Vrije Universiteit Brussel
Faculteit Wetenschappen

$\\leRSWE/r

Formalising Operations on ACIDs
and Thelr Interactions

Kim Mens, Carine Lucas, Patrick Steyaert

Techreport vub-prog-tr-96-03

Programming Technology Lab
PROG(WE)

VUB

Pleinlaan 2

1050 Brussel

BELGIUM

Fax: (+32) 2-629-3525

Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be
WWW: progwww.vub.ac.be

-- DRAFT --

Formalising Operations on ACIDs and Their Interactions
-- DRAFT! - Do not distribute --

Kim Mens, Carine Lucas, Patrick Steyaert

Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium
http://progwww.vub.ac.be/

Email: kimmens@isl.vub.ac.be, clucas@vnet3.vub.ac.be, prsteyae@vnet3.vub.ac.be

Abstract This paper provides a formal foundation of the concept of
Abstract Class Interface Descriptions (ACIDs). It gives a definition of both
ACIDs and the operations defined on them and proves a number of
properties concerning their interactions. In class libraries and frameworks
documented with ACIDs these properties can be used to provide a better
under standing of their layered structure and to help in assessing the impact
of changes.

1. Introduction

This technical report formally introduces ACIDs, operations on ACIDs and their
interactions on a formal level. For a more intuitive discussion of ACIDs and their
interactions and of how they can be used in object-oriented software engineering in
general, we refer the reader to [Steyaert& al.96].

2. ACIDs and Operations on ACIDs

2.1 Definition of ACIDs

Every ACID A isaninterface, i.e. aset of method signatures. To every method signature
a (possibly empty) specialisation clause is attached. Furthermore, to every method
signature an annotation ‘abstract’ or ‘concrete’ is attached.

We define the following selector functionson an ACID A:

Client(A) = set of al method signatures in A (without the attached
specialisation clauses and without the attached annotation ‘abstract’ or
‘concrete’)

Abgtract(A) = set of al abstract method signatures of A

Concrete(A) = setof al concrete method signatures of A

1 This technical report is currently being finalised. This version provides proofs for the main properties
discussed in [Steyaert& al96], but lacks binding text and some additional proofs. A final version will be
made public in the near future.

-- DRAFT --

Speca(m) = gpecidlisation clause corresponding to the method signature m
inA
Annota(m) = annotation corresponding to the method signature min A

Following property follows directly from the definition:

Property:
For every ACID A: Abstract(A) n Concrete(A) = 0

Furthermore, an ACID is well-formed if every method appearing in one of its
specialisation clauses also appearsin the client interface of the ACID:

An ACID A iswell-formed if:
O m O Client(A): O n O Speca(m): n [Client(A)

2.2 Definition of applicability of operations on ACIDs

In the following section we will define a number of operations on ACIDsin terms of an
increment M. For such an M to be a correct increment to perform a certain operation on
an ACID, it needs to comply to certain properties. We speak of the applicability of M.
Furthermore, depending on the operation, the increments M contain different information
(names, specialisation clauses, an annotation abstract or concrete). Therefore, the
prerequisites for each operation do not only describe the conditions that the increment
must comply to in order to be correct, but also the kind of information given by this
increment. There are thr , corresponding to the three basic operations
on ACIDs. In the fol|(iing definitions, consider A, Ay to be ACIDs:

A is concretisabl
(1) Misasetof m
(2) Client(M) _ Abstract(A)

If this subset-relationship is strict, we say that M yields a partial ¢
sets are equa we say that M yields a complete concretisation. Mor

M yieldsacomplete concretisationof A = Client(M) =
M yields apartial concretisation of A < Client(M) Abstract(A)

In the above definition and the following proofs we often need to refer to the set of all
signatures of methods in M. In order to obtain these signatures, we will write Client(M),
aswe do for ACIDs. In the above case of aconcretising M, ‘Client’ is simply defined as
the identity function, since M consists of method signatures only.

