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Abstract. We report on a prototype tool that automates the time-consuming and error-prone process of 
software merging. Our tool is significantly more flexible than existing merge techniques, as it can 
detect syntactic, structural as well as semantic conflicts. It is implemented as a general framework for 
software evolution that can be customised to many different domains. Because of this, it can be used to 
support evolution of any kind of software artifact, independent of the target language or the considered 
phase in the software life cycle. 

1 Introduction 
In order for software engineering (SE) tools to be as widely applicable as possible, they should be built 
in a general way, independent of the chosen programming language, the available technology, or the 
considered phase in the software life cycle. The latter is especially important, as more and more 
emphasis is being put on the higher life-cycle phases (analysis, design and architecture). Hence, SE 
tools should be able to treat software artifacts in all phases transparently. Unfortunately, most current-
day SE tools and environments lack such a uniform approach. 

Another essential feature of SE tools should be their ability to deal with software evolution, since 
evolution is essential and inevitable in any SE activity. Existing tools address this need only in part, 
e.g., by resorting to a version control system [Conradi&Westfechtel1998]. However, besides 
versioning there are many other evolution issues that should be taken into account. In particular, the 
issue of software merging, needed when software artifacts are being modified in parallel by different 
software engineers, is not properly dealt with by existing approaches [Mens2000b]. Most current-day 
merge tools adopt the technique of text-based merging. This can be regarded as a domain-independent 
approach, since any software artifact is treated as a flat text file. However, this approach turns out to be 
inadequate for finding sophisticated inconsistencies -such as syntactic or semantic merge conflicts- 
during merging. 

In research literature we encountered only a few more powerful merge approaches that have been 
proposed with the specific aim of being domain independent: 

• Westfechtel proposes a 3-way merge technique that detects lexical conflicts when merging parse 
trees [Westfechtel1991]. He also deals with more complex conflicts that are due to changes in the 
bindings of identifiers to their declarations. 

• Berzins takes an alternative approach by relying on a language-independent definition of semantic 
merging [Berzins1994]. To this extent, a generalisation of traditional denotational semantics is 
used to provide the additional structure necessary to formally define semantic merge conflicts. 
Because Berzins’ approach works on the semantics of a model directly, it cannot be used to 
diagnose and locate conflicts between changes in the concrete syntactic representation of a 
program. This prohibits the approach to pinpoint the actual source of a semantic conflict in the 
software. 

• Another domain-independent approach is proposed in [Mens1999]. It is more general than the 
work of Westfechtel and Berzins, in the sense that it can detect syntactic as well as semantic 
conflicts.1 The technique is based on the mathematical formalism of graph rewriting [Mens2000a], 
and builds further on the reuse contracts approach for managing reuse and evolution in a 
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disciplined way [Steyaert&al.1996]. Because reuse contracts have been customised to many 
different domains, including class collaborations [Lucas1997a], UML models [Mens&al.1999, 
Mens&D'Hondt2000] and software architectures [Romero1999], they are a suitable candidate for a 
uniform merge approach. This paper reports on a general framework for software evolution we 
developed based on these ideas. 

2 Dealing with Software Merging 
This section discusses in detail how we intend to deal with the problem of software merging. Software 
merging typically occurs during large-scale collaborative software development, where separate lines 
of development are carried out in parallel by different software engineers, and have to be merged at 
regular intervals. Merging is a time-consuming and complicated process, because many interconnected 
elements are involved, and because merging depends on the structure and semantics of those elements. 
Therefore, sophisticated SE tools that provide automated support are essential. Unfortunately, most 
existing approaches to software merging either lack flexibility or expressive power, as indicated in 
[Mens2000b]. 

