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Abstract

Getting an initial understanding of the structure of a software system, whether it is
for software maintenance, evolution or reengineering purposes, is a nontrivial task.
We propose a lightweight approach to delve a system’s source code automatically
and efficiently for relevant concepts of interest: what concerns are addressed in the
code, what patterns, coding idioms and conventions have been adopted, and where
and how are they implemented. We use formal concept analysis to do the actual
source-code mining, and then filter, classify and combine the results to present them
in a format that is more convenient to a software engineer. We applied a prototype
tool that implements this approach to several small to medium-sized Smalltalk
applications. For each of these, the tool uncovered several design pattern instances,
coding and naming conventions, refactoring opportunities and important domain
concepts. Although the tool and approach can still be improved in many ways, the
tool does already provides useful results when trying to get an initial understanding
of a system. The obtained results also illustrate the relevance and feasibility of using
formal concept analysis as an efficient technique for source code mining.
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1 Introduction

When maintaining or evolving a software system it is important to gain some
knowledge of its overall design first. Demeyer et al. [1, Chapter 4] explain
how obtaining such an initial understanding is crucial for the success of a
reengineering project, and discuss some techniques and lightweight source-
code analysis tools to get such an understanding. The tool proposed in this
paper can be seen as another such tool in the software engineer’s toolbox.

The tool implements a bottom-up approach that can help in getting an initial
idea of the coding conventions, idioms and patterns used in the source code
of a software system. In a sense, it is related to the “Study the Exceptional
Entities” reengineering pattern documented in [1, Chapter 4], but in a com-
plementary way, as it focusses on finding commonalities in the structure of
the source code, rather than potential design problems.

Our tool builds on the technique of formal concept analysis [2], which has many
known applications in data analysis and knowledge processing, and some in
software engineering. The essence of our contribution lies not in the idea of
applying formal concept analysis (FCA) to source code, but in our particular
choice of elements and properties for the FCA algorithm, and how we filtered
and classified the discovered concepts in order to mine a system’s source code
in a lightweight way that is independent of the actual system being analyzed.

Although the proposed approach can still be improved in many ways, and in
spite of its apparent simplicity, our case studies show that it allows us to delve
Smalltalk source code for many interesting symptoms of good design, like de-
sign patterns, programming idioms and naming and coding conventions. It also
allows us to discover symptoms of bad design which may provide opportunities
for refactoring, as well as some features of which the implementation is spread
throughout the source code. Most of the discovered information provides a
good starting point for understanding the source code in more detail.

The remainder of this paper is structured as follows. Section 2 briefly intro-
duces the mathematical technique of formal concept analysis. In Section 3 we
explain our approach and how we use formal concept analysis to delve the
source code for relevant concepts of interest. Section 4 briefly presents the
tool and Section 5 gives an overview of the experiments we conducted on five
different small to medium-sized case studies and presents the design symptoms
we discovered. Sections 6 and 7 discuss related and future work. We conclude
the paper in Section 8.
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2 Formal Concept Analysis

Formal concept analysis (FCA) [2] is a branch of lattice theory that can be
used to identify meaningful groupings of elements that have common prop-
erties. 1 The FCA algorithm takes as input a relation, or Boolean table, T
between a (potentially large, but finite) set of elements and a set of properties
of those elements. An example of such a table is given in Table 1, in which
different programming languages and properties are related. A mark in a table
cell means that the programming language in the corresponding row has the
property of the corresponding column.

Table 1
Programming languages and their supported programming paradigms.

Progr. language OO Functional Logic Static typing Dynamic typing

Java
√

- -
√

-

Smalltalk
√

- - -
√

C++
√

- -
√

-

Scheme -
√

- -
√

Prolog - -
√

-
√

Taking such a table T as input, the FCA algorithm determines maximal groups
of elements and properties, called concepts, such that:

• each element of the group shares the properties,
• every property of the group holds for all of its elements,
• no other element outside the group has those same properties, and
• no other property outside the group holds for all elements in the group.

Intuitively, a concept corresponds to a maximal ‘rectangle’ in the table T , up
to a permutation of the table’s rows and columns.

All concepts are ordered into a concept lattice, an example of which is depicted
in Figure 1. The lattice’s bottom concept contains those elements that have
all properties. Since there is no such programming language in our example,
that concept contains no elements. Similarly, the top concept contains those
properties that hold for all elements. Again, there is no such property. Other
concepts represent related groups of programming languages, such as the con-
cept ( { Java, C++ }, { static typing, object oriented } ), which groups all
statically-typed object-oriented languages.

