
Applying and Combining Three Different
Aspect Mining Techniques

M. Ceccato1, M. Marin2, K. Mens3, L. Moonen2,4, P. Tonella1, and T. Tourwé4

1 ITC-irst, Trento, Italy
2 Delft University, The Netherlands

3 Université catholique de Louvain, Belgium
4 CWI, The Netherlands

ceccato@itc.it, a.m.marin@ewi.tudelft.nl, kim.mens@uclouvain.be,

leon.moonen@computer.org, tonella@itc.it, tom.tourwe@cwi.nl

Abstract. Understanding a software system at source-code level re-
quires understanding the different concerns that it addresses, which in
turn requires a way to identify these concerns in the source code. Whereas
some concerns are explicitly represented by program entities (like classes,
methods and variables) and thus are easy to identify, crosscutting con-
cerns are not captured by a single program entity but are scattered over
many program entities and are tangled with the other concerns. Because
of their crosscutting nature, such crosscutting concerns are difficult to
identify, and reduce the understandability of the system as a whole.

In this paper, we report on a combined experiment in which we try to
identify crosscutting concerns in the JHotDraw framework automatically.
We first apply three independently developed aspect mining techniques
to JHotDraw and evaluate and compare their results. Based on this anal-
ysis, we present three interesting combinations of these three techniques,
and show how these combinations provide a more complete coverage of
the detected concerns as compared to the original techniques individu-
ally. Our results are a first step towards improving the understandability
of a system that contains crosscutting concerns, and can be used as a
basis for refactoring the identified crosscutting concerns into aspects.

1 Introduction

The increasing popularity of aspect-oriented software development (AOSD) is
largely due to the fact that it recognises that some concerns cannot be captured
adequately using the abstraction mechanisms provided by traditional program-
ming languages. Several examples of such crosscutting concerns have been iden-
tified, ranging from simple ones such as logging, to more complex ones such as
transaction management [1] and exception handling [2, 3].

An important problem with such crosscutting concerns is that they affect the
understandability of the software system, and as a result reduce its evolvability
and maintainability. First of all, crosscutting concerns are difficult to understand,
because their implementation can be scattered over many different packages,

II

classes and methods. Second, in the presence of crosscutting concerns, ordinary
concerns become harder to understand as well, because they get tangled with
the crosscutting ones: particular classes and methods do not only deal with the
primary concern they address, but also may need to take into account some
secondary, crosscutting concerns.

Several authors have presented automated code mining techniques, generally
referred to as aspect mining techniques, that are able to identify crosscutting
concerns in the source code [4]. The goal of these techniques is to provide an
overview of the source-code entities that play a role in a particular crosscut-
ting concern. This not only improves the understandability of the concern in
particular and of the software in general, but also provides a first step in the
migration towards applying aspect-oriented software development techniques.
However, since the research field is still in its infancy, very few experiments have
been conducted on real-world case studies, comparisons of different techniques
are lacking, and no agreed-upon benchmark is available that allows to evaluate
the existing techniques.

This paper reports on an experiment involving three independently devel-
oped aspect mining techniques: fan-in analysis [5, 6], identifier analysis [7, 8] and
dynamic analysis [9]. In the experiment, each of these techniques is applied to
the same case study: the JHotDraw graphical editor framework. The goal of the
experiment is not to identify the “best” aspect mining technique, but rather to
mutually compare the individual techniques and assess their major strengths
and weaknesses. Additionally, by identifying where the techniques overlap and
where they are complementary, the experiment allows us to propose interesting
combinations and to apply these combinations on the same benchmark to verify
whether they actually perform better.

The JHotDraw framework which we selected as benchmark case was origi-
nally developed to illustrate good use of object-oriented design patterns [10] in
Java programs. This implies that the case study has been well-designed and that
care has been taken to cleanly separate concerns and make it as understandable
as possible. Nevertheless, JHotDraw exposes some of the modularisation limita-
tions present even in well-designed systems, and contains some quite interesting
crosscutting concerns.

The contributions of this paper can be summarised as follows:

– We provide an overview of the major strengths and weaknesses of three as-
pect mining techniques. This information is valuable for developers using
these techniques, as it can help them choosing a technique that suits their
needs. Other aspect mining researchers can take this information into ac-
count to compare their techniques to ours, or to fine-tune our techniques;

– We discuss how the individual techniques can be combined in order to per-
form better, and validate whether this is indeed the case by applying the
combined techniques on the same benchmark application and comparing
the results;

– We present a list of all crosscutting concerns that the three techniques iden-
tified in the JHotDraw framework. Such information is valuable for other

III

interface A {

public void m();

}

class B implements A {

public void m() {};

}

class C1 extends B {

public void m() {};

}

class C2 extends B {

public void m() { super.m();};

}

class D {

void f1(A a) { a.m(); }

void f2(B b) { b.m(); }

void f3(C1 c) { c.m(); }

}

Fig. 1. Various (polymorphic) method calls.

aspect mining researchers who want to validate their techniques, and might
lead to JHotDraw becoming a de-facto benchmark for aspect mining tech-
niques;

The paper is structured as follows. Section 2 introduces the necessary back-
ground concepts required to understand the three aspect mining techniques ex-
plained in Section 3. Section 4 presents the results of applying each technique on
the common benchmark, while Section 5 uses these results for discussing the ben-
efits and drawbacks of each technique with respect to the others. Based on this
discussion, Section 6 presents useful combinations of the techniques, and reports
on the experience of applying such combinations on the benchmark application.
Section 7 presents our conclusions. For an overview of related work concerning
aspect mining, we refer to the papers discussing the individual techniques [5–9]
and to an initial survey on aspect mining [4].

2 Background concepts

2.1 Fan-in

The fan-in metric, as defined by Henderson-Sellers, counts the number of loca-
tions from which control is passed into a module [11]. In the context of object-
orientation, the module-type to which this metric is applied is the method. We
define the fan-in of a method M as the number of distinct method bodies that
can invoke M . Because of polymorphism, one call site can affect the fan-in of
several methods: a call to method M contributes to the fan-in of M , but also to
all methods refined by M , as well as to all methods that are refining M [6].

IV

Method Potential callers Fan-in

A.m D.f1, D.f2, D.f3 3

B.m D.f1, D.f2, D.f3, C2.m 4

C1.m D.f1, D.f2, D.f3 3

C2.m D.f1, D.f2 2

Fig. 2. Fan-in values for program in Figure 1.

