
V
rije U

niversiteit B
russel

Faculteit W
etenschappen

S
R

E
VI

NU

IT
E

IT

EJIRV
BRUSSEL

E
C

NI
V

R
E

T
E

N
EBRA S

AI

T NEI CSD
ocum

enting E
volving Softw

are System
s

through R
euse C

ontracts

K
im

 M
ens, Patrick Steyaert, C

arine L
ucas

T
echreport vub-prog-tr-96-12Program

m
ing T

echnology L
ab

PR
O

G
(W

E
)

V
U

B

Pleinlaan 2

1050 B
russel

B
E

L
G

IU
M

Fax: (+
32) 2-629-3525

T
el: (+

32) 2-629-3308

A
non. FT

P: progftp.vub.ac.be

W
W

W
: progw

w
w

.vub.ac.be

D
ocum

enting E
volving Softw

are System
s through R

euse C
ontracts

Subm
itted to the O

O
P

SL
A

’96 W
orkshop on

“O
bject-O

riented Softw
are E

volution and R
e-E

ngineering”

K
im

 M
ens, Patrick Steyaert, C

arine L
ucas

Program
m

ing T
echnology L

ab
V

rije U
niversiteit B

russel
Pleinlaan 2, 1050 B

russels, B
elgium

http://progw
w

w
.vub.ac.be/

E
m

ail: kim
m

ens@
is1.vub.ac.be, prsteyae@

vnet3.vub.ac.be, clucas@
vnet3.vub.ac.be

Introduction

M
inim

isation of dependencies betw
een the parts of a softw

are system
 is by far the m

ost successful

softw
are engineering principle to cope w

ith change and evolution. T
his principle is the foundation of,

am
ongst others, encapsulation, m

odularity, high cohesion and loose coupling. It enables reasoning

about different system
 parts separately as w

ell as m
aking changes to certain parts of a system

 w
ithout

interfering w
ith the other parts. D

etails that are of no im
portance to other parts of the system

 are hidden

behind interfaces. A
s these other parts only rely on the inform

ation they get from
 these interfaces, they

are not affected w
hen the structures and im

plem
entations behind the interfaces are changed.

W
hile the continuous elaboration on this principle accounts for m

uch of the progress that has been

m
ade in softw

are engineering, it can only take us so far. A
t a certain point in the evolution of a

softw
are system

, changes occur that cannot be kept local to one system
 part and thus interfaces do have

to be changed as w
ell.

A
ssessing the im

pact of such non-local changes rem
ains one of the m

ost com
pelling problem

s in the

developm
ent of softw

are. T
his can only be dealt w

ith by a careful docum
entation of dependencies

betw
een different system

 parts. S
uch a docum

entation m
ust not only include w

hich parts depend on

w
hat other parts, but m

ore im
portantly how

 they depend on each other. T
he form

er gives an indication

on w
here problem

s m
ight occur upon change; the latter provides us inform

ation on w
hat the problem

 is

(and thus on how
 it can be solved). T

he lack of this kind of docum
entation is a m

ajor im
pedim

ent to

building reusable softw
are w

ith current m
ethodologies.

W
e propose to docum

ent the protocol betw
een designers of different parts of a system

 by m
eans of

reuse contracts. R
euse contracts not only docum

ent how
 a system

 part can be reused, but also how
 and

w
hy the part is actually reused by other parts. Just as real w

orld contracts can be extended, am
ended

and custom
ised, reuse contracts are subject to parallel changes encoded by form

al reuse operators:

extension, refinem
ent and co

n
cretisa

tio
n

. T
he inverse operators: coarsening, cancellation and

abstraction intuitively correspond to the (partial) breaching of a contract.

R
euse contracts together w

ith their operators facilitate m
anaging the evolution of a softw

are system
 by

indicating how
 m

uch w
ork is needed to update the system

, by forecasting w
hen and w

hich problem
s

m
ight occur, and by providing inform

ation on w
here and how

 to test and adjust the system
.

M
anaging P

arent C
lass E

xchange

T
he use of abstract classes w

ith inheritance as reuse m
echanism

 is undoubtedly the best-know
n

technique available today for structuring and adapting object-oriented softw
are. T

herefore, in

[Steyaert&
al96] w

e focused on the problem
 of evolution of class-hierarchies as a m

ore tangible case to

explain the ideas behind reuse contracts. In that context, reuse contracts and their operators describe the

protocol betw
een m

anagers and users of (abstract) class libraries. R
euse contracts of abstract classes

provide an explicit representation of the design decisions behind an abstract class, including

inform
ation such as: w

hich m
ethods can be sent to the class, w

hich m
ethods are invoked by w

hat other

m
ethods, w

hich m
ethods are abstract or concrete, relationships w

ith other classes, ... O
nly inform

ation

relevant to the design is included. F
or exam

ple, auxiliary or im
plem

entation-specific m
ethods are not

m
entioned in a reuse contract.

