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Abstract

Recent developments in subjectivity, composition technology and novel prototype-based

languages demonstrate that dynamic object extension is an essential feature in modern object-

orientation. But the total absence of static type systems for dynamic object extension is a major

obstacle for its adoption. The key principle of type-safe dynamic object extension is a trade-off

between possible assignments and possible extensions. We describe a static type system using

specialisation interfaces to refine the notion of subtyping and to limit dynamic extension. We

furthermore argue that the introduction of specialisation interfaces in the system opens up a lot

of new perspectives in software engineering in general. The type system is proven to be

consistent and complete.

1 Introduction

Prototype-based languages [Lieberman86] [Ungar&Smith87] are characterised by the ability to

dynamically extend objects. Dynamic object extension is for example used to create different views on

an object after it has been created. See e.g. [Dony&al.92] (split objects) or [Harrison& Ossher93]

(subjectivity) for examples. In contrast with conventional class-based languages where each class

statically knows its parent class, prototype-based languages allow the inheritance hierarchy to be

created at run time. This results in a much more flexible approach.

On the other hand there is a need for static type checking. While static type checkers for class-based

languages are very well known, for prototype-based languages this is not the case. In general, type

systems for object-oriented languages are characterised by substitutability of subtypes by supertypes.

As a consequence, it is always possible for a variable to contain an object of a subtype of this variable’s

formal type. In addition, not all object extensions are type correct. Therefore, type checking dynamic

object extension is very complex as static type checkers must determine the type correctness of

extending an object, of which the actual type is not statically known.

One possible solution is to prohibit all extensions that do not result in subtypes. This can be

determined on the basis of the objects’ client interface, but results in a very restrictive approach. But

even in the case where objects that are not in a subtype relationship with their parents can be created,

some extensions are not type-safe, as they create objects with internal inconsistencies. To determine

which cases are type-safe additional information is needed. We will show that this additional
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information can be given by annotating objects with specialisation interfaces (as introduced in

[Lamping93]). The specialisation interface of the object under extension (parent) makes its internal

structure visible to the extension (inheritor) in an encapsulated way. This internal structure reveals

which methods are defined in terms of what other methods. Annotating objects with specialisation

interfaces results in a form of negative type information as it restricts possible inheritors.

We will show that the ability to type check dynamic object extension is based on a trade-off

between possible assignments and possible extensions. Specialisation interfaces give the programmer

the means to indicate whether he wants to restrict either the set of object types with which an object can

be substituted or the set of extensions that can be made of it. This results in a mechanism that can be

statically type checked and lies somewhere between uncontrolled dynamic object extension and fixed

static inheritance. Moreover, the introduction of specialisation interfaces shows a lot of promise in

software engineering in general.

2 Related Work and Terminology

This section briefly introduces some basic terminology by discussing related work.

2.1 Mixin-based Inheritance

Consider inheritance as an incremental modification mechanism [Wegner& Zdonik88], where a

parent P is transformed with a modifier M to form a result R=P+M(P). The modifier M is

parameterised by a parent P to model the fact that a subclass can invoke operations defined in the

superclass. In classical inheritance the modifier M does not exist on its own. In mixin-based inheritance

a mixin is exactly this modifier that exists as an abstraction apart from parent and result. Mixins were

first introduced in Flavors as a means to construct inheritance hierarchies in a more flexible way

[Moon86]. In pure mixin-based inheritance [Bracha&Cook90] [Steyaert&al.93], mixin application is

the only way to make extensions. In an object-based language with pure mixin-based inheritance like

we are going to use, inheritance can then be modelled as O1=O2+M(O2), where O1 and O2 are objects

and M is a mixin.

2.2 Typing

A large range of type systems for object-oriented languages has already been proposed

[Abadi&Cardelli94] [Bruce&al.93] [Palsberg&Schwartzbach94], but none of them take into account

the possibility of dynamic object extension. [Nierstrasz93] describes a type system for active objects.

But active objects should not be confused with dynamic object extension. The problems involved in

type checking dynamic object extension are mainly due to method type incorrectness, whereas the

problems involved in type checking active objects concern evolving interfaces.

Throughout the history of object-oriented programming, the use of inheritance has evolved from

simply a means to reuse code to a way of achieving reuse of behaviour [Wegner&Zdonik88]. The latter

implies substitutability, which means that if B inherits from A, an instance of B can be used whenever

an instance of A is expected. Problems concerning the typing of such languages lead to the realisation

that a separation of the notions of object and interface is necessary [Canning&al.89]. Interfaces can be
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seen as the formalisation of the notion of an object protocol. To check whether two objects are holding

a subtype-supertype relationship one should consider the containment of their interfaces. In

[Canning&al.89] interface containment is described as follows: ‘An interface Big contains an interface

Small if it contains all the methods of Small , and for each of their common methods, each parameter

interface for Small contains the corresponding parameter interface for Big while the result interface for

Big contains the result for Small. The important thing to notice here is that the condition on the

parameter interfaces is reversed.’ This last remark concerns the contravariance rule

[Cardelli&Wegner85].

Although the covariance rule might seem more intuitive, it has repeatedly been shown not to be

type safe [Cook89][Pierce92]. The contravariance rule guarantees type safety, but reduces

expressiveness. As an illustration consider an interface Point and an interface ColourPoint containing

all the messages of Point. While these interfaces intuitively appear to be in a containment relationship,

they are not because the equal message on ColourPoint does not respect the contravariance rule. We

will opt for a less strict variant of the contravariant rule.

Point = Interface: [ … ; equal (Point) Result: Boolean ]
ColourPoint = Interface: [  … ; equal (ColourPoint) Result: Boolean ]

2.3 Specialisation Interfaces

[Mitchell90] presents a typed calculus of objects and classes, featuring method specialisation when

methods are added or redefined. As a bookkeeping mechanism for keeping the types of the methods

straight, methods are annotated with a list of all methods that were defined before, and thus could be

used in the implementation of the new method. Instead of keeping track of all methods that are known

at definition time of a method, one could record only those methods that are actually used in the new

method. This would come very close to the definition of specialisation interfaces as introduced by

[Lamping93].

Specialisation interfaces are a means to extend type systems in order to describe information about

the organisation of a class; that is which methods are called through self sends by what other methods.

This information is important to inheritors since it provides knowledge about the effect of overriding a

method. Furthermore, inheritors need to know which parent operations they can invoke. All this

information is captured in the parent’s specialisation interface. Lamping approaches this from a library

specification angle and uses the interfaces primarily as documentation. We will use specialisation

interfaces for type checking dynamic object extension.

As mentioned in the introduction, annotating objects with specialisation interfaces results in a form

of negative type information. Indeed, the specialisation interface describes details of the internal

structure of an object and excludes inheritors not respecting this structure. The idea of negative type

information is not new. [Cardelli&Mitchell89], amongst others, used positive and negative assumptions

to associate types to objects, but not for typing dynamic object extension.
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An approach similar to specialisation interfaces is suggested in [Hauck93], where typed interfaces

are introduced to check the type-safe exchange of base classes (for the maintenance of class libraries)

and to allow determining the concrete base class on a per object basis.

3 Programming Model
We will explain our approach by means of a type system for an object-based language with pure

mixin-based inheritance. The toy language derived from Agora [Codenie&al.94]. To keep things

simple, we do not describe the entire language. The full syntax is given in Appendix A.1. Here we will

briefly discuss the core features.

3.1 Our language

Every program is formed by a list of mixin declarations, followed by a list of expressions. Every

mixin defines a number of object and method declarations.

MixinDeclaration ::= MixinName Mixin: [ MixinExpression ]
Super: SpecInterface

MixinExpression ::= MethodDeclaration
| ObjectDeclaration
| MixinExpression ; MixinExpression

To avoid cluttering up the syntax, we restrict ourselves to methods with exactly one argument and

one result. Both the argument and result are typed. In the examples we will often use methods with no

argument or result, this is expressed in the type system by introducing an empty type. The same goes

for the clauses Super: (in mixin declarations) and Self: (in method declarations). The meaning of,

and necessity for, these clauses (which represent the specialisation interface) will become clear in the

following sections.

MethodDeclaration ::= MethodName ( Variable:Variable )
Method:[ MethodExpressionList ]
Result: Variable
Self: SpecInterface

An example of a mixin declaration (where the self- and super-clauses have been omitted) is given in

Listing 1.

MakeMammal Mixin: [ habitat define: place;
giveHabitat () Method: [ … ] Result: place];
eats (someFood:food) Method: [ … ] ];

Listing 1

To allow static type checking all variables have to be declared through an define:-statement. The

language has no classes and new objects can only be created by copying or extending existing objects.