As an example, Figure 2 shows the calculated fan-in for the methods named
m in the program of Figure 1. Note that D.f3 is reported among the potential
callers of B.m, even though this situation cannot actually occur at run-time.
However, the resulting effect of having higher fan-in values reported for methods
in super-classes is arguably positive for the purpose of the present analysis, as it
emphasizes the concern implemented by the super-class method, which generally
is addressed by its overriding methods as well.

2.2 Concept analysis

Formal concept analysis (FCA) [12] is a branch of lattice theory that can be used
to identify meaningful groupings of elements that have common properties.5

Programming lang. object-oriented functional logic static typing dynamic typing

Java
√

- -
√

-
Smalltalk

√
- - -

√

C++
√

- -
√

-
Scheme -

√
- -

√

Prolog - -
√

-
√

Table 1. Programming languages and their supported programming paradigms.

FCA takes as input a so-called context, which consists of a (potentially large,
but finite) set of elements E, a set of properties P on those elements, and a
Boolean incidence relation T between E and P . An example of such a context is
given in Table 1, which relates different programming languages and properties.
A mark

√
in a table cell means that the element (programming language) in the

corresponding row has the property of the corresponding column.
Starting from such a context, FCA determines maximal groups of elements

and properties, called concepts, such that each element of the group shares the
properties, every property of the group holds for all of its elements, no other

5 We use the terms element and property instead of object and attribute used in
traditional FCA literature, because these latter terms have a very specific meaning
in OO software development.

V

element outside the group has those same properties, nor does any property
outside the group hold for all elements in the group. Intuitively, a concept corre-
sponds to a maximal ‘rectangle’ containing only

√
marks in the table, modulo

any permutation of the table’s rows and columns.
Formally, the starting context is a triple (E,P, T), where T ⊆ E × P is a

binary relation between the set of all elements E and the set of all considered
element properties P . A concept c is defined as a pair of sets (X, Y) such that:

X = {e ∈ E | ∀p ∈ Y : (e, p) ∈ T} (1)
Y = {p ∈ P | ∀e ∈ X : (e, p) ∈ T} (2)

where X is said to be the extent of the concept (Ext[c]) and Y is said to be
its intent (Int[c]). It should be noticed that the definition above is not “con-
structive”, being mutually recursive between X and Y . However, given a pair
(X, Y), it allows deciding whether it is a concept or not. FCA algorithms provide
constructive methods to determine all pairs (X, Y) satisfying the constraints (1)
and (2).

{}
{OO, funct., logic, static typing, dyn. typing}

{Scheme}
{dyn. typing, funct.}

{Prolog}
{dyn. typing, logic}

{Java, C++}
{static typing, OO}

{Smalltalk}
{dyn. typing, OO}

{Scheme, Prolog, Smalltalk}
{dynamic typing}

{Java, C++, Smalltalk}
{OO}

{Java, Smalltalk, C++, Scheme, Prolog}
{ }

Fig. 3. The concept lattice for Table 1.

The containment relationship between concept extents (or, equivalently, in-
tents) defines a partial order over the set of all concepts, which can be shown to
be a lattice [12]. Figure 3 shows the concept lattice corresponding to Table 1.
The lattice’s bottom concept contains those elements that have all properties.
Since there is no such programming language in our example, that concept con-
tains no elements (its extent is empty). Similarly, the top concept contains those
properties that hold for all elements. Again, there is no such property (the con-
cept’s intent is empty). Other concepts represent related groups of programming
languages, such as the concept ({Java, C++}, {static typing, OO }), which
groups all statically-typed object-oriented languages, a sub-concept of all OO
languages. Intuitively, the sub-concept relationship can thus be interpreted as a
specialization of more general notions. Elements (resp. properties) in boldface

VI

are those that are most concept-specific, being attached to the largest lower
bound (resp. least upper bound) concept. When using the so-called sparse label-
ing of the concept lattice, only these boldface labels are retained, without loss
of information.

More precisely, when using sparse labeling, a node c is marked with an element
e ∈ Ext[c] only if it is associated with the most specific (i.e., lowest) concept c
having e in the extent; a node c is marked with a property p ∈ Int[c] only if it is
associated with the most general (i.e., highest) concept c having p in its intent.
The (unique) node of a lattice L marked with a given element e is thus:

γ(e) = inf{c ∈ L | e ∈ Ext[c]} (3)

where inf gives the infimum (largest lower bound) of a set of concepts. Similarly,
the unique lattice node marked with a given property p is:

µ(p) = sup{c ∈ L | p ∈ Int[c]} (4)

where sup gives the supremum (least upper bound) of a set of concepts. The set
of elements in the extent of a lattice node c can then be computed as the set
of all elements at or below c, while the set of properties in its intent are those
marking c or any node above c.

The labeling introduced by the functions µ and γ give the most specific
concept for a given element (resp. property). Thus, with sparse labeling, the
elements and properties that label a given concept are those that characterize it
most specifically. Sometimes it is convenient to get the labels of a given concept
through the following functions:

α(c) = {p ∈ P | µ(p) = c} (5)

β(c) = {e ∈ E | γ(e) = c} (6)

α(c) gives the set of properties labeling a concept c, while β(c) gives the concept’s
elements, according to the sparse labeling.

2.3 Terminology

We conclude this background section by introducing some terminology that will
be used throughout the remainder of this paper.

A concern is a collection of related source-code entities, such as classes, meth-
ods, statements or expressions, that implement a particular functionality or
feature of the application. A crosscutting concern is a concern whose entities
are not captured into a single localised abstraction, but are scattered over
many different locations and tangled with other concerns.

A (concern) seed is a single source-code entity, such as a method, or a collec-
tion of such entities, that strongly connotes a crosscutting concern. It offers
a starting point for further exploration and understanding the whole extent
of that concern’s implementation.

VII

A candidate seed is identified by an automated aspect mining technique as a
potential concern seed but is not yet confirmed to be an actual concern seed
or rather a false positive.

Seed expansion is the manual or automated process of completing the set
of source-code entities constituting a seed into the entire set of source-code
entities of which the crosscutting concern corresponding to that seed consists.

3 The three aspect mining techniques

In this section, we give a brief overview of three techniques, developed indepen-
dently by different research groups, that support the automated discovery of
crosscutting concerns in the source code of a software system that is written in
a non aspect-oriented way.

