
Reuse Contracts: Managing Evolution in Adaptable Systems 1

Reuse Contracts: Managing Evolution in
Adaptable Systems.

Kim Mens, Patrick Steyaert, Carine Lucas
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium
http://progwww.vub.ac.be/

Abstract

Adaptable systems are often described as being composed of a persistent
part that remains more or less stable throughout the evolution of the system
and of more transient parts which are derived from the persistent part.
Current research on adaptability seems to be biased towards adaptable
systems of which the persistent part does not evolve at all. We argue that the
issue of managing the evolution of the persistent part itself is not only a
central issue in the practical application of adaptability, but is a key question
in the understanding of adaptability: although changes to the persistent part
occur only occasionally, most often these changes have a very large impact
on the rest of the system; only very controlled changes guarantee that the rest
of the system will remain more or less consistent. We propose to manage
these changes by means of reuse contracts and reuse operators. Rather than
having a template rigidly enforced by the builder of the adaptable system,
with reuse contracts a reuser declares on which parts of the adaptable system
he relies, what parts of the design he respects and what parts he violates. This
enables evolution of the adaptable system, reuse of adaptations to different
adaptable systems, and a more layered approach to adaptation.

1 Introduction

Adaptable systems are systems that can easily be adapted to a steady change of
various requirements. Summarising [5], they do so by capturing the persistent part
that remains stable throughout the evolution of a system and from which more
transient versions of the system can be derived. The persistent part is important;
without it we would not be able to speak of a “system” but rather of nothing more
than a collection of program fragments that can only be re-used in an ad-hoc fashion.
The persistent part can be expressed by different means: in object-oriented
frameworks by means of abstract classes and class collaborations [3], in adaptive
software by means of propagation patterns and succinct sub-graph specifications [4],
in the field of software architecture by means of components and connectors [1], etc.
Accordingly, transient versions of an adaptable system are derived by different
mechanisms: in object-oriented frameworks by means of inheritance (preferably

2 Kim Mens, Patrick Steyaert, Carine Lucas

some controlled form of inheritance) and filling in polymorphic parameters, in
adaptive systems by applying a propagation pattern to some class hierarchy, in
software architectures by means of refinement, etc. In general, the persistent part
expresses an overall architecture or architectural design that is used as a “template”
for more transient versions of the system. The degree to which this template enforces
a set of design or architectural constraints that must be respected by the different
incarnations of an adaptable system differs.

Current research on adaptability seems to be biased towards adaptable systems of
which the persistent part does not evolve (hence, obviously the label “persistent”).
Nevertheless, as complex software systems have to cope with a steady change of
various requirements from the moment they are conceived, many iterations are
needed before the core of an (adaptable) software system becomes more or less
stable and the system becomes truly adaptable. Therefore, it is important to examine
the uninvestigated question of how an adaptable system itself evolves over time, how
this affects the already derived applications, and how this evolution can be managed.

While we do agree that issues such as describing and enforcing architectures
must eventually be answered, it is our conjecture that the issue of manageable
evolution of adaptable systems themselves is not only a central issue in the practical
application of adaptability, but is a key question in the understanding of adaptability.

2 Characteristics of Evolving Adaptable Systems

Changes to the persistent part of an adaptable system might be required when errors
in the initial requirements need to be fixed, or when the requirements change because
users want to extend the system to incorporate functionality it was not originally
designed for. More importantly, iterations over the persistent part are inherent to the
development of adaptable systems. While some of the basic identities of an adaptable
system may be discovered early in the development of the system, these identities
will change and improve as a system evolves. The persistent part of a truly adaptable
system emerges as a result of such an evolutionary process. Moreover, the usefulness
and thus the true degree of adaptability can only become clear by actually adapting
the system, in other words by using it to build applications. As it is not feasible to
build this kind of applications solely for test purposes, the issue of managing the
impact of changes to the evolving persistent part to those already existing
applications is crucial.

So, even the “persistent” part of an adaptable system is not completely stable but
will need to be changed from time to time. Instead of being composed of one
persistent core1 and a transient shell, we view an adaptable system as a continuum
ranging from well-designed and fairly persistent part to very unstable and less

1. Actually, this is an oversimplification. In practice, an adaptable system will not have just one core,

but several ones which each have more transient parts based on them.