Objects can only be extended by applying mixins to them. Either another object or a mixin application

can occur on the right-hand side of an define:-statement. The meaning of the (optional) withSelf:-

clause will be explained in the following sections.

ObjectDeclaration ::= Variable define: ProtoType withSelf: SpecInterface

ProtoType ::= Variable | MixinApp

MixinApp ::= Variable MixinName | rootObject MixinName

As objects are extended dynamically, it is not possible to declare all prototypes that will be used in

a program beforehand and all objects are candidate for extension. It is important to note that as we
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work in a prototype-based system, it is possible for objects themselves to serve as types. We could

include an explicit notion of types in our language, but this would only make the notation more

complex without changing anything to the core of the system. For an example of an object serving as

type, see how in Listing 1 the object food was used as type of the eats method in MakeMammal. The

define:-statement thus acts both as a variable declaration and a type declaration. Listing 2 shows

some examples.

yogi define: aBear;

food define: rootObject MakeFood;
plant define: food MakePlant;

Listing 2

 The body of the program is a list of expressions.

Expression ::= ObjectDeclaration    (object declaration)
| Variable MethodName ( Variable ) (method send)
| Variable := Object (assignment)

Note that it is impossible to put self or super at the right-hand side of an assignment or to perform

self or super sends at the top level of a program. Note also that we assume that we only perform super

calls of methods with the same name as the method performing the call, not just of any method. The

system could be adjusted to change this, but we feel it is a good programming habit only to perform

such super calls. Listing 3 shows some example expressions.

aPlace := aMammal giveHabitat();
aMammal eats (anApple);

Listing 3

3.2 An Example

Throughout this text the example of an information system in a zoo will be used (example due to

[Lippman93]). Listing 4 shows the corresponding code fragment. The system is installed near each

cage so that visitors can ask questions about an animal’s behaviour. We consider the subsystem

concerning mammals. The mixin MakeMammal describes the general behaviour of mammals. E.g. it

contains a method eats that displays information about the animals eating habits. A whole range of

mixins describe the particular behaviour of different kinds of mammals. For example in MakeBear,

which describes the family of bears, the method eats is overridden to specify a bear’s eating habits.

After the mixins are declared a number of objects are created through mixin application. For example,

aBear is created by consecutively applying MakeMammal and MakeBear to rootObject. Then aPanda is

defined as an endangered bear with the behaviour of a herbivore, as pandas only eat bamboo.

MakeMammal Mixin: [ habitat define: place;
giveHabitat () Method: [ … ] Result: place;
eats (someFood:food) Method: [ … ];
displayBehaviour Method: [ … ] ];

MakeBear Mixin: [ eats (someFood:food) Method: [ … ];
displayBehaviour Method:

[ self eats(fish);
super (); … ] ] ;

MakeHerbivore Mixin: [ eats (aPlant:plant) Method: [ … ]];
MakeCarnivore Mixin: [ … ] ;
MakeEndangered Mixin: [ … ] ;

food define: rootobject MakeFood;
plant define: food MakePlant;
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aMammal define: rootObject MakeMammal;
aBear define: aMammal MakeBear;
anEndangeredBear define: aBear MakeEndangered;
aPanda define: anEndangeredBear MakeHerbivore;

aMammal := aBear;
aMammal := aHerbivoreMammal;
aPanda displayBehaviour.

Listing 4

4 Typing Dynamic Inheritance

4.1 Reuse of Code versus Reuse of Behaviour

The choice between covariance and contravariance is one of the main discriminators between type

systems for object-oriented languages. The issues concerned with this choice are clearly discussed in

[Dodani&Tsai92]. They also observe that inheritance is used to express two kinds of relationships: the

substitutable is-a relationship and abstraction of common behaviour. The choice between covariance

and contravariance should therefore be directly related to the specific use of inheritance. Every model

that explicitly chooses strictly for either covariance or contravariance therefore has to make exceptions

to model the other relationship.

The core of our type system is based on the contravariance rule. With contravariance two kinds of

type systems are possible. Either one applies strict contravariance with the corresponding loss of

expressiveness or one also allows inheritors to be created that are not subtypes. We opted for the latter,

thus offering both the possibility to model substitutable is-a relationships (by respecting

contravariance) and abstraction of common behaviour.
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Figure 1

Figure 1 illustrates this on our example. While aBear is a subtype of aMammal, aHerbivoreMammal is

not, because to create aHerbivoreMammal the mixin MakeHerbivore has overridden the eats-method

with a covariant parameter type. Strictly applying contravariance would mean forbidding the creation
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of aHerbivoreMammal. Although this would guarantee that all inheritors are substitutable for their

parent, it would imply a significant loss of expressiveness. Allowing the creation of objects like

aHerbivoreMammal to obtain abstraction of behaviour is often very useful (see [Dodani&Tsai92] for

examples).

4.2 Type Correct Object Extensions

But even in the case where it is allowed to create inheritors that are not in a subtype relation with

their parent not all mixin applications are allowed. Consider sending the message displayBehaviour to

aPanda. This method is defined in MakeBear and invokes self eats(fish) and is type correct at that

level. However the version of eats that will actually be invoked is defined in MakeHerbivore and

expects an argument of type plant, which will cause an error. Applying MakeHerbivore to aBear

should not be allowed since it incorrectly overrides a method invoked through a self send in aBear. Of

course, it should still be allowed to apply MakeHerbivore and MakeBear separately. It should even be

allowed to apply MakeHerbivore first and then MakeBear (which is a possible solution to make

Panda’s). But once MakeBear has been applied it should no longer be allowed to apply MakeHerbivore.

This example indicates that in order for the type system to restrict possible inheritors it needs to

know what self sends are executed by the parent object. This is achieved by appending an extra self-

clause to each method1. The methods in these self-clauses need to respect contravariance when they are

overridden. These clauses thus impose type constraints on possible inheritors. Hence a mixin is not

only typed by its client interface, but also by its internal structure. Note that the self:-clause was

already included in the syntax given above.

Remark that appending the self-clause could have been achieved in two ways. By adding one single

clause to each mixin declaration, or by adding separate clauses to every method declaration. We opted

for the latter, as this gives us more information (i.e. in what method the self sends are performed) and

thus makes it possible for the type system to be less restrictive in the set of mixin applications it

prohibits. Consider e.g. MakeEndangered defining its own version of displayBehaviour, calling a self

send of eats(somePlant). As a result MakeHerbivore could be applied anyway, because sending

displayBehaviour to aPanda would no longer result in an error. This is only so because the self send

of eats was performed twice in the same method (displayBehaviour). Therefore, to be capable of

type checking on such a fine-grained level, we need to know exactly in what method each self send is

performed. The only possible reason left to forbid the application of MakeHerbivore would be that the

definition of displayBehaviour in MakeEndangered also performs a super call, with as a result that the

MakeBear-version of displayBehaviour would still be called after sending displayBehaviour to

aPanda. Our type system takes all these possibilities into account.

Besides putting constraints on what methods cannot be overridden covariantly by the mixin

(through the self-clauses), constraints are also necessary on what methods should certainly be

1 Note that this information could be generated, but for clarity reasons we add it explicitly.
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implemented by the parent. It is allowed for mixins to do super sends, even though their possible

parents are unknown. Therefore, when applying a mixin to an object it should be verified whether all

messages that are called as super sends in the mixin are actually implemented in the parent object.

MakeBear invokes the displayBehaviour-method defined in MakeMammal in its definition of

displayBehaviour. The mixin should then be extended with a super-clause to make this clear. Note

that we add the super-clause at the mixin level and not at the method level. As super calls are only

performed in methods with the same name, introducing super-clauses on the method level wouldn’t

provide us with any extra information (only perhaps a shorter notation). The super-clause was already

stated in the syntax. Listing 5 redeclares a mixin from our example extended with its specialisation

interface. The type checker verifies whether all methods called through self and super sends are

actually stated at the intended clauses.

MakeBear Mixin: [ eats (someFood:food) Method: [...];
displayBehaviour ()

Method: [ self eats(fish);
super (); … ]

Self: [ eats (food) ] ]
Super: [ displayBehaviour () ].

Listing 5

By adding self- and super-clauses we create a structure similar to Lamping’s specialisation

interfaces. The extra knowledge provided by the self-clauses enables us to impose a less strict form of

contravariance.

4.3 Typing Dynamic Object Extension

Now let us take a look at the problems specifically connected to dynamic object extension.

