
Managing Unanticipated Evolution of Software Architectures

Kim Mens�, Tom Mens, Bart Wouters� and Roel Wuytsy

Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

f kimmens j tommens j bwouters j rwuyts g@vub.ac.be

June 8, 1999

Abstract

Few existing approaches towards architectural evo-

lution deal with unanticipated evolution. This is

an important restriction, since a lot of architectural

changes are very di�cult to anticipate. The reuse

contract formalism has been designed speci�cally to

deal with unanticipated software evolution, and has

already proven its practical use in di�erent domains.

We claim that the reuse contract approach can be

applied to the domain of software architectures, to

manage unanticipated evolution of software architec-

tures.

1 Introduction

A lot of current-day software is di�cult to under-

stand, maintain or adapt, hard to reuse and di�cult

to evolve [GAO95, JGJ97, Pan95]. This is partly due

to the ever increasing size and complexity of soft-

ware systems. As engineers searched for better ways

to understand their software and new ways to build

larger, more complex software systems, software ar-

chitectures emerged as a natural evolution of design

abstractions [SG96].

The software architecture of a system is the over-

all structure of a system in terms of its constituent

�Research funded by the Brussels Capital Region (Belgium)
yResearch conducted on a doctoral grant from the Instituut

voor Wetenschap en Technologie (Flanders, Belgium)

components and their interconnections. Components

represent architecturally relevant units of computa-

tion and data storage. Their interconnections are

usually modeled by connectors. These connectors act

as sophisticated mediators that can be attached to

the components using ports. A component may have

multiple ports, each of them de�ning a logically sep-

arable point of interaction with its environment. In

some sense, these ports can be regarded as an inter-

face of the component.

Because software architectures provide an insight

into the overall structure and design of a software

system, they facilitate software understanding and

maintenance, and thus o�er some interesting bene�ts

with respect to software evolution as well. However,

they do not solve the problems related to software

evolution entirely. One could even argue that some

of the problems are merely shifted to a higher level

of abstraction. Indeed, constantly changing require-

ments and concerns sometimes force the software ar-

chitecture itself to be revised [Pou96, Bos98].

It is essential to evolve the architecture of a suc-

cessful software system continually, because when the

quality of the architecture degrades, software modi�-

cations become more di�cult. This is because design

decisions at the architectural level have far reaching

consequences on the resultant code [Jak98]. These

problems are often referred to as software aging, ar-

chitectural erosion and architectural drift.

Architects may try to anticipate possible future

modi�cations to the architecture, and design the ar-

1



chitecture in such a way that it can be adapted to

take these modi�cations into account. However, more

often than not, architects are not able to predict ad-

equately where and which changes to the architec-

ture may possibly occur [OOP98]. So the problem

remains what to do when unanticipated changes to

the software architecture are required. Therefore, it

is important to investigate how to deal with unantic-

ipated evolution of software architectures.

2 Current Approaches to Ar-

chitectural Evolution

Current approaches tend to focus mainly on how to

deal with anticipated evolution of software architec-

tures. A brief overview of current research trends

in the area of evolution of software architectures is

presented below.

2.1 Overview

In the research literature [Wer98], an important dis-

tinction is made between two kinds of architectural

evolution. With design-time evolution, changes are

made to the architecture during design time, i.e., be-

fore execution. With run-time evolution (also called

dynamic evolution), the architecture is dynamically

modi�ed while the software is running, without com-

promising application integrity. Two kinds of run-

time evolution can be distinguished, depending on

whether the changes are triggered by the current

state or topology of the system (programmed evo-

lution) or if they are given by the reuser and thus

completely unpredictable (ad-hoc recon�guration).

2.2 Design-time evolution

For design-time evolution, the ability to manage

unanticipated evolution of software architectures

is particularly important, because at design time,

changes are almost always unpredictable. Even when

architects have provided hooks for future evolution,

these hooks are seldom what is needed when the sys-

tem needs to change. Very few architects have su�-

cient foresight to anticipate where these changes are

going to come from [OOP98]. Unfortunately, very lit-

tle research has been done on the topic of design-time

evolution of software architectures.

