
Navigating through Java Programs with Concept Lattices

Kim Mens Diego Ordóñez Camacho Mathieu Syben

December 20, 2006

Abstract

In this article we explore the use of formal concept analysis to search Java programs for
methods that implement a certain functionality. The approach relies on the navigation of a concept
lattice where the concepts represent groups of methods that share keywords in their name. In two
experiments carried out on Java programs, the results of searching with a navigation-based search
tool are compared to those obtained with a traditional Java search tool. Even though the results do
not provide conclusive evidence that a lattice-based search performs better than a lexical search,
the insights gained provide useful input for future improvements of the proposed approach and
tool.

1 Introduction
Jonathan Fallon [FAL 04] showed that formal concept analysis [GAN 99] can be applied suc-
cessfully to the domain of information retrieval, to efficiently look for documents of interest in a
large repository of documents indexed by keywords. One of the benefits of using concept lattices
for that purpose is that the information contained in the concepts can be exploited for a directed
navigation through the search space. In contrast to more traditional search techniques, such an
approach can guide users in their search by proposing relevant keywords to refine their search
(or to remove irrelevant keywords). In the experiments reported on in this paper we investigate
whether a similar technique can be applied to search Java programs for methods of interest.

Especially for very large programs, advanced search engines that allow a developer to find
quickly a relevant program entity are valuable. For example, they can help in locating a method
which implements a certain functionality that needs to be extended or adapted. Most contempo-
rary source-code search tools rely on text-based searches or regular expressions over a flat text
representation of the program code. In spite of their simplicity they have the advantage of being
relatively efficient and requiring little input from the user. However, they tend to be rather noisy
for large code bases and are less useful when a programmer doesn’t know exactly what he is look-
ing for (i.e., when the exact combination of keywords needed to locate the desired program entity
is unknown).

An approach based on formal concept analysis partly overcomes this problem by working
over a more structured representation of the code (a concept lattice) and by associating with each
relevant program entity a set of attributes (keywords) that the programmer may use to conduct
or refine his search. More specifically, the special characteristics of concept lattices offer to a
programmer who wants to find a particular program entity the ability to conduct his search by
navigating through the lattice guided by the attributes of the entities he or she encounters during
his search. In this paper we will restrict the search to program entities which are methods, using
as keywords only the words occurring in the names of those methods.

A prototype of a tool that implements our approach was implemented as a plug-in for the
Eclipse development platform (http://www.eclipse.org/). Using this plug-in, two case
studies were conducted, where the results of our tool were compared to those obtained by the
Java search engine that comes with Eclipse. The goal of these case studies was to try and identify

1

http://www.eclipse.org/


relevant methods that implement a certain functionality, based on the words used in the names of
such methods.

The remainder of this paper is structured as follows. We sketch related work on lexical,
keyword-based and navigation-based search tools in Section 2. Section 3 details Fallon’s work [FAL 04]
where formal concept analysis was used in the context of information retrieval. Taking inspiration
from that approach, Section 4 explains our own variant of this approach and tool for navigating
through Java programs. Section 5 explains the set-up and results of the experiments we conducted
to validate our tool. Based on our interpretation of the obtained results in Section 6, we propose
some avenues for future research, before concluding the paper in Section 7.

2 Related work
Tools that search for information in program code often rely on lexical or text-based search. A tool
like grep, for example, provides a generic text-based search based on regular expression pattern
matching. Tools like the Java search integrated in the Eclipse development platform, and sgrep
[JAA 96] perform lexical search on specific types of code entities (like Java methods or fields).
A disadvantage of search tools like the above is that they do not allow to refine the results of a
previous search. To conduct a refined search one has to provide a new more complex search query
and re-launch the query from the start.

In the domain of information retrieval, two well-known techniques to look for information
in large document repositories are keyword-based search and navigation-based search. A classic
keyword-based search method relies on the Vector Space Model [BER 99], that can refined with
Latent Semantic Indexing [BER 99]. Several keyword-based source code search tools have been
developed (e.g., JSearch [SIN 06] and IRiSS [XIE 06]). An important advantage of keyword-
based search techniques is their scalability and ability to efficiently perform very specific searches,
but the user needs to have some knowledge of the names of the code entities he is looking for.

