
Multiple Cross-Cutting Architectural Views

Kim Mens�

Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussel, Belgium

E-mail: kimmens@vub.ac.be

February 21, 2000

Abstract

With this position paper we want to make a

case for the relevance of the ideas of multi-

dimensional separation of concerns at the

architectural level. Traditional approaches

towards software architecture seem to take

for granted that a software system exhibits

a single software architecture, of which the

elements map more or less directly to de-

sign or implementation-level components. We

claim that multiple, potentially overlapping,

cross-cutting architectural views can provide

a much better insight in the overall structure,

organization and functionality of a software

system than one single architecture which is

often strongly biased to the implementation

structure of the system.

Introduction

When designing a building, architects do not

make one single plan that describes the over-

all structure of the entire building. Instead,

they use many di�erent plans that each fo-

cus on a single aspect or view of the build-

ing: front and side views, oor plans, cross-

sections, foundation, drainage system, electri-

cal wiring, central heating, and so on. Not

only do these plans address di�erent concerns,

�Research funded by the Brussels' Capital Region

(Belgium) and Getronics Belgium.

they are also supposed to be used by di�er-

ent persons: clients, bricklayers, electricians,

plumbers, and so on. Many of these plans are

clearly cross-cutting. For example, a client's

request to add an extra window (based on a

side view of the building) may require parts of

the electrical wiring to be recon�gured, since

the wiring is often incorporated in the walls.

It may even require a partial restructuring of

the building, because a window is not a car-

rying structure. It is the architect's job to

try and construct a building that optimally

satis�es the di�erent constraints imposed and

concerns addressed by all these plans.

In contrast with this accepted approach in

building architecture, current approaches in

the domain of software architecture [8, 10] of-

ten assume that software architectures have

a direct mapping of their architectural ele-

ments to source-code, design-level or physical

artifacts and their dependencies. We refer to

such architectures as application architectures

because they focus on the actual implementa-

tion structure of a software application. Ap-

plication architectures describe what the im-

plementation components are and how they

are interrelated.

Although such application architectures

provide good insights into the structure of a

software system and thus facilitate detailed

design and implementation as well as evolu-

tion and maintenance of the system, there is,



in general, no reason why a software archi-

tecture should resemble the application struc-

ture. The building blocks of a software archi-

tecture are merely abstract concepts that are

meaningful for the application domain. An

architecture is a relation (or structure) over

such concepts. Therefore, apart from the ap-

plication architecture, many other kinds of ar-

chitectures are imaginable and needed. For

example, an architecture focusing on speci�c

aspects of the system such as user interac-

tion, distribution and error handling, or even

architectures addressing domain-speci�c con-

cerns such as rule-based interpretation (in the

domain of rule-based systems). Such archi-

tectures, however, often cross-cut the appli-

cation structure or application architecture.

Furthermore, even the application structure

itself can be described from di�erent view-

points, for example, from a data-ow or from

a control-ow perspective.

The idea of having not only an applica-

tion architecture but also many other over-

lapping and cross-cutting architectures that

address speci�c concerns is obviously inspired

by the research on aspect-oriented program-

ming (AOP) [5]. AOP tries to solve the prob-

lem that when a software system is structured

according to its base functionality, adding as-

pects which cross-cut this structure often re-

quires system-wide changes. This problem is

caused by what Tarr et. al. [11] call the

tyranny of the dominant decomposition: typ-

ically, a software system is decomposed ac-

cording to one `dominant' concern and other

concerns that cross-cut this basic function-

ality are di�cult to incorporate in the soft-

ware. In AOP, there is no dominant con-

cern. The base program and several aspect

programs are all implemented separately and

are then merged into one single executable

program. In the same spirit, Ossher and Tarr

suggest to adopt a software development ap-

proach which allows a simultaneous decompo-

sition according to multiple, potentially over-

lapping concerns or dimensions. Approaches

such as AOP, subject-oriented programming

[3], adaptive programming [7] and composi-

tion �lters [1] can, in some sense, be regarded

as a special case of their approach.

