
SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Vrije Universiteit Brussel
Laboratorium voor programmeerkunde

Faculteit Wetenschappen - Vakgroep Informatica
(Oktober 2000)

Automatische architecturale conformiteitscontrole
door middel van logisch meta-programmeren.

Kim Mens

Proefschrift ingediend met het oog op het behalen
van de graad van Doktor in de Wetenschappen

Promotor: Prof. Dr. Theo D'Hondt

2

Samenvatting

In deze doctoraatsverhandeling stellen we voor om de techniek van het `logisch meta-programmeren'
te gebruiken voor de ontwikkeling van een expressieve architecturale taal, met bijhorend algoritme,
voor de automatische `conformiteitscontrole' van de implementatie van een softwaresysteem t.o.v.
�e�en of meerdere `architecturale gezichtspunten'. We bereiken een maximum aan expressiviteit
door de architecturale elementen en hun relatie met de implementatie te beschrijven in een lo-
gische programmeertaal die kan redeneren over entiteiten en relaties in de implementatietaal. De
thesis beperkt zich tot `statische' conformiteitscontrole. M.a.w., we redeneren enkel over de sta-
tische structuur van een software-implementatie, en we beschouwen geen dynamische informatie.
Een tweede beperking die we maken is dat we enkel objectgerichte implementaties beschouwen,
en Smalltalk-implementaties in het bijzonder.

We verdedigen de thesis in een aantal stappen. Vooreerst presenteren we een elegante en een-
voudige, doch expressieve, architecturale taal, met daar bovenop een algoritme om automatisch
architecturale conformiteit te controleren. De nadruk wordt hierbij gelegd op de onafhankelijkheid
van de architecturaal formalisme t.o.v. een beschouwde architectuur en implementatie. Ten dele
is de aanpak zelfs onafhankelijk van de gekozen implementatietaal. Om de haalbaarheid van het
algoritme na te gaan, implementeren we een prototype van een ondersteuningsprogramma voor
conformiteitscontrole. Gebruik makend van dit prototype wordt een gevalsanalyse uitgevoerd op
een bestaande middelgrote Smalltalk-applicatie, die zo'n 100 klassen bevat. Steunend op de resul-
taten van deze gevalsanalyse, worden enkele toekomstige verbeteringen en optimalizaties van het
formalisme voorgesteld. Een interessante uitbreiding is bijvoorbeeld een incrementele variant van
conformiteitscontrole. Tenslotte, aangezien het ontwikkelde prototype ondersteuningsprogramma
nog vrij experimenteel is, bespreken we hoe dit zouden kunnen uitgebreid worden tot een realis-
tisch en in de praktijk bruikbaar ondersteuningsprogramma dat automatische ondersteuning biedt
voor architecturale conformiteitscontrole. Nog verder extrapolerend argumenteren we enkele van
de gewenste karakteristieken en eigenschappen voor een ideale volgende-generatie architectuurge-
stuurde software-ontwikkelingsomgeving.

De voornaamste bijdragen van deze doctoraatsverhandeling zijn, in volgorde van belang-
rijkheid:

1. We stellen een algemene en expressieve architecturale taal voor, met bijhorend algoritme,
om automatisch conformiteit van de implementatie van een software systeem t.o.v. zijn
architecturale gezichtspunten te kunnen controleren;

2. We tonen aan dat de expressieve kracht van de techniek van het logisch meta-programmeren
een software-architect toelaat om de afbeelding van architecturale elementen op implemen-
tatieconstructies uit te drukken op een zeer expressieve, doch summiere en intu��tieve manier;

3. We tonen aan dat `virtuele softwareclassi�caties' een krachtige, elegante en intuitieve manier
vormen om architecturale abstracties van implementatieconcepten te vatten, en dat `virtuele
afhankelijkheden' een hoog niveau en intu��tief mechanisme zijn om complexe relaties tussen
implementateconcepten te abstraheren;

4. We illustreren het nut van het uitdrukken van verschillende overlappende architecturale
gezichtspunten die de implementatiestructuur kunnen `doorsnijden';

5. We tonen aan dat een logische meta-programmeertaal een geschikt implementatiemedium
is om het voorgestelde conformiteitscontrole-algoritme en de architecturale taal in uit te
drukken;

6. We schetsen hoe het conformiteitscontrole-algoritme zou kunnen ver�jnd worden tot een
meer incrementele versie.

SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Vrije Universiteit Brussel
Programming Technology Laboratory

Faculty of Sciences - Department of Computer Science
(October 2000)

Automating Architectural Conformance Checking
by means of Logic Meta Programming

Kim Mens

A dissertation submitted in partial ful�llment of the requirements
of the degree of Doctor in Sciences

Advisor: Prof. Dr. Theo D'Hondt

2

When architects of several minds

Sketch their systems with boxes and lines

Their frameworks of objects

Allow all their projects

To share in each others' designs

Mary Shaw [73]

Contents

1 Introduction 13
1.1 Thesis . 13
1.2 Motivation . 14
1.3 Approach . 15
1.4 Contributions . 16
1.5 Organization of the dissertation . 16

2 Preliminaries 19
2.1 Software architecture . 19

2.1.1 Introduction . 19
2.1.2 De�nitions . 20
2.1.3 Problems with software architectures . 22
2.1.4 Architecture description languages . 23
2.1.5 Architectural conformance checking . 23
2.1.6 Evolution of software architectures . 24

2.2 Logic meta programming . 26
2.2.1 Logic meta programming at PROG . 26
2.2.2 Co-evolution . 27

2.3 Software classi�cation . 28
2.3.1 Traditional software classi�cations . 28
2.3.2 The software classi�cation model . 28
2.3.3 The classi�cation browser . 28
2.3.4 Virtual classi�cations . 29

2.4 Separation of concerns . 30
2.4.1 Techniques for separating concerns . 30
2.4.2 Multiple cross-cutting architectural views 30

3 Problem Statement 33
3.1 Automating architectural conformance checking . 33
3.2 Novelty of the approach . 35

3.2.1 Existing conformance checking approaches 35
3.2.2 Criteria for our architectural formalism . 37
3.2.3 Logic meta programming . 38

3.3 Validation . 40
3.3.1 The formalism . 40
3.3.2 The case study . 40

4 Case: The Architecture of SOUL 41
4.1 The Smalltalk Open Uni�cation Language . 41

4.1.1 The SOUL system . 41
4.1.2 Architectural views . 42
4.1.3 Notational conventions . 42

3

4 CONTENTS

4.2 User interaction . 44

4.2.1 SOUL applications . 44

4.2.2 The user interaction architectural view . 45

4.3 Rule-based interpreter . 47

4.4 Application architecture . 49

4.4.1 The SOUL class hierarchies . 49

4.4.2 The application architecture view . 49

4.5 Summary . 52

5 The Architectural Formalism 53

5.1 Overview of the architecture language . 53

5.2 The architecture description language (ADL) . 57

5.3 The architectural mapping language (AML) . 59

5.3.1 The architectural abstraction language . 59

5.3.2 The architectural instantiation language . 62

5.3.3 The declarative framework (DFW) . 63

5.3.4 The logic meta-programming layer of the DFW 64

5.3.5 The implementation layer of the DFW . 65

5.3.6 The architectural layer of the DFW . 74

5.4 Formal de�nitions . 79

5.4.1 Notations . 79

5.4.2 Formalizing the architecture description language 80

5.4.3 Formalizing the architectural abstraction language 85

5.4.4 Formalizing the architectural instantiation language 88

5.4.5 Formalizing architectural conformance checking 89

5.4.6 Discussion . 92

5.5 Summary . 95

6 Implementing the Architecture Formalism using LMP 97

6.1 The logic meta-programming language . 97

6.1.1 Setup . 97

6.1.2 Logic language . 99

6.1.3 Implementation repository . 101

6.1.4 Architectural repository . 102

6.1.5 SOUL versus PROLOG . 102

6.2 Implementing the architecture language . 103

6.2.1 Implementing the architecture description language 103

6.2.2 Implementing the architectural abstraction language 103

6.2.3 Implementing the architectural instantiation language 105

6.2.4 Implementing the declarative framework . 106

6.3 Implementing the conformance checking algorithm 112

6.3.1 Informal de�nition . 112

6.3.2 Implementation . 114

6.3.3 Some optimizations . 116

6.4 Extending the architectural formalism . 117

6.4.1 Re�ned notation . 117

6.4.2 Architectural styles . 118

6.4.3 Architectural correspondence . 119

6.4.4 Architectural deviations . 120

6.4.5 Sub-architectures . 120

6.5 Summary . 124

CONTENTS 5

7 Case Study 125
7.1 The user interaction architectural view . 125

7.1.1 Declaring the user interaction architectural view 126
7.1.2 Declaring the architectural instantiation . 126
7.1.3 Virtual classi�cations . 127
7.1.4 Port �lters . 131
7.1.5 Virtual dependencies . 131
7.1.6 Quanti�ers . 133
7.1.7 Encountered di�culties . 134
7.1.8 Timings . 136

7.2 The rule-based interpreter architectural view . 138
7.2.1 Virtual classi�cations . 138
7.2.2 Port �lters . 141
7.2.3 Virtual dependencies . 142
7.2.4 Quanti�ers . 143
7.2.5 Encountered di�culties . 143
7.2.6 Timings . 144

7.3 The application architecture view . 145
7.3.1 Virtual classi�cations . 146
7.3.2 Port �lters . 146
7.3.3 Virtual dependencies . 147
7.3.4 Quanti�ers . 147
7.3.5 Encountered di�culties . 148
7.3.6 Timings . 149

7.4 Dealing with conformance conicts . 150
7.4.1 Example of a conformance conict . 150
7.4.2 Resolving conformance conicts . 151

7.5 Conclusion . 153
7.5.1 Feasibility . 153
7.5.2 Logic programming as implementation medium 153
7.5.3 Expressiveness . 154
7.5.4 Other criteria . 155

8 Towards an Industrial-Strength Tool 157
8.1 Incremental conformance checking . 157

8.1.1 Kinds of evolution . 157
8.1.2 Analyzing the impact on architectural conformance 161
8.1.3 An example of architectural evolution . 166
8.1.4 Conclusion . 167

8.2 Further optimizations . 169
8.3 An industrial-strength tool . 171

8.3.1 Reverse engineering the architecture . 171
8.3.2 Re-engineering the software . 173
8.3.3 Synchronizing implementation and architecture 174
8.3.4 Tool support . 174
8.3.5 Conclusion . 181

8.4 Generalizing the formalism . 182
8.4.1 Other object-oriented languages . 182
8.4.2 Design diagrams . 183
8.4.3 Logic programming language . 183
8.4.4 Other programming languages . 186

8.5 Summary . 187

6 CONTENTS

9 Conclusion 189
9.1 Summary . 189
9.2 Conclusion . 190
9.3 Achievements . 191

9.3.1 Produced artifacts . 191
9.3.2 Contributions . 191

9.4 Future work . 193

A Syntax of the SOUL Language 195

B Smalltalk Best Practice Patterns 197
B.1 Behavior . 198

B.1.1 Methods . 198
B.1.2 Messages . 201

B.2 State . 204
B.2.1 Instance variables . 204
B.2.2 Temporary variables . 206

B.3 Collections . 207
B.4 Classes . 208
B.5 Summary . 209

C Terminology 211

List of Figures

2.1 The architecture of a rule-based interpreter. 20

4.1 Graphical representation of an architectural view. 42
4.2 The SOUL Query Application. 44
4.3 The SOUL Structural Find Application. 45
4.4 SOUL `user interaction' architectural view. 46
4.5 SOUL `rule-based interpreter' architectural view. 47
4.6 SOUL `application architecture' view. 50

5.1 Schematic overview of the architecture language. 54
5.2 The `user interaction' architectural view with quanti�ers. 61
5.3 Overview of the declarative framework. 95

6.1 Schematic overview of the logic meta-programming setup. 97
6.2 Setup for conformance checking in SOUL. 99
6.3 Setup for conformance checking in PROLOG. 100
6.4 The `Rule Interpreter' sub-architecture. 120
6.5 Bindings for the `Rule Interpreter' sub-architecture. 122
6.6 A composite architectural relation: `Is Composite'. 123

7.1 The `user interaction' architectural view with quanti�ers. 125
7.2 The `rule-based interpreter' architectural view. 138
7.3 The `application architecture' view with quanti�ers. 145
7.4 A non-conform architectural relation. 150