1 As in Arèvalo et al. [3], in this paper we prefer to use the terms element and
property instead of object and attribute used in traditional FCA literature, because
these latter terms already have a very specific meaning in OO software development.
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{}
{object oriented, functional, 

logic, static typing, 
dynamic typing}

Java Smalltalk C++
Scheme Prolog

{}

Scheme

{dynamic typing, 
functional}

Prolog

{dynamic typing, 
logic}

Java C++

{static typing, 
object oriented}

Smalltalk

{dynamic typing, 
object oriented}

Scheme Prolog Smalltalk

{dynamic typing}

Java C++ Smalltalk

{object oriented}

Fig. 1. Concept lattice corresponding to Table 1.

For more details on formal concept analysis we refer to [2]. The next section
explains the details of our approach to use FCA for source code mining.

3 Delving Source Code

When applying FCA for delving Smalltalk source code, we first have to choose
the elements and properties to compute the concept lattice (§3.1). When com-
puting the lattice (§3.2), lots of concepts are produced, many of which are
irrelevant or redundant. Therefore, we filter the discovered concepts (§3.3)
and classify (§3.4), combine and annotate them (§3.5) in a way that is more
relevant to a software engineer. It is important to stress that the FCA algo-
rithm, filters and analyzers need to be tuned only once, for the specific kind of
symptoms that are of interest. Afterwards, this tuning can simply be reused
“as is” in order to mine other applications for similar design symptoms.

The novelty of our contribution is not in the idea of applying FCA to source
code. What is more important is our particular choice of elements, properties,
filters and analyzers, and how these allow us to discover interesting design
symptoms in the source code, in a way that is independent of the considered
application, and even largely independent of the considered programming lan-
guage. Proof is that the tool has recently been generalized to support delving
Java source code as well.
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3.1 Generate FCA elements and properties

Since our goal in this paper is to mine Smalltalk source code, as FCA elements
we choose source-code entities like classes, methods and method parameters.
The reason why we did not (yet) consider additional entities like bundles,
protocols and categories, is two fold. Firstly, in order to avoid cluttering the
results, we choose to be pragmatic and include initially only the most relevant
source code entities. Secondly, we want our approach to be language inde-
pendent, and most other programming languages do not feature protocols,
categories, etc.

As properties we take simple substrings of the names of the chosen source-code
entities. Evidently, an application’s source code contains a wealth of other
information, such as call-graph or parse-tree information. Computing such
information and reasoning with it, requires vastly more resources, however,
which would make our approach much less lightweight. For this very reason,
we chose to resort to a simple “name matching” approach at first. Preliminary
experiments that reason about similarities in parse trees are ongoing at the
moment, but should still be considered future work.

Because we take as properties simple (sub)strings occurring in the names of
the considered source-code entities, the discovered concepts will group enti-
ties with similar names. Our motivation for choosing these properties, is that
in Smalltalk in particular and in many other programming languages, pro-
grammers often rely on naming conventions to reveal their intentions and
to implement certain programming idioms and design patterns. Keeping the
properties simple has the additional benefit that they can be generated and
manipulated efficiently.

Nevertheless, in order to limit the number of properties, we do not consider all
possible substrings. Instead, we split class, method and parameter names in
substrings according to the capitals and other separators occurring in them. In
addition, we discard substrings with little conceptual meaning or that are used
too often, such as ‘with’, ‘from’, ‘the’, ‘object’, as well as substrings that are
too small (i.e., less than 3 characters). We also ignore colons, plurals and the
difference in case when comparing substrings. For example, the properties as-
sociated with a class QuotedCodeConstant are the substrings ‘quoted’, ‘code’
and ‘constant’. The properties corresponding to a method named
#unifyWithDelayedVariable:inEnv:myIndex:hisIndex:inSource: are
‘unify’, ‘delayed’, ‘variable’, ‘index’ and ‘source’.
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3.2 Compute the concept lattice

Applying an FCA algorithm to the elements and properties generated in the
previous step, results in a large concept lattice of several hundreds to thousands
of concepts, depending on the size of the application Table 2, Section 5, shows
some quantitative results of applying our approach on five different Smalltalk
applications.