2.3 Run-time evolution

Approaches for run-time evolution can be divided

into three groups depending on how they manage

unanticipated evolution. The �rst and easiest solu-

tion is to disallow unanticipated evolution entirely.

Other approaches allow only a very restricted form of

unanticipated evolution [KM98, OT98, Wer98]. (Of-

ten so restricted that it is almost the same as antic-

ipated evolution.) Finally, some approaches do not

restrict or prohibit unanticipated evolution, but pro-

vide no support for it (dynamic link libraries, COM,

DCOM). The software architect is allowed to make

unanticipated changes, but has to face the possible

consequences of these modi�cations. We did not �nd

an example of an approach where unanticipated evo-

lution is allowed and fully supported.

3 Unanticipated Evolution

To summarize, nearly all current approaches we know

of focus essentially on anticipated evolution of soft-

ware architectures, and largely neglect the issue of

unanticipated evolution. Therefore, we propose to

investigate the problem of unanticipated evolution

of software architectures. To simplify the problem,

we will focus on design-time evolution �rst, but we

have good hope that our approach will be su�ciently

general so that it can be applied (or extended) to

run-time evolution as well. Our approach has no in-

tention of replacing current approaches dealing with

run-time evolution but should instead be seen as a

complementary approach focusing essentially on the

aspect of unanticipated evolution.

3.1 Reuse Contracts

The idea of our approach is to use the reuse

contract model [SLMD96, Luc97, Hon98] for deal-

ing with architectural evolution and, more particu-

larly, detecting incompatibilities, inconsistencies and

2



con
icts during unanticipated evolution. Because

reuse contracts have already proven useful to deal

with this kind of evolution at the implementation

level [SLMD96] and design level [Luc97, MLS98a,

MLS98b], and because the underlying ideas are suf-

�ciently general to be applied to other levels as well

[Men99], we propose to apply them to the area of

software architectures.

Essentially, a reuse contract consists of two con-

tract clauses (the provider clause and the reuser

clause) that are related to each other by means of

a contract type. The provider of an evolvable soft-

ware artifact has the contractual obligation to specify

what properties can be relied on by dependent arti-

facts, while the evolver has the obligation to specify

the modi�cations that are made to these properties.

The contract type speci�es the exact kind of mod-

i�cation that takes place. The basic contract types

are extension and cancellation, which are used to add

or remove any kind of element, and re�nement and

coarsening which are used to add or remove any kind

of relationship between elements. These primitive

contract types can be scaled up to composite contract

types that correspond to prede�ned combinations of

primitive contract types.

By comparing contract types, potential evolution

con
icts can be detected when merging independent

evolutions of the same software artifact. These evolu-

tion con
icts correspond to inconsistencies that arise

when the same part of the software is modi�ed in

di�erent ways.

Because design-time evolution is inherently unan-

ticipated, it is not always as easy to know whether

a con
ict occurs or not. Therefore, reuse contracts

take a "worst case" scenario by generating con
ict

warnings for every potentially undesired interaction.

The more information that is known about the con-

sidered domain (e.g., software architectures) and the

particular evolution, the better the approximation of

the evolution con
icts will be.

3.2 Applying Reuse Contracts to

Software Architectures

In [Men99] a uni�ed formalism for reuse contracts1

is being developed based on labelled typed nested

graphs and conditional graph rewriting. This for-

malism can be customized to speci�c areas, such as

evolution of software architectures.

Typical approaches towards (run-time) evolution

of software architectures distinguish four fundamen-

tal ways in which a software architecture can be mod-

i�ed: by adding new components, by removing exist-

ing components, by adding new connectors between

components and by removing existing connectors be-

tween components. Sometimes this set of modi�ca-

tion operations is called an Architectural Modi�ca-

tion Language (AML), as opposed to an Architectural

De�nition Language (ADL) which only describes the

static architecture.