8.1 Possible evolutions of implementation and architecture. 158
8.2 An evolved version of the `user interaction' view. 166
8.3 Visualizing the `rule-based interpreter' view in AcmeStudio. 175
8.4 An architectural view describing the Prolog implementation of our conformance

checking tool. 184

7

8 LIST OF FIGURES

List of Tables

5.1 Layers of the declarative framework. 55
5.2 Overview of the architectural mapping language. 59
5.3 Constructs of the architectural abstraction language. 59
5.4 Some predicates provided by the representational layer. 66
5.5 Some predicates provided by the base layer. 68
5.6 Some predicates provided by the coding convention layer. 71
5.7 Some predicates provided by the design patterns layer. 73
5.8 Some architectural mapping predicates for de�ning virtual classi�cations and virtual

dependencies. 76
5.9 Some architectural mapping predicates representing prede�ned �lter predicates. . . 77
5.10 Some architectural mapping predicates representing prede�ned quanti�er predicates. 78

6.1 Architectural description of the `Rule Interpreter' sub-architecture. 121
6.2 Architectural instantiation for the `Rule Interpreter' sub-architecture. 122
6.3 Port bindings for the `Rule Interpreter' sub-architecture. 122

7.1 Declaring the `user interaction' architectural view. 126
7.2 Concept mappings for the `user interaction' architectural view. 127
7.3 Port mappings for the `user interaction' architectural view. 127
7.4 Relation mappings for the `user interaction' architectural view. 127
7.5 Role mappings for the `user interaction' architectural view. 127
7.6 Link mappings for the `user interaction' architectural view. 128
7.7 Timings for checking conformance to the `user interaction' view. 137
7.8 Timings for computing the virtual classi�cations of the `user interaction' view. . . 137
7.9 Timings for checking conformance to the `rule-based interpreter' view. 144
7.10 Timings for computing the virtual classi�cations of the `rule-based interpreter' view. 144
7.11 Timings for checking conformance to the `application architecture' view. 149
7.12 Timings for computing the virtual classi�cations of the `application architecture'

view. 149

8.1 Mapping architectural concepts to Prolog artifacts. 185

B.1 Some predicates codifying Smalltalk best practice patterns. 209

9

10 LIST OF TABLES

Acknowledgements

An important part of the research reported on in this dissertation was funded by the Brussel's
Capital Region and Getronics Belgium, in the context of a research project on \Compliance Check-
ing in Object-Oriented Systems". The research was conducted at the Programming Technology
Lab of the Vrije Univeristeit Brussel.

I am grateful to many persons for their aid and support during the writing of this research
dissertation. Without doubt, I am indebted most thanks to Roel Wuyts, for various reasons.
Probably, this dissertation would not have seen the light, if it were not for him. Most ideas behind
this dissertation stem directly or indirectly from a joint paper we presented at the TOOLS Europe
1999 conference [52]. This boosted both his and my research and led to this dissertation (and
will hopefully lead to his as well). He is also the main developer of the SOUL logic language and
system, which was used as a case study in this dissertation. In addition, his system was used for
some of the experiments I conducted, although I later switched to another logic language. But even
then we were able to share and co-develop some logic predicates for reasoning about Smalltalk
source code. Finally, I have to thank him for proof-reading some parts of my dissertation; in
particular those that were related to SOUL.

I owe much gratitude to all my proofreaders. In particular, I thank my major proofreader and
brother Tom Mens for his meticulous comments, and my colleague and friend Kris De Volder for
his critical reviews. No matter how well I tried to hide them, they always managed to �nd the
weak spots in my argumentation. Furthermore, Kris' Ph.D. dissertation was my big example. I
hope my dissertation will be at least as motivating to other people as Kris' dissertation was to
me. I am equally thankful to all other proofreaders for taking the time and pains to work their
way through substantial parts of the text: Bart Wouters (with a special thanks for his just-in-time
proofreading), Johan Fabry, Tom Tourw�e, Johan Brichau and Derek Rayside. I greatly appreciate
that Gail Murphy could make the time to read and comment on some chapters I sent her, even
though she had a very tight time schedule. And of course a big thanks to all those who supported
and helped me when I had to revise the text after it had been reviewed by the Ph.D. committee.

I am especially indebted to my advisor Theo D'Hondt, for his unconditional support and guid-
ance, for providing a very exible working environment, and of course for reading and commenting
on �nal versions of the dissertation. I also thank all other members of my Ph.D. committee for their
extensive reviews and comments, and for making the time to be part of the committee in the �rst
place: Amnon Eden, Viviane Jonckers, Dirk Vermeir, Patrick Steyaert and Miguel Wermelinger.

I appreciate the help of Dirk Bontridder, Koen De Hondt, Alain Grijseels, Carine Lucas, Natalia
Romero and Patrick Steyaert for the many fruitful discussions we had on many topics and for their
encouragement and support.

I should not forget to thank all my colleagues and ex-colleagues at the Programming Technology
Lab for providing a great and motivating working environment. It has been a great pleasure to
work with them over the years. Most of them were already mentioned above, others are: Niels
Boyen, Wim Codenie, Linda Dasseville, Jan De Laet, Wolfgang De Meuter (with a special thanks
for helping me out with part of the formalism), Serge Demeyer, Dirk Deridder, Karel Driessen, Wim
Lybaert, Isabel Michiels, Lucas Stoops, Michel Tilman, Werner Van Belle, Marc Van limberghen,

11

12 LIST OF TABLES

Karsten Verelst and Mark Willems. And of course, I appreciate our secretaries Lydie Seghers and
Brigitte Beyens very much for their support.

Last but not least, I want to thank my wife Kathy Van Lindt for putting up with me during
this last year and for having provided me with a �rm deadline. Unfortunately, I did not even make
that deadline (but the baby was still welcome). I thank my new-born son, Nick, for making me
see things in the right perspective. And although it may have become one of the most frequently
used clich�es in dissertation acknowledgements, I thank my parents for having provided me the
opportunity to study as well as for their moral support.

Finally, I thank all my other friends, colleagues, ex-colleagues, students, family members, and
so on, who explicitly or implicitly supported or helped me (and who never ceased to ask when my
dissertation would �nally be �nished) but were somehow forgotten in the above list.

Chapter 1

Introduction

In this dissertation, we propose an expressive architectural language in which to describe software
architectures and their mapping to some software implementation. The language supports the
declaration of multiple architectures, called architectural views, on the same software system.
Each such views focuses on a di�erent aspect of the structure of that system. In addition to
this architectural language, we propose an algorithm which reasons about the descriptions in
the architectural language to automatically check conformance of the implementation of some
software system to its architectural views. The approach we adopt is a logic meta-programming
approach. I.e., we express both the architectural language and the conformance checking algorithm
in a logic programming language which is used as a meta-programming language to reason about
implementation artifacts in some (object-oriented) base language.

1.1 Thesis

Software architecture is increasingly recognized as an important level of design for software sys-
tems. Software architectures describe complex software systems at a su�ciently high level of
abstraction that their conceptual integrity and other key system properties can be clearly un-
derstood early in the design cycle [47]. An architecture may include multiple views of the same
system, each emphasizing a di�erent aspect of that system [11, 65]. In this dissertation, we fo-
cus on the problem of checking conformance of an implementation of a software system with its
architectural views. More precisely, we make the following claim.

Thesis. Automated support for checking conformance of an implementation of a software
system to its architectural views can be achieved in a very expressive way by adopting a logic
meta-programming approach.

In contemporary software development, and in object-oriented software development in par-
ticular, descending from higher levels of abstraction to lower levels (for example, from design to
implementation) is relatively straightforward and well supported by software engineering meth-
ods and tools. Transition in the opposite direction, however, is not so straightforward and thus
less supported. As a consequence, contemporary software development methods often follows a
top-down approach, starting at high levels of abstractions that are gradually re�ned to lower level
ones. Once the software starts to evolve, however, in the face of time constraints, modi�cations are
often applied directly to the implementation level, thus sacri�cing conformance to and consistency
with the information in the earlier life-cycle phases.

Architectural descriptions, which by their very nature seem to cross-cut the implementation,
are particularly di�cult to enforce. This problem of keeping an implementation in conformance
with the architectural descriptions is frequently discussed in research literature using terms such
as architectural drift and architectural erosion [35, 65]. Because evolution of an implementation

13

14 CHAPTER 1. INTRODUCTION

causes it to drift away from the original architecture, the implementation code should be kept
consistent with its architecture. Equally so, when the software architecture itself evolves, one
should be able to detect those places in the source code where changes need to be made (and
which), so that the code still conforms to the evolved architecture. When an implementation
is kept in conformance with the intended architecture, it becomes more maintainable, easier to
understand, easier to evolve and reuse, and so on.

Architectural conformance checking is the task of verifying whether the implementation struc-
ture of a software system corresponds to the more abstract high-level structure described by its
software architecture. We de�ne the structure of a software system as the organization of its
parts and the interactions between those parts. For now, we restrict ourselves to object-oriented
implementations, and Smalltalk implementations in particular.1 In this context, the parts of a
software system are its classes, methods, variables, etc; and the interactions are class instantiation,
method invocation, variable access, etc. Another restriction we make is that we consider only the
static structure of a software system (such as what are the classes, methods and instance variables,
and how are they structured), and do not take into account run-time information (such as which
objects are active during a run of the program, and how they cooperate).

To provide automated support for architectural conformance checking, we advocate an ap-
proach based on logic meta programming. In this approach, logic expressions are used at a meta
level to qualify an implementation with architectural concerns, and to declare architectural re-
lationships among those concerns. Because these expressions are meta-level descriptions on top
of an actual implementation, it is easy to verify conformance of this implementation to these de-
scriptions. Thanks to its powerful concepts of logic uni�cation and backtracking and its multi-way
querying facilities, the logic paradigm is a suitable medium in which to implement our conformance
checking algorithm. However, it is more than merely a convenient implementation medium for the
algorithm. It is also very well suited to describe the mapping of architectural concepts and rela-
tions to implementation artifacts and their dependencies.2 The declarative nature and expressive
power of the logic language enables an architect to describe the `architectural mapping' in a very
expressive, yet concise and intuitive, way.

1.2 Motivation

Suppose I want to understand the \structure" of something. Just what exactly does
this mean? It means, of course, that I want to make a simple picture of it, which
lets me grasp it as a whole. And it means, too, that as far as possible, I want to
paint this simple picture out of as few elements as possible. The fewer elements there
are, the richer the relationships between them, and the more of the picture lies in the
\structure" of these relationships. Christopher Alexander [3]

Software architectures describe the overall structure of a software system, abstracting away all
implementation details and focusing only on a few concepts of interest and their relationships.
Software architectures facilitate the understanding of large and complex software systems, by
providing a simple picture that allows software engineers to grasp the global structure of a system
as a whole. When we know the architecture of a software system, it becomes much easier to
modify or maintain the system.

Unfortunately, the architecture is not always explicitly documented. Furthermore, even when
it is documented, because of the problem of architectural drift, an implementation tends to drift
away from the documented architecture, making this documentation unreliable. As a consequence,

1In Chapter 8, Section 8.4, we broaden the scope again and explain how to generalize the conformance checking
approach to object-oriented languages other than Smalltalk, as well as to other (i.e., non object-oriented) languages
or even to design languages.

2This `architectural mapping' is not part of the implementation of the conformance checking algorithm. It is
explicitly declared by a software architect and varies with the architectural view and the software implementation
under consideration.

1.3. APPROACH 15

the documentation will not be used anymore, so that the implementation drifts away even more.
Because the documented architecture is not used, it is not updated anymore. It does not take long
for the architecture to become completely outdated, so that it looses all its bene�cial properties.
Therefore, it is crucial to keep the architectural documentation up to date [4].

Because there is no explicit link between an implementation and its architecture, and because
architectural concepts may cut across this implementation, the problem of architectural confor-
mance checking is a non-trivial one. Although some research has been conducted on the topic, most
approaches are restricted in the kinds of implementation artifacts and implementation dependen-
cies that can be considered (see 3.2). Furthermore, most approaches do not support cross-cutting
mappings from architectural concepts to implementation artifacts. In contrast, the approach taken
in this dissertation tries to be as general and as expressive as possible, and enables the declaration
of architectural views that cut across the implementation. It also allows the de�nition of multiple,
potentially overlapping, architectural views, thus providing support for separation of concerns at
the architectural level.