For now, let it suffice to give an illustrative example of a simple kind of con-
cepts that is discovered by the FCA algorithm: accessing methods. Indeed,
since both accessor and mutator methods are named after an instance vari-
able, they share the same substring. E.g., the following concept we discovered
in one of our case studies groups the #callStack accessor and #callStack: mutator
methods of the callStack instance variable defined in the Environment class:

Environment >> callStack

^ callStack

Environment >> callStack: aStack

callStack := aStack

They are grouped based on the properties ‘call’ and ‘stack’ that are shared
by these methods, but by no other methods, classes or parameters in the
application.

3.3 Filter the concepts

As we will see in Section 5 (see column #raw of Table 2), for the considered
cases the number of concepts discovered by FCA, before applying any filtering,
is of the same order of magnitude as the number of considered elements. This
would imply that a software engineer needs to look at a significant number
of concepts in order to try and understand the source code. However, the
concepts do contain a large amount of redundancy and noise that we can
easily filter.

A first filter ignores all concepts that contain two or less elements, since these
concepts are generally too small to provide relevant information. Note that this
filter discards most accessing method concepts, since these typically contain
only two elements: an accessor and a mutator method. However, since access-
ing methods are rather fine-grained, since there are a lot of them, and since
they can be inspected with standard browsers easily or they can be retrieved
with more dedicated tools, we don’t mind that they get discarded.

A second filter ignores all concepts that share only one property (substring).
Although this filter may discard some interesting concepts, it does throw away
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many more irrelevant concepts. We think that, during initial understanding
of an application, getting a quick and focussed idea of certain commonalities
in the source-code is more important than getting a precise list of all possible
commonalities. A nice improvement of this filter would be to discard those
concepts of which the properties ‘cover’ only a small fraction, based on some
threshold, of the concept elements’ names. As such, the filter becomes relative
to the size of the elements’ names.

Whereas these two generic filters are independent of the kinds of elements be-
ing analyzed, our third filter is more targetted. It discards concepts that con-
tain only classes (with a similar name) in the same hierarchy. These concepts
typically do not provide very useful information — since classes belonging to
the same hierarchy often have similar names — except if we want to discover
exactly which naming convention these classes are relying upon.

3.4 Classify the filtered concepts

Being mere sets of elements (classes and methods) and properties (substrings
of the elements’ names), the concepts that remain after filtering are rather
unstructured. Therefore, we reorganize the concepts automatically in a way
that is more easy for a software engineer to analyze and interpret.

More precisely, we flatten the concept lattice and classify the concepts in a way
that makes more sense to the software engineer. Our classification distinguishes
3 main groups of concepts:

(1) Single class concepts group concepts of which all elements are methods
(or parameters of those methods) belonging to one and the same class;

(2) Hierarchy concepts have a larger scope as they group classes, methods
and parameters of those methods, that belong to a single class hierarchy;

(3) For crosscutting concepts we explicitly require that at least two different
class hierarchies are involved. We do this by verifying that the most spe-
cific common superclass of the considered classes is Object and that none
of the methods in the concept are defined by the Object class itself (which
would be a degenerate case of a hierarchy concept).

Such a classification helps a software engineer in several ways. Knowing that a
certain concept belongs to a given classification helps him to better understand
that concept. For example, knowing that a concept containing several methods
with exactly the same name belongs to the hierarchy concepts classification
allows him to qualify those methods as polymorphic methods. Or, observing
that a crosscutting concept contains polymorphic methods that exhibit a lot
of duplication, may point out the need for an aspect-oriented solution.
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3.5 Combine and annotate concepts

By organizing the concepts in a classification like the above, the structure of
the lattice is lost. Concepts that were nearby in the lattice (e.g., that were in
a subconcept relationship) will not necessarily belong to the same classifica-
tion, and vice versa. As a consequence, since there is a lot of overlap between
concepts that are nearby in the lattice, when reorganizing the concepts this
may lead to redundancy among concepts that get classified into different clas-
sifications. Whenever possible, however, when nearby concepts in the concept
lattice are put in the same classification, we automatically reconstruct part
of the original structure of the lattice, in order to reduce redundancy. More
specifically, we recombine highly overlapping concepts into a single nested one.

In addition, we automatically regroup and annotate the concepts belonging
to each classification, in order to present them in a way that is more conve-
nient to the software engineer: different concepts related to the same class(es)
are combined, methods are annotated with the classes they belong to, and
concepts are annotated with their properties.