3.1 Fan-in analysis

Crosscutting functionality can occur at different levels of modularity. Classes,
for instance, can assimilate new concerns by implementing multiple interfaces or
by implementing new methods specific to super-imposed roles. At the method
level, crosscutting in many cases resides in calls to methods that address a differ-
ent concern than the core logic of the caller. Typical examples include logging,
tracing, pre- and post-condition checks, and exception handling. It is exactly
this type of crosscutting that fan-in analysis tries to capture.

When we study the mechanics of AOSD, we see that it employs the so-called
advice construct to eliminate crosscutting at method level. This construct is used
to acquire control of program execution and to add crosscutting functionality to
methods without an explicit invocation from those methods. Rather, the cross-
cutting functionality is isolated in a separate module, called aspect, and woven
with the method implicitly based on the advice specification.

Fan-in analysis reverses this line of reasoning and looks for crosscutting
functionality that is explicitly invoked from many different methods scattered
throughout the code. The hypothesis is that the amount of calls to a method
implementing this crosscutting functionality (fan-in) is a good measure for the
importance and scattering of the discovered concern.

To perform the fan-in analysis, a fan-in metric was implemented as a plug-in
for the Eclipse platform6, and integrated it into an iterative process that consists
of three steps:

1. Automatic computation of the fan-in metric for all methods in the investi-
gated system.

2. Filtering of the results from the previous step by
– eliminating all methods with fan-in values below a chosen threshold (in

the experiment, a threshold of 10 was used);

6 http://swerl.tudelft.nl/view/AMR/FINT

VIII

– eliminating the accessor methods (methods whose signature matches a
get*/set* pattern and whose implementation only returns or sets a ref-
erence);

– eliminating utility methods, like toString() and collection manipula-
tion methods, from the remaining subset.

3. (Partially automated) analysis of the methods in the resulting, filtered set by
exploring the callers, call sites, naming convention used, the implementation
and the comments in the source code.
Besides code exploration, the tool supports automatic recognition of a num-
ber of relations between the callers of a method, such as common roles,
consistent call positions, etc.

The result of the fan-in analysis is a set of candidate seeds, represented as meth-
ods with high fan-in.

3.2 Identifier analysis

In the absence of designated language constructs for aspects, naming conven-
tions are the primary means for programmers to associate related but distant
program entities. This is especially the case for object-oriented programming,
where polymorphism allows methods belonging to different classes to have the
same signature, where it is good practice to use intention-revealing names [13],
and where design and other programming patterns provide a common vocabu-
lary known by many programmers.

Identifier analysis relies on this assumption and identifies candidate seeds
by grouping program entities with similar names. More specifically, it applies
FCA with as elements all classes and methods in the analyzed program (except
those that generate too much noise in the results, like test classes and accessor
methods), and as properties the identifiers associated with those classes and
methods.

The identifiers associated with a method or class are computed by splitting
up its name based on where capitals appear in it. For example, a method named
createUndoActivity yields three identifiers create, undo and activity. In addi-
tion, we apply the Porter stemming algorithm [14] to make sure that identifiers
with the same root form (like undo and undoable) are mapped to one single rep-
resentative identifier or ‘stem’. It is these stems that are used as properties for
the concept analysis.

The FCA algorithm then groups entities with the same identifiers. When such
a group contains a certain minimum number of elements (in the experiment, a
threshold of 4 was used) and the entities contained in it cut across multiple class
hierarchies, the group is considered a candidate seed. The only remaining but
most difficult task is that of deciding manually whether a candidate seed is a
real seed or a false positive. To help the developer in this last task, the DelfSTof
source-code mining tool presents the concepts in such a way that they can be
browsed easily by a software engineer and so that he or she can readily access
the code of the classes and methods belonging to a discovered seed.

IX

3.3 Dynamic analysis

Formal concept analysis has been used to locate ‘features’ in procedural pro-
grams [15]. In that work, the goal was to identify the computational units (pro-
cedures) that specifically implement a feature (i.e., requirement) of interest. Ex-
ecution traces obtained by running the program under given scenarios provided
the input data (dynamic analysis).

In a similar way, dynamic analysis can be used to locate aspects in program
code [9] according to the following procedure. Execution traces are obtained
by running an instrumented version of the program under analysis, for a set of
scenarios (use-cases). The relationship between execution traces and executed
computational units (methods) is subjected to concept analysis. The execution
traces associated with the use-cases are the elements of the concept analysis
context, while the executed methods are the properties. In the resulting concept
lattice (with sparse labeling), the use-case specific concepts are those labeled by
at least one trace for some use-case (i.e. α contains at least one element), while
the concepts with zero or more properties as labels (those with an empty α) are
regarded as generic concepts. Thus, use-case specific concepts are a subset of the
generic ones.

Both use-case specific concepts and generic concepts carry information po-
tentially useful for aspect mining, since they group specific methods that are
always executed under the same scenarios. When the methods that label one
such concept (using the sparse labeling) crosscut the principal decomposition, a
candidate aspect is determined.

Formally, let C be the set of all the concepts and let Cs be the set of use-case
specific concepts (|α(c)| > 0). A concept c is considered a candidate seed iff:

Scattering: ∃p, p′ ∈ β(c) | pref(p) 6= pref(p′)
Tangling: ∃p ∈ β(c),∃c′ ∈ Ω,∃p′ ∈ β(c′) | c 6= c′ ∧ pref(p) = pref(p′)

where Ω = Cs for the use-case specific seeds, while Ω = C for the generic seeds.
The first condition (scattering) requires that more than one class contributes to
the functionality associated with the given concept (pref(p) is the fully scoped
name of the class containing the method p). The second condition (tangling)
requires that the same class addresses more than one concern.

In summary, a concept is a candidate seed if: (1) scattering: more than one
class contributes to the functionality associated with the given concept; (2) tan-
gling: the class itself addresses more than one concern.

The first condition alone is typically not sufficient to identify crosscutting
concerns, since it is possible that a given functionality is allocated to several
modularized units without being tangled with other functionalities. In fact, it
might be decomposed into sub-functionalities, each assigned to a distinct module.
It is only when the modules specifically involved in a functionality contribute
to other functionalities as well (i.e. the second condition) that crosscutting is
detected, hinting for a candidate seed.

X

Concern type # Seed’s description

Consistent behavior 4 Methods implementing the consistent behavior
shared by different callers, such as checking and re-
freshing figures/views that have been affected by the
execution of a command.