One of the more promising approaches is the use of operation-based merging [Feather1989, 
Lippe&vanOosterom1992], which is a specific flavour of change-based merging. With operation-based 
merging, not only the information in the original software artifact and its evolved versions is used (as is 
the case with state-based merging), but the evolution operations that were applied to obtain the evolved 
versions are taken into account as well. These evolution operations can be arbitrarily complex and 
capture the changes that are made in the SE environment. An operation-based merge approach 
facilitates conflict detection, and allows for better support when solving these conflicts. 

changeElementNam e
('Company','Institu te')

addGeneralization('Company','Bank')

C om pany B ank

g

Institu te B ank

k

C om pany B ank

h m o d ified  b y  'T o m '

m o d ified  b y  'K im '

 
Figure 1: Operation-based merging 

To illustrate the idea of operation-based merging, consider Figure 1. We start with two unrelated 
classes Company and Bank . Developer Tom decides to introduce a generalisation relationship from 
Company to Bank  using the operation addGeneralisation('Company','Bank') . Independently, 
developer Kim decides to rename Company into Institute  using the operation 
changeElementName('Company','Institute') . With state-based merging, the renaming cannot be 
detected, since there is no way to distinguish it from the introduction of a new class Institute . With 
operation-based merging, we can take the renaming operation into account to detect and resolve this 
problem. 

Syntactic merge conflicts arise when the result of the merge is no longer well formed. For example, 
this would be the case when the horizontal operation in Figure 1 would be classRemoval('Company') . 
If we try to merge this modification with the introduction of a generalisation edge to Company, we 
obtain an undefined source conflict. (One cannot remove a class that is being depended on.) Operation-
based merging allows us to detect syntactic conflicts in a straightforward and efficient way. Instead of 
comparing two parallel revisions, we simply compare the operations that have been applied to obtain 
these revisions, and look up the associated conflict (if there is one) in a conflict table. Obviously, the 
used operations and reported conflicts may vary for each domain. 

Structural conflicts arise when one of the parallel operations is a refactoring or restructuring 
transformation2 [Opdyke1992, Roberts&al.1997, Fowler1999], and the merge algorithm cannot decide 
in which way the merged result should be structured. As an example of such a conflict, consider the 
situation of Figure 2. Horizontally, the object-oriented class diagram bankApplication.0  is 
restructured, by splitting up class Bank  into two parts Bank  and Agency . During this process, all adjacent 
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edges to the old version of Bank  are redirected to either the new Bank  (as is the case for the 
generalisation relationship) or Agency  (as is the case for the association relationships). In parallel, the 
vertical evolution modifies the diagram by associating a new class Safe  with Bank . When merging both 
parallel changes, the question arises whether Safe  should remain associated with Bank , or whether it 
should be associated with Agency  instead. This cannot be decided autonomously by the merge 
algorithm, because it depends on the meaning attached to Safe . Hence, input from the user is necessary 
in order to resolve the conflict. In this case, we will decide to associate Safe  with Agency  during the 
merge, but it is easy to find examples where the opposite decision should be taken. Nevertheless, a 
conflict table approach can still be used for detecting structural conflicts. 
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Figure 2: Structural conflict 

Semantic conflicts occur when parallel evolutions give rise to unexpected interactions, in the sense 
that the merged result does not behave as expected. To illustrative such a conflict, consider the Account  
class, which contains a number of methods deposit , withdraw  and validate . Initially, withdraw  
invokes validate  to verify whether it is safe to withdraw money from the account (i.e., the credit limit 
has not been reached, and the amount that is withdrawn is not too high). In the horizontal evolution, the 
behaviour implemented in validate  is ‘inlined’ in withdraw  for efficiency reasons. In the vertical 
evolution, Account  is being protected with a password to prevent unauthorised users from withdrawing 
money. To achieve this, the implementation of validate  is refined to incorporate password checking. 
Unfortunately, when we merge both parallel evolutions, it is still possible to withdraw money without a 
password, because the horizontal evolution step removed the invocation from withdraw  to validate . 

3 A Uniform Framework for Software Merging 
We propose a uniform framework for software evolution and merging that is implemented in the logic 
programming language Prolog. Prolog enables fast prototyping, supports multi-way querying facilities, 
and its powerful unification and backtracking mechanism allows us to express most conflict detection 
and resolution rules straightforwardly. Moreover, the uniform syntax of facts and rules makes it 
possible to use them in a transparent way. 

The framework can be divided in two main parts: a part that manages evolution and merging in a 
domain-independent way, and a domain-specific customisation that specifies the translation to a 
particular domain (e.g., implementation code, design models, software architectures). To reason about 
domain-specific software artifacts, the Prolog tool is linked to a software repository or database in 
which all these artifacts are stored. By establishing a direct coupling between records in the database 
and Prolog facts, we can reason about the stored software artifacts in a uniform and transparent way.  