4 DelfSTof, our Conceptual Code Mining tool

Fig. 2. DelfSTof : Discovered concepts for the Refactoring Browser.
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We developed a prototype tool, DelfSTof 2 , that implements the approach
outlined above, and presents the discovered concepts in a way that is easy
to use and manipulate. We capitalize the letters “ST” because the tool is
implemented completely in Smalltalk and originally only analyzed Smalltalk
source code.

The tools consists of an efficient FCA algorithm, a set of filters, and a set of
‘analyzers’ that are in charge of the classification, combination and annota-
tion of concepts. The resulting classification of concepts is directly visualized
with the StarBrowser [4]. A screenshot of the tool, which is essentially a Star-
Browser plugin, is presented in Figure 2.

5 Discovered Design Symptoms

We applied our tool to five different cases, as summarized by Table 2. Every
row in this table corresponds to a different application of which we delved
the source code for design symptoms. SOUL is an interpreter for a Prolog-
like language and DelfSTof is our own conceptual code mining tool. We chose
these two applications because we know their implementation well, which al-
lowed us to better assess the relevance of the discovered results. Both the
StarBrowser and the Refactoring Browser are advanced Smalltalk browsers
and CodeCrawler is a language-independent reverse engineering tool which
combines metrics and software visualization. These cases were chosen because
they are relatively stable and well-developed, have been around for several
years, and are of perfect size for initial experimentation.

Table 2
Quantitative results of FCA applied to some Smalltalk applications.

Case #elements #properties #raw #filtered time (sec)

DelfSTof 756 (135) 237 617 126 5

StarBrowser 731 (52) 352 740 115 7

SOUL 1469 (111) 434 1188 281 22

CodeCrawler 1370 (93) 477 1419 327 24

Refactoring Browser 4779 (271) 729 4179 1234 414

2 The name coins the Dutch word ‘delfstof’, which designates the result of a delving
process. In English, the first meaning of the verb “to delve” is “to make careful
investigation for facts and knowledge”. Coincidentally, the pronunciation of the
word “delfstof” sounds like the English “delve stuff” which is indeed what the tool
does.
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The column #elements gives an indication of the size of each considered case as
it equals the total number of classes plus methods in that case. (The number
between brackets is the number of classes.) Note that we did not consider
method parameters as separate elements since they are part of the method
signature.

The column #properties shows the number of substrings that have been gener-
ated from the considered elements. We observe that the number of properties
is always a factor 2 to 4, in the case of the Refactoring Browser even almost
a factor 7, less than the number of elements. This is a good sign as it implies
that a significant amount of the properties are actually shared by the elements.

The third column #raw shows the raw number of concepts discovered by FCA.
Column #filtered shows how many concepts remain after having applied the
simple filters that were explained in §3.3. We observe that, after filtering,
there remain about 4 to 7 times less concepts than the number of considered
elements. We still think that this is a bit too much, especially for larger cases,
but we will come back to this discussion in Section 7.

For all considered cases, the time of computation — which includes all steps
explained in Section 3 and not only the computation of the concept lattice —
was acceptable (ranging from a few seconds to a few minutes), although theo-
retically it increases in a non-linear way with the number of considered objects.

The remainder of this section discusses some of the “design symptoms” we
discovered when manually analyzing the results of our FCA experiments. As a
matter of fact, we could refine the classification of §3.4 to classify explicitly and
automatically most of these symptoms as well (for example, by using our logic
meta-programming environment SOUL). However, a certain trade-off needs to
be made, since this would require more automated analysis and thus slow down
the tool. Also, we want to keep the tool sufficiently general so that it still can be
applied to other languages (maybe even non OO languages). Nevertheless, we
already extended our tool so that it classifies automatically the programming
idioms listed in Subsection §5.1 : polymorphic methods, chained messages and
delegating methods.

5.1 Programming idioms

Polymorphic methods are a symptom of good design that is readily recog-
nized by our tool, since polymorphic methods have exactly the same name.
Consequently, they are grouped together in a concept. In addition, if there
are several polymorphic methods for a same class hierarchy, these will all
be grouped together automatically in a single combined concept.
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For example, in the source code of the Refactoring Browser we discovered
a concept containing 4 methods named #acceptReturnNode, implemented on dif-
ferent subclasses of RBProgramNodeVisitor. This is a typical example of polymor-
phism of which many examples can be found in any OO application. In
fact, for the class RBProgramNodeVisitor alone many more polymorphic method
concepts were discovered, as can be seen from Figure 2.