This dissertation investigates the feasibility of an architectural conformance checking approach
that is as expressive and as exible as possible. We want to restrict neither the complexity of the
relationships that can be expressed, nor the kinds of implementation artifacts about which we
can reason at the architectural level, nor do we want to restrict how the architectural descriptions
can be mapped to an implementation. To achieve a maximum of expressiveness, we express
the architectural entities and their mapping to an implementation in a full-edged logic meta
language. The same language is used to implement an algorithm for checking conformance of an
implementation to its architectural views.

This dissertation is also important from another perspective. Our successful use of a logic meta-
programming approach to solve the problem of architectural conformance checking, con�rms our
belief that the emerging technique of logic meta programming is highly suitable to build state-
of-the-art software engineering support tools, and, in particular, tools that support co-evolution
of an implementation and the earlier life-cycle phases. This is a research direction that is under
active investigation at the Programming Technology Lab of the Vrije Universiteit Brussel. K. De
Volder adopted a logic meta-programming approach for generating source code from meta-level
declarations including both high-level logic declarations and low-level source-code fragments [14].
R. Wuyts investigated the use of logic meta programming to enforce or check design information
in the source code and to search or browse for certain design constructs in the source [86]. This
dissertation has in common with these research e�orts that a logic meta-programming approach is
used to provide support for co-evolution, i.e., keeping earlier-level life-cycle artifacts synchronized
with implementation artifacts [19].

1.3 Approach

We give a quick overview of the approach we will follow to support the thesis statement presented
in Section 1.1. The statement itself already provides a clue of the followed approach:

� The medium used for implementing the architectural conformance checking algorithm is a
logic language which can reason about artifacts in some (object-oriented) base language.

� Taking advantage of the powerful features of this logic meta language, we de�ne an expressive
architecture language for declaring architectures and their mapping to an implementation.

� Based on this architecture language, we design an algorithm and prototype implementation
for automated conformance checking.

First of all, we de�ne our architecture language for declaring architectural views as well as
their mapping to an implementation. The `architectural mapping' is based on the notions of vir-
tual classi�cations and virtual dependencies. Instead of explicitly qualifying the implementation
artifacts with architectural concerns, implicit virtual classi�cations are used. Computing a virtual

16 CHAPTER 1. INTRODUCTION

classi�cation yields a set of implementation artifacts that address a similar architectural concern.
Virtual dependencies are logic predicates that de�ne high-level architectural relationships in terms
of more primitive implementation dependencies. Both virtual classi�cations and virtual depen-
dencies are powerful abstractions that can take advantage of the full expressive power of the logic
meta language.

Next, we de�ne the conformance checking algorithm which combines all information declared
in the architecture language to generate a logical expression that can verify architectural con-
formance. Based on this language and the conformance checking algorithm, a prototype tool is
implemented in the logic meta language.

Using this prototype, a case study is conducted on an existing medium-sized Smalltalk applica-
tion. We describe multiple architectural views on this application, as well as their mapping to the
Smalltalk implementation, and check conformance of this implementation to these architectural
views. In addition to validating the feasibility and expressiveness of our conformance checking
formalism, this case study illustrates the need and relevance of having multiple, potentially over-
lapping, architectural views that may cut across the implementation.

Based on the results of the case study, some improvements and extensions to the architecture
language, conformance checking algorithm and tool are proposed. Amongst others, we discuss
how the algorithm could be transformed into a more incremental version. When small changes are
made to either the implementation or an architectural view, and under the assumption that the
implementation was already in conformance with the architectural view before the changes, the
incremental conformance checker only re-checks conformance for those parts of the architecture
and implementation that were a�ected by the change. There is no need to re-check conformance
entirely.

1.4 Contributions

Summarizing all this, the main contributions of this dissertation are:

1. We provide a general and expressive formalism, and a prototype implementation, for auto-
mated conformance checking of an implementation of some (object-oriented) software system
to multiple architectural views.

2. We show that logic meta programming is a suitable technique for implementing the proposed
architecture language and conformance checking algorithm.

3. We illustrate that virtual classi�cations and virtual dependencies constitute high-level and
intuitive mechanisms for abstracting architectural concepts from implementation artifacts,
and architectural relations from implementation dependencies, respectively. Virtual classi�-
cations and virtual dependencies are very expressive abstractions that can make use of the
full expressive power of a logic meta-programming language.

4. We illustrate the relevance of providing multiple, potentially overlapping, architectural views
that may cross-cut the implementation.

1.5 Organization of the dissertation

In the next chapter, we introduce some terminology that will be used throughout the dissertation,
and provide background information on the topics of software architecture, logic meta program-
ming, software classi�cation and separation of concerns. This information is analyzed in Chapter
3 to show that the research problem this dissertation addresses is an important problem that
has not been solved before. We also elaborate a bit more on the approach followed. Chapter 4
introduces the case that will be used throughout this dissertation: the Smalltalk implementation
of the logic language SOUL.

1.5. ORGANIZATION OF THE DISSERTATION 17

In the subsequent chapters (5 to 7) we describe how we actually solved the research problem.
We do this in three steps: we �rst explain the details of the architectural language and of the
conformance checking algorithm (Chapter 5). Then we show how the proposed formalism was
implemented in a logic meta-programming medium (Chapter 6). Finally we apply the prototype
implementation to the chosen case (Chapter 7). The results of this case study are used to validate
the thesis.

Extrapolating from the experience gained with our prototype implementation, Chapter 8 dis-
cusses some of the features and properties an industrial-strength tool for conformance checking
should possess. Finally, in Chapter 9, we summarize the contributions and conclusions of this
dissertation and mention some more future work.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter provides background information on some research topics that are relevant to this
dissertation. Since the dissertation is about checking conformance of a software implementation
to its architectural views, we start with explaining software architecture in general, and archi-
tectural conformance checking in particular. Then we discuss logic meta programming, which is
the medium in which we will express our conformance checking formalism. The notion of virtual
software classi�cations, a powerful abstraction mechanism in our formalism, is introduced as well.
A �nal section discusses the need for separation of concerns in software in general, and the need
for multiple architectural views in particular.

2.1 Software architecture

2.1.1 Introduction

Software architectures emerged as a natural evolution of design abstractions, as software engineers
searched for better ways to understand their software and new ways to build larger, more complex
software systems [74]. Software architectures present a high-level view of the structure of a software
system, enabling engineers to abstract away the irrelevant details and focus on the \big picture"
[46]. It is generally agreed upon that software architectures are high-level design abstractions:

� Software design has two stages: architectural design and detailed design. Architectural
design is the process of de�ning a selection of software components, their functions and
their interfaces to establish a framework for the development of a software system. Detailed
design is the process of re�ning and expanding the software architectural design to describe
the internals of the components. [20]

� Architectural design speci�cations describe the general structure of a software system, whereas
detailed design speci�cations describe the control ow, data representation, and other algo-
rithmic details within the modules [21].

� Architecture provides a framework in which to satisfy the requirements and serve as a basis
for the design [65].

� As the size and complexity of software systems increase, the design and speci�cation of overall
structure become more signi�cant issues than the choice of algorithms and data structures
of computation. Structural issues include the organization of a system as a composition
of components; global control structures; the protocols for communication, synchronization
and data access; the assignment of functionality to design elements; the composition of
design elements; physical distribution; scaling and performance; dimensions of evolution;
and selection among design alternatives. This is the software architecture level of design.
[74]

19

20 CHAPTER 2. PRELIMINARIES

Because software architectures provide a high-level abstract view of the overall structure of a
software system, they provide many bene�ts with respect to software evolution. Some authors
even claim that during software evolution, the software architecture becomes the critical aspect
of design [25, 28]. To perform a change to a system e�ectively, a software engineer needs to have
some understanding of the system [84]. An engineer may bene�t from understanding the structure
of the software system | the organization of the source code into components and the interactions
and dependencies between those components | since the di�culties encountered when performing
a change are dependent to a great extent on the system's structure [58]. An explicit architectural
focus can remedy many of these di�culties and enable exible construction and evolution of large
systems [46].

2.1.2 De�nitions

In this subsection, we give informal de�nitions and examples of the concepts of `software archi-
tecture', `component', `connector' and `architectural style'. Most de�nitions and examples are
borrowed from M. Shaw and D. Garlan's book on software architecture [74].

Architectures

Most de�nitions of software architecture [10, 25, 29, 65, 72] characterize a software architecture
as a collection of architectural entities, together with a description of the interactions and rela-
tionships among those entities and a set of constraints on these entities and their relationships.
The architectural entities are typically referred to as the components of the architecture, and
the relationships among those entities are often called the connectors. The software architecture
represents the overall organization of a software system and the global control structure.

Some sources [10, 65, 74] state that, in addition to specifying the structure and topology of the
system, the architecture should also show the correspondence between the system requirements
and elements of the constructed system, thereby providing some rationale for the design decisions.
In this dissertation, however, as in [52, 72], we focus on the structural aspects of a software
architecture only.

A concrete example of a software architecture, depicted in Figure 2.1, is that of a rule-based
interpreter. As we will revisit this architecture later in the dissertation, we briey explain some of
its key components and connectors here. This architecture, as well as the interpreter architecture
of which it is a special case, are explained in more detail in [4, 31, 74].

Working Memory Knowledge Base

Rule Interpreter Clause Selector

State Data

F
acts

a n
d

R
u
le s

Selected Rule

U
p

d
ates

D
at a

Selected Data

Inputs

Outputs

Figure 2.1: The architecture of a rule-based interpreter.

The `Rule Interpreter' component represents the heart of the inference engine of the rule-
based system. It will do the actual interpretation of logic clauses (queries, rules and facts). The
`Working Memory' component represents the current state of the interpretation process (i.e., the

2.1. SOFTWARE ARCHITECTURE 21

current set of bindings of values to logic variables). The `Knowledge Base' component represents
the logic program that is being interpreted. It contains the rule base and fact memory of the
rule-based system. The `Clause Selector'1 component models the control and control state of the
interpretation engine, such as the current rule or fact being executed and the clauses remaining to
be executed. The connectors are shown as arrows in the picture and represent ow of data. The
Rule Interpreter selects a clause from the Knowledge Base via the Clause Selector and based on
the selected clause potentially updates the current set of variable bindings in the Working Memory.

Components

According to Shaw and Garlan, architectural components are the primary units of computation and
state. Many di�erent kinds of components can be distinguished: `pure computational' components
only perform some computation and have no state, `memory' components represent a shared
collection of structured data, `manager' components contain state and closely related operations,
etc.

Each component has an interface speci�cation that de�nes its properties, which may include its
signatures, functionality, guarantees about global invariants, performance characteristics, and so
on. Each is of some type or subtype (e.g., process, memory, �lter, server). Not every architectural
model allows the de�nition or usage of di�erent component types, though. For example, in module
interconnection languages [68], only one type of components is distinguished, namely the modules
(e.g., �les, packages, libraries) out of which a software system is composed.

Connectors

Shaw and Garlan de�ne architectural connectors as the `loci' of relations among components.
They mediate interactions but are not things to be hooked up (rather, they do the hooking up).
Many di�erent kinds of connectors can be distinguished: procedure calls, dataow connectors (i.e.,
interaction through streams of data), implicit invocation (e.g., event systems), message passing,
instantiation, etc.

Each connector has a protocol speci�cation that de�nes its properties, which may include
rules about the types of interfaces it is able to mediate for, assurances about properties of the
interaction, rules about the order in which things happen, and commitments about the interaction
(e.g., ordering, performance, etc.). Each is of some type or subtype (e.g., remote procedure
call, pipeline, broadcast, event). Again, not every architectural model allows the de�nition or
usage of di�erent connector types. For example, in module interconnection languages the only
connectors are the implementation dependencies (de�nition/use or import/export) between the
system modules.

Architectural styles

An architectural style de�nes a family of architectures in terms of a pattern of structural organi-
zation. Each architectural style has its own vocabulary of component and connector types, as well
as a set of constraints on how the components and connectors can be combined.

As a concrete example, consider the `pipe and �lter' architectural style [74]. The only valid
component types are `�lters' which can read or write and transform streams of data. The connector
types are `pipes' which transport data streams between �lters. Constraints in the `pipe and
�lter' architectural style include that �lters can only be connected through pipes. The `pipeline'
architectural style is a re�nement of the `pipe and �lter' style which additionally requires that
every �lter has at most one incoming and outgoing pipe. A concrete instance of this architectural
style is a traditional compiler, where the �lters represent the di�erent stages in the compilation
process: lexical analysis, syntax parsing, semantic analysis, optimization and code generation.

1In [74], this architectural element is called `Rule and data-element selection'.

