
APPAREIL: A Tool for Building Automated
Program Translators Using Annotated Grammars

Diego Ordóñez Camacho
Université catholique de Louvain, Belgium

diego.ordonez@uclouvain.be

Kim Mens
Université catholique de Louvain, Belgium

kim.mens@uclouvain.be

Abstract—Operations languages are used to write spacecraft
operations procedures. The APPAREIL tool automates the pro-
cess of generating program translators between operations lan-
guages, from a specification of their language grammar annotated
with extra information. From these annotated grammars the
tool automatically produces a partial translator that covers
most of the translation. This translator needs to be augmented
manually with specific transformations, to deal with the more
complicated cases. To get more confidence on the correctness
of the translation, the tool offers a control-flow equivalence
verification module.

I. INTRODUCTION

Automatically generating language translators, based merely
on source and target language specifications, is a complex
problem. Restricting ourselves to a given family of domain-
specific languages, that have a common semantic basis, signif-
icantly simplifies the problem. When viewed from this angle,
the problem becomes more syntactic in nature, thus enabling a
much higher degree of automation. There exist several families
of domain-specific languages where such a common semantic
basis exist, and we are focusing on the Operations Languages
(OLs) used in spacecraft mission planning.

Although different OLs have different syntax, overall they
share many features. This is because they all address the same
goal of communicating with a spacecraft and they all re-
spect known standards on satellite construction and operation.
Programs written in OLs are generally known as spacecraft
procedures. They describe a set of instructions that need to be
executed by a spacecraft, and therefore must have knowledge
about that spacecraft and its behaviour. They need to know
how to retrieve information from the spacecraft (telemetry)
and how to make the spacecraft execute certain commands
(telecommand). This knowledge is typically contained in a
database called the Mission Information Base (MIB) [1]. The
semantics of OLs is therefore limited essentially to describing
the overall flow of control of procedures, organising the way
they execute the telecommands and read telemetry data.

The approach we propose to translate between any two oper-
ations languages, is a generic technique to semi-automatically
derive translators from one OL to another, and to verify
control-flow equivalence of the resulting translation, based on
the corresponding context-free grammars of those languages
annotated with additional semantic information.

II. THE APPAREIL APPROACH

Figure 1 provides a schematic overview of our automated
approach to program translation [2], [3], [4], indicating the
three different kinds of actors involved. The bottom level

Full Translator

Partial Translator
Additional

Transf.
Rules

APPAREIL Translator Builder

Source
Language

Specification

Target
Language

Specification

Procedure
in Source
Language

Procedure
in Target

Language

tool

builder

to
o
l
g
e
n
e
ra

to
r

to
o
l
b
u
ild

e
r

to
o
l
u
s
e
r

generates

generates

Fig. 1. The APPAREIL Model

represents the end users, who only care about having a
program transformer, to which they can feed programs written
in their source programming language and which produces
an equivalent program in the target language. At the inter-
mediate level, we have the tool builders who provide the
end users with a transformation tool for the source and
target programming language of their choice. To build such
a program transformation tool, they make use of our tool,
which is situated at the top level. The tool builders provide
the top level tool with a specification of the grammar of
both source and target language, tagged with annotations that
specify the correspondence between language constructs in the
two languages and its control-flow semantics, as illustrated
in Figure 2. Using this input, the top level tool then semi-
automatically generates a dedicated transformer for translating
programs from the source to the target language, and the tool
builder has to intervene only to specify how to translate those
cases for which no direct equivalence could be stated between
productions in the source and target grammars.