In this section, we will explain the domain-independent framework, while section 4 will elaborate on 
how to customise the framework to specific domains. 



3.1 Managing Evolution 

3.1.1 Attributed graphs 

As an underlying model for representing software artifacts in a uniform way we use attributed graphs. 
This means that the only entities that are used are nodes and directed edges. Nodes and edges have a 
label, while edges have an additional source and target node. Nodes and edges also have a type, that 
will be used to impose domain-specific constraints on them. All nodes and edges specify the name of 
the graph to which they belong, to be able to deal with different versions of a graph. Finally, nodes and 
edges may be qualified with attributes that can store any kind of additional information, such as the 
name of a modifier: modifier(‘Tom’) ; a version number: version(‘1.0’) ; the status of the node or 
edge: status(deleted) ; or the date and time of a modification: timestamp(‘2000/04/01 –

 16:39:25’) . Below we see part of the internal representation of the graph h of Figure 1 that contains 
two nodes Bank  and Company of type class  and an edge hasChild of type generalisation between 
these nodes. 

graph(h). 
node(h,‘Bank’,class,[version(‘1.0’)]). 
node(h,‘Company’,class,[version(‘1.0’)]). 
edge(h,hasChild,‘Company’,‘Bank’,generalisation,[version(‘1.1’),modifier(‘Tom’)]). 

3.1.2 Primitive evolution productions 

Because we want to provide uniform support for software evolution, we need to be able to make 
arbitrary changes to a graph. Therefore, a predefined set of primitive and non-overlapping evolution 
productions is provided. Each production has its own specific meaning and notation, as shown in Table 
1. From a formal point of view, these primitive productions are sufficient to specify any kind of change 
to a given graph. 

In Table 1 and in the rest of this paper, we use the following conventions. Like in Prolog, words 
starting with uppercase letters represent variables. Because Prolog is untyped, we use naming 
conventions to clarify the meaning of the various arguments of a predicate. Variables representing 
labels start with L (e.g., Ln, Lm, …), variables representing types start with T, and variables representing 
attribute lists start with A. 
 

extension(Ln,Tn) add a node with label Ln and type Tn 

cancellation(Ln,Tn) remove a node with label Ln and type Tn 

relabelNode(Ln,Lm) change the label of a node from Ln to Lm 

retypeNode(Ln,Tn,Tm) change the type of a node with label Ln from Tn to Tm 

changeNodeAttributes(Ln,A1,A2) change the list of qualified attributes of a node with label Ln 
from A1 to A2 

refinement(Le,Ls,Lt,Te) add an edge with label Le and type Te between a source node 
with label Ls  and a target node with label Lt  

coarsening(Le,Ls,Lt,Te) remove an edge with label Le and type Te between a source 
node Ls  and a target node Lt  

relabelEdge(Le,Ls,Lt,Lf) change the label of an edge with source node Ls  and target 
node Lt  from Le to Lf  

retypeEdge(Le,Ls,Lt,Te,Tf) given an edge with label Le, source node Ls  and target node 
Lt , change its type from Te to Tf  

changeEdgeAttributes 
(Le,Ls,Lt,A1,A2) 

change the list of qualified attributes of an edge with label 
Le, source Ls  and target Lt  from A1 to A2 

Table 1. Primitive evolution productions 

3.1.3 The evolve predicate 

The predicate evolve(Gi,Gr,P,M,Conflicts)  is used to transform an initial graph Gi  into a result 
graph Gr by applying one of these primitive productions P. To specify the name of the person 
performing the evolution, a fourth argument M is used. This is especially useful in the case of 



collaborative software development, where different modifiers can make changes to the same software 
artifact. Finally, the last argument Conflicts  returns a list of conflicts in those cases where the 
evolution fails. This is for example the case when certain preconditions assumed by the production P 
are not satisfied by the initial graph Gi . A simple example of an evolution step, corresponding to the 
vertical arrow of Figure 1 is: 

evolve(g,h,refinement(hasChild,'Company','Bank',generalisation),‘Tom’,Conflicts) 

It asks to apply a refinement to the initial graph g in order to obtain a new graph h. Depending on what 
the initial graph g looks like, this evolution either succeeds or fails. In case of success, Conflicts  is 
bound to the empty list [] . In case of failure, Conflicts  is bound to 
[applicability(refinement(hasChild,'Company','Bank',generalisation),‘Tom’)]  to indicate 
that the refinement proposed by Tom is not applicable to the initial graph. This would for example be 
the case when one of the nodes Company or Bank  did not yet exist, or when there would already exist a 
generalisation  relationship between Company and Bank.  