Contract enforcement 4 Method implementing a contract that needs to be en-
forced, such as checking the reference to the editor’s
active view before executing a command.

Undo 1 Methods checking whether a command is un-
doable/redoable and the undo method in the super-
class, which is invoked from the overriding methods
in subclasses.

Persistence and resurrection 1 Methods implementing functionality common to per-
sistent elements, such as read/write operations for
primitive types wrappers (e.g., Double, Integer, etc.)
which are referenced by the scattered implementa-
tions of persistence/resurrection.

Command design pattern 1 The execute method in the command classes and com-
mand constructors.

Observer design pattern 1 The observers’ manipulation methods and notify
methods in classes acting as subject.

Composite design pattern 2 The composite’s methods for manipulating child com-
ponents, such as adding a new child.

Decorator design pattern 1 Methods in the decorator that pass the calls on to the
decorated components.

Adapter design pattern 1 Methods that manipulate the reference from the
adapter (Handle) to the adaptee (Figure).

Table 2. Summary of the results of the fan-in analysis experiment.

4 Results of the aspect mining

In this section, we present the results of applying each technique to version
5.4b1 of JHotDraw, a Java program with approximately 18,000 non-commented
lines of code and around 2800 methods. We mutually compare the results of
the techniques, and discuss the limitations of each technique as well as their
complementarity.

4.1 The fan-in analysis experiment

As described in Subsection 3.1, fan-in analysis first performs a number of suc-
cessive steps to filter the methods in the analyzed system. The threshold-based
filtering, which selects methods with high fan-in values, kept around 7% of the
total number of methods. The filters for accessors and utility methods eliminated
around half of the remaining methods. In the remaining subset, more than half
of the methods (52%) were categorized as seeds, based on manual analysis.

XI

Table 2 gives an overview of the types of crosscutting concerns that were
identified and the seeds that led to their identification. Several of these concern
types, such as consistent behavior or contract enforcement [16], have more than
one instance in JHotDraw; that is, multiple unrelated (crosscutting) concerns
exist that conform to the same general description. For example, one instance of
contract enforcement checks a priori conditions to a command’s execution, while
another instance verifies common requirements for activating drawing tools. The
number of different instances that were detected is indicated in the # column.

We distinguish three different ways in which the fan-in metric can be associ-
ated with the crosscutting structure of a concern implementation (also indicated
in Table 2):

1. The crosscutting functionality is implemented through a method and the
crosscutting behavior resides in the explicit calls to this method. Examples
in this category include consistent behavior and contract enforcement.

2. The implementation of the crosscutting concern is scattered throughout the
system, but makes use of a common functionality. The crosscutting resides
in the call sites, and can be detected by looking at the similarities between
the calling contexts and/or the callers. Examples of concerns in this category
are persistence and undo [6].

3. The methods reported by the fan-in analysis are part of the roles superim-
posed to classes that participate in the implementation of a design pattern.
Many of these roles have specific methods associated to them: the subject
role in an Observer design pattern is responsible to notify and manage the
observer objects, while the composite role defines specific methods for manip-
ulating child components. In general, establishing a relation between these
seed-methods and the complete concern to which they appertain might re-
quire a better familiarity of the human analyzer with the code being explored,
than for the previous two categories. However, many of these patterns are
well-known and have a clear defined structure, which eases their recogni-
tion [17].

For more details regarding fan-in analysis and a complete discussion of the JHot-
Draw results, we refer to [6].

4.2 The identifier analysis experiment

Applying the identifier analysis technique of Subsection 3.2 on JHotDraw yielded
230 concepts and took about 31 seconds when using a threshold of 4 for the
minimum number of elements in a concept. With a threshold of 10, the number
of concepts produced was significantly less: only 100 concepts remained after
filtering, for a similar execution time.7 In both cases, 2193 elements and 507
properties were considered. It is a good sign that the number of properties is
7 Whereas the threshold of 4 was chosen arbitrarily, the threshold of 10 was determined

experimentally: below that threshold the amount of concepts that were regarded as
noise was significantly higher than above the threshold.

XII

Crosscutting concern Concept(s) #elements Some elements

Observer change(d) 67 figureChanged(e)
check 14 checkDamage()
listener 65 createDesktopListener()
release 12 . . .

Command execution command executed 4 commandExecuted(...)
execut(abl)e 51 commandExecutable(...)

Undo undo(able) 53 createUndoActivity()
redo(able) 14 redo()

Visitor visit 12 visit(FigureVisitor)

Persistence file 15 registerFileFilters(c)
storable 5 readStorable()
load 8 loadRegisteredImages
register 7 loadRegisteredImages

Drawing figures draw 112 draw(g)

Moving figures move 36 moveBy(x,y)
moveSelection(dx,dy)

Iterating over collections iterator 5 iterator(), listIterator(), . . .

Table 3. Selection of results of the identifier analysis experiment.

significantly smaller than the total number of elements considered, as it implies
that there is quite some overlap in the identifiers of the different source-code
entities, which was one of the premisses of the identifier analysis technique.

The manual part of the experiment, i.e. deciding which concepts were real
seeds, was much more time-consuming. Overall, this took about three days for
the experiment with threshold 4, where 230 seed candidates needed to be in-
vestigated. For each of the discovered concepts, the code of the entities in its
extent had to be inspected to decide whether (most of) these entities addressed a
similar concern. Other than allowing to browse the source code of the elements
in the extent of a concept, the DelfSTof code mining tool provided no direct
support for this.

Table 3 presents some of the seeds discovered by manually analyzing the
classes and methods belonging to the extent of the concepts produced by the
FCA algorithm. The first column names the concern, the second column shows
the identifiers shared by the elements belonging to the concept(s) corresponding
to that concern. The third column shows the size of the extent for each concept.
Finally, for illustration purposes, the fourth column shows some program entities
appearing in the extent of the discovered concepts.

Out of 230 candidate seeds, 41 seeds were retained, when using a threshold of
4 for the minimum number of elements in a concept. These discovered concerns
were classified in three different categories:

1. Some of these concerns looked like aspects in the more traditional sense (e.g.,
observer, undo and persistence).

XIII

2. Many other concerns seemed to represent a crosscutting functionality that
was part of the business logic (e.g., drawing figures, moving figures). The
distinction between these two first categories was somewhat subjective, how-
ever.