Substitutability of supertypes by subtypes is a general characteristic of object-oriented type systems. As

a consequence, an object’s type is known only up to an approximation, since the actual type of an

object can be a subtype of its formal type. The key problem of typing dynamic object extension is that a

static type checker does not know the exact type of the object that is being extended. This is illustrated

in listing 6, which features an example of dynamic inheritance in the method displayAsHerbivore. As

far as a static type checker can determine, an object with type aMammal is extended with herbivore

behaviour in the method displayAsHerbivore. The actual type of this mammal object, however, can

also be aBear, due to the assignment of the aBear actual argument to the aMammal formal parameter.

Remember that the extension of aBear with herbivore behaviour is not type correct. The program in

listing 6 should therefore be rejected.

MakeHerbivoreDisplayable
Mixin:

[ displayAsHerbivore(someMammal:aMammal)
Method: [ (someMammal MakeHerbivore) displayBehaviour; … ]

];

aMammal define: rootObject MakeMammal;
aBear define: aMammal MakeBear;

herbie define: rootObject MakeHerbivoreDisplayable;
herbie displayAsHerbivore(aMammal);
herbie displayAsHerbivore(aBear)

Listing 6
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4.4 Substitutability versus Dynamic Extensibility

 The conflict between the above assignment of the aBear actual argument to the aMammal formal

parameter and the extension with herbivore behaviour is a conflict between substitutability of client

interfaces and substitutability of specialisation interfaces. Whereas, with respect to the client interface

aBear compatible with aMammal, with respect to the specialisation interface aBear is not compatible

with aMammal (i.e. aMammal allows more extensions than aBear). It is therefore clear that the above

typing problem can be solved by enriching the type system with type rules on substitutability that also

take specialisation interfaces into account.

Applying this to the example we see that aMammal does not specify a type restriction on the

specialisation interface of inheritors, while aBear does have a type restriction on inheritors, concerning

the self send of the eats-method. On this basis an assignment aMammal := aBear can be prohibited by

the type checker since an object with more type restrictions on the specialisation interface is not

substitutable for an object with less type restrictions. When the assignment is prohibited due to the

absence of type restrictions on the specialisation interface, the extension of aMammal with herbivore

behaviour is allowed.

If one does want to allow an assignment aMammal := aBear, then one needs to add a type restriction

that makes the specialisation interface of aMammal compatible with the specialisation interface of

aBear; i.e. one has to add a type restriction on the possible extensions of aMammal. Obviously this extra

type information should be such that MakeHerbivore is not applicable to the annotated aMammal. We

therefore provide the possibility (already mentioned in the syntax) to extend the specialisation interface

of an object with additional restrictions, i.e. an extra self clause (listing 7). It is obviously superfluous

to relate the methods in this extra self clause to a certain method, as that would not have the same

meaning as in the other cases2.

aMammal define: rootObject MakeMammal withSelf: [ eats (food) ] ;

Listing 7

The choice whether or not to extend an object type with additional constraints depends on the

programmer’s intentions for further use of the object. Neither option is as radical as might seem at first.

Even when the programmer does want to allow the MakeHerbivore extension, it should, for example,

still be possible to assign an endangered mammal to aMammal as this does not conflict with this

extension. For the same reason it should still be possible to apply the MakeEndangered mixin to

aMammal, when the assignment of aBear to aMammal is allowed.

In any way, the trade-off should be made by the programmer and not by the type checker. The

programmer is therefore given the ability to indicate whether he wants to restrict the set of object types

with which an object can be substituted or whether he wants to restrict the set of mixins that can be

applied to this variable. He can do this by (not) extending the specialisation interface of the object.

2 In our type system we will introduce a method named ‘ghost’ to which this extra information will be attached.
We therefore impose the restriction that the user cannot define a method named ‘ghost’.
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5 The Type Rules

The first step in formalising the trade-off between substitutability and extensibility is defining the

syntax of type expressions and a number of selector functions and restrictions on it. The following

three subsections respectively give separate type rules on substitutability, extensibility and object

declaration. The final subsection gives proofs of the consistency and completeness of the type system.

Note that we will use a notation somewhat closer to natural language, than the standard notation

used for describing type systems. The main argument for doing so is that our primary goal is to explain

the innovative principles and ideas on which the type system is based to a public larger than just type

system specialists.

5.1 Type Syntax

5.1.1 Type Syntax and Syntactic Domains

In the following abstract grammar ‘ghost’, bottom , top and all methodnames are terminals.

methodint ::= methodname objecttype1 objecttype2
ghostint ::= ‘ghost’ bottom top

clientint ::= methodint
| ghostint

specint ::= ε
| methodint specint

methodtype ::= clientint specint

constructedobjecttype ::= ε
| methodtype constructedobjecttype

objecttype ::= constructedobjecttype
| top
| bottom

mixintype ::= constructedobjecttype specint

On the one hand, the type of a method consists of a method name, a type for the argument of the

method and a result type (methodint ). As already mentioned in an earlier footnote, we also introduce a

special “ghost”-method type (ghostint ). This first part is referred to as the method client interface

(clientint). When type checking an object we also need to know which self calls are being executed in

each of its methods. The part of the method type describing this information is called its specialisation

interface (specint). A complete method type (methodtype) then consists of a method client interface and

a method specialisation interface. Since an object is a collection of methods, the type of an object is

simply an enumeration of the types of its methods (constructedobjecttype). Apart from these

constructed object types, we also have two predefined object types denoted by the terminal symbols

top and bottom denoting the greatest, respectively the least object type according to the subtype

relation (objecttype). The first part of a mixin type (mixintype) is a collection of methods, which is the

same as an object type, except that it cannot be top or bottom, as it is impossible to actually construct

these types. The second part denotes all super calls that can be invoked by the mixin. Recall that this

type information is necessary because a mixin can only be applied to objects that handle these super

calls correctly. As for self calls, this information is captured in a specialisation interface.
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The following syntactic domains are defined.

im
client = set of all type expressions of the form methodint

ig
client = singleton containing only the type expression ghostint

iclient = set of all type expressions of the form clientint
= im

client ∪ ig
client

nmethod = set of all method names (except the name of the ghost method)

tc
object = set of all type expressions of form constructedobjecttype

tg
object = set containing only the type expressions top and bottom

tobject = set of all type expressions of the form objecttype

= tc
object ∪ tg

object
ispec = set of all type expressions of the form specint
tmethod = set of all type expressions of the form methodtype
tmixin = set of all type expressions of the form mixintype

5.1.2 Some Useful Operators on Type Expressions

The following selector functions on these syntactic domains are useful. Note that the notation p(X)

denotes the powerset of a set X, i.e. the set of all subsets of X.

Name : iclient → nmethod :

Name (ghostint) = ‘ghost’
Name (methodname objecttype1 objecttype2) = methodname

ArgType : iclient → tobject :

ArgType (ghostint) = bottom
ArgType (methodname objecttype1 objecttype2) = objecttype1

ResType : iclient → tobject :

ResType (ghostint) = top
ResType (methodname objecttype1 objecttype2) = objecttype2

Client : tmethod → iclient :

Client (clientint specint) = clientint
Self : tmethod → im

client :

Self (clientint specint) = specint
MixinInt : tmixin → tc

object :

MixinInt (constructedobjecttype specint) = constructedobjecttype
Super : tmixin → ispec :

Super (constructedobjecttype specint) = specint

Apart from these selector functions we have two extra functions merely for translating lists in sets

which are easier to deal with mathematically. The function Set on specialisation interfaces generates a

set of all method interfaces of which a specialisation interface consists and the function Interface on

general object types generates a set of all method types of which an object type consists.

Set : ispec → p(im
client) :

Set (methodint1 methodint2 ... methodintn)
= { methodint1 , methodint2 , ... , methodintn }

Interface : tc
object → p(tmethod) :

Interface (methodtype1 methodtype2 ... methodtypen)
= { methodtype1 , methodtype2 , ... , methodtypen }

Using the latter function, the client interface of a constructed object type can be computed as the

union of the client interfaces of all of its methods, by means of the following function:
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ClientInterface = tc
object → p(iclient) :

ClientInterface (T) = { Client(t) | t ∈ Interface (T) }

The self interface of a constructed object type corresponds to its set of restrictions and contains all

possible self calls that can be made. Indeed, the more self calls, the more difficult to find an extension

that does not conflict with these self calls, hence the more restrictive the object type. This self interface

is the union of the self interfaces of all of its methods, and can be computed by means of the following

function :

SelfInterface = tc
object  → p(i

m
client) :

SelfInterface (T) = ∪t∈Interface(T) Set (Self (t))

Notice that in this definition, the self interface is defined as a union of sets, rather than as a set of

elements (as in the previous definition). This is because the self interface of a method describes the set

of all methods that are invoked through self calls within that method, which can be more than one

method.

