
On the use of knowledge representation techniques

for modeling software architectures

Kim Mens∗

Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussel, Belgium

E-mail: kimmens@vub.ac.be

Phone: +32 2 629 35 81

Michel Wermelinger†

Departamento de Informática

Universidade Nova de Lisboa

2825-114 Caparica, Portugal

E-mail: mw@di.fct.unl.pt

Abstract

We take the position that it could prove worth to reconcile ideas of the knowledge represen-

tation and software architecture research communities. Many existing knowledge representation

techniques and formalisms seem to exhibit a lot of potential for representing different aspects

of software architectures. To illustrate our case, we show how the theory of conceptual graphs

could be a useful candidate to describe software architectures, to model architectural styles and

patterns, and to serve as a formal foundation for compliance checking of architectures to archi-

tectural styles, as well as for checking conformance of the implementation of a software system

to its architecture.

Topics addressed: architecture description languages, formal foundations, architectural styles.

Keywords: architectural style, compliance checking, conformance checking, conceptual graph,

canonical graph, canonical formation rule, formula operator.

∗Research funded by the Brussels’ Capital Region (Belgium) and Getronics Belgium.
†Research funded by Laboratório de Modelos Computacionais da Fundação da Faculdade de Ciências da Univer-

sidade de Lisboa.



Reconciling software architecture with knowledge representation

Historically, one of the major goals of artificial intelligence (AI) research has been to investigate how

knowledge, in its broadest sense, can best be modeled and represented. Knowledge representation

and processing is essential to many subfields of AI, of which expert systems and natural language

processing are prominent examples. Even in the domain of software engineering, knowledge repre-

sentation has many applications, such as software comprehension and information systems, to name

just a few. We claim that software architecture research also can benefit from many of the results

achieved by the knowledge representation community. In fact, this does not come as a surprise,

since knowledge representation is about building mental models of some problem domain. Software

architecture can be considered a special case of this, as it is about building high-level intuitive

abstractions of some software system. Many knowledge representation techniques and formalisms

exist that could prove useful to represent different aspects of software architecture. Providing a

complete overview is outside the scope of this paper. We only mention two promising techniques

here: ontologies and conceptual graphs.

Deridder and Wouters [1] make a case for the application of ontologies in the domain of

software engineering. They state that by integrating techniques and formalisms from the domain

of computer linguistics and AI (in particular, ontologies and ontology-related techniques) in existing

CASE tools, the software development process may significantly be enhanced. An ontology-based

experiment was conducted to reverse engineer UML diagrams from an existing application. We

believe a similar experiment could be set up to reverse engineer the architecture of an existing

system.

As a second example, in the remainder of this paper, we explore the theory of conceptual

graphs (CG) [5] as a knowledge representation formalism that seems suited to model and check

software architectures.

Architectures as conceptual graphs

Conceptual graphs are finite and bipartite graphs, where the two kinds of nodes represent concepts

and relations [5]. A concept is constituted by a concept type and the generic (or an individual)

marker, separated by a colon. An n-ary relation is composed of a relation type and n arcs linking

the relation to the concept arguments. Concept nodes are depicted with rectangles, relation nodes

as round-corner rectangles.

1



Representations of current day architecture description languages closely resemble such graphs,

both visually and intentionally, since the explicit representation of the relationships between the

system components is a basic tennant of software architecture. The nature of the components and

the relations depends on the chosen architectural view [2]. For example, the following conceptual

graph for the physical view states that the computer with hostname “server” is connected via an

unidentified router to the computer called “backup”:

Computer : server ←
�� ��Connection ← Router : * →

�� ��Connection → Computer: backup

where ’*’ is the generic marker and is henceforth omitted.

Architectural styles as canonical basis

The bare syntactical definition of conceptual graphs does not prevent the “wrong” use of types and

markers. For example,

Computer ←
�� ��Pipe← Router : server →

�� ��RPC→ Computer: backup

is a perfectly valid conceptual graph, although “pipe” and “RPC” are relationships of the logical

view, and “server” is the identification of a computer. To prevent meaningless graphs, CG theory

includes the notion of canon (further refined in [6]), which provides an ontological basis stating the

restrictions on the possible concepts and relations. The canon consists of a concept type hierarchy,

a relation type hierarchy, a set of markers, a conformity relation stating for each individual marker

all the concept types it is compatible with1, and an initial set of meaningful graphs, called the

canonical basis.

The set of all canonical graphs is obtained by applying canonical formation rules to the canonical

basis. As an example, the concept specialisation rule allows to replace a type by a subtype or to

replace the generic marker by an individual marker, if the new type/marker pair belongs to the

conformity relation. Such rules guarantee that the resulting graph is meaningful.

The graphs in the canonical basis can be used to represent different kinds of patterns, ranging

from simple relation signatures to architectural styles. Filter →
�� ��Pipe→ Filter is an example of the

former, stating that the “pipe” connector can only link two components that are a subtype of

“filter”.
1By definition, the generic marker is compatible with all types.

2



As for styles, consider a simplified version of the interpreter style [4], where a program i is

interpreting another one, using a memory to represent the state of the interpreted program p, and

an auxilliary control program c to determine from p and the memory which is the next instruction

to execute. The style is therefore a particular pattern of relationships between three programs and

a memory, as shown next, where ’*v’ is the CG notation for named generic markers (i.e., variables).