3. Three Java-specific concerns were discovered (e.g., iterating over collections)
that are difficult to factor out into an aspect because they rely on or extend
specific Java code libraries.

4.3 The dynamic analysis experiment

The dynamic analysis technique of Subsection 3.3 is supported by the Dynamo
aspect mining tool8. The first step required by Dynamo is the definition of a
set of use-cases. To accomplish this task, the documentation associated with
the main functionalities of JHotDraw was used to define a use-case for each
functionality described in the documentation. Amongst others, a use-case was
created to draw a rectangle, one to draw a line using the scribble tool, one
to create a connector between two existing figures, one to attach a URL to
a graphical element, and so on. In total, 27 use-cases were obtained. When
executed they exercised 1262 methods belonging to JHotDraw classes, so that
the initial context for the concept analysis algorithm contained 27 elements and
1262 properties. The resulting concept lattice contained 1514 nodes.

Crosscutting concern Concepts Methods

Undo 2 36

Bring to front 1 3

Send to back 1 3

Connect text 1 18

Persistence 1 30

Manage handles 4 60

Manage figure change event 3 8

Move figure 1 7

Command executability 1 25

Connect figures 1 55

Figure observer 4 11

Add text 1 26

Add URL to figure 1 10

Manage figures outside drawing 1 2

Get attribute 1 2

Set attribute 1 2

Manage view rectangle 1 2

Visitor 1 6

Table 4. Summary of the results of the dynamic analysis experiment.

8 Available from http://star.itc.it/dynamo/ under GPL.

XIV

Among the concepts in the lattice, 11 satisfied the crosscutting conditions
(scattering and tangling), described in Section 3, for the use-case specific con-
cepts, while 56 (including the 11 above) satisfied the conditions for the generic
concepts. Next, both the use-case specific and generic concepts were revisited
manually, to determine which ones could be regarded as plausible seeds and
which ones should be considered false positives. The criterion followed in this
assessment was the following: a concept satisfying the crosscutting conditions is
considered a seed if

– it can be associated to a single, well-identified functionality (this usually
accounts for the possibility to give it a short description that labels it), and

– some of the classes involved in such a functionality have a different primary
responsibility (indicating crosscutting with respect to the principal decom-
position).

Of course, due to the nature of crosscutting concerns and the related design
decisions, some level of subjectivity still remains (as is the case for the other
techniques).

In the end, the list of candidate seeds shown in Table 4 was obtained. The
four topmost concerns are use-case specific. As apparent from the second column
of the table, and as was the case for the identifier analysis experiment, some
crosscutting concerns were detected by multiple concepts. In total, among the 56
generic concepts satisfying the crosscutting conditions, 24 concepts were judged
to be associated with 18 crosscutting concerns.

The methods associated with each candidate seed (counted in the last column
of Table 4) are indicative of the “aspectizable” functionality. Although they may
be not the complete list (dynamic analysis is partial) and may contain false
positives, they represent a good starting point for a refactoring intervention
aimed at migrating the application to AOSD.

5 Comparing the results

In this section we discuss some selected concerns that were identified by the
different techniques. We selected some concerns that were detected by all three
techniques, as well as a representative set of concerns that were detected by some
techniques but not by others. This allows us to clearly pinpoint the strengths
and weaknesses of each individual technique.

5.1 Selected concerns

Table 5 summarises the concerns we selected. The first column names the con-
cern. The other columns show by what technique(s) the concern was discovered:
if a technique discovered the concern, we put a + sign in the corresponding
column, otherwise a - sign is in the table.

XV

Concern Fan-In Identifier Dynamic
Analysis Analysis Analysis

Observer + + +

Undo + + +

Persistence + + +

Consistent behavior / + - -
Contract enforcement

Command execution + + +

Bring to front / Send to back - - +

Manage handles - + +

Move Figures + (discarded) + +

Table 5. A selection of detected concerns in JHotDraw.

Observer The Observer design pattern is an example of a concern reported by
all techniques. Other examples include Command execution, Undo functionality
and Persistence, whose implementation in JHotDraw is described in [6]. Their
identification should come as no surprise, because they correspond to well-known
aspects, frequently mentioned in AOSD literature, or to functionalities for which
an AOSD implementation looks quite natural.

Concerns identified by all three techniques are probably the best starting
point for migrating a given application to AOSD, because developers can be
quite confident that the concern is very likely to be an aspect. However, the
fact that only four of such concerns were discovered, stresses the need for an
approach that combines the strengths of different techniques.

Contract enforcement / consistent behavior The contract enforcement
and consistent behavior concerns [16] generally describe common functionality
required from, or imposed on, the participants in a given context, such as a
specific pre-condition check on certain methods in a class hierarchy. An exam-
ple from the JHotDraw case is the Command hierarchy for which the execute
methods contain code to ensure the pre-condition that an ‘active view’ reference
exists (is not null).

We classify these concerns as a combination of contract enforcement and
consistent behavior since these types often have very similar implementations,
and choosing a particular type depends mainly on the context and on (personal)
interpretation.

Fan-in analysis is particularly suited to address this kind of scattered, cross-
cutting functionalities, which involve a large number of calls to the same method,
while the other two techniques potentially miss it. In fact, contract enforcement
and consistent behavior are usually associated with method calls that occur in
every execution scenario, so that they cannot be discriminated by any specific
use-case. On the other hand, identifier analysis will miss those cases where the
methods that enforce a given contract or ensure consistent behavior do not share
a common naming scheme.

XVI

Command execution This concern deals with the executability and the ac-
tual execution of objects whose class belongs to the Command hierarchy. Iden-
tifier analysis identified a concept which contains exactly the execute methods
in the Command hierarchy. Dynamic analysis identified the classes containing
isExecutable methods. Indeed, the execute methods all have the same name and
manual inspection showed they exhibit similar behavior: they nearly all make
a super call to an execute method, invoke a checkDamage method and (though
not always) invoke a setUndoAcivity and getUndoActivity method. A similar
argument can be made for isExecutable.

Hence, whereas identifier and dynamic analysis may not detect the more
generic Contract enforcement / Consistent behavior aspect directly, they can
identify some locations (pointcuts) where potentially such an aspect could be
introduced.