Polymorphic methods across class hierarchies are equally interesting to de-
tect as they may trigger interesting refactorings or tell us something about
possible multiple inheritance problems the original developers encountered.
We will come back to this in Section 5.5

Chained messages are concepts that group a method together with some of
its auxiliary methods in the same class. These chains are recognized by FCA
since the auxiliary methods often have a name that is similar to that of the
originating method, though sometimes slightly longer and taking an extra
parameter. E.g., in the CodeCrawler application the class CCMetricsChooserDialog

implements a method #applyChosenMetrics, which calls an auxiliary method
#detectChosenMetrics, which in turns calls #assignChosenMetricsTo:. These 3 methods
share the substrings ‘chosen’ and ‘metrics’.

Delegating methods delegate responsibility by calling a method with the
same name. Our tool discovered some interesting sets of delegating methods
with a similar name that all belonged to the same class. The presence of
many such delegating methods in a single class may indicate that the class
is a Decorator [5].

5.2 Code duplication

By closely inspecting the discovered concepts, we also detected several cases
of copy and paste reuse: several concepts contain methods that not only have
a similar name, but a similar implementation as well. This may seem logical,
since methods that implement similar behavior can be expected to have similar
names. However, from an implementation point of view, this duplicated code
could just as well be factored out and reused.

For example, in CodeCrawler’s CEVModelHistory class we discovered a concept with
2 methods #predecessorModelNameOfModel: and #predecessorModelNameOfModelNamed: which
had nearly the same implementation. Since one of them is no longer being
used, we assume that the original developer(s) created one of the methods by
copying it from the other one, then replaced all calls to the old one to the new
one, but in the end forgot to remove the old method.
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In general, particular reasons for duplication may become clear by looking at
the classification of the concepts:

• a developer who was not aware that a method implementing the desired
behavior was already defined, may accidentally implement a method with a
similar signature and behavior. Such methods are often grouped in concepts
classified as hierarchy concepts, because the method that already implements
the desired behavior is probably not implemented by the class the developer
is looking at, but by one of its sub- or superclasses.

• a method was needed whose behavior differed slightly from the behavior
already implemented by an existing method, and this behavior was copied
and adapted slightly, without extracting the common code into a separate
method (or merely deleting the original version if it is no longer needed, such
as in the example of the CEVModelHistory class above). Concepts containing such
duplicated methods tend to be classified as single class concepts, because
such duplication typically occurs inside a single class.

• the duplicated behavior could not be factored out into a single piece of
code, and thus could not be reused. This is mostly due to the fact that the
duplicated code occurs in classes defined in different class hierarchies. As
such, these concepts are often classified as crosscutting concepts.

5.3 Design patterns

As many design patterns [5] use certain naming conventions, it is no surprise
that they are detected by our tool. For example, the Visitor pattern uses the
convention that each visit method defined by a visitor class encodes the name
of the class being visited. Since they clearly share some substrings, our tool
will group a class and its corresponding visit methods inside a single concept.

The Refactoring Browser uses a Visitor design pattern in order to perform
a variety of operations on source code entities, such as renaming and moving
them. These entities are represented as subclasses of the RBProgramNode hierarchy,
while the visitor hierarchy is defined by the RBProgramNodeVisitor class hierarchy.
Our tool recovered this design pattern instance in two concepts:

(1) A combined concept in classification hierarchy concepts which groups all
polymorphic methods in the RBProgramNodeVisitor hierarchy, that implement
the behavior to be executed when a particular term is visited. The con-
cept consists of a several sub-concepts, each of which contains all methods
defined by subclasses of class RBProgramNodeVisitor, dealing with one partic-
ular term. For example, one such concept is defined by the properties
‘accept’, ‘return’ and ‘node’, and contains various implementations of
the acceptReturnNode: method, defined in the RBProgramNodeVisitor hierarchy and
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responsible for implementing behavior associated to a RBReturnNode object.
More specifically, the concept consists of four acceptReturnNode: methods,
implemented in the classes RBFormatter, RBConfigurableFormatter, ParseTreeRewriter

and RBProgramNodeVisitor.
(2) The second concept is also a hierarchy concept and contains all acceptVisitor:

methods defined by subclasses of RBProgramNode. These methods are respon-
sible for calling the appropriate method, corresponding to the node being
visited, in the supplied visitor object. They are grouped based on the
‘visitor’, ‘accept’, ‘program’ and‘node’ substring properties. This is an
example of a concept that takes into account both the method’s name
and the name of its formal parameter, since the acceptVisitor: methods
always define a formal parameter named aProgramNodeVisitor.