In contrast to keyword-based search, navigation-based search starts from the premise that
it is much easier for a human being to recognise something than to describe it. Tools like
LaSSIE [DEV 90], RiGi [WON 98] or CodeCrawler [LAN 03] allow to visualise or navigate
through the source-code structure, by making a higher-level model of the relevant source-code
entities and their interrelations. Because they work on a model of the source code, however, they
may miss some lower-level details.

3 Information Retrieval with Formal Concept Analysis
Search based on concept lattices is a search method that tries to find the middle ground between
keyword-based and navigation-based search. Similar to a keyword-based search method, a user
starts his search by providing one or more keywords and receives a set of entities that match those
keywords. At the same time, he gets access to a lattice structure that allows him to refine his
search, as he would do with a navigation-based search. The lattice structure provides detailed
information on what keywords could be added to make the user’s search query more precise, or
what keywords could be removed to make it more general. In the remainder of this section, we
briefly explain the idea of formal concept analysis as well as a search method based on that theory.
In the remainder of this paper we then explore the utility of this search method to navigate through
Java programs in search for relevant methods.

Formal Concept Analysis.

Starting from a Boolean matrix of entities and their properties, the technique of formal concept
analysis (FCA) groups all entities in the matrix that share common properties and, inversely, all
properties that are shared by common entities. This gives rise to a double hierarchy of sets (a

2



Galois lattice). For a good theoretical introduction to FCA we refer to [GAN 99]. Nevertheless,
we think that the example below is sufficiently intuitive to be understood by readers less knowl-
edgeable in FCA.

Suppose that we have indexed all Tintin comics, by the Belgian artist Hergé, by keywords
representing the main characters in the collection (Captain Haddock, Cuthbert Calculus, Thomson
and Thompson, Snowy) or by objects and themes appearing in them (the moon, Marlinspike
Hall, a boat). Taking as entities the different comic books (for example, bd1 = ‘Red Rackham’s
Treasure’) and as properties the keywords, we obtain a Boolean matrix like the one depicted in
Table 1.

Table 1: Tintin comics indexed by keywords.

Haddock Moon Thomson Marlinspike Boat Calculus Snowy
bd1 1 0 1 1 1 1 1
bd2 1 0 0 0 1 0 1
bd3 0 0 1 0 0 0 1
bd4 0 0 1 0 1 0 1
bd5 1 1 1 1 0 1 1
bd6 1 1 1 0 0 1 1
bd7 0 0 1 0 1 0 1

Taking this matrix as input, an FCA algorithm determines all possible concepts, each of which
consist of a set of entities and a set of properties, such that each entity of the concept shares all
properties of the concept and every property of the concept holds for all of its entities. In addition,
the sets in each concept are supposed to be maximal in the sense that no entity outside the concept
has those same properties, and no other property outside the concept holds for all entities in the
concept. The set of concepts thus obtained can be structured in a Galois lattice structure. For
example, the concept lattice for the matrix shown in Table 1 is depicted in Figure 1.

Navigating the lattice.

We now illustrate with a simple scenario how such a lattice structure can help us to locate ef-
ficiently the right information in a large repository of documents. Suppose that a user has read
most albums in the Tintin collection and that he is currently looking for the book ‘Red Rackham’s
Treasure’ (corresponding to comic bd1 in the table). Although he forgot the exact title of the book
he remembers that it was about a boat.

To conduct his search the user starts with the keyword ‘Boat’. After having filled in this
keyword, the search takes the user to the most general concept in the lattice that has this keyword
(i.e., the unique highest concept in the lattice that contains the keyword ‘Boat’ in its property set).
As can be seen in Figure 1, this is the concept ({bd4, bd1, bd7, bd2},{Snowy, Boat}). The user
is confirmed in his search because all books in this concept do not only share the keyword ‘Boat’,
but also the keyword ‘Snowy’, and he remembers that the dog named ‘Snowy’ indeed appears in
the story he is looking for. Furthermore, the search can be refined by either adding the keyword
‘Haddock’ or the keyword ‘Thomson’, which will take him to more specific concepts (i.e., with
less comic books sharing all those keywords). This corresponds to navigating downwards in the
lattice. The user can also navigate upwards, i.e. to generalise his search, by removing the keyword
‘Boat’ from his search.

An important point is that, apart from the initial keyword used to start the search, the user
did not have to “imagine” any keyword. It sufficed to recognise the keywords proposed along the
way and to navigate in the right direction based on those keywords. In this particular scenario, the
user recognised that captain Haddock played a central role in the story and thus further refined his

3



Figure 1: A concept lattice of Tintin comics and their keywords.

search with that keyword to further restrict the search results. At this point the set of results only
contained two comic books and the user recognised the one he was looking for and selected it.