Bring to front / Send to back The functionality associated with this concern
consists of the possibility to bring figures to the front or send them to the back
of an image. When exercised, it executes specific methods that have a low fan-in,
hence they were not detected by fan-in analysis. Identifier analysis also missed
them, because there were not enough methods with a sufficiently similar name
to surpass the threshold. Hence, dynamic analysis is the only technique that
identified this concern. This example is a good representative of crosscutting
concerns that are reported only by dynamic analysis: whenever the methods
involved in a functionality are not characterized by a unifying naming scheme
(or there are not enough of them), neither do they have high fan-in, the other
two techniques are likely to fail.

Manage handles A crosscutting functionality is responsible for managing the
handles associated with the graphical elements. Such handles support interactive
operations, such as resizing of an element, conducted by clicking on the handle
and dragging the mouse. This seed is interesting because it is detected by dy-
namic analysis and by identifier analysis, but in different ways. Identifier analysis
detects this concern based on the presence of the word ‘handle’ in identifiers.
Consequently, it misses methods such as north(), south(), east(), west(),
which are clearly related to this concern, but do not share the lexicon with the
others. On the other hand, dynamic analysis reports both the latter methods
and (some of) those containing the word ‘handle’. However, since not all possi-
ble handle interactions have been exercised, the output of dynamic analysis is
partial and does not include all the methods reported by identifier analysis.

The manage handles concern was missed by the fan-in analysis because the
calls are too specific: they are similar but different calls instead of one single
called method with a high fan-in.

Moving figures The three techniques discard concerns on different bases: some
of the concerns are filtered automatically while others are excluded manually.

XVII

The move figures concern, seeded by the moveBy method in the Figure classes,
is one example where different, subjective decisions can be made depending on
whether the concept is classified either as a candidate aspect or as part of the
principal decomposition. The moveBy methods allow to move a figure with a
given offset. The team which used fan-in analysis argued that the original design
seems to consider this functionality as part of a Figure’s core logic. The other
two teams considered it as part of a crosscutting functionality and included it
in the list of reported seeds.

This example highlights the difficulty of deciding objectively on what is and
what is not an aspect and corroborates our choice to conduct a qualitative,
instead of a quantitative, comparison.

5.2 Limitations

As a consequence of applying each technique to the same case, some of the
limitations of the respective techniques have become obvious. For example, we
obtained a better idea of potential ‘false negatives’, i.e. concerns that were not
identified by a particular technique but that were identified by another. Be-
low, we summarise some of the discovered limitations. In the next section we
then describe how to partly overcome these limitations by combining different
techniques.

Fan-in analysis mainly addresses crosscutting concerns that are largely scat-
tered and that have a significant impact on the modularity of the system. The
downside of this characteristic is that concerns with a small code footprint and
thus with low fan-in values associated, will be missed. For example, the iden-
tification of Observer design pattern instances is dependent on the number of
classes implementing the observer role. These classes contain calls to specific
methods in the subject class for registering as listeners to the subject’s changes.
The number of observer classes will determine to a large extent the number of
calls to the registration method in the subject role. A collateral effect is the
anticipated unsuitability of the technique for analysing small case studies.

Identifier analysis tends to produce a lot of detailed results. However, these
results typically contain too much noise (false positives), so a more effective fil-
tering of the discovered concepts, as well as of the elements inside those concepts,
is needed. In addition, the discovered concepts are often incomplete, in the sense
that they do not completely “cover” an aspect or crosscutting concern. Often,
more than one concept is needed to describe a single concern, as was the case
for the Observer aspect. The individual concepts themselves may also need to
be completed with additional elements that are not contained in those concepts.
This was the case for the Undo aspect: in addition to the methods with ‘undo’
or ‘undoable’ in their name, some of the methods calling these undo methods
need to be considered as part of the core aspect as well.

XVIII

Dynamic analysis is partial (i.e., not all methods involved in an aspect are
retrieved), being based on specific executions, and it can determine only aspects
that can be discriminated by different execution scenarios (e.g., aspects that are
exercised in every program execution cannot be detected). Additionally, it does
not deal with code that cannot be executed (e.g., code that is part of a larger
framework, but that is not used in a specific application).

5.3 Complementarity

The three proposed techniques address symptoms of crosscutting functionality,
such as scattering and tangling, in quite different ways. As shown in Table 6,
fan-in analysis and dynamic analysis show largely complementary result sets:
among the 30 concerns identified by either dynamic or fan-in analysis, only 4
are identified by both techniques. This is an expected result. Fan-in analysis fo-
cuses on identifying those methods that are called at multiple places. However,
when a method is called many times, it is likely to occur in most (if not all) exe-
cution traces. Hence, no specific use-case can be defined to isolate the associated
functionality, and dynamic analysis will fail to identify it as a seed.

Identifier analysis is the least discriminating of the three techniques and has
a large overlap with the other two techniques. When a concern can be identified
through fan-in analysis and/or dynamic analysis, identifier analysis can often
isolate it too, since a common lexicon is often used in the names of the involved
methods.

In the next section, we will use these observations to propose a new aspect
mining technique that is a clever combination of the three individual techniques.

Technique Concerns

Dynamic analysis 18
Fan-in analysis 16
Dynamic analysis

S
Fan-in analysis 30

Dynamic analysis
T

Fan-in analysis 4

Table 6. Concerns identified by either dynamic or fan-in analysis.

6 Toward interesting combinations

Based on the discussion in the previous section, this section presents three com-
bined aspect mining techniques and reports on the results of applying these
combined techniques on the JHotDraw application. Based on the analysis indi-
cators of recalled methods and seed quality we compare whether these combined
techniques provide a more complete coverage of the detected concerns than each
of the original techniques individually.

XIX

6.1 Motivation

As has been explained in the previous sections, the fan-in analysis and dynamic
analysis techniques are largely complementary, and address different symptoms
of crosscutting. An obvious and interesting combination of these techniques thus
consists of simply applying each technique individually and taking the union of
the results. Additionally, the seeds in the intersection of the results (if any) are
likely to represent the best aspect candidates, because both techniques identify
them. This was illustrated in our experiment, in which both techniques identified
the Observer, Undo, Persistence and Command execution candidates.

As for other combinations of the techniques, two interesting observations were
considered. First, the manual intervention required by identifier analysis is very
time-consuming and is not justified by the fact that it produces more interesting
results. This makes the technique less suited than the others for large(r) cases.
Second, both fan-in analysis and dynamic analysis identify only candidate seeds
that serve as a starting point for seed expansion. Dynamic analysis in particular
suffers from this problem as it is based on a (necessarily partial) list of execution
scenarios. Similarly, fan-in analysis is only focused on invocations of high fan-
in methods, which represent just a portion of the whole concern. Interestingly,
while performing fan-in analysis and dynamic analysis, we observed that the
classes and methods in the seed expansion often exhibited similar identifiers.

