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Abstract  Recent developments in subjectivity, composition technology and

novel prototype-based languages demonstrate that dynamic object extension is

an essential feature in modern object-orientation. The total absence of static

type systems for dynamic object extension is a major obstacle for its adoption.

We describe a static type system using specialisation interfaces with a trade-off

between possible assignments and possible extensions as key principle. We

furthermore argue that the introduction of specialisation interfaces in the

system opens up a lot of new perspectives in software engineering in general.

1 Introduction
Recent developments such as subjectivity [Harrison&Ossher93], composition technology

and novel prototype-based languages demonstrate that dynamic object extension is an

essential feature of object-orientation. The possibility to dynamically extend objects is one of

the main characteristics of prototype-based languages [Lieberman86] [Ungar&Smith87]. In

contrast with conventional class-based languages where each class statically knows its parent

class, in prototype-based languages inheritors only know their parent at run-time, allowing the

inheritance hierarchy to be created at run-time. This results in a much more flexible approach.

On the other hand, the total absence of static type systems for dynamic object extension is

a major obstacle for its adoption. While static type checkers for class-based languages are

very well known, for prototype-based languages this is not the case. In general, type systems

for object-oriented languages are characterised by substitutability of supertypes by subtypes.

As a consequence, it is always possible for a variable to contain an object of a subtype of its

formal type. In addition, not all object extensions are type correct. This complicates static

type checking dynamic object extension as type checkers must determine the type correctness

of extending an object, of which the actual type is not statically known.

One possible solution is to prohibit all extensions that do not result in subtypes. This can

be determined on the basis of the objects’ client interface, but results in a very restrictive

approach. When allowing objects that are not in a subtype relationship with their parents to be

created, some extensions are still not type safe, as they create objects with internal
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inconsistencies. To determine which cases are type safe additional information is needed. We

will show that this additional information can be given by annotating objects with

specialisation interfaces (as introduced in [Lamping93]). The specialisation interface of the

object under extension (parent) makes its internal structure visible to the extension (inheritor)

in an encapsulated way. This internal structure reveals which methods are defined in terms of

what other methods. Annotating objects with specialisation interfaces results in a form of

negative type information as it restricts possible inheritors.

We will show that the ability to type check dynamic object extension is based on a trade-off

between possible assignments and possible extensions. Specialisation interfaces give the

programmer the means to indicate whether he wants to restrict either the set of object types

with which an object can be substituted or the set of extensions that can be made of it. This

results in a mechanism that can be statically type checked and lies somewhere between

uncontrolled dynamic object extension and fixed static inheritance. Moreover, the

introduction of specialisation interfaces shows a lot of promise in software engineering in

general.

As an example we describe a type system for an object-based language in which it is

possible to dynamically extend objects through mixin application1 [Bracha&Cook90]

[Steyaert&al.93].

2 Reuse of Code versus Reuse of Behaviour
A large range of type systems for object-oriented languages has already been proposed

[Abadi&Cardelli94] [Bruce&al.93] [Palsberg&Schwartzbach94], but none of them take the

possibility of dynamic object extension into account. Furthermore, the use of inheritance has

evolved from simply a means to reuse code to a way to achieve reuse of behaviour

[Wegner&Zdonik88], which implies substitutability. This means that if B inherits from A, an

instance of B can be used whenever an instance of A is expected. Problems concerning the

typing of such languages lead to the realisation that a separation of the notions of object and

interface is necessary [Canning&al.89].

The main discriminator between current type systems for object-oriented languages is the

choice between covariance and contravariance [Cardelli&Wegner85]. Although the

covariance rule might seem more intuitive, it has repeatedly been shown not to be type safe

[Cook89][Pierce92]. The contravariance rule on the other hand guarantees type safety, but

reduces expressiveness. [Dodani&Tsai92] gives a clear discussion of all issues concerned

with this choice. They also observe that inheritance is used to express two kinds of

relationships: the substitutable is-a relationship and abstraction of common behaviour. The

choice between covariance and contravariance should therefore be directly related to the

1 We developed this type system for a toy version of the language Agora [Codenie&al.94]. For reasons of brevity
we will not describe the language here; we give our examples in a straightforward syntax.
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specific use of inheritance. Every model that explicitly chooses strictly for either covariance

or contravariance therefore has to make exceptions to model the other relationship.