4 Source-code Navigation with FCA
Inspired by Fallon’s information retrieval tool based on FCA [FAL 04], we conceived a similar
tool to search Java programs for methods implementing a certain functionality. We use Java
methods as entities in our concept analysis and as properties we take the keywords appearing in
the names of those methods, because method names tend to reveal a lot about the intention of
a method. More specifically, to obtain the keywords from a method’s name, we split the name
in different fragments depending on where the uppercase characters appear in the name. For
example, with a method named getConfigFile the keywords ‘get’, ‘config’ and ‘file’ would
be associated.

In addition to applying an FCA algorithm on the Boolean matrix consisting of those meth-
ods and their corresponding keywords, we apply some extra pre-processing, post-processing and
filtering to reduce the noise and improve the quality of the results. We pre-process the set of all en-
tities (Java methods) to remove irrelevant methods, like test methods. We also pre-process the set
of all keywords by excluding those that belong to a previously established blacklist. This black-
list contains very generic keywords (like ‘name’, ‘result’, ‘value’), auxiliary verbs (like ‘must’,

4



‘will’), prepositions (‘for’, ‘with’), conjunctions (‘and’, ‘or’), and so on. To bring keywords with
the same root to the same form, we also apply Porter’s stemming algorithm [POR 80] on the
keywords, before putting them in our Boolean matrix. For example, the words ‘connection’ and
‘connected’ are brought to the same stem ‘connect’. In our experiments, no post-processing was
performed, but the tool can be configured, amongst others, to remove concepts containing too
many or too few entities or keywords.

Figure 2: Our Eclipse source-code navigation plug-in based on FCA.

Once the lattice has been created using the approach outlined above, our dedicated lattice-
based search tool shown in Figure 2 allows us to navigate the lattice, based on the methods’
keywords. Suppose we are looking for methods implementing the functionality of “selecting a
graphic component”. The first step is to imagine what are the possible keywords identifying those
methods. Intuitively, we decide to start with the keyword ‘select’. We can either type it in field
‘A’, or choose it from list ‘B’ where we find all keywords in the current node (the top node in this
case). After selecting this keyword, the context changes and we start seeing results displayed in
lists ‘C’ and ‘D’, in this case all methods indexed by ‘select’ and their implementing classes. List
‘B’ is also updated and now shows the keyword ‘figure’, which seems interesting enough to try it.
Indeed, it brings us to a concept containing the method figureSelectionChanged, whose
code indeed implements the functionality we were looking for. Throughout our search, list ‘F’
always shows all methods that can be reached from the current node, which is useful information
to help us decide whether it is worthwhile to further refine our search. When we notice that the
current branch does not lead to interesting results, we can use the list ‘E’ to go back upwards in the
lattice, by removing certain keywords from the search query, and from there either visit another
branch or move further upwards.

5 Experiments

Experimental set-up

To validate our tool and approach, we carried out an experiment on two different case studies.
Both of our experiments consisted of eight basic steps:

5



1. Select a representative set of use cases.

2. For each use case define a specific functionality to look for, and describe it with a group of
keywords.

3. To look for a specific functionality, start the search from one of the keywords describing the
functionality. Trying the more specific keywords first has the advantage of quickly reducing
the search space.

4. If too many results are produced, refine the search with one of the other keywords, to navi-
gate to a more specific concept.

5. If no results are found, remove one of the keywords to choose another likely keyword, or to
move back up to a less specific concept.

6. When likely results are found, validate them by using, for instance, any (or a combination)
of the following techniques:

(a) Look at the source code of the proposed methods
(b) Ask a developer who knows the code for confirmation
(c) Check whether the discovered method is indeed executed when running the corre-

sponding use case

7. Search for the same functionality with the Eclipse Java search tool.

8. Compare the results obtained with both tools.

Case studies

We applied this experiment on two different cases: JHotDraw and our own source-code navigation
plug-in based on FCA (called FCAPlugin).

JHotDraw is a graphics framework to build structured drawing editors. It is a medium-sized
case composed of 467 classes and is a fairly well-designed object-oriented application. One
of our main reasons for selecting this case was the availability of a set of uses cases for that
application, as well as the execution traces for each of those use cases. This allowed us to
validate the results by comparing them to the execution traces (step 6c).