22 CHAPTER 2. PRELIMINARIES

2.1.3 Problems with software architectures

Architectural erosion and architectural drift

Due to a lack of formalization and tool support for software architectures, there are still many
technical problems related to the use of software architectures. One severe and commonly accepted
problem is that of architectural erosion and the related problem of architectural drift.

D. Perry and A. Wolf [65] de�ne architectural erosion as \violations in the architecture that
lead to increased system problems and brittleness". They de�ne architectural drift as \a lack of
coherence and clarity of form which may lead to architectural violation and increased inadapt-
ability of the architecture". In other words, because the implementation of a software application
continually evolves, most software applications tend to drift away from their original architecture,
causing the application architecture to erode. When no proper actions are taken to counter this
erosion, eventually the software will turn into a legacy system.

C. Jaktman et. al. [35] extend D. Perry and A. Wolf's de�nition of architectural erosion to
include the structure of an architecture. They de�ne the structure of a software architecture as
being eroded \when the software within the architecture becomes resistant to change or software
changes become risky and time consuming. Erosion can also be exhibited when the software is hard
to understand or manage due to an increase in the size and complexity of the code and its structure.
Erosion can be a result of poor design decisions made while implementing maintenance changes
to the system, or a result of limited architectural understanding during software maintenance
which may have constrained the exibility of the design." They provide a list of characteristics
indicating architectural erosion in an evolving software system. Amongst others, the list includes
the following indicators:

� The architecture is not documented or its structure is not explicitly known.

� The relationship between the architectural representation and the code is unclear or hard to
understand.

� The design principles of the architecture are violated when implementing a particular variant
of the software system.

The above characteristics could be resolved by adopting a conformance checking approach, such
as the one we will propose, where the architecture is explicitly documented and source code can
be automatically checked for conformance to the architecture, based on an explicit declarative
mapping from this architecture to the code.

Architectural mismatch

In addition to the above problems of architectural erosion and architectural drift, Shaw and
Garlan argue that without explicit and formal architectural descriptions, it is di�cult to capture
the intended architecture of a software system, due to mismatches with the source code. This
problem is often referred to as the problem of architectural mismatch [26].

The models implicit in designers' architectural descriptions (both text and diagrams)
do not match the actual realization of these models in code. Architectural models are
rich, abstract, spontaneous, and almost wholly informal; however, the implementation
languages are rigorous, precisely de�ned, and limited in expressiveness to the constructs
of the underlying programming language. As a result of these mismatches, the code
fails to capture designers' intentions for the software explicitly and accurately, and
precise design documentation does not persist into maintenance. Even insofar as the
code captures parts of the design, it does so in a highly distributed fashion, and it is
hard for a reader to get a system-level overview. [74]

Our approach addresses this problem of architectural mismatch, by explicitly describing architec-
tures and their mapping to the source code, and by providing a means of checking conformance
of the source code to these architectures.

2.1. SOFTWARE ARCHITECTURE 23

2.1.4 Architecture description languages

The �rst thing we need to solve the above problems, is a more formal notation in which software
architectures can be described explicitly. Architecture description languages (ADLs) provide such
a notation. The formality of ADLs renders them suitable for manipulation by software tools. This
subsection on architecture description languages is largely based on N. Medvidovic and R. Taylor's
excellent classi�cation and comparison of ADLs [45].

Over half of the system maintenance e�ort goes into deciphering what the software actually
does, so the inability to record and retain the designers' higher level intentions about component
interactions is a major cost generator. Therefore, there is a need for software engineers to ex-
plicitly codify their intentions at a suitably abstract level [74]. ADLs provide a formal basis for
describing software architectures by specifying the syntax and semantics for modeling components,
connectors, and con�gurations [62].

Many di�erent ADLs can be distinguished, based on the particular problem they focus on,
and based on what can be modeled by the ADL. We will not enumerate all possible ADLs here.
What is important for this dissertation is a characterization of the essential properties of an ADL.
According to Medvidovic and Taylor, an ADL must explicitly model components, connectors and
their con�gurations (i.e., how the components and connectors are interconnected). The interfaces
of the individual components should also be modeled. Interfaces for connectors are a desirable
(but not an essential) aspect of an ADL. Finally, to be truly usable and useful, and ADL must
provide tool support for architecture-based development and evolution.

In many ADLs (though not all) the interfaces of components are speci�ed as ports. Any
component may have multiple ports, each of them de�ning a logically separable point of interaction
with its environment. The interfaces of connectors are speci�ed as roles. Components are linked
to connectors by linking ports to roles.

What di�erentiates ADLs from high-level design notations, module interconnection languages
(MILs), programming languages and object-oriented modeling notations and languages, is their
focus on architecture at a conceptual level (as opposed to implementation level) and their explicit
treatment of connectors as �rst class entities. For example, although we already mentioned MILs
in the previous subsection as an example of a software architecture model, a MIL is not really an
ADL. Its focus is more on the implementation than on the conceptual architecture as it describes
the `uses' dependencies among modules in an implemented system. Furthermore, they support
only one type of connection. The boundary between MILs and ADLs is a bit vague, however.
Some ADLs, called the implementation constraining ADLs directly relate components and con-
nectors to the implementation. Other ADLs, however, are implementation independent. They
model components and connectors at a high level of abstraction and do not assume or prescribe a
particular relationship between an architectural description and an implementation.

2.1.5 Architectural conformance checking

ADLs provide a formal basis for describing software architectures, which makes them suitable for
manipulation by software tools. In particular, we are interested in conformance checking tools,
which are necessary to solve (amongst others) the problems discussed in Subsection 2.1.3. R.
Schwanke et. al. con�rm that checking conformance of source code to an architecture is an
important problem:

Practicing architects at Siemens tell us that their most pressing architectural concern
is maintaining consistency between the architecture and the code. Whereas it takes
a team up to a year to design an architecture, they must then live with it for up to
�fteen years of development and maintenance. They also tell us that, by the time an
architecture speci�cation is published, it is already wrong. [72]

Architectural conformance checking is about verifying whether some implementation `conforms'
to an architectural description. This is done by de�ning an architectural mapping that `re�nes' the

24 CHAPTER 2. PRELIMINARIES

architectural components and connectors to implementation artifacts and dependencies, and using
this mapping to trace whether the implementation actually conforms to the described architectural
con�guration.

According to N. Medvidovic and R. Taylor [45] as well as P. Clements [11], architectural
conformance checking may very well be the area in which existing ADLs are most lacking. Most
ADLs do not provide support for re�ning an architecture to an implementation of a system, nor
for checking consistency between an implementation and its architecture.

Some ADLs do allow system generation directly from architectural speci�cations, thus obliter-
ating the need for conformance checking. However, these ADLs are typically the `implementation
constraining' ones. In other words, they assume that the relationship between architectural ele-
ments and those of the resulting implementation is one-to-one. As we will explain later, this is an
unreasonable assumption to make.

Although little support currently exists for checking conformance of an implementation of some
software system to its architecture(s), below we mention some related and relevant approaches.

� A MIL [68] can be used to formally describe the global structure of a software system, by
specifying the interfaces and interconnections among the modules that make up the system.
The interconnections between modules are described in terms of the entities they contain
(e.g., variables, constants, procedures, type de�nitions, . . .). These formal descriptions can
be processed automatically to verify system integrity.

� N. Minsky [55] developed the formalism of law-governed architecture which allows the explicit
and formal declaration of certain regularities for a given system. These declarations form
the `law' of the system and can be enforced by the environment in which the system is
developed. A regularity is similar to an architectural constraint: it is a \global property
of a system; that is, a property that holds true for every part of the system, or for some
signi�cant and well-de�ned subset of its parts". A well-known example of a regularity in
software is a layered architecture.

Although architectures can be regarded as a speci�c kind of regularities, many other kinds
of regularities can be expressed as well. N. Minsky's formalism was not speci�cally tar-
geted towards solving the problem of architectural conformance checking. As the focus of
this dissertation is on the particular formalism and technique that are needed for checking
architectural conformance, our work is more or less complementary to Minsky's.

� G. Murphy et. al. [57] developed the notion of software reexion models that show where
an engineer's high-level model of the software does and does not agree with a source model
(that was extracted from the source code), based on a mapping from the source model to
the high-level model.

� R. Schwanke et. al. [72] developed Gestalt, a language and toolset for specifying software
architectures and for checking consistency between the architecture and the code. Both
structural consistency and protocol type compatibility at the interfaces are checked.

� As will be explained in Section 2.2, at the Programming Technology Lab some experiments
have been conducted to check conformance of Smalltalk source code to design patterns and
programming styles [86] and to architectural descriptions [52]. These experiments eventually
lead to the conformance checking formalism that is proposed in this dissertation.

A comparison of the similarities and di�erences among some of these approaches, and more specif-
ically, of how they relate to our approach, is deferred to Section 3.2.

2.1.6 Evolution of software architectures

Software systems have a natural tendency to evolve. This can be due to many reasons: changing
requirements, adopting new technology, software maintenance and bug �xing, increasing the e�-
ciency (or other quality aspects) of the software, using the software beyond its original goals, new

2.1. SOFTWARE ARCHITECTURE 25

insights in the problem domain, new design insights, etc. When a software implementation evolves,
conformance checking techniques can be used to verify whether the evolved implementation still
conforms to the software architecture.

In addition to the implementation, the architecture itself may (need to) evolve as well. The
constantly changing requirements and concerns dictate that we revise the architecture to cope
with this. As requirements evolve, so must the architecture if it does not already meet the
new requirements. Sometimes new requirements are faced that do not signi�cantly a�ect the
architecture itself, although they do force changes in the implementation. However, sometimes we
face new requirements and concerns that force us to revise the description of the architecture [66].

The main reason why architectures should evolve is that when the quality of the architecture
degrades software modi�cations become more di�cult. This is because design decisions at the
architectural level have far reaching consequences on the resultant code and hence on its main-
tainability [34]. In order to address the problem of architectural drift and to stop or even reverse
the e�ects of software aging, software architectures need to take evolution into account.

Some might argue that support for architectural evolution is not so important because archi-
tects could and should try to anticipate possible future changes in advance, and provide hooks for
them in the architecture. However, this is not always done due to time pressure. Furthermore,
even when architects have provided hooks for future evolution, these hooks are seldom what is
needed when the system needs to change. Very few architects have su�cient foresight to anticipate
all possible changes, and take these into account.

When the architecture has evolved, conformance checking techniques can be used to check
conformance of the original software implementation to the evolved architecture. In the con-
text of evolution (of either the implementation or the architecture), an incremental approach to
conformance checking may be most appropriate. With such an approach, instead of re-checking
conformance for the entire implementation and architecture, we only need to compare the parts
that have changed. We sketch such an approach in Section 8.1.

26 CHAPTER 2. PRELIMINARIES

2.2 Logic meta programming

2.2.1 Logic meta programming at PROG

In this dissertation, a logic meta-programming approach for architectural conformance checking
is proposed. This research �ts in with the broader research on logic meta programming (LMP)
at the Programming Technology Lab (PROG) of the Vrije Universiteit Brussel. The goal of
that research is to investigate how the technique of LMP can facilitate the construction of state-
of-the-art software development support tools. In particular, a number of experiments have been
conducted that use LMP to qualify implementation-level artifacts with enforceable design concerns,
including architectural concerns [52, 81, 86]. It seems intuitively clear that design information,
and in particular architectural concerns, are best codi�ed as logic constraints or rules. Such rules
and constraints can be used to enforce or check design information or architectural constraints
in the source code, to search or browse for occurrences of certain design constructs in the source
code, or even as a process for code generation and transformation. LMP is an emerging technique,
not quite out of the lab as yet. However, it has already been shown to be very expressive [14, 15,
19, 52, 81, 86].

LMP is an instance of hybrid language symbiosis, merging a logic language at meta-level with a
standard object-oriented base language. Base-level programs are expressed as terms, facts or rules
in the meta level. Logic programming has long been identi�ed as very suited to meta programming
and language processing in general; see [15] for related publications. For historical reasons, in this
dissertation we concentrate on a Prolog-derivative for our logic meta language; its expressive power
and its capacity to support multi-way queries seem particularly attractive. We are not concerned
with performance issues at this stage, but we would, at least initially, like as much expressive
power on our side as possible.

To conclude our overview of LMP we present some concrete experiments illustrating how it
can be used to build state-of-the-art software development support tools. For a more detailed
discussion of these experiments, we refer to [19]. This is by no means a complete coverage of LMP,
nor even of the experiments conducted at our lab.

