
On the Use of Declarative Meta Programming
for Managing Architectural Software Evolution

Position Statement for the 2nd Workshop on Object-Oriented Architectural Evolution
ECOOP 2000, Sophia Antipolis, France, June 13, 2000

Tom Mens, Kim Mens, Roel Wuyts
{tommens | kimmens | rwuyts}@vub.ac.be

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussel, Belgium

Abstract. When looking at existing tools that provide support for architectural software
evolution, we can distinguish between support for run-time, pre-execution time and design-
time evolution; between support for unconstrained and constrained evolution; and between
proactive, reactive and retroactive support for evolution. Current tools that support
architectural evolution can only deal with a subset of the above issues. Moreover, they
typically address only some particular aspects of software evolution (e.g., impact analysis,
reverse engineering, etc). We propose declarative meta programming as an expressive and
uniform medium for building tools that support architectural evolution. Amongst others, this
enables the integration and combination of such tools, and allows the construction of new
tools by sharing and reusing earlier codified knowledge.

1. The Architectural Decision Space
Current tools for architectural evolution are restricted in the way they provide support for
evolution, as well as in the kind of evolution they provide support for. The limitations of each
tool depend on a number of decisions that have been made during development of the tool. To
clarify this, we have set up a decision space for architectural evolution that allows us to
express three orthogonal decisions: evolution-time, action-time and kind of evolution.

The first decision, proposed by [12], concerns the time of evolution. This can be design time,
when the architecture is still under development; pre-execution time, when the architecture
has already been specified and the software has been implemented, but the software system is
not yet running; or run time where the architecture can be modified dynamically while the
software is running. Tool support for design-time evolution is considerably simpler than for
run-time or pre-execution-time evolution, because at design time no existing (or even
running) implementation needs to be taken into account.

A second decision concerns the different ways in which a tool can undertake actions to
support evolution. Proactive tools try to identify the potential effect of making a change even
before the change has actually been made. They might also prohibit certain changes that
would otherwise lead to inconsistencies or other problems. Reactive tools start to work at the
moment the actual changes are being made, and typically try to resolve potential evolution
problems interactively. Finally, retroactive tools only detect problems after the fact [10].

The third decision has to do with the restrictions that are imposed on the evolution itself. With
unconstrained evolution, the software architecture is allowed to evolve in any conceivable
way, without any restriction whatsoever. Constrained evolution, on the contrary, imposes a
number of constraints or recommendations on the possible ways in which the architecture can
evolve:

 Restrictions are negative constraints, in the sense that they prohibit certain kinds of
evolutions that would breach these constraints. Examples are well-formedness constraints
and integrity constraints that must be preserved during evolution.

 Obligations are positive constraints that evolutions must satisfy in order to be valid.
Examples are style conventions, provided that a tool is able to verify or enforce these
conventions

 Recommendations can be seen as a kind of safety precautions that should preferably be
followed. Experienced software architects, however, may decide to ignore them if needed
(at their own responsibility). Like constraints, recommendations can be negative or
positive. Examples of positive recommendations are cookbooks that document how an
object-oriented framework should be customized [7]. Cookbooks only give guidelines of
what to do, but do not impose these guidelines on the software architect.

Clearly, constrained evolution demands more reasoning capabilities from supporting tools
than unconstrained evolution. For example, a means should be provided to ensure that
imposed constraints are satisfied, and to help a software architect to follow suggested
recommendations.

action time

evolution time

kind of evolution

I

pro-
active

re-
active

retro-
active

IIunconstrained

constrained

design
time

pre-execution
time

run time

Figure 1: The Architectural Decision Space.

The three-dimensional grid of Figure 1 schematically illustrates the different decisions that
tools for architectural evolution need to make. All existing tools can be situated somewhere in
this architectural decision space. Let us take a look at two typical examples that take
completely opposite positions in the decision space depicted in Figure 1.

(I) Tools for run-time architectural evolution (position I in Figure 1) are typically
constrained and proactive, because one cannot afford to introduce inconsistencies when
the architecture is running. The imposed constraints are restrictions on the evolution
because only those changes are allowed that do not compromise application integrity.

(II) A tool like reuse contracts for detecting architectural evolution conflicts [17] is situated
at the opposite side of the decision space (position II in Figure 1). It deals with
architectural evolution at design time, and is well suited to deal with unconstrained
evolution. Moreover, it is currently used retroactively.

The position that is taken in the decision space can have a large impact on the kind of tools
that can be conceived. To illustrate this, Section 2 will discuss some evolution problems that
need to be addressed, and will position different tools that solve these problems in the
architectural design space. Although every tool focuses on a particular problem and may
cover only a certain range in this design space, this does not imply it is not useful to have a
uniform medium in which to build such tools. In Section 3, we propose declarative meta
programming as such a medium.