R
euse contracts can be m

anipulated by m
eans of reuse operators. R

efinem
ent refines the design of

som
e m

ethods, extension adds new
 m

ethods, concretisation m
akes abstract m

ethods concrete. T
hese

reuse operators not only allow
 docum

enting the changes (and the intentions of these changes) m
ade to a

class, but a careful investigation of their interactions also allow
s to predict and m

anage the effect of

these changes.

C
onsider the exam

ple of a C
ollection hierarchy. A

 class S
e
t

 defines a m
ethod a

d
d

 and a m
ethod

a
d
d
A
l
l to add a collection of elem

ents sim
ultaneously.

C
l
a
s
s

S
e
t

m
e
t
h
o
d

a
d
d
(
E
l
e
m
e
n
t
)

=

0

m
e
t
h
o
d

a
d
d
A
l
l
(
a
S
e
t
:
S
e
t
)

=

b
e
g
i
n

f
o
r

e

i
n

a
S
e
t

do

s
e
l
f
.
a
d
d
(
e
)

e
n
d

e
n
d

In order to decide w
hich m

ethods need to be overridden w
hen creating a subclass C

o
u
n
t
a
b
l
e
S
e
t of

S
e
t

 that keeps a count of the num
ber of elem

ents in the set, w
e need inform

ation on w
hich m

ethods

depend on w
hat other m

ethods. For exam
ple, if w

e know
 that a

d
d
A
l
l depends in its im

plem
entation on

a
d
d

, it is sufficient to override the m
ethod a

d
d

 to take counting into account. R
euse contracts for

classes docum
ent these dependencies. In a reuse contract each m

ethod has a specialisation clause (in

italics in the exam
ple) that docum

ents how
 it depends on the other m

ethods from
 this reuse contract (as

in L
am

ping’s specialisation interfaces [L
am

ping93]). T
he reuse contract is an interface description to

w
hich the im

plem
entation m

ust com
ply. It provides inform

ation that is typically not included in other

m
ethodologies.

r
e
u
s
e

c
o
n
t
r
a
c
t

S
e
t

a
b
s
t
r
a
c
t

a
d
d
(
E
l
e
m
e
n
t
)

c
o
n
c
r
e
t
e

a
d
d
A
l
l
(
S
e
t
)

{
a
d
d
(
E
l
e
m
e
n
t
)
}

e
n
d

R
euse contracts in their current form

 only docum
ent the internal dependencies am

ong a class's

m
ethods. P

art of our future w
ork is studying how

 reuse contracts can be extended to include interclass

dependencies as w
ell. O

ther experim
ents are being conducted to include inform

ation on state and state

transform
ations in reuse contracts and operators.

R
euse contracts can be used to assess the im

pact of changes or updates to system
 parts. S

uppose w
e

w
ant to m

ake an optim
ised version O

p
t
i
m
i
s
e
d
S
e
t

 of S
e
t

. In this version a
d
d
A
l
l stores the added

elem
ents directly rather than invoking the add m

ethod to do this. T
his leads to inconsistent behaviour in

C
o
u
n
t
a
b
l
e
S
e
t w

hen it decides to upgrade O
p
t
i
m
i
s
e
d
S
e
t; not all additions w

ill be counted. T
his is

because the assum
ption m

ade by C
o
u
n
t
a
b
l
e
S
e
t that a

d
d
A
l
l invokes a

d
d is broken in O

p
t
i
m
i
s
e
d
S
e
t.

U
sing the term

inology of [K
iczales&

L
am

ping92] w
e say that

a
d
d
A
l
l

 and a
d
d

 have becom
e

inconsistent m
ethods. A

lthough in this sim
ple exam

ple the conflict can easily be derived from
 the code,

in practice it should be possible to detect such conflicts w
ithout code inspection. T

he m
ajor obstacle for

locating problem
s such as inconsistent m

ethods is that the different conceptual w
ays to reuse an

(abstract) class are all perform
ed by the sam

e operator, i.e. inheritance. M
ore inform

ation about the

intentions of inheritor is needed. T
his kind of inform

ation is precisely provided by the reuse operators

on reuse contracts. In the exam
ple the reuse contract of C

o
u
n
t
a
b
l
e
S
e
t and O

p
t
i
m
i
s
e
d
S
e
t docum

ent

how
 they w

ere derived from
 S
e
t.