With this position paper we want to il-

lustrate the relevance and importance of the

above ideas at the architectural level. In fact,

we make two di�erent claims:

1. A software system does not necessar-

ily have one single (dominant) architec-

ture, but should be described by sev-

eral (potentially overlapping) architec-

tural views, each providing their own per-

spective on the software system.

2. The elements in an architectural view do

not need to map directly to implementa-

tion or design-level components but may

actually cross-cut the software.

Terminology

Many authors [2, 4, 6, 8, 9] consider a software

architecture merely as a structural description

of the interaction among the software compo-

nents of which the system is constructed. In

this view, there is no objection against using

the term component at the architectural level.

However, because of our position that archi-

tectural views do not necessarily require a di-

rect mapping of the architectural elements to

design-level, implementation-level or physical

components, we are not tempted to adopt this

terminology. Not only is the term (software)

component already heavily overloaded, most

de�nitions of components seem to agree at

least on the fact that a software component is

some localized, reusable and replaceable piece

of implementation of a software system. Ex-

tending the usage of the term, to denote archi-

tectural elements that cross-cut the design or

implementation, would only give rise to con-

fusion.

Instead, we prefer to use the term concept

to denote architectural elements. This corre-

sponds to our intuition that a software archi-

tecture expresses relations (or structure) over

2



abstract concepts that have some meaning for

the application domain. How exactly these

concepts are actually implemented is not im-

portant at this level of abstraction. So in-

stead of talking about architectural compo-

nents and connectors (as, for example, in [9]),

we will talk about architectural concepts and

relations respectively.

Experiments

We validate our claims by means of some ex-

periments that have been conducted in the

context of our Ph.D. research. We try to de-

clare the architecture of some software sys-

tem from di�erent points of view, and auto-

matically check conformance of the implemen-

tation of that system to these architectural

views. The system we considered was SOUL,

a rule-based programming environment, im-

plemented entirely in Smalltalk.

Multiple architectural views

To validate our claim that a software system

may have multiple, potentially overlapping,

architectural views we show two complemen-

tary views for the SOUL system: the `user

interaction' architectural view and the `rule

interpreter' architectural view. Both views

are valid descriptions of the system, in the

sense that conformance of the system's source

code to these descriptions was veri�ed. Due

to space limitations, however, we will not dis-

cuss the details of how conformance checking

was achieved.

The `user interaction' architectural view,

depicted in Figure 1, focuses mainly on the

interaction of a user with the SOUL system.

We summarize only some of its most impor-

tant aspects here. The SOUL environment

comes with a prede�ned set of User Applica-

tions that are activated when certain events

are triggered by the user in some Input Win-

dow. Auxiliary Applications are applications

that are created by User Applications or other

Auxiliary Applications to do part of their

computation. After computation, a User Ap-

plication typically produces a Query Result,

which is not returned to the user directly, but

presented in anOutput Viewer for easy brows-

ing and inspecting of the result.

Since SOUL is a rule-based environment,

a second important architectural view is the

rule interpreter architecture, depicted in Fig-

ure 2. Due to space limitations, for details on

this architecture we refer to [9].

It is important to mention, though, that

both architectural views are partially overlap-

ping. For example, they both contain the con-

cepts Rule Interpreter and Knowledge Base.

Cross-cutting architectural views

To support the claim that the concepts in an

architectural view do not necessarily map di-

rectly to implementation artifacts, but may

actually cross-cut the entire software imple-

mentation, we revisit the rule interpreter ar-

chitectural view of the previous subsection.

When trying to map the elements of the

rule interpreter architectural view to the ac-

tual SOUL implementation, we noticed that

the concepts in this architectural view did not

always map straightforwardly to the classes

or other artifacts in the implementation. For

some elements, a cross-cutting mapping from

the architectural concepts and relations to

their corresponding implementation artifacts

and relationships was needed.