5.1.3 Syntactic Constraints

Some restrictions were not explicitly mentioned in the syntax (for reasons of brevity), but should

nevertheless be respected.

• ∀ T ∈ tc
object: (1) Client is injective on Interface(T)

(2) Name is injective on Client(Interface(T))

The first restriction is needed to assure that a method is uniquely determined by its client interface.

The second constraint states that it is impossible for an object to have two methods with the same

name (but different types) in its client interface, since we do not allow overloading.

• ‘ghost’ ∉ nmethod

To make a distinction between ordinary methods and ghost methods we require that the name

‘ghost’ of a ghost method be distinct from the names of ordinary methods.

• The order of the methodints of which a specint is composed is immaterial.

As a consequence, Set is bijective (up to a permutation of methodints) since it simply maps a

sequence of methodints on a set of methodints, and thus Set-1 exists as well.

• Analogously, the order of the methodtypes in a constructedobjecttype is not important.

5.2 Type Checking Substitutability

One object is substitutable for another object if its type is a subtype of the other object’s type. To

define the subtyping rule, definitions of contravariance and interface containment are necessary.

The contravariance rule on methods states that a method with client interface m1 contravariantly

overrides a method with the same name but with client interface m2, if the argument type of m2 is a

subtype of the argument type of m1 and the result type of m1 is a subtype of the result type of m2. The

subtype relation will be defined later on in this section.



- 13 -

Contravariance Rule
∀ m1, m2 ∈ iclient  with Name(m1) = Name(m2) : m1 contravariantly overrides m2 ⇔

ArgType(m2) is subtype of ArgType(m1) 3

ResType(m1) is subtype of ResType(m2)

The notion of interface containment is defined almost exactly as in [Canning&al.89] (see section

2.1). The only difference is that our definition should take care of the fact that an interface can contain

two methods with the same name. More specifically, this is the case for specialisation interfaces, since

it is possible to perform several self sends of the same method with different argument types. In the

client interface however it is not allowed to have two methods with the same name (because of the

injectivity constraints). Nevertheless, we will use the same definition for self and client interfaces,

although a more specific definition could be given for the latter.

Interface Containment
∀ I1, I2 ∈ p(iclient) : I1 contains I2 ⇔

∀ m2 ∈ I2 : ∃ m1 ∈ I1 : Name(m1) = Name(m2) 3
 ∀ m2 ∈ I2 : ∀ m1 ∈ I1 with Name(m1) = Name(m2)  : m1 contravariantly overrides m2

Intuitively, an object type T1 is a subtype of another object type T2 if it can be used in any context

requiring an object of type T2. More specifically, at least all messages that can be sent to T2 can also be

sent to T1, and at least all mixins that can be applied to T2 can also be applied to T1. The first condition

can be captured by requiring the client interface of T1 to contain the client interface of T2. The latter

condition means demanding that there should be less restrictions on T1 than on T2. Note the

contravariant relation between the containment relationships on both interfaces.

Subtyping Rule
∀ T1, T2 ∈ tc

object : T1 is subtype of T2 ⇔
ClientInterface(T1) contains ClientInterface(T2 ) 3

SelfInterface(T2) contains SelfInterface(T1)

Notice that this is an inductive definition because “is subtype of” is defined in terms of “contains”

which is defined in terms of “contravariantly overrides” which is in turn defined in terms of “is

subtype of”. As in [Amadio&Cardelli93] the base case is handled by the primitive object types top and

bottom which satisfy the following subtyping axioms:

Definition: Subtyping Rule Bottom
∀ T ∈ tobject: T is subtype of bottom ⇔ T=bottom
∀ T ∈ tobject: bottom is subtype of T

Definition: Subtyping Rule Top
∀ T ∈ tobject: top is subtype of T ⇔ T=top
∀ T ∈ tobject: T is subtype of top

In other words, top is the upper bound of the subtype relation, and bottom is the lower bound.

5.3 Type checking dynamic extensibility

A mixin cannot be applied to an object if one of the methods that is called in the object through a

self send is overridden by a method of the mixin in a non-contravariant way. In this case we say that

the object “excludes” the mixin.
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Exclusion
∀ T ∈ tc

object : ∀ M ∈ tmixin : T excludes M ⇔
∃ m1 ∈ SelfInterface(T) : ∃ t2 ∈ Interface(MixinInt(M)) with Name(m1) = Name(Client(t2)) :

not ( Client(t2) contravariantly overrides m1 )

Because top is (per definition) the greatest element according to the subtype relation, intuitively it

should have an empty client interface, and contain all possible methods in its specialisation interface.

Therefore top should exclude all possible mixin applications, since it contains all possible restrictions.

Analogously, because bottom is the smallest element according to the subtype relation, intuitively it

should have an empty self interface, and contain all possible methods in its client interface. Hence

bottom should exclude no mixin applications, since it has no restrictions. Keeping all this in mind, we

add the following axioms for defining exclusiveness on top and bottom.

Definition: Exclusion Bottom and Top
∀ M ∈ tmixin : Top excludes M
∀ M ∈ tmixin : not ( Bottom excludes M )

Obviously for a mixin to be applicable to an object, the object should not exclude the mixin

application, but furthermore all super calls performed in the methods of the mixin should be captured

by the object.

Applicability
∀ T ∈ tc

object : ∀ M ∈ tmixin : M is applicable to T ⇔
not ( T excludes M ) 3
∀ m1 ∈ Set(Super(M)) : ∃ m2 ∈ ClientInterface(T) with Name(m1) = Name(m2) :

m2 contravariantly overrides m1

We also add the following axioms for defining applicability on top and bottom.

Definition: Applicability Bottom and Top
∀ M ∈ tmixin : not ( M is applicable to top )
∀ M ∈ tmixin : M is applicable to bottom

5.4 Object Declaration and Extension

Besides defining when objects are substitutable and when mixins are applicable to objects,

definitions are needed to specify how the object’s types are obtained. Two cases can be distinguished

object declarations and object extensions.

5.4.1 Object Declaration

As explained in section 4.4 the user should have the possibility to explicitly put extra constraints on

objects by explicitly extending the self interface. This is done by means of an object declaration of the

form: T2 define: T1 withSelf: Selfnew. Because this information is only used to restrict the set of

possible extensions and has nothing to do with the actual implementation of the object itself, we relate

these self clauses with a special “ghost”-method, that will only be used for this purpose. It cannot be

explicitly manipulated by the user.  In our model, the information corresponding to this “ghost”-method

can be retrieved by means of the following partial function3:

3 Note that GhostSet will always be the empty set or a singleton.
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GhostSet : tc
object  → p(tmethod ): T . { t ∈ Interface(T) | Name(Client(t)) = ‘ghost’}

When declaring an object through an define:withSelf:-construction, the resulting type can be

computed by the following function4:

Definition: Object Declaration
If (T1,S) ∈  tc

object ×  ispec, then DeclaredType(T1,S) = T2 where T2 is the constructedobjecttype  with
interface:
Interface(T2) =  ( Interface(T1) / GhostSet(T1) ) ∪

{ t ∈ tmethod |  Client(t) = ghostint 3 Self(t) = Set-1( Set(S) ∪ { Self(t) | t ∈ GhostSet(T1)} ) }

Note that the withSelf:-clause should be optional and declaring an object without a withSelf:-

clause should result in copying the object on the right-hand side of define:. The following property

can easily be proven.

Property: ∀ T ∈ tc
object : DeclaredType(T,ε)=T

It can again be shown by means of a case analysis that DeclaredType is indeed a function from

tc
object × ispec to tc

object.

All objects are constructed by applying mixins to an empty RootObject with one of the following

types:

RootTypes = { DeclaredType(ε,S) | S ∈ ispec } 1 tobject

The following property states that RootTypes are maximal object types. The proof is straightforward

and left to the reader. Note also that Top is an element of RootTypes, but cannot be constructed.