Note that the polymorphic methods depicted in Figure 2 are also a part of a
visitor pattern, used in the Refactoring Browser implementation.

Another example our tool detected is the Abstract Factory design pattern that
is used in the Soul application. The factory is responsible for creating new
instances of many different classes in the system, among others, subclasses
defined in the AbstractTerm and HornClause hierarchies. Its presence was recognized
by one classification that groups different concepts, and that looks similar to
the first classification for the visitor design pattern. The classification groups
all concepts that contain methods that instantiate new objects. Each such
concept groups an abstract method of the Factory class and its concrete coun-
terpart defined in the StandardFactory class. For example, a concept based on the
properties ‘make’ and ‘cut’ is identified, that contains the two implementa-
tions of the makeCut method in the Factory hierarchy. In addition, the choice of
the word ‘make’ strengthens our belief that it indeed is a factory.

Several other design patterns, such as the Builder, Observer and Decorator
design patterns, were detected in other applications as well.

5.4 Relevant domain concepts

Frequently occurring properties give a good idea of what the important con-
cepts in the application or problem domain are. This information is very useful
to understand the domain, and to provide a common vocabulary which can
be used to talk with maintainers. For example when applying our FCA tool
to the source code of DelfSTof itself, we found several concepts with proper-
ties like ‘concept’, ‘attribute’, ‘analyze(r)’, ‘filter’ or ‘classification’. Likewise,
we found concepts with properties ‘lint rule’ and ‘browser’ in the Refactoring
Browser, as well as concepts whose properties name the different refactorings,
such as ’add method’, ’rename variable’ and ’change name space’. In SOUL,
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we found concepts with properties ‘resolution’ and ‘repository’. Clearly, these
strings convey information that is important in the domain of the respective
applications.

5.5 Opportunities for refactoring

In addition to revealing interesting symptoms of good design and important
domain concepts, our approach can identify opportunities for refactorings [6]
that improve the source code quality.

An obvious opportunity for refactoring is to get rid of some of the code du-
plication that was detected (§5.2). The way a concept containing duplicated
methods is classified, can provide useful hints about which refactorings to
apply. If the concept is classified as a single class concept, the duplication oc-
curs in a single class, and an Extract method refactoring is appropriate. If the
concept occurs in the hierarchy concepts classification, a combination of Ex-
tract method and Pull up method refactorings is probably more appropriate.
Of course, if the duplication is caused by having copied a method that is no
longer used, it suffices to simply remove that method.

Concepts that were recognized as polymorphic methods can also be inspected
for refactoring opportunities, to ensure that polymorphism is well-implemented:

• We could check whether all classes in a class hierarchy understand the poly-
morphic method. If not, we may need to add an additional one.

• A polymorphic method might also be implemented by several subclasses
of a particular superclass, but not by that superclass itself. In that case, a
Pull up method or Add class refactoring may be appropriate to define the
methods in the superclass, or to insert an intermediate superclass.

A particular example we discovered in SOUL is the #updateRepositories method,
which is only defined separately in subclasses RepositoryBrowser, SoulQueryBrowser

and SoulClauseBrowser but not in their common superclass ApplicationModel. Intro-
ducing an intermediate superclass here might be appropriate.

In the CodeCrawler case, we also found several examples where the same
polymorphic method appeared in several subclasses, but not in their com-
mon superclass. However, in most of these examples the code in one sub-
hierarchy did not seem to be used, which made us believe that the code was
moved from one part in the hierarchy to another, but that the developer(s)
forgot to remove the original code.

• Crosscutting polymorphic methods are also suspicious. For example, we dis-
covered that in SOUL, the #usesPredicate:multiplicity: method is implemented
in both the AbstractTerm and HornClause hierarchies. Smalltalk, which has dy-
namic typing, still allows classes of these hierarchies to be used polymor-
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phically. A static type system, as in Java, would prohibit such polymorphic
use. In that case, an interface probably has to be introduced in order to
avoid explicit type checks and type casts. If the crosscutting polymorphic
methods also happen to exhibit a lot of code duplication, the solution might
be to introduce aspects into the application. In that respect, our tool might
also be considered as an aspect mining tool, capable of detecting aspect
opportunities. Future research into this area appears very interesting.

