
Codifying High-Level Software Abstractions

as Virtual Classi�cations

Position paper submitted to the ECOOP'2000 Workshop on
objects and classi�cation: a natural convergence

Kim Mens� and Tom Mens

Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussel, Belgium

E-mail: f kimmens j tommens g@vub.ac.be

Abstract

Current-day software abstractions (architectures, coding conventions, design patterns,
interaction protocols) are often not explicitly linked to the code. This lack of traceability
causes problems like architectural drift and software erosion. In order to alleviate these
problems, we propose to use virtual classi�cations to codify high-level software abstrac-
tions as logic predicates over the implementation. Besides being explicitly linked to the
code, these classi�cations have the additional advantage that they allow us to declare
software abstractions in an expressive, concise, readable and intentional way.

1 Introduction

In current-day software development, and object-oriented software development in particu-
lar, descending from higher levels of abstraction to lower levels (for example, from design to
implementation) is relatively straightforward and su�ciently supported by software engineer-
ing methods and tools. Transition in the opposite direction, however, is typically much less
supported. As a consequence, current-day software development often follows a top-down
approach, starting at high levels of abstractions that are gradually re�ned to lower level ones.
Once the software starts to evolve, however, in the face of time constraints, modi�cations are
often applied directly to the implementation level only, leading to problems like architectural
drift and software erosion: the high-level abstractions will not conform anymore to the modi-
�ed code. The main reason for these problems is the lack of an explicit link between software
abstractions and the corresponding implementation code.

One way to solve the above problem is by following a logic meta-programming approach

[1] that introduces a logic language at meta-level to reason about software artifacts in the
underlying object-oriented base language. In this approach, abstractions over the code are
simply expressed as logic predicates at meta-level. This has several advantages. First of all
the abstractions are explicitly linked to the code, in a veri�able way. Secondly the declarative

�Research funded by the Brussels' Capital Region (Belgium) and Getronics Belgium.



nature of logic predicates allows us to describe the software abstractions in an intentional and
concise way. Finally, there is no limitation to the kind of software abstractions that can be
described, as we can resort to the full expressive power of a logic programming language.

Another way to express high-level software abstractions is by using software classi�cations
[2]. In its simplest form, software classi�cations are groups of software artifacts that are
quali�ed with the same tag. Together with the possibility to nest classi�cations, this approach
results in a powerful way to represent high-level software abstractions.

Although these two alternative approaches for representing high-level software abstrac-
tions seem completely di�erent, we will show they can be reconciled by using the notion
of virtual classi�cations. Instead of explicitly tagging software artifacts, virtual classi�ca-
tions provide an implicit tagging by means of some computational classi�er. This is a logical
predicate that describes in an intuitive way which artifacts are intended to belong to that
classi�cation.

This position paper takes a closer look at the advantages of virtual classi�cations over
other kinds of classi�cations, and motivates the use of virtual classi�cations for representing
high-level software abstractions, using software architecture as a concrete example.

2 Taxonomy of classi�cations

First we provide a taxonomy of existing classi�cation models. Based on this taxonomy, we
discuss the advantages of virtual classi�cations over other kinds of classi�cation.

2.1 Traditional OO classi�cations

Classi�cation is a central idea in the object-oriented programming paradigm. Consider for ex-
ample the Smalltalk language: methods and instance variables are grouped in classes, objects
are instances of a class, classes are instances of a meta class, classes belong to inheritance
hierarchies, methods are grouped in method protocols, classes are classi�ed in class categories,
changes to the Smalltalk image are grouped in change sets, and so on. All of these can be
considered as a kind of prede�ned classi�cations. Enhancements of the Smalltalk language,
such as the Envy/Developer version management system, extend the classi�cation possibilities
even further (e.g., Envy contains a notion of versions and applications).

2.2 The software classi�cation model

De Hondt [2] reports on positive experiences with recovering design knowledge in terms of
simple software classi�cations. All artifacts in such a classi�cation typically share some im-
portant characteristic. For example, in a �nancial application it could be interesting to group
all software artifacts dealing with \handling deposits" together in a single classi�cation.

A software artifact can belong to di�erent classi�cations and a single classi�cation can
contain many di�erent kinds of software artifacts. A classi�cation does not necessarily corre-
spond to the traditional classi�cations that are typically found in the programming language
or the development environment, but may be user de�ned. More precisely, De Hondt [2] dis-
tinguishes essentially two kinds of classi�cations: manually-de�ned classi�cations and virtual

or computed classi�cations.

� A manually-de�ned classi�cation allows a developer to group a set of software artifacts
that are not necessarily (or not explicitly) related in the software. An example of

2



manually-de�ned classi�cations are the so-called collaboration-contract classi�cations

where the grouping is based on a user-speci�ed collaboration between software artifacts.