�� ���� ��Updates // Memory �� ���� ��Uses Dataoo Program: *coo //�� ���� ��Asks // Program: *p

�� ���� ��Uses Data

77nnnnnnnnnnnn
Program: *i

ggPPPPPPPPPPPP
oo //�� ���� ��Asks

77nnnnnnnnnnnn

Summing up, the canonical basis provides a catalog of patterns and styles, and style compliance

can be formally defined as a derivation of the architecture from the canonical basis using the

canonical formation rules.

Conformance checking as formula operator

CG theory [5] defines a formula operator which translates a conceptual graph into a logic formula.

This operator could be useful as the formal foundation for an algorithm to check conformance

of the implementation of a software system to its architecture. First, we would use the formula

operator to translate the conceptual graph representing the architecture into a logic formula. In

this translation, conceptual relationships are replaced by high-level implementation relationships

and the concepts are replaced by logic variables. Next, these variables should be instantiated with

the concrete implementation artifacts which they represent. Evaluating the resulting logic formula

corresponds to checking conformance of the implementation to its architecture.

As a further refinement, a concept (which corresponds to an architectural component) does

not necessarily need to be instantiated with a single implementation artifact, but may correspond

to a collection of such artifacts. This is easily formalized by the theory of conceptual graphs,

where concepts may refer to sets of elements [5] that are qualified according to how their elements

are supposed to participate in a relationship. For example, for distributive sets all (∀) elements

participate in the relationship and for disjunctive sets at least one (∃) element of the set does. This

provides an elegant way of expressing architectural relationships over sets of elements.

A conformance checking algorithm was developed using an approach which closely matches

the above [3]. It was implemented in a PROLOG-like language with access to a Smalltalk code

repository. An experiment was conducted to check conformance of the Smalltalk implementation

3



of some rule-based system, to a rule-based interpreter architecture, which is a specialization of

the interpreter style. Because the components in this architecture mapped to sets of source-code

artifacts, set qualifiers ∀ and ∃ were used to indicate the intended interpretation of these sets, as

illustrated next.

�� ���� ��Updates ∃ // Working Memory �� ���� ��Uses Data
∃oo Clause Selector

∃oo ∃ //�� ���� ��Asks

∃
���� ���� ��Uses Data

∃

66llllllllllllll
Rule Interpreter

∃

hhRRRRRRRRRRRRR

∀
oo ∃ //�� ���� ��Asks

∃

66mmmmmmmmmmmmmm
Knowledge Base

Checking conformance was achieved by evaluating a logic query which is constructed from the

architectural graph as follows. The concepts are mapped to sets of source-code artifacts. For

example, ‘Rule Interpreter’ is mapped to the set of all Smalltalk methods that implement the

interpretation of logic clauses. The conceptual relations are mapped to predicates representing

high-level source-code dependencies. For example, ‘Asks’ is mapped to a predicate which checks

whether a certain method invokes another one and actually uses the result afterwards. The edges

and annotated set qualifiers state how these predicates are to be applied over the set elements.

For example, the relationships between ‘Rule Interpreter’ and ‘Working Memory’ are translated

to logic queries that verify whether every rule interpreter method uses some data of the working

memory, but only some of them update this data. The conjunction of all such queries yields the

eventual query that checks architectural conformance.

Conclusion

The architecture is an important piece of knowledge about a software system. As such, we take the

position that it is worth looking at existing knowledge representation formalisms to explore how

they can be used or adapted to model different aspects of software architectures, capitalizing on

existing notations, results, and tools.

To illustrate our position, we used conceptual graphs due to their pictorial and bipartite na-

ture which is naturally suited to software architectures. Obviously, we only skimmed the surface.

Conceptual graph theory includes other kinds of graphs, e.g., a data-flow graph represents com-

putations, a schema represents background knowledge for a given type, a prototype represents a

typical case. Schemata might be useful for domain-specific architectures, while prototypes might

help in representing the non-variable part of a product-line architecture.

4



Different kinds of reasoning (besides classical logic) might also prove to be valuable for software

architecture. For example, non-monotonic reasoning and belief revision might be needed to analyze

all the implications of an envisaged architectural evolution and to explore different evolution paths.

In summary, we believe that applying knowledge representation techniques to software archi-

tectures will improve what architectural aspects we can represent, how we represent them, and how

we manipulate them.

References

[1] D. Deridder and B. Wouters. The use of ontologies as a backbone for software engineering

tools. In Proceedings of the Fourth Australian Knowledge Acquisition Workshop AKAW99,

1999. December 5-6, Sydney, Australia.

[2] P. B. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50, Nov. 1995.

[3] K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codifying software architectures using

virtual software classifications. In TOOLS 29 — Technology of Object-Oriented Languages and

Systems, pages 33–45. IEEE Computer Society Press, 1999.

[4] M. Shaw and D. Garlan. Software Architecture — Perspectives on an Emerging Discipline.

Prentice Hall, 1996.

[5] J. F. Sowa. Conceptual Structures — Information processing in mind and machine. Addison-

Wesley, 1984.

[6] M. Wermelinger. A different perspective on canonicity. In Proceedings of the Fifth International

Conference on Conceptual Structures, volume 1257 of Lecture Notes in Artificial Intelligence,

pages 110–124. Springer-Verlag, 1997.

5