FcaPlugin is an Eclipse plug-in which builds a concept lattice out of Java source code and is the
basis of our navigation tool. It is a small-sized prototype application. Our motivation for
selecting this case was the availability of a developer to confirm the validity of the results
found by our tool (step 6b).

In the remainder of this section, we detail the results of the experiment we conducted on the
JHotDraw case, and categorise the discovered results by comparing them to the results produced
by a standard Java search. Due to space limitations, we will not detail the results for our FcaPlugin
case, but we will summarise and discuss its results in Section 6.

Experiment on JHotDraw

In the JHotDraw case study we considered 24 use cases of which we wanted to locate the methods
implementing the main functionality. For each of the discovered methods, we inspected their
implementation to verify if they indeed implemented the expected functionality (step 6a). In
addition, we compared the discovered results with the execution trace for the corresponding use
case (step 6c). If a discovered method was actually executed for that particular use case, this was
an extra indication that the right method was probably found. Rather than showing the details of
each of our 24 searches, below we give a representative example for each category of results only.
Table 2 summarises all use cases and what kind of results were obtained when searching for those
use cases.

6



Table 2: Results of JHotDraw experiment.

Use case Result
1 Maximise window Method implementing use case not found
2 Select graphical element Lattice useful to suggest interesting subconcepts

Less noise than Java search
3 Move figure Less noise than Java search
4 Resize figure Method implementing use case not found
5 Activate tracing Method implementing use case not found
6 Create new text field Essentially same results as with Java search
7 Add text to figure Essentially same results as with Java search
8 Add URL to figure Essentially same results as with Java search
9 Draw rectangle Essentially same results as with Java search

10 Draw round rectangle Essentially same results as with Java search
11 Connect figures Lattice useful to suggest interesting subconcepts

Less noise than Java search
12 Create elbow connector Essentially same results as with Java search
13 Add border to figures Essentially same results as with Java search
14 Use ‘copy’ command Essentially same results as with Java search
15 Use ‘paste’ command Essentially same results as with Java search
16 Use ‘cut’ command Less noise than Java search
17 Use ‘duplicate’ command Essentially same results as with Java search
18 Delete figure Essentially same results as with Java search
19 Group figure Less noise than Java search
20 Ungroup figures Essentially same results as with Java search
21 Select group Essentially same results as with Java search
22 Bring figure to front Essentially same results as with Java search
23 Fill figure with colour Essentially same results as with Java search
24 Save drawing Essentially same results as with Java search

Method implementing use case not found. In some cases (1, 4 and 5), neither a lattice
search nor a text-based search lead to a relevant result, typically when the person conducting the
research was not capable of finding the right keyword to start the search. This illustrates that
the quality of the search obviously depends on the accuracy of the keywords. For example, our
search for the ‘Maximise window’ use case (1) was negative, because the obvious keywords of
‘maximise’ and ‘window’ did not lead to any interesting search results for either search technique.
The reason for this is that maximising a window is actually implemented by a listener on a frame,
which calls a method componentResized. So the use of the keyword ‘resize’ might have lead to a
better result. Luckily we found only a few negative results of this kind in this experiment, thanks
to the relatively good naming conventions adopted in the JHotDraw code.

Lattice useful to suggest interesting subconcepts. In 2 of our searches (2 and 11), even
though the lattice search and the Java search eventually lead to the same result, the lattice search
was slightly more advantageous because it suggested the right keywords to refine our search, so
that the user did not have to come up with these keywords himself. (Since we conducted the
Java search after the lattice search, the user was already biassed when conducting the Java search.
Therefore, we cannot confirm whether the user would actually have found the right combination
of keywords if he would have conducted the Java search directly.)

A typical example of this was encountered for the ‘Select graphical element’ use case (2).
Using the lattice search tool we started our search from the keyword ‘select’. Given that this

7



keyword was quite generic and thus shared by many methods in the system, this search brought
us to a node in the lattice which had no less than 17 sub-nodes, each identified by different ad-
ditional keywords to reach such a sub-node. After briefly inspecting each of those keywords,
we discovered a keyword ‘figure’ which we decided to navigate to. The corresponding node
again had three sub-nodes of which one contained the keyword ‘change’. Following our intu-
ition that this combination of keywords might lead us to a method to change the selected figure,
we decide to navigate further in that direction, which lead us to discover several methods named
figureSelectionChanged(DrawingView) which were clearly related to the function-
ality we were looking for. To get more confidence in the validity of the discovered methods we
verified if they actually appeared in the execution trace for the ‘Select graphical element’ use case,
which was indeed the case. In summary, in this particular example the lattice search tool clearly
helped us to navigate in the right direction, by allowing us to inspect and select the keywords that
seemed most related to our search.