� In his Ph.D. dissertation on \Type-Oriented Logic Meta Programming" [14], K. De Volder
proposed to use LMP as a way to extend the expressiveness of current type systems. The
approach even proved to be su�ciently general, to handle aspect-oriented programming
(and even aspect-oriented meta programming) as well [15]. K. De Volder used a code-
generation approach where code was described at meta level using a mixture of high-level
logic declarations and low-level pieces of Java source code. Based on these declarations,
his TyRuBa system then generated one or more Java programs satisfying these high-level
descriptions. Using the same TyRuBa system, a Master student conducted an experiment to
generate the source code of an application by describing it at design level as a con�guration
of components [67].

� The SOUL system developed by R. Wuyts follows more or less the opposite approach assum-
ing the existence of some repository of source code, on top of which logic meta declarations
are de�ned to reason about this source code. SOUL is a hybrid logic language, implemented
in Smalltalk, and with a tight symbiosis with both the Smalltalk language and development
environment. Using SOUL, experiments have been carried out to check, browse for, or en-
force programming conventions [54], design patterns and styles [86] and to check conformance
of source code to architectural constraints [52].

� Adopting accepted design principles and techniques (such as idioms, programming conven-
tions, design patterns and heuristics, and so on) has many advantages when implementing
software. Unfortunately, it often results in some performance penalties. To allow for soft-
ware systems with a clean design, without compromising e�ciency, T. Tourw�e suggests doing
source to source transformation from well-designed implementations to more e�cient ones
[81]. Again, a LMP approach is put forward. However, in this case, a combination of a logic

2.2. LOGIC META PROGRAMMING 27

and a functional meta language is used. The logic language declares the role certain imple-
mentation artifacts play in speci�c design constructs. The functional language describes the
optimization transformations for each speci�c design construct. These transformations can
rely on the information contained in the logic declarations.

2.2.2 Co-evolution

In the previous subsection we introduced the research direction of LMP that is under active
investigation at our lab. Most of this research directly or indirectly addresses the need for more
control over the evolution of software. In the past, a signi�cant amount of work at the lab focused
on the need to document evolution and build conict detection tools [40, 78] and to formalize
the evolution process [53]. More recently, the focus has shifted towards exploring an approach for
steering evolution [19]. We have adopted the term co-evolution, implying that managing evolution
requires the synchronization between di�erent layers in the software development process. LMP
is used as a development framework in which to express and enforce this synchronization process.
All examples of LMP discussed in the previous subsection, in some way or another, �t this research
theme of co-evolution.

This dissertation can be seen as a �rst step towards solving the problem of co-evolution of
software architecture and implementation. In this context, support for co-evolution boils down to
keeping an implementation synchronized with (i.e., ensuring conformance with) its architecture,
when either of them evolves. When the software architecture evolves, we are interested in assessing
the impact of this evolution on the implementation artifacts. Conversely, we are interested in the
impact on the architecture when these implementation artifacts themselves evolve. In other words,
we need a formalism that allows automated reasoning about the repercussions at an architectural
level of evolving implementation artifacts and about the repercussions of evolving an architecture
on these implementation artifacts.

To some extent, conformance checking provides such a formalism. If, after evolution of either
the architecture or the implementation, the implementation no longer conforms to the architec-
ture, we know that an evolution problem has occurred. Furthermore, the conformance checking
algorithm will give an indication of why and where conformance is invalidated. To avoid �rst
having to apply the evolution, and then re-checking conformance on the entire implementation
and architecture, a more incremental solution may again be preferable.

28 CHAPTER 2. PRELIMINARIES

2.3 Software classi�cation

In developing the architecture language proposed in this dissertation, we were inspired by K. De
Hondt's research on `software classi�cation' as an approach to architectural recovery in evolving
object-oriented systems [12]. In particular, we experienced the power of the notion of `virtual
software classi�cations' to codify and reason about software architectures [49].

2.3.1 Traditional software classi�cations

Classi�cation is a central idea in the object-oriented programming paradigm. Consider for exam-
ple the Smalltalk language: methods and instance variables are grouped in classes, objects are
instances of a class, classes are instances of a meta class, classes belong to inheritance hierarchies,
methods are grouped in method protocols, classes are classi�ed in class categories, changes to
the Smalltalk image are grouped in change sets, and so on. All of these can be considered as
a kind of prede�ned software classi�cations. Enhancements of the Smalltalk language, such as
the Envy/DeveloperTM version management system, extend the classi�cation possibilities even
further (e.g., Envy contains a notion of versions and applications).

2.3.2 The software classi�cation model

In his Ph.D. dissertation, K. De Hondt [12] presents the `software classi�cation model' as a pow-
erful model to organize implementation artifacts in a exible and uniform manner. He de�nes
a software classi�cation as a simple collection of implementation artifacts, where artifacts can
be classi�ed in multiple classi�cations. For example, in Smalltalk, a software classi�cation could
group a set of related classes. All artifacts in a software classi�cation typically share some im-
portant characteristic. For example, in a �nancial application it could be interesting to group
all implementation artifacts dealing with \handling deposits" together in a single classi�cation.
De Hondt uses these software classi�cations to capture architectural abstractions that are reverse
engineered from implementation artifacts and their dependencies.

As a special kind of software classi�cations, De Hondt de�nes a notion of `virtual software
classi�cations'. Such classi�cations are not a mere enumeration of implementation artifacts, but
are directly extracted from the traditional software classi�cations, such as inheritance hierarchies
and class categories, that can be found in the programming language and development environment
(see 2.3.1). These classi�cations are `virtual' in the sense that they are actually `computed'
by the environment. When changes are made to the implementation repository, these `virtual
classi�cations' are automatically recomputed.

In this dissertation, we adopt a slightly broader de�nition of virtual software classi�cation: a
virtual classi�cation is a software classi�cation that is speci�ed `intentionally' (i.e., by `computing'
its elements), as opposed to extensionally. Such virtual classi�cations are clearly more exible than
ordinary classi�cations, because they actually `describe' which artifacts are intended to belong to
the classi�cation, instead of explicitly enumerating them. Furthermore, when declared in a logic
language, due to the expressive power of that medium, their de�nitions are often very intuitive
and concise, and can be used in multiple ways (e.g., checking, generating, etc.).

Instead of using the terminology of `virtual classi�cation', a better choice of terminology may
be `computed classi�cation' or `intentional classi�cation'. However, because it is not our original
terminology and because the terminology has already been used in several publications [12, 13,
52, 49], we prefer not to alter it.

2.3.3 The classi�cation browser

To support the creation, manipulation and browsing of software classi�cations, K. De Hondt
developed the Classi�cation Browser [12]. It resembles a standard Smalltalk class browser, but
with additional features for manually constructing software classi�cations:

2.3. SOFTWARE CLASSIFICATION 29

� creating and deleting classi�cations;

� classifying artifacts in classi�cations, moving and copying artifacts between classi�cations,
and removing artifacts from classi�cations;

� support for nested classi�cations;

� advanced browsing facilities to navigate through the classi�cations and to navigate through
the source code in search for artifacts to be classi�ed;

� prede�ned virtual classi�cations (e.g., class categories in Smalltalk).

2.3.4 Virtual classi�cations

In this dissertation we use virtual classi�cations of implementation artifacts and the relationships
among such artifacts (called `virtual dependencies'2) to declare architectural knowledge explicitly
at a su�ciently abstract level, while retaining the ability to perform automated conformance
checking.

The main advantage of virtual classi�cations over explicit enumerations of implementation
artifacts is their intentional character.3 First of all, an intentional de�nition often has a much more
concise representation. Secondly, an extensional de�nition is less intuitive than an intentional one,
which de�nes precisely which property all entities in the set have in common. For the same reason,
the extensional de�nition is less precise than the intentional one. For example, two classi�cations
can have the same extension, but a di�erent intention. The converse is not true: two classi�cations
that have the same intention, must always have the same extension.4 Finally, intentional de�nitions
are more robust towards changes than extensional de�nitions. This is because intentions are true
by de�nition, whereas extensions can be falsi�ed by changing events.5

Because of all these advantages, we prefer to use virtual classi�cations over explicitly enu-
merated software classi�cations. The only disadvantage of this choice has to do with e�ciency
of computation. With an extensional de�nition, all values are stored explicitly, and thus can be
retrieved immediately. An intentional de�nition can be stored much more concisely, but when
its values are needed, they need to be computed from the de�nition, which may take some time
(unless a caching mechanism can be used).

2The terminology of `virtual dependency' was chosen by analogy with the term `virtual classi�cation'. The
dependency is `virtual' in the sense that it is not necessarily directly visible in the source code, but may require
some complex computation to extract it from the source code. It is speci�ed declaratively as a logic predicate over
the implementation.

3In natural language, the intention of a word is that part of meaning that follows from general principles in
semantic memory. The extension of a word is the set of all existing things to which the word applies. The intention
of `mammal', for example, is a de�nition, such as \warm-blooded animal, vertebrate, having hair and secreting milk
for nourishing its young"; the extension is the set of all mammals in the world [75]. Similarly, in set or type theory,
the extension is the collection of all values belonging to that set or type. The intention is a formal de�nition of
these values in terms of some property they all have in common.

4Let us illustrate this again with a natural language example taken from [75]. Since `grandfather' and `father of
parent' have the same intention, they must apply to exactly the same people. On the other hand, `featherless biped'
and `animal with speech' have the same extension, the set of human beings; but they have di�erent intentions.

5Plucking a chicken results in a featherless biped that cannot speak.

30 CHAPTER 2. PRELIMINARIES

2.4 Separation of concerns

Although the main goal of this dissertation is to develop a formalism for checking architectural
conformance, as a side-contribution we want to show the relevance and importance of the ideas
of separation of concerns at the architectural level. More precisely, we want to illustrate that
multiple, potentially overlapping, cross-cutting architectural views may provide a better insight
in the overall structure, organization and functionalities of a software system than one single
architecture, which is often strongly biased to the structure of the application.

2.4.1 Techniques for separating concerns

W. H�ursch and C. Lopes [32] identi�ed and analyzed the emerging paradigm of separation of
concerns in software engineering, which tries to formally separate the basic algorithm from special-
purpose concerns, such as concurrency, distribution, persistency, and so on. Separating these
di�erent concerns, both at a conceptual and at the implementation level, makes the software easier
to write, understand, reuse and modify. Examples of techniques and approaches that address the
need for separation of concerns are: subject-oriented programming [30], composition �lters [2],
adaptive programming [39], aspect-oriented programming [36] and hypermodules [63, 80].

For example, aspect-oriented programming (AOP) tries to solve the problem that a program
is typically structured according to its base functionality, and that adding `aspects' that address
concerns which cut across this structure typically requires changes throughout the entire program.
This problem is caused by what P. Tarr and H. Ossher [63, 80] call the \tyranny of the dominant
decomposition". Typically, a software system is decomposed according to one `dominant' concern
and other concerns that cut across this basic functionality are di�cult to incorporate in the
software. In AOP, there is no dominant concern. The base program and several aspect programs
are all implemented separately and are then `weaved' into one single executable program.

In the same spirit, P. Tarr and H. Ossher suggest to adopt a software development approach
which allows a simultaneous decomposition according to multiple, potentially overlapping con-
cerns. They present a uniform model of `multi-dimensional separation of concerns' to achieve
separation of concerns at all levels of the software life-cycle. Most of the techniques for separating
concerns mentioned above, can be considered as special cases of this model.

2.4.2 Multiple cross-cutting architectural views

In a recent position paper [48], we made a case for the relevance of the ideas of multi-dimensional
separation of concerns at the architectural level. Just like separation of concerns at the implemen-
tation level can make source code easier to write, understand, reuse and modify; we claim that
multiple, potentially overlapping, cross-cutting architectural views, can provide similar bene�ts at
the architectural level.

Need for multiple cross-cutting architectural views

When designing a building, architects do not make one single plan that describes the overall
structure of the entire building. Instead, they use many di�erent plans that each focus on a
single aspect or view of the building: front and side views, oor plans, cross sections, foundation,
drainage system, electric wiring, central heating, and so on. Not only do these plans address
di�erent concerns, they are also supposed to be used by di�erent persons: future inhabitants,
bricklayers, electricians, plumbers, and so on. Many of these plans are clearly cross-cutting. For
example, a client's request to add an extra window (based on a side view of the building) may
require parts of the electric wiring to be recon�gured, since the wiring is often incorporated in
the walls. It may even require a partial restructuring of the building, because a window is not
a load-bearing structure. It is the architect's job to try and construct a building that optimally
satis�es the di�erent constraints and requirements imposed by all these plans.