The core of our type system is based on the contravariance rule. In this case one either

applies strict contravariance with the corresponding loss of expressiveness or one also allows

inheritors to be created that are not subtypes. We opted for the latter, thus offering both the

possibility to model substitutable is-a relationships (by respecting contravariance) and

abstraction of common behaviour.
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aHerbivoreMammal
eats (plant)

aMammal eats (food)
giveHabitat ()
displayBehaviour()

aPanda
eats (plant)

aBear eats (food)
displayBehaviour()

anEndangeredBear

MakeEndangered

aHerbivoreBear
eats (food)
displayBehaviour

MakeBear

Valid Mixin application Subtype

Figure 1

Figure 1 illustrates this on the example of an information system in a zoo. We consider the

subsystem concerning mammals. aMammal contains the general behaviour of mammals. E.g.

it contains a method eats that displays information about the animals’ eating habits. A whole

range of mixins describes the particular behaviour of different kinds of mammals. For

example in MakeBear, which describes the family of bears, the method eats is overridden to

specify a bear’s eating habits. Listing 1 shows a possible implementation of MakeBear.

mixin MakeBear is method eats (someFood:food) is ...
method displayBehaviour () is self eats(fish);

super (); …
Listing 1

Then objects are created through mixin application. For instance, aBear is created by

applying M a k e B e a r  to a M a m m a l . While a B e a r  is a subtype of aMammal,

aHerbivoreMammal  is not, because to create aHerbivoreMammal the mixin

MakeHerbivore has overridden the eats-method with a covariant parameter type. Strictly

applying contravariance would mean forbidding the creation of aHerbivore-Mammal.

Although this would guarantee that all inheritors are substitutable for their parent, it would

imply a significant loss of expressiveness. Allowing the creation of objects like
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aHerbivoreMammal  to obtain abstraction of behaviour is often very useful (see

[Dodani&Tsai92] for examples).

3 Type Correct Object Extensions
But even in the case where it is allowed to create inheritors that are not in a subtype

relation with their parent not all mixin applications are allowed. Consider sending the

message displayBehaviour to aPanda. This method is defined in MakeBear and invokes

self eats(fish) and is type correct at that level. However the version of eats that will

actually be invoked is defined in MakeHerbivore and expects an argument of type plant,

which will cause an error. Applying MakeHerbivore to aBear should not be allowed since

it incorrectly overrides a method invoked through a self send in aBear. Of course, it should

still be allowed to apply MakeHerbivore and MakeBear separately, or even even to apply

MakeHerbivore before MakeBear (which is a possible solution to make Panda’s). But once

MakeBear has been applied it should no longer be allowed to apply MakeHerbivore.

This example indicates that in order for the type system to restrict possible inheritors it

needs to know what self sends are executed by the parent object. This is achieved by

appending an extra self clause to each method. The methods in these self clauses need to

respect contravariance when they are overridden. These clauses thus impose type constraints

on possible inheritors. Hence a mixin is not only typed by its client interface, but also by its

internal structure (its specialisation interface).

Remark that appending the self clause could have been achieved either by adding one

single clause to each mixin declaration, or by adding separate clauses to every method

declaration. We opted for the latter, as this gives us more information (i.e. in what method the

self sends are performed) and thus makes it possible for the type system to be less restrictive

in the set of mixin applications it prohibits. Consider e.g. MakeEndangered defining its own

version of displayBehaviour, calling a self send of eats(somePlant) (which wasn’t the

case earlier in the example, and in the figure). As a result MakeHerbivore could be applied

anyway, because sending displayBehaviour to aPanda would no longer result in an error.

This is only so because the self send of eats was performed twice in the same method

(displayBehaviour). To be capable of type checking on such a fine-grained level, we need

to know exactly in what method each self send is performed. The only possible reason left to

forbid the application of MakeHerbivore  would be that the definition of

displayBehaviour in MakeEndangered also performs a super call, such that the

displayBehaviour of  MakeBear would still be called after sending displayBehaviour

to aPanda. Our type system takes all these possibilities into account.