Property:
∀ R ∈ RootTypes, ∀ T ∈ tc

object : R is subtype of T ⇒ T ∈ RootTypes

5.4.2 Object Extension

We introduce the set of legal mixin applications to define how object types are constructed through

mixin applications and object declarations.

aaaalegal  =  { (T,M) ∈ tc
object × tmixin | M is applicable to T }

The result of such a legal mixin application is an object of which the type can be computed by

means of the following function5:

Definition: Object Extension
If (T1,M) ∈ alegal, then  ExtendedType(T1,M) = T2 where T2 is the constructedobjecttype with interface:
  Interface(T2) =
(  Interface(T1) /  { t1 ∈ Interface(T1) | ∃ t2 ∈ Interface(MixinInt(M)): Name(Client(t1)) = Name(Client(t2)) }  )
∪ { t1 ∈ Interface(MixinInt(M)) | ™ m2 ∈ Set(Super(M)):  Name(Client(t1)) = Name(m2) }
∪ { t ∈ tmethod | ∃ t1 ∈ Interface(MixinInt(M)): ∃ m2 ∈ Set(Super(M)): ∃ t3 ∈ Interface(T1):

Name(Client(t1)) = Name(m2) = Name(Client(t3)) 3

Client(t) = Client(t1) 3 Self(t) = Set-1(Set(Self(t1)) ∪ Set(Self(t3)))   }

4 For the same reasons as with the definition of ExtendedType, it is not necessary to define this function on top
and bottom.
5 It is not necessary to define this function on top and bottom because there are no expressions in our language
that correspond to these types, and because the only purpose of ExtendedType is computing the types of new
objects defined by the user. top and bottom were only introduced in our type system for handling the base cases
of inductive definitions.
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The type of the extended object is the type of the parent object to which newly defined methods in

the mixin are added and where the interface of methods that are overridden is adjusted. Recall from

section 4.2 why we opted to attach the self-clauses to methods and not to mixins. Here the system uses

the extra knowledge provided by our choice to work on the method-level. When a method is overridden

without a super call of it being performed, the method can simply be replaced by the new one. When

the overriding method does perform a super call, the old method is removed, but the self interface of

the old method is added to the self interface of the new one. This is necessary because the super send

can cause the method that was removed from the client interface to be called. Therefore, we have to

keep track of the restrictions it poses. It is however not necessary (it would even be wrong) to keep this

entire method in the client interface, as it can no longer be called directly. By means of a case analysis

it can be shown that ExtendedType is indeed a function from alegal to tobject.

5.5 System Consistency and Completeness

In Appendix C the entire set of theorems and proofs to show that the system is consistent and

complete is given. Here we sketch our approach and give the most important theorems.

5.5.1 Consistency

As the key to type checking dynamic inheritance is a trade-off between applicability and

extensibility, it is important to prove that this trade-off is correctly expressed by the type system. We

first show that any mixin type excluded by a certain object type, must also be excluded by this object’s

supertypes. If this were not the case conflicts would arise when assigning a subtype to a supertype and

then trying to apply a mixin that is excluded by the subtype and not by the supertype.

Theorem 1: Consistency between substitutability and exclusion
Let T1, T2 ∈ tobject, M ∈ tmixin, then:
T1 is subtype of T2   3   T1 excludes M    ⇒   T2 excludes M

In the same vein we prove that all mixin types that are applicable to a certain object type, are also

applicable to this object’s subtypes. Otherwise conflicts would arise when assigning a subtype to a

supertype and then trying to apply a mixin that is applicable to the supertype and not to the subtype.

Theorem 2: Consistency between substitutability and applicability
Let T1, T2  ∈ tobject, M ∈ tmixin, then:
T1 is subtype of T2    3   M is applicable to T2   ⇒  M is applicable to T1

The proofs of these theorems can be found in Appendix C.1.

5.5.2 Well-typedness

In Appendix B.1 we define a generic function LookUp for looking up Variables or MixinNames in

their environments VarEnv respectively MixEnv. In Appendix B.2 we describe a generic function TYPE that

associates types to language expressions. This function makes use of the LookUp function and is only

defined on well-typed expressions.

A program is well-typed if it will be accepted by our type-checker. Hence the definition of well-

typedness provides a sort of formal description of the type checker. In the next section we will then

prove that our type system is complete in the sense that every program accepted by it is indeed type-
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safe. Before we can give an overall definition of when a Program is well-typed, we need well-typedness

definitions for several subparts of a program.

Since TYPE is only defined on well-typed expressions and the TYPE of a Variable or MixinName  is

computed by looking it up in its environment, for a Variable or MixinName to be well-typed we have to

verify whether it is present in the environment.

Definition: Well-typed variable
A Variable V is well-typed if V is in VarEnv

Definition: Well-typed mixin name
A MixinName M is well-typed if M is in MixEnv

The language syntax shows that on the top level of a program there are three kinds of expressions:

object declarations, method sends and assignments. An object declaration is well-typed if all the type

definitions in its self-clause are well-typed and if the object that is used as a basis for the declaration is

well-typed. Note that it is not necessary to check the consistency of this object with the self-clause,

because the self-clause is used to impose additional constrains and has nothing to do with the object.

Definition: Well-typed object declaration
An ObjectDeclaration O2 define: O1 withSelf:[mt1;…;mtm] is well-typed  if

∀ i : mti is well-typed  3 O1 is well-typed

An assignment is well-typed if the type of the object on the right-hand side is a subtype of the type

of the object on the left-hand side. Note that on the right-hand side a method send or a mixin

application can occur as well as a variable, but since the TYPE of all of these is an element of tobject,

this is not a problem.

Definition: Well-typed assignments
An Assignment or ExtAssignment O1 := O2 is well-typed if

O1is well-typed 3 O2 s well-typed 3 TYPE(O2) is a subtype of TYPE(O1)

A message send is legal if the method is defined on the receiving object and the argument is of a

correct (sub)type.

Definition: Well-typed message sends
A MethodSend O1 N(a) is well-typed if

O1 is well-typed 3 a is well-typed 3

∃ m ∈ ClientInterface(TYPE(O1)): Name(m) = N  3 TYPE(a) is a subtype of ArgType(m)

In the body of a method declaration a fourth sort of expression is allowed, namely expressions of

the form return x. For those expressions an extra check is needed to verify that the type of the object

that is returned corresponds to the expected result type given in the method declaration. Note that

according to the syntax it is possible to include several return-statements in one method body. At run

time only the first one that is actually encountered will be executed. It is however necessary to type

check them all, as it cannot be detected statically which one will be executed.

Furthermore, for a method declaration to be well-typed all self sends that are performed in its body

need to have a corresponding method type in the method’s self-clause. It is however allowed to have

more methods in this clause than are actually called through a self send.
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Definition: Well-typed method declarations
A MethodDeclaration
N(A:ArgType) Method:[me1;…;men] Result:ResultType Self:[mt1;…;mtm]

is well-typed if
∀ j : mtj is well-typed 3 ArgType is well-typed 3 ResultType is well-typed

3 ∀ mei of the form return Var : Var is well-typed 3 TYPE(Var) is a subtype of TYPE(ResultType)
3 ∀ mei of a form other than return Var : mei is well-typed
3 ∀ mei of the form b := self m(a) :

∃ mtj : Name(TYPE(mtj)) =  m 3

TYPE(a) is a subtype of ArgType(TYPE (mtj)) 3
ResType(TYPE (mtj) ) is a subtype of TYPE(b)

Note that in this last clause (as well as in the next definition) we assume again that all methods have

an argument and result. The extension of these rules to include the other cases is straightforward.

A mixin declaration is well-typed if every mixin expression in its body is well-typed. Furthermore

we require for every method declaration that appears as a mixin expression of this mixin that all super

sends performed in the body of this method declaration have a corresponding method type in the super-

clause of the mixin-declaration.

Definition: Well-typed mixin Declarations
A MixinDeclaration N Mixin:[me1;…;men] Super:[mt1;…;mtm]   is well-typed   if

N is not in MixEnv 3 ∀ i : mei is well-typed 3 ∀ j : mtj is well-typed 3

3 ∀ mei of the form M(A:ArgType) Method:[e1;…;ep] Result:ResultType Self:[t1;…;tq]:
∀ ek of the form b := super(a) :

∃ mtj : Name(TYPE(mtj)) =  M 3

TYPE(a) is a subtype of ArgType(TYPE (mtj)) 3
ResType(TYPE (mtj) ) is a subtype of TYPE(b)

A mixin application is well-typed if the type of the mixin is applicable to the type of the object it is

applied to.

Definition: Well-typed mixin applications
A MixinApp O M is well-typed if

O is well-typed 3 M is well-typed 3 TYPE(M) is applicable to TYPE(O)

A program is well-typed if every one of its mixin declarations and expressions is well-typed.

Definition: Well-typed program
A Program [mixindec1;...;mixindecn; exp1;...;expm] is well-typed if

∀ i : mixindeci is well-typed 3 ∀ j : expj is well-typed

5.5.3 Completeness

The aim of this section is to show that all programs that will be accepted by our type-checker (all

well-typed programs) are actually type-safe. Intuitively, a program is defined type-safe if no run time

type errors can occur.