2.4. SEPARATION OF CONCERNS 31

In contrast with this accepted approach in building architecture, current approaches in the
domain of software architecture [64, 77] often assume that software architectures have a direct
mapping of the architectural elements to source-code, design-level or physical artifacts and their
dependencies. We will refer to these kinds of architectures as application architectures because
they focus on the actual implementation structure of a software application. For example, in
software systems that need to deal with dynamic evolution or runtime recon�guration [64], the
application architecture simply describes what the implementation components are and how they
are related to each other. Another example of an application architecture is the component model
in UML, which shows the dependencies between parts of the code [77].

Although such application architectures provide good insights into the structure of a software
system and thus facilitate the detailed design and implementation as well as the evolution and
maintenance of the system, in general there is no need for a software architecture to resemble the
application structure itself. The building blocks of a software architecture are merely (abstract)
concepts that are meaningful for the application domain. An architecture is a set of relations
(or structure) over such concepts. Therefore, in addition to the application architecture, many
other kinds of architectures are imaginable and useful; for example, a data-ow or control-ow
architecture, or an architecture focusing on a speci�c concern of the system such as user interac-
tion or distribution, or even architectures addressing domain-speci�c concerns such as rule-based
interpretation (in the domain of rule-based systems). Many of these architectures, however, often
`cut across' the implementation structure or application architecture.

An important side-contribution of this dissertation is to illustrate the need for multiple, po-
tentially overlapping, cross-cutting architectural views. The idea that a software system can have
not only an application architecture, but also many other architectural views that address speci�c
concerns, is slowly in�ltrating in the software architecture community [7]. P. Kruchten [38] pro-
poses his `4 + 1 View Model' which describes a software architecture using �ve concurrent views.
We agree that multiple architectural views are useful, but do not restrict an architect to a �xed
number (i.e., 5) of prede�ned views. The architect should be able to use as many architectural
views as needed, and should not be restricted to a prede�ned set of concerns that these views
should address.

Checking conformance to multiple cross-cutting architectural views

The case study which will be described in Chapters 4 and 7 is the continuation of an experi-
ment reported on in an earlier paper [52].6 In that paper, we tried to check conformance of the
Smalltalk implementation of the SOUL language to the typical architecture of a rule-based in-
terpreter [74]. The elements in this architectural view did not always map straightforwardly to
the classes or other implementation artifacts. For example, the `Rule Interpreter' component at
architectural level corresponded to many di�erent methods implemented by many classes in the
entire implementation. Nevertheless, by de�ning a cross-cutting architectural mapping we were
still able to check architectural conformance. This initial experiment made us realize that an
architecture which provides a high-level view of some aspect of the design of a software system,
does not necessarily need to have a direct mapping to the implementation, but may cut across it.

The need for multiple cross-cutting views that need to be kept consistent with an implementa-
tion is also recognized by current research on traceability. For example, P. Garg and W. Scacchi
[24] propose the use of a hypertext system to manage software life-cycle documents, including
architectural designs. Keeping documents consistent, complete and traceable is seen as a critical
problem, especially for large software systems. All documentation, as well as program code, is
expressed as hypertext nodes that are linked together. Such a hypertext approach naturally sup-
ports cross-cutting links among documents. The proposed hypertext system focuses mainly on the
editing, structuring, and browsing of documents. Although the system does provide some hooks
to incorporate consistency checking tools (e.g., through automated links and by o�ering a uniform

6The formalism proposed in this dissertation is a re�nement of the formalism proposed in [52]. Amongst others,
the architecture language used in this dissertation adds a notion of ports and roles.

32 CHAPTER 2. PRELIMINARIES

tool interface), Garg and Scacchi do not specify in detail how conformance across documents is to
be achieved. Therefore, our approach is complementary to theirs.

Terminology

Based on the insight that architectural views do not necessarily require a direct mapping of
their architectural entities to implementation or physical components, but that this architectural
mapping may cross-cut the implementation, we are not tempted to follow Shaw and Garlan's
[74] example to speak about `components' at an architectural level. Although many de�nitions
of (software) components exist, most of them seem to agree at least on the fact that a software
component is a (reusable and replaceable) piece of implementation of a software system. For
example, UML de�nes a component as a \distributable piece of implementation of a system,
including software code (source, binary or executable) but also including business documents"
[77, 60]. Broy de�nes a component as \a physical encapsulation of related services according to a
published speci�cation" [8]. Other de�nitions of the term, mentioned in [77], are: \a physical and
replaceable part of a system that conforms to and provides the realization of a set of interfaces;
\an executable software module with identity and a well-de�ned interface"; \an encapsulated part
of a software system with an interface that provides access to its services"; \an object that lives in
the binary world", and so on. Many more similar de�nitions of the term can be found in research
literature [9, 79].

Most authors [4, 33, 37, 64, 74] consider software architecture merely as a structural descrip-
tion of the interaction among the software components of which the system is constructed. In
this view, there is no objection against using the term `component' at the architectural level. Ex-
tending the usage of the term `component', however, to represent architectural entities that may
correspond to many artifacts spread throughout the entire implementation, does not seem to be
a good idea. The above de�nitions indicate that the term `component' has the connotation that
it corresponds to some localized implementation artifact, and extending the de�nition to allow
components that cut across the implementation would only give rise to confusion. We prefer to
use the term (architectural) `concept' to denote architectural entities. This corresponds to our
intuition that a software architecture expresses relations (or structure) over abstract concepts that
have some meaning for the application domain. How these concepts are actually implemented is
not important at this level of abstraction. So instead of talking about architectural components
and connectors (as, for example, in [74]), in the remainder of this dissertation we will talk about
architectural concepts and architectural relations respectively.7

To keep the reader from getting lost in all the new terminology that is introduced in this disser-
tation, Appendix C contains a small thesaurus of terminology that is speci�c to this dissertation.

7The chosen terminology is inspired by and consistent with the terminology used in the research domains of
knowledge representation and ontologies. J. Sowa [75] proposes the theory of conceptual graphs as a method of
representing mental models of some problem domain. Such graphs consist of concepts and conceptual relations

between these concepts. According to M. Uschold and M. Gruninger [83], an ontology embodies some sort of world
view with respect to a given domain. The world view is often conceived as a set of concepts, their de�nitions and
their relationships.

Chapter 3

Problem Statement

In this dissertation, we tackle the research problem of checking that the implementation of a
software system conforms to its architectural views. More particularly, we want to develop an
expressive formalism for architectural conformance checking that is easy to automate in tools.
A logic meta-programming medium suggested as an obvious candidate in which to express this
formalism.

3.1 Automating architectural conformance checking

The research topic of software architecture is gaining more and more importance, and is slowly
being adopted by industry [4]. It is reasonably well understood how software architectures can be
used for forward-engineering purposes, i.e., designing and implementing a system in accordance
with a certain software architecture. However, once an architecture has been designed and a
system based on this architecture has been implemented, the architecture enters a maintenance
phase. If no precautions are taken to ensure that the implementation remains conform to this
architecture, the architecture quickly becomes outdated due to the problems of architectural ero-
sion and architectural drift. This leads to a vicious circle, where modi�cations are only made to
the implementation, because the architecture is not up to date anyway, which causes the imple-
mentation to drift away even further from the architecture. This seems to be one of the main
reasons why, in current-day practice, software architectures are not used to their full potential.
Therefore, adequate techniques are needed to keep the architecture consistent with the source
code. Architectural conformance checking is such a technique.

In this dissertation, we tackle the research problem of developing a formalism for architectural
conformance checking that can easily be automated and incorporated in tools. In particular, we
focus on the problem of verifying whether the implementation of a software system corresponds
to the high-level structure prescribed by the software architecture. We do not take run-time
information into account and restrict ourselves to the static structure of the implementation only.

Expressiveness was a major driving force in our research. Although a few conformance check-
ing techniques already exist, these were essentially developed from the viewpoint of e�ciency.
However, these techniques do not seem to be su�ciently general or expressive to be used in prac-
tice. Therefore, we approach the problem from the opposite direction, and develop a conformance
checking formalism that is as expressive as possible, even if this implies a loss of e�ciency. For this
purpose, a logic meta-programming approach (see Section 2.2) is adopted. It should be stressed
here that LMP is more than merely a suitable implementation medium for the conformance check-
ing algorithm. By explicitly declaring the architectural mapping in terms of virtual classi�cations
and virtual dependencies, which can make use of the full power of the LMP language, a very
expressive formalism is obtained. It allows an architect to declare very complex architectural
mappings in a reasonably intuitive and concise way.

33

34 CHAPTER 3. PROBLEM STATEMENT

As explained in Section 2.1, much current research on software architectures assumes a direct
mapping of the architectural entities to physical or implementation-level entities. We agree that
architectural views with such a direct mapping to a system's implementation can be important
software engineering assets. As explained in Subsection 2.4.2, however, we claim that it is equally
important to consider architectural views with a less straightforward architectural mapping. For
example, architectural entities may correspond to implementation artifacts spread throughout the
entire implementation. Therefore, our conformance checking technique should provide support
for expressing (and checking conformance to) multiple (cross-cutting and potentially overlapping)
architectural views.

To summarize, the goal of this dissertation is to provide an expressive formalism, based on
LMP, to reason about conformance of the implementation of a software system to one or more
architectural views. The formalism should be as intuitive and simple as possible, so that it is
easy to incorporate in tools, and so that it will be accepted by software engineers. The notions of
virtual classi�cations and virtual dependencies will be put forward as simple, yet very powerful,
mechanisms for abstracting implementation artifacts and their dependencies into architectural
concepts and relations.

3.2. NOVELTY OF THE APPROACH 35

3.2 Novelty of the approach

We mentioned some research results on architectural conformance checking in Subsection 2.1.5.
In our opinion, however, most of these results do not provide a su�ciently expressive technique to
check architectural conformance. To justify this claim, we discuss each of these techniques below,
and explain why they lack expressiveness. Based on this discussion, we compile a list of desiderata
for a su�ciently expressive formalism for automated architectural conformance checking. This
strong focus on expressiveness is an important contribution of our work. We conclude with a
justi�cation of why LMP is an ideal approach for implementing such an expressive formalism.

3.2.1 Existing conformance checking approaches

ADLs

We already mentioned in Subsection 2.1.5 that architectural conformance checking is one of the
areas in which existing ADLs are most lacking. Most ADLs do not provide support for re�ning
an architecture to the implementation of a system, nor for traceability of changes across levels of
re�nement [45]. Only the ADLs `SADL' [56] and `Rapide' [43] support re�nement and traceability
to a certain extent. Both provide re�nement maps for architectures at di�erent abstraction levels,
but do not support re�nement to the implementation level.

MILs

Module interconnection languages [68] were a �rst step towards current-day ADLs, and enabled
the formal description of the global structure of a software system in terms of its modules and
their interconnections. These descriptions could be processed automatically to verify system in-
tegrity. According to Shaw and Garlan [74], a problem with MILs is that they force software
architects to use a lower level of abstraction than is appropriate, because they focus too much on
`implementation' rather than on `interaction' relationships between modules.

Software reexion models

An approach that is closely related to ours is that of `software reexion models' [57]. In this
approach, an engineer de�nes some `high-level model' of the software using boxes and arrows,
extracts a `source model' (such as a call graph or an inheritance hierarchy) from the source code,
and de�nes a declarative mapping between these two models. Using this information, a `software
reexion model' is computed, which summarizes the main correspondences and di�erences between
the high-level model and the source model. Our approach is similar in spirit: we declare some
high-level architectural view, de�ne a declarative mapping of the architectural entities to source
code artifacts and their dependencies, and compare the source code to this architectural view.

The main di�erences between both approaches have to do with expressiveness. Whereas the
software reexion-model approach stresses e�ciency, our approach is situated at the other end of
the spectrum. We consider expressiveness as a major criterion in the development of our confor-
mance checking formalism. Therefore, we adopt a LMP approach which combines the expressive
power of multi-way querying, logic inferencing and uni�cation. Our goal is to allow describing
software architectures, and their mapping to the implementation, at the highest abstraction level
possible, without losing the ability to verify architectural conformance of source code.