� Both virtual and computed classi�cations are speci�ed intentionally and `compute' their
elements. Examples are: subclass hierarchies, senders and implementers, and so on. The
only di�erence between virtual classi�cations and computed ones is that the former are
always kept synchronized with the software, whereas the latter are only recomputed on
demand.

Computed and virtual classi�cations are clearly more 
exible than manually constructed
ones, because they actually describe which artifacts are intended to belong to the classi�cation,
instead of explicitly enumerating them. Furthermore, when declared in a logic medium,
their de�nitions are often very intuitive and concise, and can be used in multiple ways (e.g.,
checking, generating, . . . ).

As opposed to De Hondt [2], we will make no terminological distinction between virtual
and computed classi�cations. Whether or not they are kept synchronized with the software,
depends on the support tool and on how the classi�cations are to be used. Therefore, in this
paper, we will uniformly refer to both kinds of classi�cations as virtual classi�cations.

2.3 Criteria

In this subsection we present a list of criteria that can be used to compare existing classi�cation
models.

Intentionality Does the classi�cation enumerate its elements explicitly or through tagging
(extensional), or does it provide a description of how to compute its elements (inten-
tional)?

Cross-cutting. Is it possible to de�ne cross-cutting classi�cations that group artifacts that
cut across the dominant structure of the software? In other words, is it possible to
de�ne overlapping classi�cations?

User-de�ned. Can a user de�ne his or her own classi�cations or is there only a prede�ned
set of classi�cations available?

Genericity. Is it possible to de�ne generic, or parameterized classi�cations that depend on
the value of their parameters?

Robustness. Is the classi�cation mechanism robust with respect to evolution? When the
software evolves, is there a chance that earlier classi�cations become incorrect?

Nesting. Is it possible to de�ne nested classi�cations?

Heterogeneity. Is it possible to mix di�erent kinds of artifacts in the same classi�cation
(heterogeneous), or can we only put artifacts of the same kind in each classi�cation
(homogeneous)?

Constraints. Can we put extra (enforceable, or veri�able) constraints on the artifacts con-
tained in a classi�cation, or even put constraints between di�erent classi�cations?

3



2.4 Virtual classi�cations

Based on the above list of criteria, in this subsection, we argue that virtual classi�cations
provide an extremely powerful classi�cation mechanism.

The main advantage of virtual classi�cations over explicit enumerations of software arti-
facts is their intentional character. In natural language, the intention of a word is that part
of meaning that follows from general principles in semantic memory. The extension of a word
is the set of all existing things to which the word applies. The intention of `mammal', for
example, is a de�nition, such as \warm-blooded animal, vertebrate, having hair and secreting
milk for nourishing its young"; the extension is the set of all mammals in the world [5]. Sim-
ilarly, in set or type theory, the extension is the collection of all values belonging to that set
or type. The intention is a formal de�nition of these values in terms of some property they
all have in common.

Because of their intentional character, virtual software classi�cations have many advan-
tages over explicitly enumerated software classi�cations. First of all, an intentional de�nition
often has a much more concise representation. Secondly, an extensional de�nition is less intu-
itive than an intentional one. An extensional de�nition is also less precise than the intentional
one. For example, two classi�cations can have the same extension, but a di�erent intention.
The converse is not true: two classi�cations that have the same intention, must always have
the same extension. Let us illustrate this again with a natural language example taken from
[5]. Since `grandfather' and `father of parent' have the same intention, they must apply to
exactly the same people. On the other hand, `featherless biped' and `animal with speech'
have the same extension, the set of human beings; but they have di�erent intentions. Finally,
intentional de�nitions are more robust towards change than extensional de�nitions. This is
because intentions are true by de�nition, whereas extensions can be falsi�ed by changing
events: plucking a chicken results in a featherless biped that cannot speak.

In the next section we will take a look at a concrete case study. In addition to illustrating
the intentional nature of virtual classi�cations, we explain that virtual classi�cations can
also adequately address the criteria of cross-cutting, genericity, nesting, heterogeneity and
constraints.

3 Virtual classi�cations for software architectures

In [3, 4], we explored the expressive power of virtual software classi�cations to codify and
reason about software architectures. In particular, we used virtual classi�cations and their
interrelationships for declaring software architectures as high-level abstractions over imple-
mentation artifacts, and proposed and implemented an algorithm for checking conformance
of the implementation to this high-level architecture.

As a concrete experiment, we codi�ed and checked conformance of the rule-based architec-
ture of the Smalltalk implementation of SOUL, a logic language with a tight symbiosis with
the Smalltalk development environment [6]. The �gure below depicts this architecture. The
kernel of SOUL is a logic query interpreter which conforms to this architecture. Moreover,
this architecture is representative for rule bases in general and is su�ciently challenging to
be used as a case study.