In order to perform the actual evolution, evolve  proceeds in four steps: 

1. checkProduction : check the well-formedness of the production P; 

2. preconditions : validate the required preconditions of the production P in the initial graph Gi . 

3. apply : apply the production P to the initial graph Gi . 

4. postconditions : validate whether the postconditions of P are satisfied in the result graph Gr. 

This approach implies that we need to specify well-formedness checks, pre- and postconditions, as well 
as application rules for each of the primitive productions of Table 1. For example, the rules for the 
production refinement  look as follows: 

checkProduction(refinement(Le,Ls,Lt,Te)) :- 
  isEdgelabel(Le), isEdgetype(Te), isNodelabel(Ls), isNodelabel(Lt). 

preconditions(refinement(Le,Ls,Lt,Te),Gi) :- 
  presentNode(Gi,Ls), presentNode(Gi,Lt), absentEdge(Gi,Le,Ls,Lt). 

apply(production(refinement(Le,Ls,Lt,Te),Gi,M) :- 
  assertEdge(Gi,Le,Ls,Lt,Te,M). 

postconditions(refinement(Le,Ls,Lt,Te),Gr) :- 
  presentNode(Gr,Ls), presentNode(Gr,Lt), presentEdge(Gr,Le,Ls,Lt,Te). 

checkProduction  basically determines whether all arguments of the refinement  production have the 
correct type. The predicates preconditions  and postconditions  test whether certain nodes or edges 
are present (positive conditions) or absent (negative conditions) before and after application of the 
production. Finally, whenever we apply  the refinement , we add a new edge  fact to the fact base by 
calling the assertEdge  predicate. 

3.1.4 Composite evolution productions 

Because using only primitive productions does not scale up in more complex situations, we also allow 
to apply an entire sequence of productions at once. For example, we can redirect the source node of a 
given association  edge from Bank  to Agency  by applying the following production sequence: 

[ coarsening(handles,'Bank',  'Account',association), 
  refinement(handles,'Agency','Account',association)  ] 

The evolve  predicate performs this production sequence by sequentially applying each of its 
constituent productions. 

To deal with frequently occurring production sequences we can also create predefined sequences, 
which will be referred to as composite productions. For example, the production sequence mentioned 
above can be abbreviated to redirectSource(handles,'Bank','Account','Agency',association) . 
It is an instance of a composite production that is defined as follows: 

composite( redirectSource(Le,Ls,Lt,Lnew,Te), 
           [ coarsening(Le,Ls,Lt,Te), refinement(Le,Lnew,Lt,Te) ] ). 

From the outside, primitive and composite productions cannot be distinguished since they behave in 
exactly the same way. For example, we can also attach preconditions and postconditions to composite 
productions. A direct consequence of this transparent treatment of primitive and composite productions 
is that composite productions can be used in a similar way as database transactions: the production is 
either applied as a whole, or not applied at all if one of the constituents of the composite production is 
not applicable for some reason. 



3.2 Managing parallel evolution 

3.2.1 The merge predicate 

The evolve  predicate alone is insufficient if we need to combine parallel evolution steps that have been 
made by different software developers to the same initial graph. In that case, both parallel evolutions 
need to be merged. This can give rise to inconsistencies or unexpected interactions because both 
evolutions may not be compatible with each other. For this reason, we implemented a predicate 
merge(Gi,Gr,P1,P2,M1,M2,Conflicts) . Like evolve , it requires an initial graph name Gi  and a result 
graph name Gr. It also requires two graph productions P1 and P2, provided by two different developers 
M1 and M2, respectively. In the example of Figure 1, the following merge command should be invoked: 

merge(g, merged_g, addGeneralisation('Company','Bank'), 
      changeElementName('Company','Institute'), 'Tom', 'Kim', Conflicts ) 

Note that the evolution operations addGeneralisation  and changeElementName  used in this example 
are nothing more than domain-specific variants of the primitive graph productions 
refinement(hasChild,'Company','Bank',generalisation)  and 
relabelNode('Company','Institute') , respectively. How exactly domain-specific evolution 
operations are translated into graph productions will be explained in Section 4.3. 