Now, let us take a closer look at some of the di�erences between both approaches:

� The software reexion-model approach typically maps high-level model entities to physical
(e.g., modules, directories or �les) or logical (e.g., classes or functions) source-model entities.
In our approach, architectural concepts can be mapped to any (collection of) implementation
artifact(s). We will often use mappings of architectural concepts to multiple implementation
artifacts spread throughout the source code (cross-cutting mappings), or to a mixture of
di�erent kinds of implementation artifacts (heterogeneous mappings).

36 CHAPTER 3. PROBLEM STATEMENT

� In the software reexion-model approach, the arrows in the high-level model have no as-
sociated semantics. They are merely compared syntactically with the arrows in the source
model, which were extracted from source-code dependencies. As the high-level model cannot
distinguish between di�erent kinds of arrows, the source models typically consider one kind
of dependencies only. Our approach is a more semantic one. A single architectural view may
contain many di�erent kinds of architectural relations. Similar as for architectural concepts,
we de�ne an explicit mapping of architectural relations to implementation dependencies.

� The kinds of relationships that are typically considered in the software reexion-model ap-
proach are implementation dependencies such as calling relations, �le or data dependencies,
cross-reference lists, inheritance hierarchies, and so on. In other words, just like MILs,
software reexion models focus essentially on `implementation' rather than on `interaction'
relationships among the high-level model entities. In our approach, we can use LMP to
describe arbitrary complex relationships dealing with transitive closures, interaction and
collaboration protocols, programming conventions, design patterns, and so on.

� The declarative mapping in the software reexion-model approach uses (e�cient) regular
expressions to extract patterns of interest from the source-code. To obtain a maximum of
expressiveness, our architectural mapping uses the full power of LMP. To de�ne the mapping
we can use a combination of techniques such as string pattern matching, logic reasoning about
method parse trees, semantic inferencing, and so on.

� Both approaches allow multiple source-code entities to be mapped to the same high-level
model entity, and vice versa.

Gestalt

Another approach that was mentioned in Subsection 2.1.5 was `Gestalt' [72]. The Gestalt toolset
can check structural consistency between the architecture and the code. Gestalt acknowledges the
need for providing `implementation' as well as `interaction' relationships. Furthermore, it allows
for composite architectural concepts and relations, i.e., concepts and relations that are described
in terms of other architectural concepts and relations;

Gestalt does not support cross-cutting mappings from an architecture to the implementation.
In Gestalt, `consistency' means structural, or topological, consistency. Intuitively, this means
that the code should be broken into parts that correspond to the parts of the architecture, and
that the paths of communication between parts of the code should correspond to the paths of
communication speci�ed in the architecture.

Conclusion

Although a few architectural conformance checking approaches exist, we did not �nd any approach
with all of the following features:

explicit concept mappings that map architectural concepts to one or more implementation
artifacts; including:

cross-cutting mappings of architectural concepts to multiple implementation artifacts
spread throughout the source code, for example, a group of related methods belonging
to many di�erent classes spread throughout the entire implementation;

heterogeneous mappings of architectural concepts to groups of implementation artifacts
consisting of a mixture of di�erent kinds of artifacts (like classes, methods and vari-
ables);

composite architectural concepts that are described in terms of other high-level con-
cepts and relations;

3.2. NOVELTY OF THE APPROACH 37

explicit relation mappings that map architectural relations to implementation dependencies,
including:

complex architectural relations that deal with transitive closures, interaction and col-
laboration protocols, programming conventions, design patterns, and so on;

composite architectural relations that are described in terms of other high-level con-
cepts and relations;

As we will see, our formalism does have these features.
We repeat that our approach focuses mainly on expressiveness, perhaps at the cost of decreased

e�ciency. E�ciency, however, may not be so crucial for tools that check architectural conformance.
There is no real need to check architectural conformance in `real time'. We can always run such a
check in background, or overnight, and inspect the results later. Furthermore, e�ciency strongly
depends on the available technology. Machines are always getting faster, so that algorithms that
are considered too slow today, may be considered fast enough tomorrow. Nevertheless, we will still
try to make our prototype conformance checking tool as e�cient as possible. We will even discuss
some optimizations to increase the e�ciency of the proposed conformance checking algorithm.
For example, we will sketch how the algorithm could be turned into a more e�cient incremental
version.

3.2.2 Criteria for our architectural formalism

Below we compiled a list of criteria that our formalism for checking architectural conformance
should satisfy. Each criterion is subdivided in a non-exhaustive list of requirements that are
relevant to that criterion.

Expressiveness. In order for the formalism to be su�ciently expressive, it should:

1. pose no a priori restriction on the kinds of implementation and architectural entities
and relationships that can be considered;

2. allow for composite architectural concepts and relations that are de�ned in terms of a
sub-architecture;

3. allow for complex architectural relations that can deal with transitive closures, interac-
tion and collaboration protocols, programming conventions, design patterns, etc.;

4. allow for cross-cutting mappings of architectural concepts to implementation artifacts:
one architectural concept may correspond to multiple artifacts spread throughout the
implementation;

5. support the de�nition of multiple, potentially overlapping, architectural views on the
same software system.

Simplicity. The formalism should be as simple and intuitive as possible, so that it can:

1. easily be incorporated in tools;

2. easily be understood and used by architects and software developers.

Extensibility. The formalism should be exible and expressive enough, so that it

1. is customizable with prede�ned and user-de�ned architectural abstractions;

2. can easily be extended to deal with, for example, architectural patterns and architec-
tural styles.

Generality. The formalism should be su�ciently general so that it can also be used to deal with
architectural conformance checking of, for example:

1. implementations in other object-oriented programming languages;

38 CHAPTER 3. PROBLEM STATEMENT

2. implementations in other programming paradigms;

3. design models.

The requirements enumerated in the criterion of expressiveness were essentially extracted from the
discussion in Subsection 3.2.1. An extra requirement was added to address the need for allowing
multiple architectural views on the same software system. The criterion of e�ciency (both run-time
and memory e�ciency) was deliberately not included in the above list of criteria. As explained
in Subsection 3.2.1, we are willing to sacri�ce e�ciency in favor of increased expressiveness. The
criterion of simplicity captures our preference of building a formalism that is intuitive and easy to
understand by software engineers, and easy to incorporate in tools. Finally, the formalism should
be su�ciently generalizable and extensible to new domains and with new features, so that it can
be used as the basis for building an industrial-strength tool.

It is not our intention to actually build a tool that includes all features mentioned in the above
list. Nevertheless, the formalism we will propose should be powerful enough so that it enables
the construction of such a tool. To prove the feasibility of building such a tool, we will actually
implement a prototype which does satisfy most of the above criteria. For those features that are
not implemented, we will explain how the prototype could be extended or generalized to deal with
them.

3.2.3 Logic meta programming

To conclude this section, we explain why a LMP approach seems like an ideal choice to de�ne
an architectural model and conformance checking algorithm that satis�es the above criteria. Not
only is a logic meta language a suitable medium in which to implement our conformance checking
algorithm, we also use it as an expressive medium in which an architect can de�ne the archi-
tectural mapping of architectural concepts and relations to implementation artifacts and their
dependencies.

There are three good reasons for choosing a LMP language:

1. A logic language is typically well suited for representing and declaring knowledge. In fact, our
architectural model naturally grew out of some experiments we conducted to declaratively
codify the conceptual structure of a software system at a high level of abstraction [52].
Oreizy [62] reports that most (dynamic) architecture description languages use declarative
descriptions, to facilitate static analysis of the descriptions.

2. Logic programming is an expressive medium for reasoning about (architectural) knowledge,
thanks to its declarative nature, its expressive power, its capacity to support multi-way
queries, and the powerful built-in techniques of uni�cation and backtracking.

3. Logic programming has long been identi�ed as very suited to meta programming and lan-
guage processing in general. We use the logic language as a meta language to reason at an
architectural level about the implementation artifacts and their dependencies in an object-
oriented base language.

The implementation of the conformance checking algorithm uses LMP to reason about the
architectural descriptions and their architectural mapping. More precisely, it checks whether the
implementation conforms to the more abstract structure prescribed by the architectural descrip-
tions. The conformance checking algorithm can naturally and straightforwardly be implemented
in terms of the construction and evaluation of some logical expression [50]. In short, this is
achieved as follows. The architectural descriptions are translated into a logical expression. In this
translation, architectural relations are replaced by high-level implementation relationships and
architectural concepts are replaced by the (groups of) concrete implementation artifacts which
they represent. Evaluating this resulting logical expression corresponds to checking conformance
of the implementation to its architecture.

3.2. NOVELTY OF THE APPROACH 39

The architectural mapping of architectural entities to implementation artifacts and dependen-
cies uses LMP to declare the conformance between the architecture and the implementation. The
mapping for architectural concepts is de�ned in terms of `virtual classi�cations' and the map-
ping for architectural relations is de�ned in terms of `virtual dependencies'. By providing the full
power of the logic meta language to de�ne these virtual classi�cations and virtual dependencies,
we obtain a maximum of expressiveness, and can easily satisfy all requirements enumerated in the
criterion of expressiveness, as will be elaborately explained in Chapter 7.

40 CHAPTER 3. PROBLEM STATEMENT

3.3 Validation

To validate our thesis, we proceed in three steps. First, we develop a language and associated
algorithm for checking conformance of the implementation of a software system to one or more
architectural views. Then we use LMP to implement a prototype of a conformance checking
tool based on this language and algorithm. Finally, we perform a concrete case study, using the
implemented prototype. In addition to proving the feasibility of the developed formalism, the
case study illustrates the expressiveness of using a LMP approach to de�ne the mapping from
architecture to implementation.

3.3.1 The formalism

The proposed formalism for architectural conformance checking will be explained in three parts:

1. the architecture language which consists of an ADL and an architectural mapping language;

2. the conformance checking algorithm;

3. the actual implementation of a prototype conformance checker based on this language and
algorithm.

Both the architectural mapping language and the conformance checking algorithm have a strong
logic avor and LMP is used to implement the prototype. LMP is more than a convenient im-
plementation medium, however. To de�ne complex architectural mappings, the architect can also
make full use of the expressive power of LMP.

Taking inspiration from K. De Hondt's [12] positive experiences with recovering design knowl-
edge in terms of simple software classi�cations (see Section 2.3), we decided to use software classi-
�cations as an intuitive but expressive abstraction mechanism for mapping architectural concepts
to sets of implementation artifacts. In particular, we focus on `virtual classi�cations' which in-
tentionally describe their elements. This enables an architect to express a concept mapping in an
elegant and concise way, instead of explicitly having to enumerate the implementation artifacts to
which the concept corresponds.

The architectural relations will be mapped to `virtual dependencies', which are logic pred-
icates describing high-level implementation or design relationships among implementation arti-
facts. Again, this gives an architect considerably more expressive power than when he would be
restricted to using a �xed set of prede�ned relation mappings.

3.3.2 The case study

The case we studied is the architecture and implementation of the SOUL system. It is a well-
designed, medium-sized application containing about 100 Smalltalk classes. In dialogue with the
main SOUL developer, three di�erent architectural views on SOUL were de�ned, and conformance
of its implementation to these architectural views was checked.

Apart from illustrating the conformance checking algorithm, the case study proves the expres-
siveness of our approach. This expressiveness is mainly due to the powerful combination of LMP
with the abstraction mechanisms of virtual classi�cations and virtual dependencies. Based on the
results of the case study, we show that our formalism satis�es most criteria put forward in Sub-
section 3.2.2, and the criterion of expressiveness in particular. We will provide examples on how
to express multiple architectural views, complex architectural relations, cross-cutting mappings,
composite concepts and relations, and so on.

The case study is the topic of the next chapter.

Chapter 4

Case: The Architecture of SOUL

The case study used throughout this dissertation is the architecture and implementation of the
SOUL system. We introduce SOUL and present a number of di�erent architectural views on the
SOUL implementation. Each of these views focuses on a di�erent concern of the system.

4.1 The Smalltalk Open Uni�cation Language

4.1.1 The SOUL system

The SOUL system was developed by R. Wuyts at the Programming Technology Lab of the Vrije
Universiteit Brussel [86]. The Smalltalk Open Uni�cation Language (SOUL), is a logic language
that allows intelligent querying and meta-level reasoning about Smalltalk code. The syntax of
the language is similar to that of the logic programming language Prolog, but has an extension
that allows logic clauses to manipulate elements from the Smalltalk language (such as classes,
inheritance relations, method bodies). It is even possible to execute blocks of Smalltalk code (that
may refer to instantiated logic variables) during the interpretation of queries. This strong symbiosis
between a logic language and Smalltalk was made possible by implementing SOUL entirely in
Smalltalk and by using the powerful reective capabilities of the Smalltalk environment. Currently
this symbiosis is being extended even further to allow logic queries to be triggered transparently
from within Smalltalk source code.