Less noise than Java search. We also encountered 5 cases (2, 3, 11, 16, 19) where both
the Java search and our lattice-based search eventually lead to the desired result, but the Java
search contained slightly more noise in the results produced, thus requiring a bigger effort from a
user interpreting the results to filter out the noise from the relevant results. The use case ‘Group
figures’ (19) provides a typical example of this category. We started our search by selecting
the keyword ‘group’. One of the sub-nodes of the corresponding concept had the keyword ‘fig-
ure’ so we navigated to that one and discovered a method groupFigures(). Although this
method seemed to be relevant for the use case, it did not appear in the execution trace, which
made us belief that (in this particular execution trace) another method must have been respon-
sible for the grouping of figures. So, we went back to our lattice navigation tool and noticed
that one of the other sub-nodes of the concept with keyword ‘group’ added the keyword ‘com-
mand’. Like before, we then followed our intuition that this might lead to a method implementing
a command to group figures and, indeed, when following this alternative path we discovered a
method groupCommand(String,DrawEditor) which seemed to implement that function-
ality. Next, we verified whether the Java search tool lead to the same results. We used the search
pattern ‘*group*’ to conduct our search and did discover the two methods mentioned above.
However, the result set contained much more noise because we also found lots of methods with
‘ungroup’ in their name (which matched the search pattern ‘*group*’), which was not the case for
the lattice search.

Essentially the same results. In the 16 remaining cases (6–10, 12–15, 17–18, 20–24) there
was no noticeable difference between the Java search and the lattice search, merely because both
almost immediately lead to the desired solution after filling in a single keyword. For example,
for the ‘Add URL to figure’ use case (8) we performed a lattice search on the very specific key-
word ‘URL’ and immediately discovered the two methods getURL() and setURL(Figure,
String) of which the latter clearly corresponded to the functionality we were looking for. When
doing a Java search using the string pattern ‘*URL*’ we immediately discovered these two meth-
ods as well.

Partial results. One disadvantage of both techniques is that we have no guarantee to have
found the complete set of methods implementing a given use case. Let us illustrate this by means
of the ‘Move figure’ use case (3). Without entering in all details, after having performed a search
using the keywords ‘move’ and ‘figure’, we discovered a method named moveAffectedFigures(Point,Point)
which seemed relevant but did not appear in the execution trace for that use case. Hence, we tried
a search on the keywords ‘move’ and ‘select’, which lead to the discovery of another interest-
ing method moveSelection(int,int) which still did not appear in the execution trace,
however. Therefore, even though we were convinced that the methods we discovered were imple-
menting at least a part of the ‘move figure’ functionality, we concluded that there must be other

8



ones that we failed to discover.

6 Discussion of the results
Table 31 summarises the results of the experiments we conducted on both JHotDraw and on
FCAPlugIn. Perhaps the most important conclusion we can draw from the experiments is that
they do not seem to provide any conclusive evidence that our navigation-based search tool per-
forms better than a traditional text-based source code search tool. Indeed, for the majority of use
cases there was no essential difference between using one tool or the other. Only for a limited
percentage of use cases our lattice-based search seemed to offer some advantages (producing less
noise or suggesting interesting keywords to refine the search).

Table 3: Summary of results of our JHotDraw and FCAPlugIn experiment.

Result JHotDraw FCAPlugIn
Lattice useful to suggest interesting subconcepts 2 (8%) 0 (0%)

Less noise than Java search 5 (21%) 1 (7%)
Method implementing use case not found 3 (13%) 5 (36%)

Essentially same results as with Java search 16 (67%) 8 (57%)

After the positive results that were achieved when using FCA for information retrieval [FAL 04],
we were somewhat disappointed by the results of our concept lattice based source-code navigation
tool. Overall, it seems as if a traditional text-based Java search tool (or an extension thereof) does
not perform much worse than our proposed tool. We see two possible causes for this.