When the merge fails, a list of Conflicts  is returned. Three kinds of merge conflicts can be 
distinguished. Syntactic merge conflicts arise when P1 cannot be applied after P2 or vice versa, because 
this would give rise to an ill-formed result graph Gr. Structural conflicts appear when two parallel 
evolutions make incompatible changes to the structure of a program. Semantic conflicts arise when the 
result of the merge does not behave as expected, although the result graph Gr is syntactically correct. 
The next subsections elaborate on each of these kinds of conflicts. 

3.2.2 Detecting syntactic conflicts 

As already mentioned in section 2, the paradigm of operation-based merging allows us to detect 
syntactic conflicts in a straightforward and efficient way. It suffices to compare those pairs of primitive 
contract types P1 and P2 that are involved in the merge by looking up the associated conflict in a 
conflict table. For example, suppose that we apply the following merge: 

merge(g,merged_g,refinement(hasChild,'Company','Bank',generalisation), 
      cancellation('Company',class),'Tom','Kim',Conflicts ) 

This particular merge gives rise to a syntactic conflict. The detection of the conflict proceeds as 
follows. First, the merge algorithm tries to apply the refinement  to g which gives rise to some 
intermediate result graph. Next, the algorithm tries to apply the cancellation  to this intermediate 
graph. This fails because the precondition that Company should have no adjacent edges does not hold. 
Hence, a general applicability(cancellation('Company'),'Kim')  conflict is generated, that is 
transformed into a more specific SyntacticConflict  by invoking the predicate lookupConflicts : 

lookupConflicts( applicability(cancellation('Company'),'Kim'),  
                 refinement(hasChild,'Company','Bank',generalisation), 
                 cancellation('Company',class), 
                 SyntacticConflict). 

Internally, lookupConflicts invokes the conflictTable  predicate to compare the two primitive 
productions that are involved. In this particular case, the following clause of conflictTable  will be 
triggered, giving rise to an undefinedSource  conflict. 

conflictTable(ApplConflict,cancellation(Ls,Ts),refinement(Le,Ls,Lt,Te), 
              undefinedSource(Ls,Ts,Te) ). 

This more specific conflict, together with the modification and modifier that caused it, is then bound to 
the variable SyntacticConflict , and presented to the user: 

  syntacticConflict(undefinedSource('Company',class,generalisation) , 
                    modification(cancellation('Company',class)),modifier('Tom') )  

In some situations we can even go further than merely detecting a conflict. For example, when we 
perform the merge of subsection 3.2.1, we get a syntactic conflict relabeledSource(‘Company’, 

’Institute’) , but in this case the conflict can be resolved automatically by imposing a certain order 
on the operations: if we first apply addGeneralisation , and next changeElementName , we don’t get a 
syntactic conflict anymore. In other words, for certain combinations of operations, the merge algorithm 
may be refined to include default conflict resolution strategies. 



Finally, the use of composite productions also has an impact on how syntactic conflicts can be 
detected. Due to space constraints, however, we cannot discuss this issue here. 

3.2.3 Detecting structural conflicts 

Figure 2 of section 2 illustrated a structural inconsistency. It arises when one evolver performs a 
restructuring operation, while another evolver makes a change that interacts with this restructuring. 
Unlike with syntactic conflicts, the merge does not necessarily gives rise to an ill-formed result graph. 
Nevertheless, we would like to detect these situations as they may give rise to problems in future 
evolution steps. In order to detect structural inconsistencies, we can use the same technique as for 
syntactic conflicts: we can compare restructurings with other operations to see whether they give rise to 
unexpected interactions, and look up the associated structural conflict in a conflict table. Hence, the 
only thing that needs to be done is to extend the conflict table with restructuring operations and their 
associated conflicts. 

3.2.4 Detecting semantic conflicts 

The fact that two parallel evolutions can be merged into a well-formed result graph Gr is no guarantee 
that everything will behave correctly. The parallel evolution steps may still interact in undesired ways. 
If this happens, we say that a semantic conflict has occurred. A typical example of a semantic conflict 
is the unexpected introduction of cycles (possibly leading to infinite recursion) because two parallel 
developers independently introduce an edge in the opposite direction. Such a conflict can be detected 
by looking in the result graph for particular occurrences of graph patterns that were not yet present in 
the initial graph. For example, the code below specifies how a cycle introduction should be detected: 

conflictPattern(Gr, cycleIntroduction( Gr, Ls,Lt ,T ) ) :- 
  edge( Gr,Le, Ls,Lt ,T,C ) , edge( Gr,Lf, Lt,Ls ,T,C2 ) , 
  differentModifier(C,C2). 