Consequently, we believe better results can be obtained if we use identifier
analysis as a seed expansion technique for the seeds identified by either fan-in
analysis or dynamic analysis, or by the seeds identified by both these techniques.
In this way, the search space for identifier analysis is reduced significantly, and
more automation is provided for the manual seed expansion needed by both
fan-in analysis and dynamic analysis. A final manual refinement step is anyway
necessary, since the expanded seeds may contain false positives and negatives.

In the remainder of this section, we will present three different techniques: a
combination of fan-in analysis with identifier analysis, of dynamic analysis with
identifier analysis, and of the union of fan-in analysis and dynamic analysis with
identifier analysis.

6.2 Definition of the combined techniques

The combined techniques work as follows:

1. Identify interesting candidate seeds by applying fan-in analysis, dynamic
analysis or both to the application;
– For candidate seeds identified by dynamic analysis, (manually) filter out

those methods that do not pertain to the concern;
2. For each method in the candidate seed, find its enclosing class, and compute

the identifiers occurring in the method and the class name, according to the
algorithm used by identifier analysis;

3. Apply identifier analysis to the application, and search for a concept, among
the concepts it reports, that is “nearest”. The nearest concept is the concept

XX

that contains most of the identifiers generated in the previous step. If more
than one nearest concept exists, take the union of all their elements.

4. Add the methods contained in the nearest concept(s) to the candidate seed.
5. Revise the expanded list of candidate seeds manually to remove false posi-

tives and add missing seeds (false negatives).

In what follows, we experimentally validate these techniques on the JHot-
Draw case.

6.3 Analysis indicators

Before applying the combined techniques, we define two measures to validate
the results. The goal is to measure how identified seeds change in terms of pre-
cision and recall. Unfortunately, this requires information about all crosscutting
concerns present in the application, and this is not available. Therefore, we have
chosen alternative metrics, which we call recalled methods and seed quality.

Recalled methods is the number of methods reported in a seed that actually
belong to the crosscutting concern.

Seed quality is the percentage of a seed’s recalled methods with respect to the
total number of methods in the seed. This indicator estimates how difficult
it is to spot a concern in the methods provided by the seed.

With respect to the definitions above, it is important to remark that for fan-
in, two interpretations of seeds are possible: the first takes only the callees with
high fan-in into account; the second interpretation includes, besides the callees
with high fan-in, also all callers to these methods. These differences stem from
the fact that the fan-in technique is actually based on the call-relation and the
interpretations use either one or both sides of the relation in seed representations.
During exploration these differences are not that important because we can easily
navigate from caller to callee and vise versa. However, when we start assessments
based on counting elements, these interpretations do have considerable impact.

In the first case, the number of recalled methods will be low (since call-
sites are not considered in the seeds), and the seed quality will always be 100%
since the high fan-in callees belong to the concern by definition. The second
interpretation will result in higher values of recall and yields a more complete
picture of the concern. However, lower values for seed quality are possible since
not all calls may be caused by a crosscutting concern.

Section 6.4 describes the results of applying combined techniques on the
JHotDraw appication, and evaluates the above indicators before and after the
experiment. We include results for both interpretations of fan-in seeds discussed
above.

6.4 Experimental results

Table 7 shows the values of the indicators before and after the completion ex-
periment (based on the first interpretation of seeds for fan-in). Although the

XXI

Concerns Undo Command execution

Technique Recalled Seed Recalled Seed
Methods? Quality? Methods? Quality?

Dynamic analysis 23 64% 20 80%
Fan-in analysis 3 100% 3 100%
Dyn

S
Fan-in 24 63% 22 81%

Dyn + Identifier 183 55% 132 80%
Fan-in + Identifier 94 100% 132 80%
(Dyn

S
Fan-in) + Identifier 183 55% 132 80%

Concerns Persistence Observer

Technique Recalled Seed Recalled Seed
Methods? Quality? Methods? Quality?

Dynamic analysis 29 97% 3 100%
Fan-in analysis 6 100% 10 100%
Dyn

S
Fan-in 32 97% 13 100%

Dyn + Identifier 104 100% 121 14%
Fan-in + Identifier 104 100% 146 15%
(Dyn

S
Fan-in) + Identifier 104 100% 146 15%

Table 7. Recalled methods and seed quality before and after completion (?based on
the first interpretation of seeds for fan-in)

completion technique can be applied to all concerns identified by either fan-in
analysis or dynamic analysis, we performed the experiment only on the concerns
identified by all three techniques. The sole reason is that we need to assess how
the completion technique influences the recalled methods and seed quality indi-
cators as compared to their initial values, which can only be done for the Undo,
Command execution, Persistence and Observer concerns.

When looking at the common results, it is important to note that fan-in
seeds point to distinct crosscutting concerns sorts that can occur as parts of
more complex structures like implementations of the Observer pattern [18, 19].
In the experiments, these are grouped to obtain the same level of granularity
obtained by the other techniques.

A deeper look into the results of the completion with identifier analysis re-
veals interesting information: For the Undo concern, the results of both fan-in
analysis and dynamic analysis improve a lot in terms of recalled methods (from
23 and 3 up to 183 and 94). There is a negative impact on the seed quality for
(completed) dynamic analysis (from 64% down to 55%), but the seed quality for
fan-in plus identifier analysis remains at 100%. For the Command execution and
Persistence concerns, the number of recalled methods increases significantly for
the completion technique (from 20 and 3 up to 132 and from 29 and 6 up to
104), while the seed quality remains at the same level.

For the Observer concern, the results are less encouraging than for the other
concerns. Even though the number of recalled methods increases for the com-
pletion technique, the quality of the seeds drops to an unacceptable level (from

XXII

Seed Recalled Seed
Methods Quality

Undo (callee #1) 24 92%

Undo (callee #2) 25 88%

Undo (callee #3) 24 83%

Undo (combined) 73 88%

Observer (combined) 83 100%

Table 8. Recalled methods and seed quality for fan-in analysis based on the second
interpretation of seeds for fan-in

100% down to 14% and 15%). Clearly, the completion does not provide a good ex-
pansion of the original seeds. Closer inspection reveals that no clearly distinctive
naming convention has been used to implement the Observer concern. The Undo,
Command execution and Persistence concerns employ distinctive identifiers such
as undo/undoable, execute/command and store/storable, which are used ex-
tensively only within the concern implementation. Consequently, the completion
provided by identifier analysis gives good seed expansions. However, the iden-
tifiers used for the Observer concern are the more general figure/update/...
that are used extensively in throughout the application, and not only in the
concern implementation. Therefore, identifier analysis is not able to provide a
good expansion for the seeds found by the other techniques.