-- DRAFT --

A is extendible with M =

() Misan ACID, i.e. aset of met
an annotation abstract or concret

(2) Client(M) n Client(A) =0

(3) O m [0 Client(M) : Specp(m) __ Client(M) O Client(A)

signatures with a specialisation clause and
hed to each one of them

If M contains only concrete methods, we say that M yields a concrete extension,
otherwise we say that M yields an abstract extension. |.e.

M yieldsaconcrete extensonof A <= Abstract(M) = [
M yields an abstract extensonof A <= Abstract(M) # [

Again, the notation Client(M) is used for an extending M to retrieve the set of all method
signatures of M. We aso overload the notation Specy(m) to denote the specialisation
clause associated to asignature min M.

A is refinable with
(1) M iscompo
only method g@Inatures with accor
abstract or co e).
(2) Client(Mg) n ClI
(3) Client(My) _ Client(A)
(4) O m O Client(My) : Spec* a(m)
(5) Om O Client(M) : Specp(m) __ Client(M) O Client(A)
(6) O m O Client(Me) : On O Client(My) : m O Spec* o m(Nn)
The two parts of the increment M represent the two parts of the refinement’s
functionality. M, indicates which methods have their specialisation clauses refined and
how, while Mg indicates which methods are added.
If the Mg part of M contains only concrete methods, we say that M yields a concrete
refinement, otherwise we say that M yields an abstract refinement.

of two parts: Me whi d M which contains

ses (but no annotation

M = (Mge,My) yieldsaconcreterefinementof A = Abstract(Me) = [
M = (Mg M) yidlds an abstract refinement of A = Abstract(Mg) # [

Several remarks need to be made about the notations used in the above definition. First
the set of al method signatures of M is the union of all method signaturesin Me and My
Client(M) = Client(Mg) O Client(M,), where Client(Mg) and Client(M,) merely select the
set of all method signatures of Me and M, respectively. The same remark can be made
about the selector functions Spec and Annot. Secondly, in analogy with selecting the
specialisation clause Speca(m) of a method signature m in an ACID A, Speca m(m) is
used to find the specialisation clause of m in the ACID which results from refining A
with M, and is defined as follows:

-- DRAFT --

Specpme(m) if m O Client(Mg)

Specp(m) if m O Client(My)

Speca (M) if m O Client(A) - Client(M)

Finally, the operator * used above denotes transitive closure and is defined as usual:
f*(m) = Ope1 (M) where f1(m) = f(m)

fam) ={ m’ Of(n) |nOf1(m)}

Speca m(m)

2.3 Definition of operations on ACIDs

This section now formally introduces the three basic operations on ACIDs of which the
applicability rules were defined in the previous section. Of course, the first prerequisiteis
always that the increment M has to be applicable. The other ones indicate how the
resulting ACID isto be constructed. Asin the previous definitions, we consider al A and
Ay to be ACIDs:

Ac is a concretisation of A with M =

(1) A isconcretisable with M

(2) Client(Ac) = Client(A)

(3 OmdClient(Ac) : Specac(m) = Speca(m)

(49 OmOClient(M) : Annotac(m) = ‘concrete’

(5 OmOClient(Ac) - Client(M) : Annotac(m) = Annota(m)

The following property followsimmediately from the definition:

Lemma 1. If Acisaconcretisation of A with M then
(@ Concrete(Ac) = Concrete(A) [Client(M)
(b) Abstract(Ac) = Abstract(A) - Client(M)

Acis an extension of A with M o

(1) AisextendiblewithM

(2) Client(Ag) = Client(A) O Client(M)

(3) O mOClient(A) : Specae(m) = Speca(m) L ANNotae(M) = Annota (M)
(4 Om0OClient(M) : Specaeg(m) = Specy(m) CJAnnotag(m) = Annoty(m)