Basically, what happens is that in the graph Gr the occurrence is checked of two arbitrary edges with 
the same type T but in the opposite direction, and such that both edges were introduced by different 
modifiers. As can be seen in the code above, detecting occurrences of conflict patterns is extremely 
simple in Prolog, thanks to its built-in unification and backtracking mechanism. 

3.3 Other evolution predicates 

Besides the evolve  and merge  predicates that deal with software evolution and merging, respectively, 
many more predicates are needed for dealing with other aspects of software evolution. The following 
useful predicates have also been implemented, or are currently being implemented. 

undo(Gr,Gi,P,M)  can be regarded as the inverse of evolve . Suppose we have used evolve  to calculate 
a result graph Gr by applying a production P (primitive, composite or sequence) to an initial graph Gi , 
and that we have deleted the initial graph Gi . Then we can still reconstruct Gi  by starting from the 
result graph Gr and applying the production P in the opposite direction. This is possible because each of 
the primitive productions in Table 1 has an inverse. E.g., the inverse of extension(Ln,Tn)  is 
cancellation(Ln,Tn)  and the inverse of relabelEdge(Le,Ls,Lt,Lf)  is relabelEdge(Lf,Ls,Lt,Le) . 

compact(ProdList,CompressedList)  compacts a primitive production sequence ProdList  by 
removing all redundant productions. For example, if an edge between two nodes is first added and 
removed later, the two corresponding productions refinement  and coarsening  are redundant and can 
be removed. Compaction is useful to reduce storage space, to increase the efficiency of evolution and 
merging, and to remove intermediate syntactic conflicts. Additionally, compact  rearranges all 
remaining primitive productions in the sequence to a canonical form, by putting all productions of the 
same kind together. For more details, see [Mens1999]. 

diff(Gi,Gr,ProdList)  calculates the difference between two graphs as a sequence of primitive 
productions. 

4 Domain-Specific Extensions 
While our uniform framework implements the basic mechanisms for dealing with evolution and 
merging of attributed graphs, additional rules are needed for the tool to work in a domain-specific 
context. Irrespective of the particular domain to which the framework is customised, one should always 
follow the four steps below: 



1. Map the software artifacts that reside in an external repository to Prolog facts. More precisely, 
translate all entities and relationships in terms of nodes and edges. 

2. Specify the different types of nodes and edges that can be distinguished, and declare well-
formedness constraints that hold between the different types. 

3. Specify which evolution operations (primitive as well as composite) are useful in the considered 
domain, specify domain-specific pre- and postconditions, and translate the operations into domain-
independent graph productions. 

4. Translate the syntactic and semantic conflicts that are generated by the domain-independent 
conflict detection algorithm into conflicts that are more meaningful for the particular domain. 

The following subsections discuss these steps in more detail. In the context of a research project with 
our industrial partner Getronics, we customised the framework to the particular domain of UML class 
diagrams. This allowed us to experiment with evolution and merging on an existing design repository 
containing about 600 classes. In parallel to this experiment, customisations to other domains, such as 
software architectures, have been explored as well [Mens1999, Romero1999]. 

4.1 Mapping of repository data 

Because the considered case was too large to fit in Prolog memory, we were forced to store the class 
diagrams in an external repository. We linked our tool to this repository by relying on the ProdataTM 
interface. This interface provides a tight coupling between Prolog and any ODBC-compliant database 
management system [Lucas1997b]. As such, we retained all advantages of using standard Prolog, while 
still being able to reason about externally stored software artifacts. However, because accessing the 
data of an external repository through ODBC was less efficient than when storing the data directly in 
memory, we needed to improve the efficiency by defining highly optimised SQL queries (at the cost of 
loosing generality, reusability or portability). 