Definition: Type-safe
A program is type-safe
⇔ No “Message not understood”,

“Illegal result type”,
“Illegal argument type” or
“Mixin not applicable”

errors will occur during the execution of the program.
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Next we prove that the definitions of well-typedness of previous section indeed capture all these

errors. We therefore show (see Appendix C.2) that the following property6 holds.

Property:
If in a Program all MethodSends, ExtMethodSends, MixinApps, MethodDeclarations, MixinDeclarations,
Assignments and ExtAssignments are well-typed,
them the Program is type-safe.

Since a well-typed program only contains well-typed subexpressions, the completeness theorem

follows almost immediately from this property. Again we refer to Appendix C.2 for the proof.

Theorem 3: Completeness
Every well-typed program is type-safe.

6 Future Work

It is not enough for a type system to be fine-grained and consistent, it also needs to be

understandable for the programmer and easy to work with. In section 6.1 sets of mixins are introduced

as a means to make the type system more comprehensible. Section 6.2 shortly discusses how the

introduction of specialisation interfaces also opens up a lot of interesting, new perspectives in software

engineering in general.

6.1 A Practical System

[Hamer&al.92] introduces classifiers as a means to implement constraints on generalisation

relationships that cannot be expressed using standard (multiple) inheritance. A classifier is a set of

mutually exclusive subclasses of some basic class. We want to introduce a complementary feature for

grouping mixins with similar specialisation interfaces (as opposed to exclusive classes as in

[Hamer&al.92]).

The main reasons to do this are practicality and comprehensibility. In the example of section 4.4 the

choice between substitutability and extensibility could only be made by the programmer that declares

aMammal. This implies that a programmer using a mixin library needs to evaluate the specialisation

interfaces of the mixins in the library in order to decide what mixins are combinable. This can be rather

cumbersome. It is primarily the programmer who defined the library that has this knowledge, not the

user. This knowledge has to be made explicit in the mixin library. This can be done by introducing a

mechanism that allows a restriction on the combination of mixins to be stated explicitly.

We included such a construct in an experimental version of the type system. We will not introduce

it formally here, but shortly discuss how it could work. The type rules express what mixins can be

applied after what other mixins without causing type problems. They thus structure the set of mixins in

subsets with similar specialisation interfaces. This structure needs to be made explicit. If we focus on

the problems discussed above, two sets of mixins are of interest to us: one that contains MakeBear and

one that contains MakeHerbivore. For the sake of the argument we defined sets with only one element

in the example.

6 This property does not necessarily work in the opposite direction because in general it is not necessary to check
all possible expressions in the program, but only the ones that will actually be executed.
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BearSet := { MakeBear };
HerbivoreSet := { MakeHerbivore };

The constraints on the specialisation interface of MakeBear, can then be expressed as an exclusion

constraint on these sets:

BearSet excludes HerbivoreSet;

Intuitively this exclusion means that a mixin of HerbivoreSet cannot be applied to an object to

which a mixin of BearSet was already applied. Variable declarations need to be extended with an

optional clause that specifies all sets of applicable mixins. This clause replaces the current withSelf:-

clause, as it serves the same purpose. An object can only be extended with mixins that belong to one of

the sets with which it was declared. Again, mammal variables can be defined in several ways,

depending on the programmer’s choice.

aFirstMammal define: rootObject MakeMammal;

aSecondMammal define: rootObject MakeMammal
withMixinSets: HerbivoreSet;

It is possible to extend aSecondMammal with (the only element of the HerbivoreSet), while

aFirstMammal can not be extended. Furthermore, any object created with a mixin contained in BearSet

(i.e. MakeBear) cannot be assigned to aSecondMammal since BearSet excludes mixins with which

aSecondMammal can be extended (i.e. MakeHerbivore contained in HerbivoreSet).

In this form this approach is more restrictive than our current type system, but it probably can be

refined. On the other hand, besides the more comprehensible notation, one of the strengths of this

approach is that it is easier to add extra constraints for other than typing reasons. It could, for example,

be useful to add an exclusion constraint on MakeMale and MakeFemale, purely for design reasons, even

when applying the two consecutively wouldn’t cause any type errors. The type system only needs to

check whether at least all exclusions that should be imposed to prohibit type errors are actually

declared.

In general, we feel that the use of mixins as basic components for reuse has not been investigated

sufficiently yet. We are convinced that the role of typing in general and specialisation interfaces more

specifically will be considerable.

6.2 Types for Software Engineering

Specialisation interfaces were first introduced as a means to enhance reuse. In [Johnson&Russo91]

two important techniques for reuse of design: abstract classes and frameworks are discussed. While an

abstract class is a design for a single object, a framework is the design of a set of objects that

collaborate to carry out a set of responsibilities. Furthermore, they remark that currently frameworks

are usually only described by the code and informal descriptions, where ideally the information given

by the code should be completed with a formal description of the constraints in a framework. These

specify how abstract classes and frameworks can be refined, specialised and combined. One attempt to

do this is through contracts [Helm&al.90] [Holland92]. Contracts give information about how objects

work together in a system. This information includes: the object’s interface; which message sends

(have to) cause which other message sends; invariants and instantiation requirements.
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Specialisation interfaces as we use them in our type system can be used to provide similar

information as contracts. One of the main differences is that contracts explicitly describe compositions

of different kinds of objects (“ensembles” in [Johnson&Russo91]). One could think of specialisation

interfaces as of contracts between objects and their inheritors. We want to investigate how the concept

of specialisation interfaces can be extended to play the role of contracts between a number of objects,

keeping in mind that specialisation interfaces only use types and do not include semantic information

such as invariants.

In a similar vein, we want to investigate how the typing of specialisation interfaces can be used to

support the correct reuse of abstract classes. A project strongly related to this is ACTS (Abstract

Concrete Type System) [Dodani&Tsai92], a type system that imposes different rules on inheritance

between abstract classes and inheritance between concrete classes. We already mentioned their

observations that inheritance is used to express two kinds of relationships (the substitutable is-a

relationship and abstraction of common behaviour) and that the choice between covariance and

contravariance should be directly related to the specific use of inheritance. They therefore propose a

type system where inheritance between abstract classes has to comply with the covariance rule and

inheritance between concrete classes to the contravariance rule.

To our opinion ACTS does not make a fine enough distinction between different kinds of

inheritance due to the absence of specialisation interfaces. Specialisation interfaces can be used to

make a distinction between the former two kinds of inheritance and a new one: design inheritance.

Similar to abstract classes specialisation interfaces document a part of the design of a class: the layering

of methods. This information is not fully exploited by the current type system. The only restriction,

involving specialisation interfaces, imposed by the type system is method type correctness. One step in

the direction of distinguishing design from plain code inheritance would be an extension of the type

rules in order to introduce explicit ‘abstract’ and ‘template’ methods — methods of which the

specialisation interface can only be refined.

7 Conclusions

Dynamic object extension can be made type-safe without loosing the flexibility of prototype based

languages. The key to typing dynamic inheritance is a trade-off between the set of objects with which

an object can be substituted and the set of possible extensions. Specialisation interfaces were

introduced in the system to provide extra information necessary to allow the creation of inheritors that

are not in a subtype relationship with their parent.  Furthermore, the use of specialisation interfaces in

this type system opens up a lot of new perspectives in software engineering for flexible object-oriented

systems.

We have given a type system for an object-based language with mixin-based inheritance. Its

consistency and completeness was proven.
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Appendix A: Syntax

A.1 The Language Syntax

Program ::= MixinDeclaration1; …; MixinDeclarationn;
Expression1; …; Expressionm.

MixinDeclaration ::= MixinName Mixin: [ MixinExpression ]
 Super: SpecInterface

Expression ::= ObjectDeclaration
| Assignment

Assignment ::= Variable := Object

MixinExpression ::= MethodDeclaration
| ObjectDeclaration
| MixinExpression ; MixinExpression
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MethodDeclaration ::= MethodName ( Variable:Variable )
Method:[ MethodExpression1; …; MethodExpressionn ]
Result: Variable
Self: SpecInterface

ObjectDeclaration ::= Variable define: ProtoType
withSelf: SpecInterface

MethodExpression ::= ObjectDeclaration
| ExtAssignment
| return Variable

ExtAssignment ::= Variable := ExtObject

ProtoType ::= Variable
| MixinApp

MixinApp ::= Variable MixinName
| rootObject MixinName

MethodSend ::= Variable MethodName ( Variable )

ExtendedMethodSend ::= MethodSend
| self MethodName ( Variable )
| super ( Variable )

Object ::= Variable
| MethodSend
| MixinApp

ExtObject ::= Variable
| ExtendedMethodSend
| MixinApp

SpecInterface ::= [ MethodType1; …; MethodTypen ]

MethodType ::=  MethodName ( Variable ) Result: Variable

Furthermore, for convenience we assume that MixinName, MethodName and Variable are disjoint sets

of names.