The four modi�cation operators mentioned above

strongly remind us of the primitive reuse contract

types extension, cancellation, re�nement and coars-

ening, strengthening our belief that reuse contracts

are a good formalism to reason about evolution of ar-

chitectures. While the contract types can be regarded

as an AML, contract clauses form the equivalent of

an ADL.

In order to customize the reuse contract formal-

ism to the domain of software architectures, we �rst

need to agree upon the kind of entities and relation-

ships that are used in this domain, as well as the

constraints that hold between them. Instead of dis-

tinguishing the notions of component and connector

[PW92, Gar95] we take the more general approach of

considering everything as an architectural element.

Elements can have external gates that are used to

link them to other elements. Elements can be primi-

tive or composite. In the latter case, they constitute

an entire architecture themselves. Bindings can be

used to connect the external gates of a composite el-

ement to the gates of elements in the architecture

de�ned by the composite element.

These general architectural notions can be cus-

tomised further to de�ne speci�c architectural styles.

1This formalism is an extension, formalization and general-

ization of the reuse contract formalism presented in [Luc97].

3



To model the C3-style, components and connectors

can be de�ned as special kinds of elements with ex-

tra restrictions. Ports are used instead of gates. This

style can be re�ned further to a pipe-and-�lter style,

by de�ning pipes as a special kind of connectors, and

�lters as a special kind of components. An even fur-

ther re�nement in the pipeline style, where stages are

used as �lters that have only one input and output

port.

As a second step, the domain-independent contract

types need to be customized to the speci�c case of

software architectures. Extension and cancellation

will correspond to the addition or removal of an ar-

chitectural element or gate. Re�nement and coars-

ening can be used to add or remove links or bindings

between elements. These domain-speci�c variants of

our primitive contract types can also be combined

into frequently occurring composite contract types

which have a more intuitive meaning.

Once these customizations have been made, it re-

mains to be seen which speci�c architectural evolu-

tion con
icts can be detected. These con
icts will

not only occur when the same architectural part is

modi�ed in di�erent ways by di�erent evolvers, but

can also be used to check compliance between an ar-

chitecture and its underlying implementation. If the

implementation evolves in ways not supported by the

architecture, a con
ict will be detected. In this way,

the problem of architectural drift can be tackled.

4 Conclusion and Future Work

Little research has been done on unanticipated evolu-

tion of software architectures, although it is an impor-

tant research topic. The reuse contract approach has

been conceived speci�cally to reason about unantici-

pated evolution of software artifacts, and has already

proven its use for dealing with software evolution dur-

ing design and implementation. Recently, a general

domain-independent formal framework for reuse con-

tracts has been developed [Men99], and a prototype

PROLOG implementation of this framework exists.

The framework has already been customized to the

domain of class diagrams, and is currently being cus-

tomized to the area of software architectures. This

will allow us to support con
ict detection and impact

analysis during unanticipated architectural evolution.

An interesting alternative could be Oreizy and

Taylor's Architecture Evolution Manager (AEM) to

enforce compliance between the architectural and

the implementation level [OT98]. External Analy-

sis Modules can be plugged in to customize the basic

functionality of the AEM. Reuse contracts may be

implemented as such an external analysis module.

This research is part of the larger research e�ort of

providing integrated support for unanticipated evolu-

tion during the entire software life-cycle, i.e., in and

between all di�erent phases, ranging from software

requirements to implementation.

(Research conducted together with our industrial

partner Wang Global and funded by the Brussels

Capital Region.)

References

[ADG98] R. Allen, R. Douence, and D. Garlan.

Specifying and analyzing dynamic soft-

ware architectures. In Proceedings of 1998

Conference on Fundamental Approaches

to Software Engineering, 1998. Lisbon,

Portugal.