Aris arefinement of A with M = (Mg,My) <

(1) AisrefinablewithM

(2) Client(Ar) = Client(A) O Client(Mg)

(3 Om0dClient(M) : Specar(m) = Specp(m)

(4 OmOClient(Ay) - Client(M) : Specar(m) = Speca(m)
(5 OmOClient(Mg) : Annota,(m) = Annotye(m)

(6) O mOClient(Ay) - Client(Mg) : Annota(m) = Annota(m)

-- DRAFT --

Thefollowing property followsimmediately from this definition:

Lemma 2: If A;isarefinement of A with M = (Mg,My) then
Abstract(Ar) = Abstract(A) O Abstract(Mg)
= Abstract(A) O (Abstract(M) - Client(A))

2.4 Definition of applicability of inverse operations on ACIDs

For each of the three operations on ACIDs, the inverse operation is defined. Again we
start by defining applicability rules for these inverse operations and we consider A, Ay to
be ACIDs in the following definitions. Furthermore, as in section 2.2 we will overload
the relations *Client’” and ‘ Spec’ for selecting the client interface, resp. specialisation

Abstraction is the invdle of concretisation.

A is abstractabl
(1) Misasetof me
(2) Client(M) __

ith M -

Cancdlation isthe

A is cancellab

A is coar senabl th M = (Mcg,Mco) =
out of two parts: M

ntains method sig

(2) M is compo:
and Mo whi
clauses (but no

(2) Client(M) __ Client(A)

(3) O m U Client(Mco) : SpeCmco(m) Speca(m)

(4) OmOClient(Mcg) : O n O Client(A) with m [Speca(n):

n O Client(M o) O m O Specmeo(n)

Ich contains only method signatures
ures with their accorded specialisation
crete).

2.5 Definition of inverse operations on ACIDs

For each of the three operations on ACIDs, the inverse operation is defined. Asfor the
base operations the definitions of the inverse operations start with an applicability
constraint, followed by a number of predicates explaining how the resulting ACID is
constructed.

-- DRAFT --

Ac is an abstraction of A with M =

(1) A isabstractablewith M

(2) Client(A¢) =Client(A)

(3) OmUClient(A) : Specac-(m) = Speca(m)

(4) OmOClient(M) : Annotac-(m) = ‘abstract’

(55 OmOClient(Ac) - Client(M) : Annotac(m) = Annota (m)

The following property followsimmediately from this definition:

Lemma 3:
(@ Abstract(Ac) = Abstract(A) O Client(M)
(b) Concrete(Ac) = Concrete(A) - Client(M)

Ag is a cancellation of A with M =

(1) A iscancellablewith M

(2) Client(Ag) =Client(A) - Client(M)

(3) DO mUOClient(Ae) : Speca(m) = Speca(m) JANNotae-(mM) = Annota(m)

Coarsening isthe inverse of refinement.

Ay isa coarsening of A with M = (Mcag,Mco) =

(1) AiscoarsenablewithM

(2) Client(Ar) = Client(A) — Client(Mca)

(3) Um0 Client(Mco) : Specar-(m) = Specmco(m)

(4) OmU0OClient(Ar) - Client(Mco) : Speca,-(m) = Speca(m)
(5) DO mU0OClient(A,) : Annota,-(m) = Annota (m)

3. Basic Interactions between Operations on ACIDs

We will now prove a number of properties concerning the interactions between these
operations. In this section we discuss the properties concerning base ACID exchange as
discussed in [Steyaert& al.96].

3.1 Applicability

The first range of questions we need to answer concerns the applicability of the
operations. We want to investigate whether an increment M, that was applied on a base
ACID to create an application ACID, is till applicable to an exchanged base ACID. We
therefore use the three applicability definitions (is concretisable with, is extendible with,
isrefinable with) that were given in section 2.3. The fact that an increment is no longer
applicable after base ACID exchange can only be due to name clashes in the client
interface. The following table summarises under which conditions such name clashes
occur.