The full flow of the APPAREIL process for producing
language translators, as depicted in Figure 3, can be described
in five main steps. First (1) we start from the OL documen-

Context-free Grammar Control Flow Graph

IN

OUT

Branch

TRUE FALSE

cond:Expression

then:Block

else:Block

"if" cond: Expression
"then" then: Block
"else" else: Block
"fi"

-> IF { cons("IfThenElse")

,link(IN,cond)
,link(cond,then,TRUE)
,link(cond,else,FALSE)
,link(then,OUT)
,link(else,OUT)

 }

Mapping

Control-Flow Semantics

Fig. 2. The APPAREIL Annotations

tation that provide the specifications and definitions of the
language. Since often this documentation is not complete or
too informal as to be used directly, we need to complete
it and correctly structure it. We use the ASF+SDF Meta-
Environment [5] as a support tool to design a working SDF
grammar for both source and target languages. Next (2), we
annotate those grammars with extra annotations defining the
mapping and the control-flow semantics [3]. The third step (3)
is fully automatic. It takes as input the annotated grammars
of both languages, and produce a partial translator for them.
Nevertheless, this translator, depending on how similar both
languages are, could require a certain amount of extra work
to complete with additional transformations. In step (4) we
cope with those cases where the nature of the mismatches
between languages are such that an automatic transformation
cannot be derived only based on annotations. The previous
step already provides relevant information, extracted from an
analysis of the annotations mapping, signalling the places
where mismatches and incompatibilities have been found.
We use a dedicated transformations library to compose the
additional transformations to include in the translator. Finally
(5), we simply use the now complete translator, providing it
with the procedures (programs) to translate, and verify the
result of this translation with our verification module, that
will check for control-flow equivalence between original and
translated procedures. This step could be cyclic, especially in
cases when some further modifications to the translator need
to be made due to errors reported by the verification module.
A report from the bisimulation, providing different levels of
warnings, can be analysed to decide if the transformation is
reasonable enough.

III. INDUSTRIAL RELEVANCE

Automated support for translating procedures between op-
erations languages, in the domain of spacecraft mission plan-
ning, is an important issue [3]. There is an industrial de-
mand for such general-purpose tools that can manipulate and
translate between procedures in any of the many operations
languages that currently exist. The current tendency to strive

OL1
OL2

Design

LG1
LG2

Annotates

ALG1
ALG2

APPAREIL
Translator

Builder

Partial
Translator

Add

Full
Translator

ASF+SDF
Meta-

Environment

APPAREIL
Grammar

Annotations

APPAREIL
Transformations

Library

ASF+SDF
Rewriting

1

2 3

4
Support

Generates

Proc-
edure

APPAREIL
Verification

5

Verifies

Fig. 3. The APPAREIL Process.

towards a standard operations language strengthens the need
for translation tools, not only to translate procedures in old
operations languages to the new standard language, but also
because there is a need for translating between the two
languages competing to become a standard.

ACKNOWLEDGEMENT

This research was supported by Rhea System and the Wallo-
nian Region in Belgium, in the context of the FIRST Europe
Objectif 3 research project APPAREIL, and by the MoVES
project of the Interuniversity Attraction Poles Programme of
the Belgian Science Policy (Belgian State).

REFERENCES

[1] L. J. Timmermans, T. Zwartbol, B. A. Oving, and A. A. Casteleijn,
“From simulations to operations: Developments in test and verification
equipment for spacecraft,” DAta Systems In Aerospace, 2001.

[2] D. Ordóñez Camacho and K. Mens, “Using annotated grammars for the
automated generation of program transformers,” in Ingénierie Dirigée par
les Modéles, IDM2007, proceedings. Toulouse, France: Eds. Antoine
Beungard & Marc Pantel, 2007, pp. 7 – 24.

[3] D. Ordóñez Camacho, K. Mens, J.Cater, and D. Quigley, “Issues and
problems in operations language translation,” in SpaceOps. AIAA, 2008.

[4] D. Ordóñez Camacho, K. Mens, M. van den Brand, and J. Vinju, “Au-
tomated derivation of translators from annotated grammars,” Electronic
Notes in Theoretical Computer Science, vol. 164, Issue 2, pp. 121–137,
2006.

[5] M. van den Brand, A. van Deursen, J. Heering, H. de Jonge,
M. de Jonge., T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser, “The ASF+SDF Meta-Environment:
a component-based language development environment,” in Compiler
Construction 2001 (CC 2001), ser. LNCS, R. Wilhelm, Ed., vol. 2027.
Springer-Verlag”, Apr. 2001, pp. 365–370.