Consider as an example the Rule Inter-

preter concept. Intuitively, this concept

corresponds to all implementation artifacts

that address the concern \interpretation of

queries" in the implementation of the SOUL

rule-based environment. Unfortunately, these

artifacts were not localized in the implemen-

tation, but were spread throughout the entire

implementation. In fact, the implementation

was decomposed according to the syntax of

SOUL's logic language. Every node in the

abstract grammar was represented by a di�er-

ent class, each containing one or more meth-

ods implementing part of the interpretation

3



Rule
Interpreter

Interpret

Auxiliary
Application

Request Type

Output
Viewer

Creation

Request

Knowledge
Base

Type

User
Application

Request

Created

Creator

Is
created

by

Created

Creator

Argument

Creates
with

TypeQuery
Result

Input
Window

Event

Activates

Trigger

Action

Uses

Used

User

Asks

Interrogator

Interrogated

Figure 1: User interaction architectural view

Working Memory Knowledge Base

Rule Interpreter Clause Selector

Asks

Asks

Uses
Data

Updates Uses
Data

Figure 2: Rule interpreter architectural view

process. Thus, the Rule Interpreter concept

seems to cross-cut the implementation as it

is mapped to all these methods belonging to

many di�erent classes.

Conclusion

Experiments conducted in the context of our

research on architectural conformance check-

ing made us realize that an architecture which

provides a high-level view of some aspect

of the design of a software system, does

not necessarily need to map directly to the

source code, but may cross-cut it. Further-

more, many of these cross-cutting architec-

tural views may be needed to provide a bet-

ter picture of the overall structure, organiza-

tion and functionality of a software system.

These architectural views may even be par-

tially overlapping. In short, we think that the

architectural research community could ben-

e�t from adopting some of the ideas of multi-

dimensional separation of concerns.

References

[1] M. Aksit, K. Wakita, J. Bosch,

L. Bergmans, and A. Yonezawa.

Abstracting object interactions using

composition �lters. In R. Guerraoui,

O. Nierstrasz, and M. Riveill, editors,

Object-based Distributed Processing,

Lecture Notes in Computer Science, 791,

pages 152{184. Springer-Verlag, 1993.

4



[2] L. Bass, P. Clements, and R. Kazman.

Software Architecture in Practice. SEI

Series in Software Engineering. Addison

Wesley Longman, 1998.

[3] W. Harrison and H. Ossher. Subject-

oriented programming (a critique of

pure objects). In Proceedings of the

Conference on Object-Oriented Program-

ming: Systems, Languages, and Applica-

tions, OOPSLA'93, pages 411{428. ACM

Press, 1993.

[4] P. Inverardi, A. L. Wolf, and D. Yankele-

vich. Checking assumptions in compo-

nent dynamics at the architectural level.

In Coordination Languages and Models,

Lecture Notes in Computer Science 1282,

pages 46{63. Springer-Verlag, September

1997. Second International Conference,

COORDINATION '97, Berlin, Germany.

[5] G. Kiczales. Aspect-oriented pro-

gramming. In European Conference

on Object-Oriented Programming,

ECOOP'97. Springer, 1997. Invited

presentation.

[6] J. Kramer and J. Magee. Exposing

the skeleton in the coordination closet.

In Coordination Languages and Models,

Lecture Notes in Computer Science 1282,

pages 18{31. Springer-Verlag, September

1997. Second International Conference,

COORDINATION '97, Berlin, Germany.

[7] K. J. Lieberherr. Adaptive Object-

Oriented Software. The Demeter Method

with propagation patterns. PWS Publish-

ing Company, 1996.

[8] M.-C. Pellegrini. Dynamic recon�gu-

ration of corba-based applications. In

TOOLS 29 | Technology of Object-

Oriented Languages and Systems, pages

329{340. IEEE Computer Society Press,

1999. Nancy, France, June 7-10.

[9] M. Shaw and D. Garlan. Software Archi-

tecture | Perspectives on an Emerging

Discipline. Prentice Hall, 1996.

[10] P. Stevens and R. Pooley. Using UML |

Software Engineering with Objects and

Components. Addison Wesley, 1999. Up-

dated edition.

[11] P. Tarr, H. Ossher, W. Harrison, and

J. S. M. Sutton. N degrees of sepa-

ration: Multi-dimensional separation of

concerns. In International Conference on

Software Engineering (ICSE'99), 1999.

5