-- DRAFT --

Operation on

base ACID Concretisation Extension Refinement
Operation on
application ACID
if sets of concretised| no clashes no clashes

Concretisation

method signatures intersect

no clashes

if sets of newly added

if sets of newly added

Extension method signatures intersect | method signatures intersect
‘i no clashes if sets of newly added| if sets of newly added
Refinement method signatures intersect

method signatures intersect

It demonstrates that essentially 3 categories of interactions can be distinguished. We will
discuss these 3 cases one by one.
3.1.1 Concretisation versus Concretisation

Property 1:

If A isconcretisable with M 1

and A isaconcretisation of A with M»
Client(M1) n Client(Mo) = [0)

then

(A2 isconcretisable with M

=

Ao isconcretisable wi
Miisa
Client(M1) _—
= Client(M1) __ Abstract(A) - Client(M2) (lemma1)
= Client(M1) n Client(Mo) = [

(o.k. because A iscon

le with M 1)

(because Client(M>») __ Abstract(A),

since A is concretisable with Mq)

3.1.2 Concretisation versus Refinement / Extension

Property 2a:

If A isconcretisablewithMq and A isextendible or refinable with Mo
then (Ajisaconcretisation of A with M1

O

A1 isextendible or refinable with M»)

This property also holds in the reversed direction.

Property 2b:

If A isconcretisable with M 1

then (Azisanextension or refinement of A with M>

g

A2 is concretisable with M 1)

and A isextendible or refinable with M»

We give the proof for one sub-case of the first property and leave the other (analogous)
proofs to the reader.

-- DRAFT --

Proof:
We know that:
A1 isaconcretisation of A with M1 [0 Client(A1) = Client(A)

Furthermore, we know that

AisextendiblewithMo =

(1) Maisan ACID

(2) Client(M2) n Client(A) =0

(3) Um U Client(My) : Specm,(m) __ Client(M2) O Client(A)

For the property to hold we need to prove that A; is extendible with M5, in other

words we need to prove that:

(1) Maisan ACID

(2) Client(M2) n Client(A1) =0
= Client(M2) n Client(A) =0

extendible with M,

as Client(A,) = Client(A)
is extendible with M,
(3) Um0 Client(M2): Specp,(m) __ Clien
< OmU Client(M2): Specm,(m) __ Client(M2) O Client(A)
as Client(A,) = Client(A)
this holds as A is extendible with M,
3.1.3 Refinement / Extension versus Refinement / Extension

Property 3:
If A isextendible or refinable with M1
and Az isan extension or refinement of A with Mo
then (Azisextendibleor refinablewithMy < Client(M1) n Client(M2) = 00)

We give the proof for two extensions, the other (analogous) proofs are |eft to the reader.
Proof:

We know that:

Az isan extension of A with M2 [0 Client(A2) = Client(A) O Client(My)

Furthermore, we know that

AisextendiblewithM; <=

(1) Mpisan ACID

(2) Client(M1) n Client(A) =0

(3) O m O Client(M1) : Specm(m) __ Client(Mq) O Client(A)

To prove the property we need to show:
Az isextendible or refinablewithMy < Client(M1) n Client(Mp) =

-- DRAFT --

Ao isextendiblewith M1 =

(1) M1isanACID

(2) Client(M1) n Client(A2) =0
= Client(M1) n (Client(A) O Cli
= Client(M1) n Client(M2) =0

sas A is extendible with M4

=0 asClient(Ay)=Client(A)0IClient(M,)

Is extendible with M1
(3) Om O Client(M1): Specm;(m) __ Clien
< Om O Client(M1): Specpm1(m) __ Client(M1) [{ Client(A

this holds because 0 m O Client(M4): Spec*,(m) _ (Client(M1) O Client(A))

as A is extendible with M 1

So the only condition left isindeed
Client(M1) n Client(M2) =

3.2 Partial concretisations

The second problem is that of invoking unimplemented methods. This occurs when a
base ACID is exchanged with a refined or extended version that adds new abstract
method signatures. In general, we can say:

Property 4:

If A isaconcretisation of A with M¢

and A,isarefinement or an extension of A with M,
then Acisaconcretisation of A, with M.

