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Abstract

With this position paper we want to make a

case for the relevance of the ideas of multi-

dimensional separation of concerns at the

architectural level. Traditional approaches

towards software architecture seem to take

for granted that a software system exhibits

a single software architecture, of which the

elements map more or less directly to de-

sign or implementation-level components. We

claim that multiple, potentially overlapping,

cross-cutting architectural views can provide

a much better insight in the overall structure,

organization and functionality of a software

system than one single architecture which is

often strongly biased to the implementation

structure of the system.

Introduction

When designing a building, architects do not

make one single plan that describes the over-

all structure of the entire building. Instead,

they use many di�erent plans that each fo-

cus on a single aspect or view of the build-

ing: front and side views, oor plans, cross-

sections, foundation, drainage system, electri-

cal wiring, central heating, and so on. Not

only do these plans address di�erent concerns,
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they are also supposed to be used by di�er-

ent persons: clients, bricklayers, electricians,

plumbers, and so on. Many of these plans are

clearly cross-cutting. For example, a client's

request to add an extra window (based on a

side view of the building) may require parts of

the electrical wiring to be recon�gured, since

the wiring is often incorporated in the walls.

It may even require a partial restructuring of

the building, because a window is not a car-

rying structure. It is the architect's job to

try and construct a building that optimally

satis�es the di�erent constraints imposed and

concerns addressed by all these plans.

In contrast with this accepted approach in

building architecture, current approaches in

the domain of software architecture [8, 10] of-

ten assume that software architectures have

a direct mapping of their architectural ele-

ments to source-code, design-level or physical

artifacts and their dependencies. We refer to

such architectures as application architectures

because they focus on the actual implementa-

tion structure of a software application. Ap-

plication architectures describe what the im-

plementation components are and how they

are interrelated.

Although such application architectures

provide good insights into the structure of a

software system and thus facilitate detailed

design and implementation as well as evolu-

tion and maintenance of the system, there is,



in general, no reason why a software archi-

tecture should resemble the application struc-

ture. The building blocks of a software archi-

tecture are merely abstract concepts that are

meaningful for the application domain. An

architecture is a relation (or structure) over

such concepts. Therefore, apart from the ap-

plication architecture, many other kinds of ar-

chitectures are imaginable and needed. For

example, an architecture focusing on speci�c

aspects of the system such as user interac-

tion, distribution and error handling, or even

architectures addressing domain-speci�c con-

cerns such as rule-based interpretation (in the

domain of rule-based systems). Such archi-

tectures, however, often cross-cut the appli-

cation structure or application architecture.

Furthermore, even the application structure

itself can be described from di�erent view-

points, for example, from a data-ow or from

a control-ow perspective.

The idea of having not only an applica-

tion architecture but also many other over-

lapping and cross-cutting architectures that

address speci�c concerns is obviously inspired

by the research on aspect-oriented program-

ming (AOP) [5]. AOP tries to solve the prob-

lem that when a software system is structured

according to its base functionality, adding as-

pects which cross-cut this structure often re-

quires system-wide changes. This problem is

caused by what Tarr et. al. [11] call the

tyranny of the dominant decomposition: typ-

ically, a software system is decomposed ac-

cording to one `dominant' concern and other

concerns that cross-cut this basic function-

ality are di�cult to incorporate in the soft-

ware. In AOP, there is no dominant con-

cern. The base program and several aspect

programs are all implemented separately and

are then merged into one single executable

program. In the same spirit, Ossher and Tarr

suggest to adopt a software development ap-

proach which allows a simultaneous decompo-

sition according to multiple, potentially over-

lapping concerns or dimensions. Approaches

such as AOP, subject-oriented programming

[3], adaptive programming [7] and composi-

tion �lters [1] can, in some sense, be regarded

as a special case of their approach.

With this position paper we want to il-

lustrate the relevance and importance of the

above ideas at the architectural level. In fact,

we make two di�erent claims:

1. A software system does not necessar-

ily have one single (dominant) architec-

ture, but should be described by sev-

eral (potentially overlapping) architec-

tural views, each providing their own per-

spective on the software system.

2. The elements in an architectural view do

not need to map directly to implementa-

tion or design-level components but may

actually cross-cut the software.

Terminology

Many authors [2, 4, 6, 8, 9] consider a software

architecture merely as a structural description

of the interaction among the software compo-

nents of which the system is constructed. In

this view, there is no objection against using

the term component at the architectural level.