Reuse Contracts: Managing Evolution in Adaptable Systems 3

meticulous designed parts that are undergoing changes all the time. This is depicted
in figure 1.

Figure 1. An Adaptable System

Changes to the more persistent parts only occur occasionally, but most often have
a very large impact on the rest of the system; only very controlled changes guarantee
that the rest of the system will remain more or less consistent. Changes to the outer
parts of the system occur much more frequently but do not have such a large impact.
This is illustrated in figure 2.

Figure 2. Characteristics of an Adaptable System

3 Reuse Contracts

In [7] we propose reuse contracts as a means to codify the management of change in
an (adaptable) software system. Reuse contracts record the protocol between builders
and customisers of an adaptable system and offer guidelines for deriving more
transient versions of the system in some problem domain. Similar to real world
contracts that can be amended, extended, or customised, reuse contracts are subject
to typical reuse operations such as refinement, extension and concretisation. The

4 Kim Mens, Patrick Steyaert, Carine Lucas

inverse operations: coarsening, cancellation and abstraction intuitively correspond to
the (partial) breaching of a contract.

Reuse contracts and their operations are used to “document” how a transient
version has been derived from the more persistent parts of the system. This
“documentation” can be used by tools to asses the impact of changes made to the
system, to forecast when and which problems might occur and to give directions on
where and how to test the derived transient version of a system. For example, when
extending the adaptable system with new functionality, collisions with already made
extensions in more transient versions must be checked; or, when cancelling
functionality in the system, it needs to be checked whether no transient versions rely
on such functionality. To be able to check this, more information is needed on how a
transient version relies on the design decisions made in the adaptable system. Reuse
contracts provide exactly this information.

Because the best-known technique available today for structuring and adapting
object-oriented software is undoubtedly the use of abstract classes with inheritance
as the reuse mechanism, in [7] we focused on the problem of adaptation of class-
hierarchies as a more tangible case to express the ideas behind reuse contracts. In
that context, reuse contracts and their operations describe the protocol between
managers and users of (abstract) class libraries. Reuse contracts of abstract classes
provide an explicit representation of the design decisions behind an abstract class,
including information such as: which methods can be sent to the class, which
methods are invoked by what other methods, which methods are abstract or concrete,
relationships with other classes, ... Only information relevant to the design is
included. For example, auxiliary or implementation-specific methods are not
mentioned in a reuse contract.

Reuse contracts can be manipulated by means of reuse operators. Refinement
refines the design of some methods, extension adds new methods, concretisation
makes abstract methods concrete. These reuse operations not only allow
documenting the adaptations made to a class, but a careful investigation of their
interactions also allows to predict and manage the effect of these adaptations.

As an example, let us explain how reuse contracts can help in detecting the
problem of method capture. Suppose we want to adapt a class library by substituting
some parent class with another class1 with a seemingly similar behaviour. Methods
from inheritors that were not invoked by methods in the former parent could be
invoked now (and vice versa). This situation is called method capture (the opposite
case leads to what is called inconsistent methods in [3]) and often causes problems
on a behavioural level. Reuse contract can help in detecting such problem situations
because they explicitly provide information on which methods invoke which other
methods in a class. Without this documentation, programmers of subclasses are
forced to inspect all implementation details of the parent classes in order to assess
the effect of overriding a method. However, the major obstacle for locating problems

1. or by editing an existing parent c lass.

Reuse Contracts: Managing Evolution in Adaptable Systems 5

such as method capture (and inconsistent methods) is that the different conceptual
ways to reuse an abstract class are all performed by the same operation, i.e.
inheritance. More information about the intentions of inheritors are needed. Consider
exchanging a parent class with a new parent class that introduces a new method m.
When looking at plain inheritors it is not always clear whether a method with the
name m in an inheritor was intended to override a method m of the parent class or
whether it was intended as a new method. The second case would imply that after the
parent class exchange this method is unintendedly captured, and thus would probably
cause some behavioural conflict. If the inheritor would explicitly declare that he
intended to perform an extension (i.e. introducing a new method), it would be easier
to detect possible problems. This kind of information is precisely provided by the
reuse operations on reuse contracts.