Furthermore:

Property 5:

Onlyif Acisacomplete concretisation of A with M¢

and A, isaconcrete refinement or extension of A with M,
then A,cisacomplete concretisation of A, with M.

Pr oof:

This proof contains two parts.

First, the fact that M still provides a correct concretisation of Ay. This was already
demonstrated by property 2b.

Second, we need to proof that if M¢ provides a complete concretisation of A and M, a
concrete refinement or extension of A, than M. also provides a complete
concretisation of Ay.

Given:

Mc provides a complete concretisation A, in other words Client(M) = Abstract(A)

M, a concrete refinement or extension of A, in other words Abstract(My) = [J

-10 -

-- DRAFT --

To proof:
M. provides a complete concretisation A, in other words Client(M¢) = Abstract(Ay)
Proof:

Abgtract(A;) = Abstract(A) O (Abstract(My) - Client(A)) (lemma)
= Abstract(A) O (O - Client(A)) (M is concrete ref. or ext.)
= Abgtract(A)
= Client(M,) (M is complete concretisation of A)

3.3 Detection of Method Capture

Method capture occurs on base ACID exchange, if the exchanged ACID names a certain
method m in its specialisation clauses more often than the original base ACID did. To
describe the detection of method capture we first need to introduce a new definition.

We say that a method m is bound by a method nin an ACID A, if m appears in the
specialisation clause of nin A. We define MBa(m) asthe set of al methods that “bind” m
inA.

Definition: MBa(m) = {n O Client(A) | m O Speca(n) }

Method capture occurs when extra bindings of a method m are introduced when going
from one base ACID Aj to another base ACID Aj and this method m was already
adapted in some way by an application ACID which applied the increment Mgpp to Az, In
other words, a method m is captured if when changing ACID Aj to ACID Ay, extra
methods are added and m is a member of Mgpp. MC(A1,A2,Mgpp) denotes the set of all
signatures of such methods.

Definition:
MC(A1,A2,Mgpp) ={ m O Client(Mgpp) | MBa,(M) - MBa,(m) # O }

As method capture can only occur when specialisation clauses are extended, it can only
happen when exchanging the base ACID with a refinement or extension. More
specifically, method capture only occurs when the set of hook methods that was added
through refinement or extension to the base ACID and the set of method signatures added
or changed by the application ACID are not digoint.

Figure 1 illustrates the detection of method capture.
A2

Refinement or
Extension
mgets
captured
by n

Figure 1. Method Capture

-11 -

-- DRAFT --

We will now proof that method capture can only occur when abase ACID is exchanged
with arefinement or an extension. This done by proving the following
Ao isobtained from A4 by an operation different from extension or refinement [
MC(A1,A2,Magpp) = U

Proof:
There are 6 possible operations, that can turn A into Ao. We will demonstrate that
method capture cannot occur with the operations different from extension and
refinement. For these operations we will show that MC(A1,A2,Mgpp) = U or more
specifically that

O'm O Client(Mgpp): MBa,(m) - MBa,(m) =0
To do thisit is sufficient to consider all m [JA1 in the following proof, instead of all
m O Client(M gpp).
First, because for all operations except extension and refinement Client(Ap) __
Client(A1), or in other words A does not introduce any new methods.
Second, because a method m [M gpp cannot be captured by Az unless this method
already appearsin A, itself. The reason for thisisthat for an ACID to be well-formed
it can only name methods in its specialisation clauses that appear in the ACID’s client
interface as well.

