 Conclusion

In this paper, we proposed an approach to reverse en-
gineer aspectual views from Smalltalk source code using
the technique of formal concept analysis. The experi-
ment we conducted to validate this approach was based
on a lightweight technique considering only class names,
method names and names of method parameters. Although
we have no full proof that concept analysis is able to dis-
cover real aspects in the source code, we do think that
the results are quite promising: we were able to discover
some programming idioms and design pattern instances in
the code, as well as some interesting cross-cutting features.
From a program understanding and maintenance point of
view, this is already quite interesting. Moreover, because
these results were obtained despite the fact that the proper-
ties we considered were quite simplistic, we are confident
the approach can be tailored for real aspect reverse engi-
neering as well. Significantly better results might be ob-
tained when considering more complex properties, poten-
tially at the cost of more computational time.

References

[1] G. Arévalo and T. Mens. Analysing object oriented frame-
work reuse using concept analysis. InProc. Inheritance
Workshop at ECOOP 2002, 2002.

[2] U. Dekel and Y. Gil. Revealing Class Structure with Con-
cept Lattices. InProc. 10th Working Conference on Reverse
Engineering, 2003.

[3] B. Ganter and R. Wille.Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag, 1999.

[4] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspectbrowser:
Tool support for managing dispersed aspects. Technical Re-
port CS1999-0640, University of California, Department of
Computer Science and Engineering, 3, 2000.

[5] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring
of aspect-oriented software. InNet. ObjectDays 2003, Er-
furt, Germany, 2003.

[6] J. Hannemann and G. Kiczales.Design Pattern Implemen-
tation in Java and AspectJ. ACM Press, 2002.

[7] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. InProc. 2nd Int. Conf. on Aspect-
Oriented Software Development (AOSD), pages 178–187.
ACM Press, 2003.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In11th Europeen Conf. Object-Oriented Pro-
gramming, volume 1241 ofLNCS, pages 220–242. Springer
Verlag, 1997.

[9] G. Snelting and F. Tip. Reengineering Class Hierarchies Us-
ing Concept Analysis. InProc. ACM SIGSOFT Symposium
on the Foundations of Software Engineering, 1998.

[10] T. Tilley, R. Cole, P. Becker, and P. Eklund. A Survey of
Formal Concept Analysis Support for Software Engineering
Activities. In Proc. 1st International Conference on Formal
Concept Analysis, 2003.

[11] P. Tonella and G. Antoniol. Inference of object oriented de-
sign patterns.Journal of Software Maintenance - Research
and Practice, 13(5):309 – 330, September - October 2001.

[12] R. Wuyts.A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Departement Informatica, Vrije Univer-
siteit Brussel, 2001.