Concepts that represent design pattern instances can also be scanned for par-
ticular design flaws. For example, the Visitor design pattern requires that each
visitor class defines an appropriate visit method and, vice versa, that each el-
ement class defines an accept method that calls the appropriate visit method.
The concepts that identify instances of the Visitor design pattern can be used
to inspect the implementation in a quick and straightforward way, and verify
whether these constraints are adhered to.

6 Related Work

The use of FCA in software engineering is not new. Snelting et al. [7] use FCA
to reengineer C++ class hierarchies, while Arévalo et al. [3] analyze object-
oriented framework reuse using FCA. Closer to our work are the techniques by
Tonella et al. [8] and Dekel et al. [9]. The former use FCA to detect instances of
design patterns in source code. Since they specifically tune the FCA algorithm
for detecting such instances, they are not able to detect other kinds of design
symptoms, as our approach does. The latter use FCA to reveal the structure
of single classes only. They partition the methods of a class, according to the
fields these methods use, and then use the concept lattice to visualize and
understand the structure of that class. Tilley et al. [10] provide an overview
of the use of FCA for several other software engineering purposes.

A large number of tools to verify the quality of the source code of an appli-
cation exists. The spectrum ranges from very simple tools that detect basic
coding errors [11], over specialized clone detection tools [12,13,14,15], to tools
that detect high-level bad smells [16,17,18] and propose appropriate refactor-
ings.

Other tools exist that are capable of detecting high-level structures in source
code, such as coding conventions and design patterns [19,20,21,22]. The main
difference between these tools and ours, is that our approach requires no a pri-
ori knowledge. Most of these existing tools, however, rely on the fact that de-
sign pattern implementations follow particular naming conventions and guide-
lines. Our approach is not targeted to detecting a specific kind of conventions,
but is able to detect a variety of symptoms that reveal bad design (bad smells,
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duplication), good design (design patterns, programming idioms), and oppor-
tunities for refactoring. This is particularly useful during initial understanding,
whereas in a later phase, when the code is better understood, a more directed
tool is preferable.

Research in the domain of aspect mining is also related. Tonella et al. [23]
and Breu et al. [24] find aspect instances in existing applications by means of
dynamic execution traces. The former work even uses formal concept analysis
to that extent. Our approach seems to complement these approaches, since
we combine static analysis techniques with formal concept analysis. Marin et
al. [25] use the fan-in metric in order to mine for aspects, whereas Shepherd
et al. [26] and Bruntink et al. [27] use clone detection techniques.

7 Future work

An important topic of future work is to further improve the filtering of the
concepts discovered by FCA, so as to reduce the remaining redundancy in
the discovered concepts. The problem is that this redundancy occurs between
concepts that are classified in different categories. As was briefly mentioned
in §3.3, this redundancy is a consequence of having flattened the concept
lattice. By doing so we lost some important dependencies between concepts.
But exactly this information may be useful to get rid of the redundancy.
Therefore, we propose to keep the lattice as an internal representation, so that
advanced filters can take advantage of it to resolve the remaining redundancy.

Since the time of computation of our tool theoretically increases in a non-linear
way with the number of considered objects, this may pose problems regarding
the scalability of the approach. However, we do not think that it is a good
idea to apply the approach to very large amounts of source code, since the
tool assumes that certain naming convention are adhered to in a consistent
way. This is unlikely for very large cases. In such a context it would be better
to apply the approach multiple times on several smaller pieces of which we
know they are more or less independent and have been developed by a same
development team. As a side-effect, this will also resolve the problem with the
time of computation.

8 Conclusion

In this paper we proposed a fairly efficient tool, capable of delving an applica-
tion’s source code for meaningful and interesting symptoms of good and bad
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design. The tool combines formal concept analysis with filtering and classifi-
cation techniques, in order to provide simple and effective views on structural
commonalities in the source code. In order to validate the approach we ap-
plied the tool on a number of small to medium-sized Smalltalk applications.
In spite of relying on nothing more than similarity of names of source-code
entities, we discovered symptoms of programming idioms, code duplication,
design patterns and domain concepts, as well as interesting opportunities for
refactoring. Although the approach can still be improved in many ways, in
particular to further reduce the redundancy, we do believe it can be very use-
ful when an application has to be understood, little a priori knowledge about
the source code is available and time is scarce.
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