We will now show for the 4 remaining operations that:
O m O Client(A1): MBa,(m) - MBa,(m) =0

(i) Agisa concretisation of Ag:
O Client(Aq) = Client(A2)
and [0 m O Client(A2): Speca,(m) = Speca,(m)
0 O moOClient(A2): MBa,(m) = MBa,(m)
O O moOClient(Ay) : MBa,(m) - MBa,(m) =0 I as Client(A,) = Client(A1)

(i) Ao isan abstraction of Ag:

Exactly the same reasoning as for concretisati@ holds here.

(iii) Agisacancellation of A; with M:
Client(A2) = Client(A1) - Client(M»)
O O mOClient(A1) - Client(M2): Sg bCA1(M)

(10 m0OClient(Aq) - Client(M __ MBa;(m)
Om O Client(M2) : m O Client(A2)
O OmUdClient(My) : [J Specao(n)

(11 m O Client(M2) : MBa,(m)gel]
O 0O moOClient(Ay) : MBa,(m) - MBa,(m) =0

-12 -

-- DRAFT

(iv) Agisacoarsening of Ajwith M = (Mcg
O O mOClient(Mco) : Speca,(m) =
and Specmco(M)
and Client(A2) __ Client(A1)
0 OmOClient(Mco) : MBa,(m) __ MBa,(m)
O m O Client(A2) - Client(Mcg): Speca,(m) = Speca ,(m):
00 mOClient(A2) - Client(Mco) : MBa,(m) __ MBa,(m)
O m O Client(Mcg) : m O Client(A2)
(0 mOClient(Mcg) : MBa,(m) =0
[0 mOClient(A1) : MBa,(m) - MBa,(m) = [
Thus method capture can only occur when a base ACID is changed through a
refinement or an extension.

nition coarsenable

coarsening

3.4 Detection of Inconsistent Methods

Inconsistent methods occur when there are less bindings of a method m after going from
one ACID to another ACID and this method m was adapted in some way when creating
an application ACID with the increment Mgpp. In other words, a method m becomes
inconsistent if when changing ACID Aj to ACID Ay, there exists a method that is no
longer an element of MBa,(m) and m is a member of Mgpp (this is denoted: m [

Definition:
IM(A1,A2,Mgpp) ={ M O Mgpp | MBa (M) - MBa,(m) # [0}

The set of methods that m becomes inconsistent with can be denoted:

Definition:

While method capture can occur when extending the specialisation clauses in a base
ACID, inconsistent methods can be created when parts of the design are omitted by
narrowing these specialisation clauses. This can only be achieved through the operations
coarsening and cancellation. Cancellation however does not create inconsistencies, as the
method signature that omitted the reference from its specialisation clause smply does not
exist anymore. Inconsistent methods can thus only appear when the set of hook methods
removed from the base ACID through coarsening and the set of method signatures
changed or added by the application ACID are not digoint.

Figure 2 illustrates the above rule on detection of inconsistent methods.

-13 -

mbecomes
inconsi stent
with n

Figure 2: Inconsistent Methods
We will proof that inconsistent methods can only occur through coarsening, by proving
the following:

A isobtained from A1 by an operation different from coarsening [
IM (A1,A2,Mapp) =0

Proof:

Again there are 6 possible operations, that can turn Az in to Ay. It can be
demonstrated in the same way as for method capture that inconsistent methods can
only occur through coarsening.

Cancellation is a special case. As coarsening, it also removes names from
specialisation clauses, but as all the names that are removed from specialisation
clauses through cancellation are removed from the client interface of the ACID as well
no inconsistencies can be created.

The proofs for other operations are straightforward.

5. References

[Steyaert& al .96] Patrick Steyaert, Carine Lucas, Kim Mens, Theo D’Hondt:
Abstract Class Interface Descriptions (ACIDs): Guiding Design
Reuse in Class Libraries, Submitted to OOPSLA '96,
Conference on Object-Oriented Programming, Systems,
Languages and Applications.

-14 -