Besides putting constraints on what methods cannot be overridden covariantly by the

mixin (through the self clauses), constraints are also necessary on what methods should

certainly be implemented by the parent. Mixins can do super sends, even though their future

parents are unknown. Therefore, when applying a mixin to an object it should be verified



- 6 -

whether all messages that are called through super sends in the mixin are implemented in the

parent object. The mixin is therefore extended with a super clause2. Listing 2 gives MakeBear

extended with self and super clauses. The type checker verifies whether all methods called

through self and super sends are given in the intended clauses3.

mixin MakeBear is method eats (someFood:food) is ...
method displayBehaviour() is self eats(fish);

super (); …
withSelf eats(food) end

withSuper displayBehaviour() end
Listing 2

By adding these clauses we create a structure similar to Lamping’s specialisation

interfaces. The extra knowledge provided by the self clauses enables us to impose a less strict

form of contravariance.

4 Typing Dynamic Object Extension
All the issues raised up until now are applicable to static inheritance, as well as dynamic

inheritance. Dynamic extension does however raise some particular problems. As

substitutability of supertypes by subtypes is a general characteristic of object-oriented type

systems, the actual type of an object can always be a subtype of its formal type. The key

problem of typing dynamic object extension is that a static type checker cannot know the

exact type of the object that is being extended. As far as a static type checker can determine,

in listing 3 an object with type aMammal is extended with herbivore behaviour. The actual

type of this mammal object can, however, also be aBear, due to the assignment of aBear to

aMammal. As the extension of aBear with herbivore behaviour is not type correct, the

program in listing 3 should be rejected.

variable aMammal is rootObject MakeMammal;
variable aBear is aMammal MakeBear;
bool ifTrue: aMammal := aBear;
variable herbie is aMammal MakeHerbivore.

Listing 3

5 Substitutability versus Dynamic Extensibility
 The conflict between the above assignment of aBear to aMammal and the extension with

herbivore behaviour is a conflict between substitutability of client interfaces and

substitutability of specialisation interfaces. Whereas, with respect to the client interface

aBear is compatible with aMammal, with respect to the specialisation interface it is not (i.e.

aMammal allows more extensions than aBear). It is therefore clear that the above typing

2Note that we add the super clause at the mixin level and not at the method level. As we only allow super calls of
methods with the same name as the method performing the call, introducing super clauses on the method level
wouldn’t provide us with any extra information (only perhaps a shorter notation). The system could be adjusted to
allow other super calls, but we feel it is good programming practice to perform only such super calls.
3 We do not allow using self  or super  at the right-hand side of an assignment or as a parameter. Therefore the self
and super clauses could be generated, but for clarity reasons we add them explicitly.
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problem can be solved by enriching the type system with type rules on substitutability that

also take specialisation interfaces into account.

Applying this to the example we see that aMammal does not specify a type restriction on

the specialisation interface of inheritors, while aBear does have a type restriction on

inheritors, concerning the self send of the eats-method. On this basis the assignment

aMammal := aBear can be prohibited by the type checker since an object with more type

restrictions on the specialisation interface is not substitutable for an object with less type

restrictions. When the assignment is prohibited due to the absence of type restrictions on the

specialisation interface, the extension of aMammal with herbivore behaviour is allowed.

If one does  want to allow aMammal := aBear, one needs to add a type restriction that

makes the specialisation interface of aMammal compatible with the specialisation interface of

aBear; i.e. one has to add a type restriction on the possible extensions of aMammal.

Obviously this extra type information should be such that MakeHerbivore is not applicable

to the annotated aMammal. We therefore provide the possibility to extend the specialisation

interface of an object with additional restrictions, i.e. an artificially added self clause (listing

4)4. It is obviously superfluous to relate the methods in this extra self clause to a certain

method.

variable aMammal is rootObject MakeMammal withSelf eats (food) end
Listing 4

The choice whether or not to extend an object type with additional constraints depends on

the programmer’s intentions for further use of the object. Neither option is as radical as might

seem at first. When the programmer wants to allow the MakeHerbivore extension, it is e.g.

still possible to assign an endangered mammal to aMammal as this does not conflict with the

extension. For the same reason it is still possible to apply MakeEndangered to aMammal,

when aMammal := aBear is allowed.