To translate the domain-specific software artifacts into domain independent graph nodes and edges, 
some translation predicates were needed. Both a predicate node_db , which dynamically retrieves an 
artifact from the repository, and a predicate edge_db , which dynamically looks up some artifact 
relationship in the repository, were defined in terms of a predefined ODBC predicate db_sql_select  
which executes an SQL statement over the database. The implementation of these SQL statements 
strongly relies on the internal database representation and the considered software artifacts. 

Following the above approach, all artifacts and relationships in the repository are represented as virtual 
nodes and edges, and our framework does not need to distinguish between nodes and edges that are 
retrieved transparently from the database (node_db  and edge_db ), and nodes and edges that are stored 
directly as facts (node_fact  and edge_fact ) in Prolog. Everything is treated as an ordinary node  or 
edge . 

When customising the framework to another domain, we simply need to provide another external 
repository containing the domain-specific software artifacts, and redefine the predicates node_db  and 
edge_db  for doing the appropriate translations. 

4.2 Domain-specific well-formedness constraints 

Next to translating the domain-specific software artifacts into a graph representation, we need to 
specify domain-specific constraints that have to hold in these graphs. In order to express these well-
formedness constraints, we first specify the different types of software artifacts using a type hierarchy. 
In the domain of class diagrams we distinguish the following types of nodes: class , interface , 
operation , attribute , … Some of these types (such as class  and interface ) have commonalities, so 
they have a common supertype (in this case, classifier ). All type information, as well as the 
subtyping relationship between all node types and edge types, is specified using facts of the form 
subtype(Subtype,Supertype) . We hereby assume that node  and edge  are the root of the two type 
hierarchies. 



subtype(classifier,node). 

subtype(feature,node). 

subtype(interface,classifier). 

subtype(class,classifier). 

subtype(attribute,feature). 

subtype(operation,feature). classinterface

classifier

node

operationattribute

feature

 

subtype(implements,edge). 

subtype(generalisation,edge). 

subtype(association,edge). generalisationim plem ents

edge

association

 
Types are used to impose domain-specific constraints on nodes and edges. For example, an edge of 
type generalisation  is only allowed between two nodes of the same type, which must be a subtype of 
classifier . Such a constraint can be checked using the predicate 
checkTypeConstraint (G,TypeConflicts)  that makes use of  the following occurrence of the 
edgeTypeConstraint  predicate:  

edgeTypeConstraint(edge(G,Le,Ls,Lt,generalisation,_),TypeError) :- 
  not (node(G,Ls,T,_),node(G,Lt,T,_),isSubtype(classifier,T)), 
  TypeError = generalisationConstraint([Le,Ls,Lt]). 

From a formal point of view, the approach taken above corresponds to specifying a type graph, and 
requiring that each graph satisfies the constraints imposed by this type graph [Mens2000a]. 

4.3 Domain-specific evolution operations 

In order to reason about evolution in a particular domain, we use domain-specific evolution operations 
instead of the general graph productions introduced in section 3.1.2. This requires a translation of the 
domain-specific operations into graph productions using the predicate 
translateOperation(Operation,Production) . We already mentioned in subsection 3.2.1 how the 
evolution operations changeElementName  and addGeneralisation  of Figure 1 are translated into graph 
productions relabelNode  and refinement , respectively. Similarly, in Figure 2, addAssociation  is 
translated into refinement , while classIntroduction  becomes extension . The code for all these 
translations is presented below: 

translateOperation( changeElementName (Old,New),relabelNode(Old,New)). 

translateOperation( addGeneralisation (Parent,Child), 
refinement(hasChild,Parent,Child,generalisation)). 

translateOperation( addAssociation (Name,From,To), 
refinement(Name,From,To,association)). 

translateOperation( classIntroduction (Name),extension(Name,class)). 

Some complex domain-specific operations cannot be translated directly into a primitive graph 
production but need to be specified in terms of a composite production. This is for example the case 
with the operation redirectAssociationSource (handles,’Bank’,’Account’,’Agency’)  which is 
translated into the composite production redirectSource(handles,’Bank’,’Account’,’Agency’, 

association)  that was introduced in section 3.1.4. 

An even more complex situation occurs with splitClass ('Bank',['Bank','Agency'])  in Figure 2, 
which is itself defined as a sequence of domain-specific operations [createClass('Agency'), 

redirectAssociations('Bank','Agency')] , each of which must subsequently be translated 
recursively until everything is expressed in terms of primitive graph productions. 