A.2 The Type Syntax

methodint ::= methodname objecttype1 objecttype2
ghostint ::= ‘ghost’ bottom top

clientint ::= methodint
| ghostint

specint ::= ε
| methodint specint

methodtype ::= clientint specint

constructedobjecttype ::= ε
| methodtype constructedobjecttype

objecttype ::= constructedobjecttype
| top
| bottom

mixintype ::= constructedobjecttype specint

Appendix B: Environments and Typing

B.1 Environments

Our type system needs some environments to record the types of the mixins and objects that have

been declared. We will not describe these structures in detail. We simply assume that there is an

environment VarEnv (possibly structured in subsections) associating declared variables with their types,

an environment MixEnv associating declared mixins with their types, and a generic function LookUp for

looking up variables in VarEnv or mixinnames in MixEnv. Note that, while for mixinnames LookUp simply

needs to look up the mixin’s type in MixEnv, for looking up variables in VarEnv it also needs to take
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scoping into account. We also need a function MethodLookUp for finding the type associated with a

method of a given name in an object of a given type.

Of course we also need to explain how all these environments will be constructed. However, since

we did not introduce environments formally, and because the construction of the environments is quite

straightforward, we only give one (informal) example. When declaring a mixin

Name Mixin: [o1;...;om;m1;...;mn] Super: SpecInterface

the type of the declared mixin is associated with its Name in the environment MixEnv. Furthermore, all

object declarations o1, ..., om are added to VarEnv (at the correct scoping level).

B.2 Typing

We now introduce a generic function TYPE to make the correlation between the syntax of our

language (Appendix A.1) and our type expressions (Appendix A.2). TYPE is defined on the following

language constructs, and can only be computed if these language constructs or well-typed (see section

5.5.2).

Variables:

TYPE (Variable) = Lookup(Variable,VarEnv)

So in order to determine the type of a well-typed variable, we simply need to look it up in the

environment of variables. The same goes for (well-typed) mixin names:

Mixin names:

TYPE (MixinName) = Lookup(MixinName,MixEnv)

Mixin declarations:

TYPE (Name Mixin:[o1;...;om;m1;...;mn] Super: SpecInterface)

= TYPE(m1) ... TYPE(mn) TYPE(ExtSpecInterface) ∈ tmixin

where ExtSpecInterface = Set-1(Set(SpecInterface) ∪ SuperExtension )
where SuperExtension  =  {  m TYPE(a) TYPE(b) |

∃ mi of the form    M (A:ArgType) Method:[e1;…;ep] Result:ResultType Self:[t1;…;tq] :
∃ ek of the form b := self m(a) :

not ∃ mj :  of the form  M’ (A:ArgType) Method:[e1;…;ep]
Result:ResultType Self:[t1;…;tq] :

m = M’ }

Note that the oi’s and mi’s can actually appear intertwined and that the mutual order of the mi’s is of no

importance.

The artificial extension of the super-clause is necessary because not all self sends that are performed in

a method body are calls of methods defined on the same level. It is also possible to perform self sends

of methods defined in the parent. For these methods the same checks as for methods called through

super sends are necessary. Therefore, these methods are added to the super-clause here.

Method declarations:

TYPE ( Name(A:Var1) Method:[M1;...;Mn] Result:Var2 Self:SpecInterface )

= Name TYPE(Var1) TYPE(Var2) TYPE(SpecInterface) ∈ tmethod
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SpecInterfaces:

TYPE ([mt1;...;mtn]) = TYPE(mt1) ... TYPE(mtn) ∈ ispec

Methodtype declarations:

TYPE (Name(Variable1) Result: Variable2 )

= Name TYPE(Variable1) TYPE(Variable2) ∈ im
client

ObjectDeclarations:

TYPE (Variable define: ProtoType withSelf: SpecInterface )

= DeclaredType(TYPE(ProtoType), TYPE(SpecInterface)) ∈ tc
object

Mixin applications:

TYPE (Variable MixinName)

= ExtendedType(TYPE(Variable),TYPE(MixinName)) ∈ tc
object

TYPE (rootObject MixinName)
= ExtendedType(ε,TYPE(MixinName)) ∈ tc

object

Method sends:

TYPE (Variable1 MethodName(Variable2))

= ResType( MethodLookUp(MethodName,TYPE(Variable1))) ∈ tobject

Appendix C: Concistency and Completeness

C.1 Consistency

Lemma 1: Alternative definition of object types.
T ∈ tc

object ⇔ ∀ t ∈ Interface(T) : t ∈ tmethod 3

∀ t1, t2 ∈ Interface(T) : Name(Client(t1)) = Name(Client(t2))  ⇒  t1 = t2

Proof: Follows from the definition of constructedobjecttypes  (keeping in mind the restrictions on
them).

Lemma 2: Alternative formulation of Subtyping Rule
∀ T1, T2 ∈ tc

object : T1 is subtype of T2 ⇔
∀ m2 ∈ ClientInterface(T2) : ∃! m1 ∈ ClientInterface(T1) with Name(m1) = Name(m2) :

ArgType(m2) is subtype of ArgType(m1) 3 ResType(m1) is subtype of ResType(m2)
3 ∀ m1 ∈ SelfInterface(T1) : ∃ m2 ∈ SelfInterface(T2) :  Name(m1) = Name(m2)
3 ∀ m1 ∈ SelfInterface(T1) : ∀ m2 ∈ SelfInterface(T2) with Name(m1) = Name(m2) :

ArgType(m1) is subtype of ArgType(m2) 3 ResType(m2) is subtype of ResType(m1)

Proof: Follows immediately from the definitions.

Lemma 3: Transitivity of subtyping
∀ T1, T2, T3  ∈ tobject : T1 is subtype of T2 3 T2 is subtype of T3 ⇒ T1 is subtype of T3

Proof: Induction on the derivations.
One can show, by induction on the depth of the tree of recursive applications of the subtyping rule,
that:

T1 is subtype of T2
⇒ ∀ T3 ∈ tobject: T2 is subtype of T3  ⇒  T1 is subtype of T3

T3 is subtype of T1  ⇒  T3 is subtype of T2
from which transitivity follows immediately.
The base case is handled by the subtyping rules for top and bottom. ❏

Note: Although we did not explicitly introduce a notion of recursive types into our model, we think that
it is feasible to do so. For example, this inductive proof can be generalised in order to cope with
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recursive types as well, because a recursive type is still a finite syntactic construction. See
[Amadio&Cardelli93] for a finitary type system for recursive types with folding and unfolding.

Corollary 1: Transitivity of contravariance and interface containment
The relations "contravariantly overrides" and "contains" are transitive.

Proof:
The transitivity of "contains" follows from the transitivity of "contravariantly overrides" which
follows immediately from the transitivity of "is subtype of". ❏

Corollary 2:
∀ m1, m2, m3 ∈ iclient  with Name(m1) = Name(m2 ) = Name(m3) :
( not ( m3 contravariantly overrides m1 ) 3 m2 contravariantly overrides m1 )

⇒ not ( m3 contravariantly overrides m2 )

Proof: Follows by contraposition from Corollary 1.
Suppose by contraposition that m3 contravariantly overrides m2
then we have to show that either m3 contravariantly overrides m1

or not ( m2 contravariantly overrides m1 )
There are two trivial cases:
1) not ( m2 contravariantly overrides m1 ) ⇒ nothing left to prove.
2) m2 contravariantly overrides m1 ⇒ m3 contravariantly overrides m1
because of our initial assumption m3 contravariantly overrides m2
and because of the transitivity of contravariantly overrides (Corollary 1). ❏

Corollary 3:
∀ m1, m2, m3 ∈ iclient  with Name(m1) = Name(m2 ) = Name(m3) :
( not ( m3 contravariantly overrides m2 ) 3 m3 contravariantly overrides m1 )

⇒ not ( m1 contravariantly overrides m2 )

Proof: Follows by contraposition from Corollary 1.
The proof is completely analogous to that of Corollary 2. ❏

Theorem 1: Consistency between substitutability and exclusion
∀ T1, T2  ∈ tobject, ∀ M ∈ tmixin :
( T1 is subtype of T2 3 T1 excludes M ) ⇒ T2 excludes M