However, because of our position that archi-

tectural views do not necessarily require a di-

rect mapping of the architectural elements to

design-level, implementation-level or physical

components, we are not tempted to adopt this

terminology. Not only is the term (software)

component already heavily overloaded, most

de�nitions of components seem to agree at

least on the fact that a software component is

some localized, reusable and replaceable piece

of implementation of a software system. Ex-

tending the usage of the term, to denote archi-

tectural elements that cross-cut the design or

implementation, would only give rise to con-

fusion.

Instead, we prefer to use the term concept

to denote architectural elements. This corre-

sponds to our intuition that a software archi-

tecture expresses relations (or structure) over
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abstract concepts that have some meaning for

the application domain. How exactly these

concepts are actually implemented is not im-

portant at this level of abstraction. So in-

stead of talking about architectural compo-

nents and connectors (as, for example, in [9]),

we will talk about architectural concepts and

relations respectively.

Experiments

We validate our claims by means of some ex-

periments that have been conducted in the

context of our Ph.D. research. We try to de-

clare the architecture of some software sys-

tem from di�erent points of view, and auto-

matically check conformance of the implemen-

tation of that system to these architectural

views. The system we considered was SOUL,

a rule-based programming environment, im-

plemented entirely in Smalltalk.

Multiple architectural views

To validate our claim that a software system

may have multiple, potentially overlapping,

architectural views we show two complemen-

tary views for the SOUL system: the `user

interaction' architectural view and the `rule

interpreter' architectural view. Both views

are valid descriptions of the system, in the

sense that conformance of the system's source

code to these descriptions was veri�ed. Due

to space limitations, however, we will not dis-

cuss the details of how conformance checking

was achieved.

The `user interaction' architectural view,

depicted in Figure 1, focuses mainly on the

interaction of a user with the SOUL system.

We summarize only some of its most impor-

tant aspects here. The SOUL environment

comes with a prede�ned set of User Applica-

tions that are activated when certain events

are triggered by the user in some Input Win-

dow. Auxiliary Applications are applications

that are created by User Applications or other

Auxiliary Applications to do part of their

computation. After computation, a User Ap-

plication typically produces a Query Result,

which is not returned to the user directly, but

presented in anOutput Viewer for easy brows-

ing and inspecting of the result.

Since SOUL is a rule-based environment,

a second important architectural view is the

rule interpreter architecture, depicted in Fig-

ure 2. Due to space limitations, for details on

this architecture we refer to [9].

It is important to mention, though, that

both architectural views are partially overlap-

ping. For example, they both contain the con-

cepts Rule Interpreter and Knowledge Base.

Cross-cutting architectural views

To support the claim that the concepts in an

architectural view do not necessarily map di-

rectly to implementation artifacts, but may

actually cross-cut the entire software imple-

mentation, we revisit the rule interpreter ar-

chitectural view of the previous subsection.

When trying to map the elements of the

rule interpreter architectural view to the ac-

tual SOUL implementation, we noticed that

the concepts in this architectural view did not

always map straightforwardly to the classes

or other artifacts in the implementation. For

some elements, a cross-cutting mapping from

the architectural concepts and relations to

their corresponding implementation artifacts

and relationships was needed.

Consider as an example the Rule Inter-

preter concept. Intuitively, this concept

corresponds to all implementation artifacts

that address the concern \interpretation of

queries" in the implementation of the SOUL

rule-based environment. Unfortunately, these

artifacts were not localized in the implemen-

tation, but were spread throughout the entire

implementation. In fact, the implementation

was decomposed according to the syntax of

SOUL's logic language. Every node in the

abstract grammar was represented by a di�er-

ent class, each containing one or more meth-

ods implementing part of the interpretation
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process. Thus, the Rule Interpreter concept

seems to cross-cut the implementation as it

is mapped to all these methods belonging to

many di�erent classes.

Conclusion

Experiments conducted in the context of our

research on architectural conformance check-

ing made us realize that an architecture which

provides a high-level view of some aspect

of the design of a software system, does

not necessarily need to map directly to the

source code, but may cross-cut it. Further-

more, many of these cross-cutting architec-

tural views may be needed to provide a bet-

ter picture of the overall structure, organiza-

tion and functionality of a software system.

These architectural views may even be par-

tially overlapping. In short, we think that the

architectural research community could ben-

e�t from adopting some of the ideas of multi-

dimensional separation of concerns.
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