
Applying Reuse Contracts in a Product Line Approach

Presented at the OOPSLA’98 Workshop on Object Technology and Product Lines

Carine Lucas+, Kim Mens+, Patrick Steyaert+, Wilfried Verachtert*

Email: clucas@vub.ac.be, kimmens@vub.ac.be, prsteyae@vub.ac.be, wilfried@MediaGeniX.com
+Programming Technology Lab *MediaGeniX

Vrije Universiteit Brussel Otto de Mentockplein 19
Pleinlaan 2, 1050 Brussels, Belgium 1853 Strombeek-Bever, Belgium

http://progwww.vub.ac.be/

Introduction
Our research on reuse contracts demonstrated how a better documentation of the dependencies
between reusable assets and their reusers can help in managing the evolution of reusable assets
and in achieving disciplined reuse. However, in trying to apply our results to product lines we
still encounter multiple problems. This position paper shortly introduces reuse contracts and then
raises some topics of research we feel are crucial in order to set up successful product lines.

Reuse Contracts
The essential idea behind reuse contracts is that a component is reused on the basis of an explicit
contract between the provider of the component and a reuser that modifies this component. The
purpose of a contract is to make reuse and evolution more disciplined. For this purpose, both the
provider and the reuser have contractual obligations. The primary obligation of the provider is to
document how the component can be reused. The reuser needs to document how the component
is reused or how the component evolves. Both the provider’s and the reuser’s documentation
must be in a form that allows to detect what the impact of changes is, and what actions the reuser
must undertake to “upgrade” if a certain component has evolved. To summarise we can say that
reuse contracts help in keeping the model of the provider consistent with the model of the reuser.

Originally, reuse contracts were used at the implementation level to express reuse in evolvable
class inheritance hierarchies [Steyaert&al96], and reuse and evolution of collaborating classes
[Lucas97]. More recently, work has been done on integrating the reuse contract formalism into
the Unified Modelling Language [Mens&al98]. In order to actively apply the reuse contract
methodology in product lines a lot of work still needs to be done. Currently we focus on the
integration of the different incarnations of the reuse contract model, on the application of reuse
contracts on a higher architectural level and the integration of reuse contracts in the development
process [De Hondt98]. A number of the questions raised are discussed below.

How to support component evolution ?
Experience shows that the development of useful components is an evolutionary process. Only
rarely a newly developed component can be immediately used in another context. Only through
consequent reuses of a component and adoptions to different cases a component becomes mature.
The support of incremental and iterative development is therefore crucial. Today we are able to
realise this incremental and iterative development on the different levels of the software life
cycle. However, the translation of an increment on one level to another, for example from
analysis to design to implementation, remains a difficult issue. The lack of a formal description of
this translation causes the different layers to continuously drift away from each other. As a result,
the only evolving – and thus useful – components are those on the implementation level.
Traceability between the different layers of the software life cycle is therefore an absolute
minimum.



One of our current research topics is therefore to investigate how the reuse contract types that are
used to describe dependencies between components and their reusers can be used to describe the
relationship between components in different phases of the life cycle.

How to build software by composing reusable components ?
Product lines aim to build software by composing different components. The question how these
existing software components interact is still not adequately addressed. One of the reasons for the
remaining problems is that de developers of software components make a lot of implicit
assumptions about how a component needs to co-operate with other components. Often these
assumptions can only be discovered after inspection of the code, which is an error-prone and
time-consuming process. Therefore, it is crucial to make as much of these assumptions as
possible explicit in as early a stage as possible. A second problem concerns the so-called
architectural mismatch [Garlan&al95]. When different software components are constructed in
different architectural styles, the problem is how these different styles can be integrated.
We are therefore investigating what kind of information on developer’s intentions and
architectural styles could be useful to integrate in the reuse contract method, in order to be able to
detect more composition and evolution conflicts.

How to document the architecture of an evolving system ?
A prerequisite for effective reuse is a thorough understanding of the system that is reused.
In particular, a good understanding of the architecture - the organization of the source
code as composition of components and the interaction between them - is crucial.
Although softwaredocumentation should help with acquiring a better software
comprehension, it seldom does, especially for evolving systems. Software documentation
is never up-to-date, not in an appropriate form for the development task at hand, or in
many cases even non-existent. Software documentation is hard to keep up-to-date
because it is not integrated in the software development environment and hence not
resistant to change. In our current research we are investigating novel approaches to
architectural recovery of object-oriented systems. The techniques explored in [De
Hondt98] are based on software classification as a uniform organizational structure to record
architectural descriptions as tangible software entities in the development environment.

Conclusion
While a lot of new developments seem promising towards the construction of product lines, a lot
of technical issues still need to be addressed. This paper raised some questions which we are
interested to discuss during the workshop.

References
[Garlan&al95] David Garlan, Robert Allen and John Ockerbloom, Architectural mismatch: why
reuse is so hard", IEEE Software, 12(6), pp. 17-26, November 1995.
[Lucas97] Carine Lucas, Documenting Reuse and Evolution with Reuse Contracts, PhD
Dissertation, Vrije Universiteit Brussel, September 1997.
[De Hondt98] Koen De Hondt, A Novel Approach to Architectural Recovery in Evolving Object-
Oriented Systems, PhD Dissertation, Vrije Universiteit Brussel, 1998.
[Mens&al98] Tom Mens, Carine Lucas and Patrick Steyaert, Supporting Reuse and Evolution of
UML Models, Proceedings of UML’98 International Workshop, Mulhouse, France, June 1998
[Steyaert&al96] Patrick Steyaert, Carine Lucas, Kim Mens, Theo D’Hondt, Reuse Contracts:
Managing the Evolution of Reusable Assets, Proceedings of OOPSLA ’96, ACM SIGPLAN
Notices, 31(10), pp. 268-286, ACM Press, 1996.