The architecture is codi�ed in terms of relationships between virtual classi�cations. SOUL
being implemented in Smalltalk, methods, classes and variables were considered as building
blocks. For instance, the Working Memory was simple to de�ne: it contains all classes that

4



derive from a root class that speci�es the generic structure of variable-value bindings. A more
challenging example is the rule that speci�es how methods are classi�ed as belonging to the
Rule Interpreter:

methodIsClassifiedAs(Method, 'Rule Interpreter') :-

classImplements('SOULQuery', 'interpret:repository:', M),

reaches(M, Method).

This rule computes every Method that is invoked directly or indirectly by the method
with name interpret:repository: of the class SOULQuery, capturing the intention that
this particular method is the one that launches the interpretation process. The predicate
classImplements retrieves the method with a certain name from a given class, and the
predicate reaches computes the transitive closure of the invocation relationship.

In addition to illustrating the intentional character of virtual classi�cations, this virtual
classi�cation is an illustration of the cross-cutting criterion, because the generated classi�ca-
tion cross-cuts the static class-hierarchy structure of the SOUL implementation.

As an illustration of the heterogeneity as well as the genericity criterion, we can provide
a generalization of the above predicate so that it does not only return methods belonging to
some (parameterized) architectural concept (like 'Rule Interpreter') but also all instance
variables and classes belonging to that concept:

isClassifiedAs(Entity, Concept) :-

methodIsClassifiedAs(Entity, Concept);

variableIsClassifiedAs(Entity, Concept);

classIsClassifiedAs(Entity, Concept).

Filling in the Concept parameter with a concrete classi�er, as in the query
isClassifiedAs(Entity, 'Rule Interpreter') returns an actual heterogenous classi�ca-
tion containing all methods, variables and classes corresponding to the Rule Interpreter con-
cept.

In [4], Rule Interpreter itself is considered as an architecture that is subdivided into
an Interpreter and a Substitution concept. Therefore, we could also generalize the logic
predicate isClassifiedAs so that it does not simply return a list of all artifacts corresponding
to Rule Interpreter, but instead subdivides them hierarchically in Interpreter artifacts and
Substitution artifacts. The generated result is a nested classi�cation, illustrating the nesting
criterion.

5



Finally, it should be clear that logic predicates cannot only be used to specify classi�ca-
tions, but also to express constraints or relationships between these classi�cations. In the
�gure, these constraints are represented by arrows (representing uses and creates relation-
ships) between the architectural concepts (the ellipses) de�ned by the various classi�cations.

In [4], a declarative de�nition for the uses and creates relationships was given for each
of the kinds of implementation artifacts. These relationships could then be combined with
universal and existential cardinality constraints to de�ne a limited family of architectural re-
lationships; this resulted in a speci�cation of the architecture as a ten-line logic fact. Confor-
mance checking of the SOUL implementation could then easily be implemented by `applying'
the de�ned relationships over the corresponding classi�cations, making use of the speci�ed
cardinalities.

4 Conclusion

Our experiments with architectural conformance checking [3, 4] illustrate that the notion of
virtual software classi�cations, expressed in a logic meta language, provides a viable formalism
to reason about the structure of a software system at a su�ciently high level of abstraction.
Virtual classi�cations proved their worth as suitable high-level abstractions of implementation
artifacts. They hide the details of the lower-level artifacts on which they are mapped, yet
allow us to reason about their relationships with other classi�cations independently of the
artifacts they actually contain.

Virtual classi�cations have many advantages over explicitly enumerated classi�cations,
mainly because of their more intentional nature. This, combined with the expressive power
gained by adopting a logic meta-programming approach, makes virtual classi�cation an ideal
mechanism for codifying high-level software abstractions.

References

[1] T. D'Hondt, K. De Volder, K. Mens, and R. Wuyts. Co-evolution of object-oriented
software design and implementation. In Proceedings of SACT 2000. Kluwer Academic
Publishers, January 2000. International symposium on Software Architectures and Com-
ponent Technology.

[2] K. D. Hondt. A Novel Approach to Architectural Recovery in Evolving Object-Oriented

Systems. PhD thesis, Department of Computer Science, Vrije Universiteit Brussel, Bel-
gium, 1998.

[3] K. Mens. Automating Architectural Conformance Checking by means of Logic Meta Pro-

gramming. PhD thesis, Department of Computer Science, Vrije Universiteit Brussel, Bel-
gium, 2000. In preparation.

[4] K. Mens, R. Wuyts, and T. D'Hondt. Declaratively codifying software architectures using
virtual software classi�cations. In TOOLS 29 | Technology of Object-Oriented Languages

and Systems, pages 33{45. IEEE Computer Society Press, 1999. Nancy, France, June 7-10.

[5] J. F. Sowa. Conceptual Structures | Information processing in mind and machine. The
Systems Programming Series. Addison-Wesley, 1984.

6



[6] R. Wuyts. Declarative reasoning about the structure of object-oriented systems. In Pro-

ceedings TOOLS USA'98, pages 112{124. IEEE Computer Society Press, 1998.

7