First of all, although Java methods could be regarded as a very specific kind of ‘documents’
and the identifiers appearing in their names as ‘keywords’, the number of such keywords associ-
ated with a Java method is typically much more limited than the number of keywords that would be
associated with a typical document. Indeed, since it is an accepted coding convention in object-
oriented programming that methods should have short and clear names, the average number of
keywords per method is small and thus the maximum navigation path to reach a given method
remains small. In other words, the corresponding concept lattice will be wide but flat, and little
navigation is needed for finding methods with a given set of keywords.

Secondly, we limit our search to the identifiers appearing in the methods’ names only. Instead,
we could take the entire method into account and consider the names and types of parameters in
its signature, words appearing in the method’s comments, the calls it makes to other methods, or
the names and types of variables and objects it uses. Not only would this increase the number of
keywords associated to a method, thus allowing us to find more relevant information, it would also
make the lattice increase in size, making the need for navigation through the lattice more relevant.
How exactly to exploit these alternative attributes in a navigation-based search tool remains a
topic of future investigation. A potential risk, however, is that having all this extra information
will lead to more noise in the lattice and thus clutter our search results.

Another possibility is to apply the technique to program entities of coarser granularity, like
classes, files or packages, to which many more keywords can be associated (for example the
names of methods, classes or variables appearing in those entities).

1The sum of the values in the first column yields more than 100% because two use cases were an example of both
“Lattice useful to suggest interesting subconcepts” and “Less noise than Java search.”

9



7 Conclusion
The objective of this work was to build and assess the usefulness of a source-code search tool
based on the theory of formal concept analysis. The idea was to represent a Java program as
a concept lattice and to search the program for relevant information by navigating through that
lattice. Given that a similar approach applied in the context of information retrieval lead to positive
results, our goal was to verify whether this would also be the case for searching Java programs. We
build a dedicated lattice-based tool to search Java programs for methods implementing a certain
functionality (based on the names of those methods) and compared this tool to a lexical Java
search tool. Although the developed tool did not perform worse than the more traditional Java
search tool, we could not conclude that it performed significantly better either. This disappointing
result seemed to be caused mainly by the fact that we only take the names of the methods into
account, thus leading to a very flat lattice where navigation is of limited use. As a topic of
future research we propose to take more advanced properties of methods into account (like types,
variables, calls, ...) which may lead to a larger concept lattice where the use of navigation might
prove more useful.

8 Acknowledgments
We are grateful to Mariano Ceccato for having provided us with some use cases and corresponding
execution traces for the JHotDraw case study. We thank Andy Kellens for proofreading and
commenting on a final draft of this paper.

References
[BER 99] BERRY M. W.BROWNE M., Understanding Search Engines: Mathematical Modeling

and Text Retrieval, SIAM, 1999.

[DEV 90] DEVANBU P. T., BRACHMAN R. J., SELFRIDGE P. G.BALLARD B. W., LaSSIE:
a Knowledge-based Software Information System, International Conference on Software
Engineering, 1990, 249-261.

[FAL 04] FALLON J., Application des treillis de Galois à la recherche d’informations, Master’s
thesis, Université catholique de Louvain, Département d’Ingénierie Informatique, 2004.

[GAN 99] GANTER B.WILLE R., Formal Concept Analysis: Mathematical Foundations,
Spring-Verlag, 1999.

[JAA 96] JAAKKOLA J.KILPELAINEN P., Using sgrep for querying structured text files, 1996.

[LAN 03] LANZA M., CodeCrawler: Lessons Learned in Building a Software Visualization
Tool, Proceedings of the 7th European Conference on Software Maintenance and Reengi-
neering (CSMR 2003), IEEE Computer Society, 2003, 409-418.

[POR 80] PORTER M., An algorithm for suffix stripping, Program, 14, 3, 1980, 130–137.

[SIN 06] SINDHGATTA R., Using an information retrieval system to retrieve source code sam-
ples., ICSE, 2006, 905-908.

[WON 98] WONG K., Rigs User’s Manual, 1998.

[XIE 06] XIE X., POSHYVANYK D.MARCUS A., 3D Visualization for Concept Location in
Source Code., ICSE, 2006, 839-842.

10


	Introduction
	Related work
	Information Retrieval with Formal Concept Analysis
	Source-code Navigation with FCA
	Experiments
	Discussion of the results
	Conclusion
	Acknowledgments