2. Required Support for Architectural Evolution
Below we present a number of tools that address a variety of problems related to architectural
evolutions. For some of these tools, we explain where they are situated in the decision space.

In Section 3 we will explain why they can easily be constructed using declarative meta
programming.

• Architectural drift or architectural erosion arises when changes that break the constraints
of the original architecture, are made to the implementation. Conformance checking
tools [11,18,9,10] try to verify whether an implementation (still) matches the architecture.
When different architectural views on the same implementation are provided, we also
need support for maintaining consistency between these different views. Tool support
can vary according to the level of synchronization one wants to obtain. Retroactive tools
only start to work once all modifications have been made, while reactive tools can start
taking appropriate actions as soon as an architectural breach is detected. In some cases,
the tools can even be proactive, by prohibiting certain changes to the implementation that
would breach the architecture and by providing help to resolve such breaches.

• In practice, due to deadline pressure or for reasons of efficiency, it is difficult to make an
implementation fully conform to the intended software architecture. To be able to deal
with such situations, we need support for architectural deviations [5].

• Tools that check whether a given architecture conforms to certain architectural styles or
patterns are also useful.

• Tools for architectural extraction or reconstruction try to (re)construct the architecture
from a certain implementation. These tools can be very helpful in the case of legacy code
(extraction), or in the case of architectural drift (reconstruction).

• Tools for impact analysis [1,2], effort estimation and change propagation [13,15]
reason about the potential consequences of making a change. These tools are typically
proactive, because they intend to calculate the effect of a change beforehand.

• Tools that detect the need for architectural evolution find out when, where and how the
architecture should evolve or be restructured [8,16].

• We also need tools that provide disciplined support for architectural evolution, and try
to detect and resolve conflicts during evolution [4,17].

• The need for co-evolution arises when the architecture, design and implementation can
evolve independently, but need to be kept synchronized in some way. Dealing with co-
evolution is far from trivial, especially if there is a many-to-many mapping between
architecture and implementation, and if multiple architectural views are allowed. [6]
proposes a formal framework for co-evolution. In [3], declarative meta-programming is
proposed as a novel but promising way to deal with co-evolution.

3. Declarative Meta Programming
At our lab, research is being conducted on how the emerging technique of declarative meta
programming (DMP), can be used to build state-of-the-art software development support
tools. As a particular instance of this research, in this position paper, we promote the use of
DMP as a medium which is particularly suited for building tools that support architectural
evolution. DMP is an instance of hybrid language symbiosis, merging a declarative meta-level
language with a standard object-oriented base language. DMP requires that the symbiosis
between the logic meta language and the object-oriented base language is made explicit,
allowing base-level programs to be expressed as terms, facts or rules in the meta level.

As summarized in [3], a number of experiments have been performed to use DMP to qualify
implementation-level artifacts with enforceable design and architectural concerns [20,19,9]. It
seems intuitively clear that design information, and in particular architectural concerns, are
best codified declaratively as constraints or rules. Such rules and constraints can be used to
enforce or check architectural constraints in the source code, to search or browse for certain
architectural constructs in the source, or even as a process for code generation and
transformation based on this architectural information. In particular, we think DMP is an ideal
medium for building architectural evolution support tools.

One of the advantages of using DMP for building architectural evolution is that it can be used
to provide tool support throughout the entire architectural design space discussed in Section 1.
• Evolution time. First of all, it is clear that DMP is independent of the evolution-time.

Support for design-time evolution can straightforwardly be achieved by expressing and
reasoning about architectural descriptions in the declarative language. To support pre-
execution-time evolution, an explicit symbiosis between the declarative meta-language
and the OO base language is needed. The technique has not yet been tried out to support
run-time evolution, but, in principle, everything is in place to do so. In a base language
such as Smalltalk, with a completely open development environment, it is possible to
capture any implementation or architectural modification, and declaratively manipulate
this information.

• Action-time. A retroactive tool can be defined, for example, in terms of a logic query
that is evaluated after the evolution has occurred. Proactive and reactive tools could be
defined in terms of constraints that are triggered when certain changes or made to the
source code, or when certain preconditions, postconditions or invariants are invalidated.

• Predictability. Declarative programming has long been identified as very suited to meta
programming and language processing in general. In particular, both constrained and
unconstrained evolution can easily be expressed using DMP, for example, by declaring
architectural descriptions and constraints in terms of logic facts, rules and constraints.

One of the advantages of using a uniform medium for building tools that support architectural
evolution, is that it enables the integration of all these tools. In the remainder of this section,
we provide evidence for the fact that declarative meta programming is effectively suited for
building such tools.