r
e
u
s
e

c
o
n
t
r
a
c
t

C
o
u
n
t
a
b
l
e
S
e
t

c
o
n
c
r
e
t
i
s
e
s

S
e
t

c
o
n
c
r
e
t
e

a
d
d
(
E
l
e
m
e
n
t
)

e
n
d

r
e
u
s
e

c
o
n
t
r
a
c
t

O
p
t
i
m
i
s
e
d
S
e
t

c
o
a
r
s
e
n
s

S
e
t

c
o
n
c
r
e
t
e

a
d
d
A
l
l
(
E
l
e
m
e
n
t
)

{
-
a
d
d
(
E
l
e
m
e
n
t
}
)

e
n
d

T
he fact that a

d
d

 and a
d
d
A
l
l

 have becom
e inconsistent can be derived directly from

 the reuse

contracts: C
o
u
n
t
a
b
l
e
S
e
t concretises a m

ethod that has been rem
oved from

 the specialisation clause

w
hile changing from

 the old parent class to the new
 parent class (in italics above).

F
or a m

ore com
plete set of possible conflicts on parent class exchange w

e refer to [S
teyaert&

al96].

Furtherm
ore, it gives a com

plete set of reuse operators together w
ith a set of rules that allow

 autom
atic

detection of conflicts based on the interaction of reuse operators.

E
nvironm

ent and T
ool Support for R

euse C
ontracts

A
n environm

ent for m
anaging softw

are evolution based on the concept of reuse contracts should

include tool support for assessing the im
pact of m

aking changes to a system
 by signalling possible

problem
s that (m

ight) occur. A
 prototype version of such a tool has been im

plem
ented in PR

O
L

O
G

.

T
he environm

ent can also assist in the synchronisation of reuse contracts and their corresponding

im
plem

entations. T
w

o situations can be distinguished. In those parts of the system
 that have a stable

design, the im
plem

entation m
ust be forced to com

ply to the reuse contract. In those parts that are still

subject to m
ajor redesign, it should be possible to m

ake changes to both im
plem

entation and reuse

contracts independently. T
he environm

ent could discretely issue w
arnings, but should not becom

e a

hindrance.

F
inally, for softw

are system
s that have not been docum

ented by m
eans of reuse contracts, tools can be

constructed that sem
i-autom

atically extract this docum
entation from

 the code, based on the calling

structure. T
he program

m
er only has to delete the im

plem
entation-specific parts of the extracted

docum
entation, as reuse contracts should include only inform

ation relevant to the design. O
nce the

different reuse contracts have been extracted, the tool can easily com
pute how

 the reuse contracts

corresponding to the different parts of the system
 are related to one another by m

eans of reuse

operators. A
 prototype im

plem
entation of such a tool for Sm

alltalk classes has been im
plem

ented.

C
onclusion

C
urrent m

ethodological and tool support for m
anaging the evolution of large, long-lived softw

are

system
s, focuses m

ainly on m
inim

ising dependencies betw
een system

 parts. H
ow

ever, the question

w
hat happens w

hen these dependencies are changed at som
e point during the evolution process is

largely neglected. D
ocum

enting these dependencies by m
eans of reuse contracts and reuse operators

allow
s us to signal such changes and to assess their im

pact. M
any tools to support the use of reuse

contracts for m
anaging softw

are evolution can be conceived. W
hen adopted, reuse contracts m

ay

significantly enhance the w
ay in w

hich softw
are is being built and m

anaged.

R
eferences

[K
iczales&

L
am

ping92]
G

. K
iczales, J. L

am
ping: Issues in the D

esign and Specification of C
lass

L
ibraries, P

roceedings of O
O

P
S

L
A

 '92, C
onference on O

bject-O
riented

P
rogram

m
ing, S

ystem
s, L

anguages and A
pplications, pp. 435-451, A

C
M

Press, 1992.

[L
am

ping93]
J. L

am
ping: T

yping the Specialisation Interface, Proceedings of O
O

PSL
A

 '93,
C

onference on O
bject-O

riented P
rogram

m
ing, S

ystem
s, L

anguages and
A

pplications, pp. 201-215, A
C

M
 Press, 1993.

[Steyaert&
al.96]

P
.S

teyaert, C
.L

ucas, K
.M

ens, T
.D

'H
ondt: R

euse C
ontracts: M

anaging the
E

volution of R
eusable A

ssets, T
o appear in P

roceedings of O
O

P
S

L
A

‘96
C

onference on O
bject O

riented P
rogram

m
ing, S

ystem
s, L

anguages and
A

pplications, A
C

M
 Press 1996.