In the same way as we have attached pre- and postconditions to graph productions in section 3.1, we 
can attach domain-specific pre- and postconditions to the evolution operations. To this extent we use 
the predicates domainPreconditions(Operation,G)  and domainPostconditions(Operation,G) . 

4.4 Domain-specific conflict detection 

As a final step, we need to compute all domain-specific conflicts. This is done in two phases. First, we 
apply the domain-independent conflict detection algorithm, and use the translateConflict(A,B)  
predicate to translate all conflicts that are generated during evolution or merging into meaningful 



domain-specific error messages. As an example, reconsider the syntactic conflict explained in 
subsection 3.2.2. Instead of merely reporting an undefinedSource  conflict, we use the edge type and 
node type to translate it in a more meaningful unexistingSuperclass  conflict: 

translateConflict( unexistingSuperclass(Ln) , 
undefinedSource(Ln,class,generalisation)). 

During the translation process, we also filter all generated domain-independent conflicts, and report 
only those conflicts that are relevant for the particular domain. 

In a second phase, we investigate the result of the evolution or merge, and check whether it complies to 
the imposed domain-specific well-formedness constraints using the predicate checkTypeConstraint . 
Each breach of a type constraint gives rise to a domain-specific syntactic conflict. A typical example is 
the accidental introduction of multiple inheritance in a language where this is not allowed. 

Finally, it is also possible to specify extra domain-specific semantic conflicts, by defining additional 
conflict detection rules that only hold for the particular domain. 

5 Tool Issues 
In order for our merge framework to be adopted in practice, it needs to be integrated in an industrial SE 
environment. To achieve this, many different avenues can be followed. 

• One possibility is to integrate our framework with a CASE tool like Select Enterprise™ so that we 
can reason about evolution of UML models. In our industrial case study this was achieved by 
exporting class diagrams to an external database using a script, and directly accessing the database 
from Prolog using an ODBC interface. Other alternatives would be to access the CASE tool 
repository directly, or to use the standard XML format to interchange UML models between the 
CASE tool and the Prolog framework. 

• Another avenue is to embed our approach in an integrated SE environment like Smalltalk. We are 
planning to integrate our tool in SOUL, which provides a tight symbiosis between a logic language 
and the Smalltalk development environment [Wuyts1998]. This will enable our framework to 
reason about evolution of Smalltalk programs directly. 

• A final avenue is to integrate our framework in existing configuration management tools. While 
these tools provide extensive support for versioning, our approach contributes by providing a more 
powerful way to do software merging. An obvious prerequisite is the ability of the configuration 
management system to deal with change-based versioning, of which operation-based versioning is 
a particular flavour. 

Further work is necessary in order to deal with other evolution issues as well. In the context of an 
industrial research project, we are currently extending the framework to provide support for co-
evolution [D'hondt&al.2000], where parallel changes are made to the same software artefact at different 
levels of abstraction (i.e., analysis, design and implementation). 

Our framework should also be able to provide support for impact analysis, change propagation, the 
ripple effect, version proliferation, etc… Because most of these problems can be dealt with by using 
some variant of graphs, our framework can probably be extended in a straightforward way to deal with 
these issues. For example, we can use program dependence graphs to deal with impact analysis 
[Bohner&Arnold1996], and graph rewriting to address the propagation of changes and the ripple effect 
[Rajlich1997]. 

6 Conclusion 
This paper presented a uniform framework for software merging that can easily be customised to 
different domains, and that allows us to deal with software evolution in a scalable way. We illustrated 
that a logic language provides an ideal medium for implementing such a framework. By resorting to the 
underlying model of graphs, and by representing evolution in terms of primitive and composite graph 
productions, evolution problems could be dealt with independent of any particular domain. A 
characteristic feature of our approach is the powerful support for software merging, which exceeds that 
of most currently existing merge tools. By resorting to an operation-based approach, potential 
syntactic, structural as well as semantic conflicts can be detected automatically in a straightforward 
way. 

The implemented research prototype has been validated for the domain of class diagrams in the context 
of an industrial case study, but further experiments are needed to validate it in other domains as well. 



Also, we still need to address some efficiency issues, and incorporate other evolution issues such as 
support for impact analysis and change propagation. Better integration with existing SE tools and 
environments is also required. 
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