For more a detailed discussion and for more examples on reuse contracts, reuse
operators, and on how they can detect and solve problems such as the above, we
refer to [7].

4 Evaluation and Conclusion

The primary goal of reuse contracts is a very practical one. They are useful in
managing changes to an adaptable system from which different applications have
already been derived. It has already been stated in different sources that the absence
of mechanisms to manage such changes is an important inhibitor to successful reuse
[2,6,8].

Moreover, we believe that evolving adaptable systems and reuse contracts shed a
new light on adaptability. Adaptable systems that define an unchangeable template
that is enforced in all transient versions are too rigid as a model. Not only because
this makes adaptable systems closed systems as they can only be adapted in a limited
way, but also because in many cases adapters need to make exceptions to the rigidly
defined architecture (most often for tuning the implementation [3]). Current research
on reuse and adaptability is also biased towards systems that make a clear-cut
distinction between the system builder and the system reusers. This view is limited,
especially when talking about object-oriented systems. In a class library for example,
classes go through different layers of adaptation. An initial abstract class is
transformed through a chain of inheritors, each adding its own layer of adaptations.
An essential problem here is that the persistent template that was clear at the top (i.e.
at the abstract class) gets modified and becomes unclear at the bottom where classes
are actually reused. This is perceived by many users of object-oriented class libraries
and frameworks as one of the major obstacles to reuse them.

A model of adaptable systems based on reuse contracts can provide a more
smooth transition between the persistent template and more transient versions. Reuse
contracts complement information on how an adaptable system is designed (and can
be reused) with information on how such an adaptable system is actually reused.

6 Kim Mens, Patrick Steyaert, Carine Lucas

Rather than having a template rigidly enforced by the builder of the adaptable
system, with reuse contracts a reuser declares on which parts of the adaptable system
he relies, what parts of the design he respects and what parts he violates. This
enables evolution of the adaptable system, reuse of adaptations in different adaptable
systems, and a more layered approach to adaptation.

References

1.Garlan, D. and Shaw, M.: An Introduction to the Field of Software Architecture , In Ambriola, V. and

Tortora, G., eds., Advances in Software Engineering and Knowledge Engineering , volume I. World

Scientific Publishing Company, 1995.

2.Goldberg, A. and Rubin, K.S.: Succeeding with Objects Decision Frameworks for Project

Management, ISBN 0-201-62878-3, Addison-Wesley Publishing Company, Inc., 1995.

3.Kiczales, G. and Lamping, J.: Issues in the Design and Specification of Class Libraries , Proceedings

of OOPSLA ’92, Conference on Object-Oriented Programming, Systems, Languages and

Applications, pp. 435-451, ACM Press 1992.

4.Lieberherr, K.J.: Adaptive Object-Oriented Software: The Demeter Method with Propagation

Patterns, ISBN 0-534-94602-X, PWS Publishing Company, Boston, 1996.

5.Lieberherr, K.J.: From Transience to Persistence in Object Oriented Programming: Architecture and

Patterns, Position Statement for the MIT Working Group on Object Oriented Programming within

the ACM Workshop on Strategic Directions in Computing Research (June 1996) and for the

ECOOP Workshop on Adaptability in Object Oriented Software (July 1996).

6.Pancake, C.M.: Object Roundtable, The Promise and the Cost of Object Technology: A Five-Year

Forecast, In Communications of the ACM, October 1995, Vol. 38(10), pp. 32-49, ACM Press,

1995.

7.Steyaert, P., Lucas, C., Mens, K. and D’Hondt, T.: Reuse Contracts: Managing the Evolution of

Reusable Assets, Proceedings of OOPSLA‘96 Conference on Object Oriented Programming,

Systems, Languages and Applications, pp. 268-285, ACM Press 1996.

8.Yourdon, E.: Object-Oriented System Design: An Integrated Approach ; Yourdon Press Computing

Systems, Prentice Hall, 1994.