[Bos98] J. Bosch. Evolution and composition of

reusable assets in product-line architec-

tures: A case study. Technical report,

University of Karlskrona/Ronneby, 1998.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom.

Architectural mismatch: Why reuse is so

hard. IEEE Software, November 1995.

[Gar95] D. Garlan. First international workshop

on architectures of software systems |

workshop summary. ACM SIGSOFT,

Software Engineering Notes, 20(3):84{89,

1995.

[Hon98] K. De Hondt. A Novel Approach to Ar-

chitectural Recovery in Evolving Object-

Oriented Systems. PhD thesis, Dept.

of Computer Science, Vrije Universiteit

Brussel, Belgium, 1998.

4



[Jak98] C. B. Jaktman. A maintenance check

for evolving a product-line architecture

by determining the indicators of erosion,

1998. Workshop on Empirical Stud-

ies of Software Maintenance (WESS98),

Bethesda, Maryland, November 16.

[JGJ97] I. Jacobson, M.L. Griss, and P. Jons-

son. Software Reuse: Architecture, Pro-

cess and Organization for Business Suc-

cess. Addisson-Wesley, 1997.

[KM98] J. Kramer and J. Magee. Analysing dy-

namic change in software architectures,

1998. In [ADG98].

[Luc97] C. Lucas. Documenting Reuse and Evolu-

tion with Reuse Contracts. PhD thesis,

Department of Computer Science, Vrije

Universiteit Brussel, Belgium, September

1997.

[Men99] T. Mens. A Formal Foundation for

Object-Oriented Software Evolution. PhD

thesis, Department of Computer Science,

Vrije Universiteit Brussel, Belgium, 1999.

In preparation.

[MLS98a] T. Mens, C. Lucas, and P. Steyaert. Giv-

ing precise semantics to reuse in UML.

In Proceedings of ICSE'98 Workshop on

Precise Semantics for Software Modeling

Techniques, Kyoyo, Japan, pages 73{89,

April 1998. Technical Report TUM-I9803,

Technische Universit�at Munchen.

[MLS98b] T. Mens, C. Lucas, and P. Steyaert. Sup-

porting reuse and evolution of UML mod-

els. In Proceedings of UML'98 Interna-

tional Workshop, Mulhouse, France, June

1998.

[OOP98] How software architectures learn: What

happens after they are built?, 1998.

Workshop 7, Sunday, October 18th,

OOPSLA'98 Conference, Vancouver,

Canada.

[OT98] P. Oreizy and R. N. Taylor. On the role of

software architectures in runtime system

recon�guration. 1998.

[Pan95] C. Pancake. Object roundtable, the

promise and the cost of object technology:

A �ve-year forecast. Communications of

the ACM, 38(10):32{49, October 1995.

[Pou96] J. S. Poulin. Evolution of a software archi-

tecture for management information sys-

tems. In Proceedings of the Second Inter-

national Software Architecture Workshop

(ISAW2), pages 134{137, 1996. San Fran-

cisco, California, USA, 14-15 October.

[PW92] D. E. Perry and A. L. Wolf. Founda-

tions for the study of software architec-

ture. ACM SIGSOFT Software Engineer-

ing Notes, 17(4):40{52, 1992.

[SG96] M. Shaw and D. Garlan. Software Ar-

chitecture | Perspectives on an Emerg-

ing Discipline. Prentice Hall, 1996.

[SLMD96] P. Steyaert, C. Lucas, K. Mens, and

T. D'Hondt. Reuse contracts: Managing

the evolution of reusable assets. In Pro-

ceedings of the OOPSLA'96 Conference

on Object-Oriented Programming, Sys-

tems, Languages and Applications, num-

ber 31(10) in ACM SIGPLAN Notices,

pages 268{285. ACM Press, 1996.

[Wer98] M. Wermelinger. Software architecture

and the chemical abstract machines, 1998.

In [ADG98].

5