Proof:
Since the proof is trivial if T1 or T2 is equal to top or bottom, we only give the proof for
T1, T2 ∈ tc

object.
Using the definition of exclusion we know:
T1 excludes M
⇒ ∃ m1 ∈ SelfInterface(T1) : ∃ t ∈ Interface(MixinInt(M)) with Name(m1) = Name(Client(t)) :

not ( Client(t) contravariantly overrides m1 ) (1)
Furthermore, the subtyping rule and definition of interface containment yield:
T1 is subtype of T2
⇒ SelfInterface(T2) contains SelfInterface(T1)
⇒ ∀ m1 ∈ SelfInterface(T1) : ∃ m2 ∈ SelfInterface(T2) :  Name(m1) = Name(m2 )
3 ∀ m1 ∈ SelfInterface(T1) : ∀ m2 ∈ SelfInterface(T2) with Name(m1) = Name(m2) :

m2 contravariantly overrides m1
⇒ ∀ m1 ∈ SelfInterface(T1) : ∃ m2 ∈ SelfInterface(T2) with Name(m1) = Name(m2) :

m2 contravariantly overrides m1 (2)
Next, by combining (1) and (2) we get
⇒ ∃ m1 ∈ SelfInterface(T1) : ∃ t ∈ Interface(MixinInt(M)) with Name(m1) = Name(Client(t)) :

not ( Client(t) contravariantly overrides m1 ) 3

∃ m2 ∈ SelfInterface(T2) with Name(m1) = Name(m2) :
m2 contravariantly overrides m1
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⇒ ∃ m1 ∈ SelfInterface(T1), ∃ m2 ∈ SelfInterface(T2), ∃ t ∈ Interface(MixinInt(M)),
with Name(m1) = Name(Client(t)) = Name(m2) :

not ( Client(t) contravariantly overrides m1 ) 3

m2 contravariantly overrides m1
From which follows by Corollary 2:
⇒ ∃ m2 ∈ SelfInterface(T2) : ∃ t ∈ Interface(MixinInt(M)) with Name(m2) = Name(Client(t)) :

not ( Client(t) contravariantly overrides m2 )
⇒ T2 excludes M (using the definition of exclusion) ❏

Theorem 2: Consistency between substitutability and applicability
∀ T1, T2  ∈ tobject, ∀ M ∈ tmixin :
( T1 is subtype of T2 3 M is applicable to T2 ) ⇒ M is applicable to T1

Proof: By contraposition.
Since the proof is trivial if T1 or T2 is equal to top or bottom, we only give the proof for
T1, T2 ∈ tc

object.
Suppose by contraposition that not ( M is applicable to T1 ) (a)
then we have to show that either not ( T1 is subtype of T2 )

or not ( M is applicable to T2 )
If not ( T1 is subtype of T2 ), then there is nothing left to prove.
Therefore we can assume that T1 is subtype of T2 (b)
and try to prove that not ( M is applicable to T2 ). (c)
Because of the definition of applicability, (a) is equivalent with

T1 excludes M £ (a1)
∃ m ∈ Set(Super(M)): ∀ m1 ∈ ClientInterface(T1) with Name(m) = Name(m1):

not ( m1 contravariantly overrides m ) (a2)
and for the same reason showing (c) is equivalent with showing

T2 excludes M £ (c1)
∃ m ∈ Set(Super(M)): ∀ m2 ∈ ClientInterface(T2) with Name(m) = Name(m2):

not ( m2 contravariantly overrides m ) (c2)
Hence it suffices to show that (a1) ⇒ (c1) and (a2) ⇒ (c2)
• (a1) ⇒ (c1) follows immediately from Theorem 1 by making use of (b).
• Proof of (a2) ⇒ (c2):

According to Lemma 2 we have
∀ m2 ∈ ClientInterface(T2) : ∃ m1 ∈ ClientInterface(T1) with Name(m1) = Name(m2) :

m1 contravariantly overrides m2
Combining this with (a2) and using Corollary 3 we get (c2). ❏

C.2 Completeness

Property:
If in a Program all MethodSends, ExtMethodSends, MixinApps, MethodDeclarations, MixinDeclarations,
Assignments and ExtAssignments are well-typed,
then the Program is type-safe.

(Sketch of the) Proof:

Using the definition of type-safety, we only need to show that for a program of the specified form

all errors are indeed captured by the well-typedness constraints.

(1) “Mixin not applicable” errors occur when one tries to extend an object with a mixin that is not

applicable to the object. As can be seen from the definition of well-typed mixin applications such

errors can be avoided by verifying whether all mixin applications are well-typed.

(2) “Message not understood” errors occur when an object receives a request to execute a method

that it does not understand.
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(a) As a first requirement for capturing such errors we want the type of an object to be what we

expect it to be. I.e. if we declare a variable as an object that understands a given set of

messages, and later on we assign a new object to this variable, then we must make sure that

the variable still has the “same” type. More specifically the object in the variable still

understands the same messages (and perhaps more). This requirement is captured in the

subtype condition of the definition of well-typed Assignments and well-typed

ExtAssignments.

(b) Furthermore, for every MethodSend of the form

Variable1 MethodName(Variable2)

we must check if the expected type of Variable1 indeed contains a method with the given

name. This is checked in the first condition of well-typed MethodSends.

(c) For self and super calls the situation is somewhat less obvious. Let us first take a look at super

sends of the form super(Variable). Looking closely at the language syntax we see that such

ExtMethodSends always occur inside an ExtAssignment which occurs inside the body of a

MethodDeclaration (which in turn occurs in the body of some MixinDeclaration). We then

need to check that a super call of this method is actually possible. In order to do this, it is

verified in the definition of well-typed mixin declarations whether the corresponding method

is mentioned in the Super:-part of the mixin declaration. If this is the case, the “is applicable

to” constraint in the definition of well-typed mixin applications will see to it that all methods

in the Super:-clause are actually implemented in the object to which the mixin is applied.

(d) Finally, we show that self calls are always understood. There are two possibilities. Either a

self call is performed of a method that is declared in the same mixin, or a self call is made of a

method that is not declared in the same mixin. In the latter case, we have to make sure that this

method will actually be implemented by an object to which the mixin will be applied. This is

indeed so, because when computing the TYPE of a mixin declaration, for all self sends to

methods that are not implemented in the same mixin, the corresponding method types are

added to the specint of the mixintype. As is the case for super calls, the presence of these

methods in the object to which this mixin is sent will be checked by the “is applicable to”

constraint in the definition of well-typed mixin applications.

(3) “Illegal argument type” errors occur when a request to execute a method is sent to an object,

and the message is understood, but has a wrong argument type.

(a) For ordinary MethodSends the correctness of the argument type is checked in the second

condition of the definition of well-typed message sends.

(b) For super calls the correctness of the argument type is checked by comparing it with the

argument type of the corresponding method in the super interface. This is checked in the

definition of well-typed mixin declarations.
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(c) For self calls the correctness of the argument type is checked by comparing it with the

argument type of the corresponding method in the self interface. This occurs in the definition

of well-typed method declarations.

(4) “Illegal result type” errors occur when a message send returns a result that does not correspond

with the expected result. These errors can easily be avoided by checking if every method

expression of the form return Variable in a MethodDeclaration actually satisfies the restriction

that TYPE(Variable) is a subtype of TYPE(ResulType) where ResulType describes the expected

result of the method expression. This test occurs in the definition of well-typed method

declarations.

So we can indeed conclude that if all MethodSends, ExtMethodSends, MixinApps,

MethodDeclarations, MixinDeclarations, Assignments and ExtAssignments in a program are

well-typed, then the program is type-safe. ❏

Theorem 3: Completeness
Every well-typed program is type-safe.

Proof:

Using the previous property we simply show that if a program is well-typed, then all

MethodSends, ExtMethodSends, MixinApp s, MethodDeclarations, MixinDeclarations,

Assignments and ExtAssignments in the Program are well-typed. The proof of this is very

straightforward and is based on the general observation that a well-typed syntactic expression only

contains well-typed subexpressions. E.g. consider the example of Assignments.

According to the language syntax, an Assignment can only occur as a top-level expression.

Suppose that our well-typed program contains an Assignment that is not well-typed. This is

impossible, since this would mean that the program contains a top-level expression that is not well-

typed, which is in contradiction (see definition of well-typed program) with the fact that the

program is well-typed. So our initial assumption must be incorrect and thus all Assignments in the

program are well-typed.

The proof for the other subexpressions of a program is completely analogous, although they might

involve some more steps. ❏