In any way, the trade-off should be made by the programmer and not by the type checker.

The programmer is therefore given the ability to indicate whether he wants to restrict the set

of object types with which an object  can be substituted or whether he wants to restrict the set

of mixins that can be applied to this variable. He can do this by (not) extending the

specialisation interface of the object.

6 The Type System
Because of space restrictions we only sketch the two main rules here5.

6.1 Type Checking Substitutability

If you consider the client interface of an object to be the set of all methods and its self

interface to be the union of all self clauses attached to these methods, then subtyping can be

4 Note that this might not be the most practical approach. Other notations are possible, we just add them explicitly
as extra self clauses here to make our point.
5For the full set of rules please contact the first author at clucas@vnet3.vub.ac.be.
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defined through interface containment on both these sets. An interface A contains an interface

B if all methods in A are also in B and the methods of A contravariantly override those in B.

Note the reverse direction on the containment relationship on client and self interfaces.

Subtyping Rule
Γ; Ω |- ω1 containsClient ω2

Γ; Ω |- ω2 containsSelf ω1
----------------------------------------

Γ; Ω |- ω1 <: ω2

6.2 Type Checking Dynamic Extensibility

As explained in the example, a mixin is not allowed to extend an object (= the object

excludes the mixin), if the mixin covariantly overrides a method that is invoked through a self

send in the object.

Exclusion Rule
∃ i,j: mi = nj and not ϕj <: φi

---------------------------------------
Γ; Ω |- ω excludes γ

where ω = {..., m:φ withSelfType {mi:φi}i=1,...k ,...}
and γ = {nj: ψj withSelfType σj}j=1,...,k withSuperType σ

A mixin is applicable to an object if it isn’t excluded by it and if the object implements all

methods required by the mixin’s super interface.

7 Types for Software Engineering
Specialisation interfaces were first introduced as a means to enhance reuse. As mentioned

earlier, inheritance was traditionally used to describe two kinds of reuse: reuse of behaviour

and reuse of code. Later the object-oriented reuse community emphasised reuse of design as

another major factor, with abstract classes and frameworks as the most important techniques

to achieve it [Johnson&Russo91]. Finding a clear and expressive way to describe how a

framework can be reused and to which constraints adaptations should comply is one of the

most compelling problems in the development of reusable software. While currently the

possibilities for reuse are mostly described in an informal way, we want show how type

information can be used to achieve a more controllable model of modification. One way to do

this is through contracts  [Helm&al.90] [Holland92]. Specialisation interfaces as we use them

in our type system can be used to provide similar information. One of the main differences is

that contracts explicitly describe compositions of different kinds of objects (“ensembles” in

[Johnson&Russo91]). One could think of specialisation interfaces as of contracts between

objects and their inheritors. We want to investigate how the concept of specialisation

interfaces can be extended to play the role of contracts between a number of objects.

In a similar vein, we want to investigate how the typing of specialisation interfaces can be

used to support the correct reuse of abstract classes. Similar to abstract classes specialisation

interfaces document a part of the design of a class: the layering of methods. This information
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is not fully exploited by the current type system. We first taxonomised different kinds of reuse

and different operations performed through incremental modification. We distinguish three

kinds of reuse: reuse of code, reuse of behaviour and reuse of design and four operations that

are performed through incremental modification: extension, concretisation, generalisation and

refinement. Now we investigate what constraints should be put on these operations to achieve

the distinct kinds of reuse. In the current system, method type correctness is the only

restriction involving specialisation interfaces. One step in the direction of distinguishing

design inheritance from plain code inheritance is an extension of the type rules introducing

explicit ‘abstract’ and ‘template’ methods.

8 Conclusions
Dynamic object extension can be made type safe without loosing the flexibility of

prototype-based languages. The key to it is a trade-off between the set of objects with which

an object can be substituted and the set of possible extensions. Specialisation interfaces were

introduced in the system to provide extra information necessary to allow the creation of

inheritors that are not in a subtype relationship with their parent. Furthermore, the use of

specialisation interfaces in this type system opens up new perspectives in software

engineering for flexible object-oriented systems.
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