An overview of results based on the second interpretation of seeds for fan-in,
i.e. taking also the call-sites into account, is shown in Table 8. For the Undo
concern, we show both the individual values for each of the three high fan-in
callees reported as seeds earlier and the recall and seed quality of the combination
of these three. The seed quality is lower than 100% in these cases since some of
the calls found were not considered to be part of the actual crosscutting concern.
For the Observer concern we only show the value for the combined high fan-in
callees since it would go too far to go over all individual values here. The seed
quality is 100% in these cases since there are no calls from outside this concern
to the reported callees.

For a detailed discussion of these measurements and an assessment of various
quality metrics, we refer to [20] and the fan-in website9.

7 Summary and future work

The purpose of the paper was to compare three different aspect mining tech-
niques, discuss their respective strengths and weaknesses by applying them to
a common benchmark application, and develop combined techniques based on
this discussion.

9 http://swerl.tudelft.nl/amr/

XXIII

We observed that all three techniques were able to identify seeds for well-
known crosscutting concerns, but that interesting differences arose for other
concerns. These differences are largely due to the different ways in which the
techniques work. Fan-in analysis is good at identifying seeds that are largely
scattered throughout the system and that involve a lot of invocations of the
same method, but it cannot be used to analyse smaller applications. Identifier
analysis is able to identify seeds when the associated methods have low fan-
in, but only if these methods share a common lexicon. The main drawback of
this technique is the large number of reported seeds that had to be inspected
manually. Finally, dynamic analysis is able to find seeds in the absence of high
fan-in values and common identifiers, but the technique is only partial because
it relies on execution traces.

We also observed that the three techniques are quite complementary: fan-in
analysis and dynamic analysis require a manual effort to expand the seeds into
full concerns, whereas identifier analysis covers a large part of a concern, but
requires extensive filtering of the reported seeds. Hence, to improve automation
of both fan-in analysis and dynamic analysis, and to reduce the search space for
identifier analysis, we proposed a combined technique in which seeds from either
fan-in analysis or dynamic analysis are expanded automatically by applying
identifier analysis. To verify the performance of this combined technique, we
applied it to JHotDraw and interpreted the results in terms of two indicators:
recalled methods and seed quality. The measures show that for three out of the
four concerns we considered, the combined technique outperforms the individual
techniques. In only one case, the combined technique performed worse.

Future work mainly consists of extending our comparison with other aspect
mining techniques, and potentially proposing new interesting combinations with
such techniques. This will not only allow us to come up with better (combined)
aspect mining techniques, but will also allow us to evaluate the three considered
techniques even better, as new concerns will be identified that we were not aware
of. Additionally, we could come up with extra quality indicators that complement
the recalled methods and seed quality indicators, and empirically establish their
validity by considering other benchmark applications as well.

References

1. Fabry, J.: Modularizing Advanced Transaction Management - Tackling Tangled
Aspect Code. PhD thesis, Vrije Universiteit Brussel (2005)

2. Lippert, M., Lopes, C.V.: A study on exception detection and handling using
aspect-oriented programming. In: Proceedings of the International Conference on
Software Engineering (ICSE), ACM Press (2000) 418–427

3. Bruntink, M., Deursen, A., Tourwé, T.: Discovering faults in idiom-based excep-
tion handling. In: Proceedings of the 28th International Conference on Software
Engineering (ICSE) (to appear), ACM Press (2006)

4. Kellens, A., Mens, K.: A survey of aspect mining tools and techniques. Technical
report, INGI 2005-07, Université catholique de Louvain, Belgium (2005)

XXIV

5. Deursen, A., Marin, M., Moonen, L.: Aspect mining and refactoring. In: Proceed-
ings of the First International Workshop on REFactoring: Achievements, Chal-
lenges, Effects (REFACE03). (2003)

6. Marin, M., Deursen, A., Moonen, L.: Identifying aspects using fan-in analysis.
In: Proc. of the 11th IEEE Working Conference on Reverse Engineering (WCRE
2004), IEEE Computer Society (2004)

7. Mens, K., Tourwé, T.: Delving source-code with formal concept analysis. Elsevier
Journal on Computer Languages, Systems & Structures 31(3–4) (2005) 183–198
Special Issue: Smalltalk.

8. Tourwé, T., Mens, K.: Mining aspectual views using formal concept analysis. In:
Proc. of the Fourth IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2004), IEEE Computer Society (2004)

9. Tonella, P., Ceccato, M.: Aspect mining through the formal concept analysis of
execution traces. In: Proceedings of the 11th IEEE Working Conference on Reverse
Engineering (WCRE 2004), IEEE Computer Society (2004)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

11. Henderson-Sellers, B.: Object-oriented metrics: measures of complexity. Prentice-
Hall (1996)

12. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag (1999)

13. Beck, K.: Smalltalk: best practice patterns. Prentice-Hall (1997)
14. Porter, M.: An algorithm for suffix stripping. Program 14(3) (1980) 130–137
15. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE

Transactions on Software Engineering 29(3) (2003) 195–209
16. The AspectJ Team: The AspectJ Programming Guide. Palo Alto Research Center.

(2003) Version 1.2.
17. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.

In: Proceedings of the 17th Annual ACM conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), ACM Press (2002) 161–
173

18. Marin, M., Moonen, L., Deursen, A.: An approach to aspect refactoring based on
crosscutting concern types. In: Proceedings of the First International Workshop
on the Modeling and Analysis of Concerns in Software, International Conference
on Software Engineering, St. Louis, USA (2005)

19. Marin, M., L.Moonen, Deursen, A.: A classification of crosscutting concerns.
In: Proceedings International Conference on Software Maintenance (ICSM 2005),
IEEE Computer Society (2005)

20. Marin, M.: Reasoning about assessing and improving the seed quality of a genera-
tive aspect mining technique. In: Proc. of the Second Workshop on Linking Aspect
Technology and Evolution at AOSD 2006. (2006)