At our lab, prototype tools have been built to support: conformance checking of source code
to architectural descriptions [9,10]; conflict detection during architectural evolution [17];
generating the source code of an application by describing it at design level as a configuration
of architectural components [14]; checking, browsing for and enforcing design patterns and
styles in source code [20]; doing source to source transformation from implementations with a
clean design and architecture to more efficient ones [19]; and so on. In addition, [3] discusses
extensively how DMP can be used for supporting co-evolution.

A declarative approach is equally suited to express most other tools described in Section 2.
First of all, as mentioned earlier and as illustrated by our experiments, DMP seems to provide
the desired level of abstraction to codify architectural knowledge. In addition, the multi-way
querying, unification and backtracking facilities of typical DMP environments enable the
powerful reasoning required by tools for architectural evolution. Thirdly, because all tools are
built using the same declarative medium, many rules can readily be reused, thus significantly
increasing the time and effort needed for building new tools.

4. References

[1] S. A. Bohner and R. S. Arnold. Software Change Impact Analysis. IEEE Press, 1996.

[2] S. A. Bohner and R. S. Arnold. An Introduction to Software Change Impact Analysis. In [1], pp.˚1-
26.

[3] T. D’Hondt, K. De Volder, K. Mens and R. Wuyts. Co-evolution of object-oriented design and
implementation. Int. Symposium on Software Architectures and Component Technology: The State
of the Art in Research and Practice. Enschede, The Netherlands, January 2000.

[4] M. Fowler. Refactoring: Improving the Design of Existing Programs. Addison-Wesley, 1999.

[5] G. Cugola, E. Di Nitto, A. Fuggetta and C. Ghezzi. A Framework for Formalizing Inconsistencies
and Deviations in Human-Centered Systems. 1996.

 [6] T. Katayama: A Theoretical Framework of Software Evolution . Proc. Int. Workshop on Principles
of Software Evolution, pp. 1-5. Kyoto, Japan, 1998.

[7] G. E. Krasner and S. T. Pope., A Cookbook for Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80. Journal of Object-Oriented Programming, pp. 26-49, August/September,
1988.

[8] M. Lanza. Combining Metrics and Graphs for Object Oriented Reverse Engineering. Thesis,
University of Bern, October 1999.

[9] K. Mens, R. Wuyts and T. D’Hondt. Declaratively Codifying Software Architectures Using Virtual
Software Classifications. Proceedings of TOOLS 29 Conference on Technology of Object-Oriented
Languages and Systems, pp. 33 45, IEEE Press, 1999.

[10] K. Mens. Automating Architectural Conformance Checking by means of Logic Meta
Programming. PhD Dissertation (under preparation), Vrije Universiteit Brussel, 2000.

[11] G. C. Murphy. Lightweight Structural Summarization as an Aid to Software Evolution. Ph.D.
dissertation, University of Washington, 1996.

[12] Peyman Oreizy. Issues in the Runtime Modification of Software Architectures. Technical Report
UCI-ICS-TR-96-35, University of California, 1996.

[13] Dewayne E. Perry and Gail E. Kaiser. Infuse: A Tool for Automatically Managing and
Coordinating Source Changes in Large Systems. Proc. ACM Computer Science Conf., pp. 292-299,
ACM Press, February 1987.

[14] M. J. Presso. Generic Component Architecture Using Meta-Level Protocol Descriptions. Master’s
dissertation, Vrije Universiteit Brussel, 1999.

[15] V clav Rajlich. A Methodology for Software Evolution. Journal of Software Maintenance, Vol. 9,
1997, pp. 103-125.

[16] Tamar Richner, and St phane Ducasse. Recovering High-Level Views of Object-Oriented
Applications from Static and Dynamic Information. Proc. Int. Conf. Software Maintenance. IEEE
Press, September 1999.

[17] Natalia Romero. Managing Evolution of Software Architectures with Reuse Contracts. EMOOSE
Dissertation, Vrije Universiteit Brussel, 1999.

[18] R. W. Schwanke, V. A. Strack and T. Werthmann-Auzinger. Industrial Software Architecture with
Gestalt. Proceedings of IWSSD-8, pp. 176-180, IEEE Press, 1996.

[19] T. Tourw and W. De Meuter. Optimizing Object-Oriented Languages Through Architectural
Transformations. 8th International Conference on Compiler Construction, pp. 244-258, Springer-
Verlag, 1999.

[20] R. Wuyts. Declarative Reasoning about the Structure of Object-Oriented Systems. Proceedings of
TOOLS USA’98, pp. 112-124, IEEE Press, 1998.