SOUL includes a declarative framework of rules that allows reasoning about Smalltalk programs
at the implementation, design and architectural level [52, 86]. This framework has a layered
structure. The lowest layer is a Smalltalk-speci�c layer which de�nes some primitive predicates
for manipulating Smalltalk source-code artifacts and implementation relationships. On top of this
layer resides a layer that adds some structural predicates de�ned directly in terms of the more
primitive predicates. Higher-level layers describe more high-level relationships, such as design
patterns and architectural constraints.

The SOUL-Smalltalk combination has proven to be an ideal medium for building sophisticated
software engineering tools. Amongst others, experiments have been carried out to support best-
practice patterns, idioms, and coding conventions [54]; to build sophisticated `�nd and replace'
tools; to detect and check design patterns in Smalltalk source code [86]; to log violations of certain
programming conventions and styles in a `to do' list; to separate the aspect1 of domain knowledge
from the implementation aspect [18, 17]; etc. In the context of this dissertation, we used SOUL
both as a case and as a medium to check conformance of Smalltalk source code to architectural
descriptions.

1in the sense of aspect-oriented programming

41

42 CHAPTER 4. CASE: THE ARCHITECTURE OF SOUL

4.1.2 Architectural views

In the following sections we describe the architecture of the Smalltalk implementation of SOUL,
as seen from three di�erent points of view. Each of these architectural views focuses on a di�erent
aspect of the SOUL system. In this chapter we merely introduce and describe these di�erent
views. In later chapters we show how they are mapped to the implementation.

In the `user interaction' architectural view (see 4.2.2) we concentrate on those concerns of the
system that are important for a user of the system, i.e., how a user can interact with the system.
In the `rule-based interpreter' view (see 4.3), we focus on the core functionalities of the system,
which are related to the interpretation of logic queries and rules. Although the architecture of a
rule-based system has been well-documented in literature on software architecture [4, 31, 74], we
re�ne this architecture somewhat to stress some important features of the SOUL system. A �nal
architectural view we describe is the actual `application architecture' of SOUL (see 4.4.2), which
explicitly describes the high-level structure of the implementation of the SOUL system.

All these di�erent (and partially overlapping) architectural views contribute to the understand-
ing of the SOUL software system as a whole, by highlighting certain aspects of it. Two of these
views cross-cut the actual implementation structure. Only one view, the `application architecture',
maps directly to the chosen implementation decomposition.

4.1.3 Notational conventions

The following notational conventions are used when discussing the di�erent architectural views:
in running text, architectural concepts are printed in bold and architectural relations in italic.
We also present each architectural view graphically, using the simple graphical notation of Figure
4.1.

Figure 4.1: Graphical representation of an architectural view.

This graphical notation is somewhat similar to that of `conceptual graphs' [75], as it shows those
concepts that are important for a certain architectural view, as well as the relations between those
concepts. Whereas the concepts represent the entities of interest in a certain architectural view,
the relations describe how they relate to each other, i.e., which role the entities play. Concepts are
depicted as white rectangles and relations as grey round-corner rectangles. Typical examples of
architectural concepts for the SOUL system are: Input Window,User Application,Auxiliary
Application, Rule Interpreter or Query. Typical examples of architectural relations are:
Activates, Is Created By, Asks, Uses Data and Is Kind Of.

The ports of an architectural concept, which de�ne how a concept may interact with its envi-
ronment, as well as the roles of an architectural relation, which identify the participants for that
relation, are represented graphically as little circles at the begin and end points of the lines that
link concepts and relations. In our formalism, these links are undirected; they just connect a port
with a role. Nevertheless, in our pictures we will often put arrows on the links to make the dia-
grams more readable. More precisely, we adopt the following notational convention: architectural
relations are named as verbs; an arrow pointing towards a relation designates the subject of the
verb and the arrows pointing away from a relation designate the direct and indirect objects of the

4.1. THE SMALLTALK OPEN UNIFICATION LANGUAGE 43

verb. For example, the Activates relation has two roles: `Trigger' and `Action'. `Trigger' has an
incoming arrow because it is the subject of the activation (i.e., it represents the thing that causes
the activation). `Action' has an outgoing arrow because it is the direct object of the activation
(i.e., it represents the thing that is being activated). We stress that this is only a notational
convention and that there is no real semantics associated with the arrows, nor is it enforced by
the tool.2

The exact semantics of our notation will be explained in Chapter 5. In the next section, we
discuss our �rst architectural view on SOUL: the `user interaction' architectural view. Note that
Figure 4.1, which we used to illustrate our graphical notation, is actually a subset of the `user
interaction' architectural view.

2We will come back to this notational convention later, after having explained what the semantics of the other
architectural entities are.

44 CHAPTER 4. CASE: THE ARCHITECTURE OF SOUL

4.2 User interaction

In the `user interaction' architectural view we are mainly interested in the interaction of a user
with the SOUL system, and the main functionality of the SOUL system from a user point of view.

4.2.1 SOUL applications

Figure 4.2: The SOUL Query Application.

A typical example of how a user might interact with the SOUL system is depicted in Figure 4.2.
The window on the left is the standard input window of the SOUL `Query Application'. In this
window, a user can type a logic query to be interpreted by the SOUL system. An example3 of
such a query is

Query hierarchy([SOULObject], ?Class)

which can be used to �nd all direct and indirect subclasses of a given Smalltalk class SOULObject.
After all results have been computed, an output window such as the one on the right in Figure
4.2 is obtained. For this particular query, 33 results are generated. This kind of usage is similar
to how a user would interact with the interpreter of any other logic programming language.

Another way of interacting with the SOUL system, which is easier for non-expert users, is
by using the `Structural Find Application'. This is illustrated in Figure 4.3. This application
transparently uses logic queries to allow searching for methods or classes in the Smalltalk image
using complex search patterns. The user only needs to �ll in one or more simple selection �elds
and the Find Application will automatically generate and interpret the corresponding query for
the user. For example, the Find Application may be used to �nd all classes that have a name
matching some pattern, have a method sending some speci�ed message and implement a method
with a given name. An example of an input window for the Find Application is the window on the
left in Figure 4.3. The results of executing the Find Application are presented in a more readable
form than when the Query Application is used directly, as can be seen by comparing the output
window on the right in Figure 4.3 (created by the Find Application) with the one on the right
in Figure 4.2 (created by the Query Application). On the other hand, the Query Application is
more general and exible, because queries are not restricted to some �xed set of selection �elds,

3The complete syntax of the SOUL language can be found in Appendix A.

4.2. USER INTERACTION 45

Figure 4.3: The SOUL Structural Find Application.

as in the Find Application. Instead, the full SOUL syntax and all prede�ned predicates may be
used to construct a query.

4.2.2 The user interaction architectural view

In the previous subsection we informally explained how users can interact with SOUL. In this
subsection we codify this intuition in terms of an architectural view which focuses on the concern
of `user interaction' with the SOUL system. Figure 4.4 depicts this architectural view. It is
centered around a User Application architectural concept representing the di�erent kinds of
SOUL applications. At this level of abstraction, the speci�c SOUL applications, i.e., the Structural
Find Application and Query Application, are considered as implementation details. They are all
represented by the same generic User Application concept.

SOUL user applications are typically activated as a result of a certain event triggered by a
user in an Input Window. For example, after typing in a query in the input window of the
Query Application, the user presses the \all results" button. This causes a request to compute
the results of the user's query, to be sent to the Query Application. Similarly, after �lling in
the selection �elds in the input window of the Structural Find Application, the user presses
the \Find!" button. This causes a request to be sent to the Structural Find Application to
compute the results of the generated query corresponding to the user's inputs. In general, an
`event' generated by an input window `triggers' a `request' on a User Application (or one of
its Auxiliary Applications) to activate a certain `action'. This is depicted in Figure 4.4 by
the Activates architectural relation from the Input Window architectural concept to the User
Application and Auxiliary Application concepts.

Note that the `Action' role of the `Activates' relation has two links attached to it. As we will
explain in Section 5.2 and Section 5.4, this should be read as a disjunction, not as a conjunction. An
`Input Window' activates either a `User Application' or an `Auxiliary Application'. To represent a
conjunction, we would explicitly draw two separate `Activates' relations: one from `Input Window'
to `User Application' and one from `Input Window' to `Auxiliary Application'.

An Auxiliary Application is an application that is created by a User Application or by
another Auxiliary Application to do part of its computation. This dependency is modeled
through the Is Created By architectural relation on Figure 4.4. (Again, we need a disjunction here
and modeled this by attaching two outgoing links to the same `Creator' role.)

The User Application concept is linked to the Query Interpreter concept by means of an
Asks architectural relation. This relation represents the fact that a User Application typically
needs to compute the result of a query. More precisely, the semantics of the Asks relation (see
later) stipulates that the User Application invokes the Query Interpreter (to interpret a
query). After the result (of this query) has been computed by the Query Interpreter, it is

46 CHAPTER 4. CASE: THE ARCHITECTURE OF SOUL

Figure 4.4: SOUL `user interaction' architectural view.

returned to the User Application for further processing.

TheUser Application concept is also linked to the Repository concept by means of an Asks
architectural relation. This models the fact that user applications sometimes need information
directly from the fact and rule Repository (and not only indirectly via the query interpreter).
The retrieved information is then used by the User Application for further processing. For
example, the Query Application does this to retrieve the available set of clauses in the repository
in order to show them to the user. It also allows the user to modify this set (i.e., add or remove
clauses) and propagates these modi�cations to the repository. (Note that although both Asks
architectural relations in Figure 4.4 have the same semantics, we have given them a di�erent
name, i.e. Asks1 and Asks2, so that they can easily be referred to.)

Instead of returning results of queries to the user directly, they are presented in a so-called
Output Viewer which allows easy browsing and inspecting of these results. After aUser Appli-
cation has asked the Query Interpreter to compute some Query Result4, the User Appli-
cation will create an Output Viewer with this Query Result. This is depicted by the Creates
With architectural relation in Figure 4.4.

This concludes our introduction to the `user interaction' view of the SOUL system. Now we
turn our attention to a second important architectural view of SOUL: the `rule-based interpreter'
view.

4Although one might expect the Asks1 architectural relation to be a ternary relation linking User Application,
Query Interpreter and Query Result, for now we model it as a binary relation between User Application

and Query Interpreter. In Subsection 8.1.3 we will show how to re�ne this binary relation into a ternary one.

4.3. RULE-BASED INTERPRETER 47

4.3 Rule-based interpreter

Figure 2.1 on page 20 depicted the basic architecture of a rule-based interpreter. Since the SOUL
rule-based system includes a rule-based interpreter, we expect (part of) the implementation of
SOUL to be conform to this architecture. To highlight the important features of the SOUL rule-
based interpreter, we will further re�ne the basic architecture of Figure 2.1. For this purpose, we
use the more detailed notation of Figure 4.1. Furthermore, as explained in Subsection 2.4.2, we
will now talk about architectural concepts and relations, as opposed to architectural components
and connectors, respectively.

Figure 4.5: SOUL `rule-based interpreter' architectural view.

The `rule-based interpreter' architectural view of SOUL is depicted in Figure 4.5. If one
ignores the architectural relation between Rule Interpreter and Smalltalk it is clear that this
architecture straightforwardly corresponds to the one depicted in Figure 2.1. One minor di�erence
is that some of the arrows point in the opposite direction. This is due to our notational convention
(see 4.1.3) of naming architectural relations as verbs and making the arrows point to the subject
of the verb, and away from the direct and indirect objects of the verb. (However, as explained
earlier, no real semantics is associated to these arrows.) Another di�erence is that we left out the
`Inputs' and `Outputs' links because the `user interaction' architectural view already elaborated on
the input and output interactions with a user of the rule-based system. A third di�erence is that
the Asks3 relation between the Rule Interpreter and Smalltalk was not present on Figure 2.1.
It is speci�c to the SOUL system because of its close symbiosis with the Smalltalk environment.

48 CHAPTER 4. CASE: THE ARCHITECTURE OF SOUL

Now let us take a closer look at this architectural view. The Rule Interpreter concept
represents the actual interpretation process. During interpretation, some Working Memory is
used to store the intermediate results of the interpretation process, i.e., the accumulated bindings
of values to logic variables. The facts and rules representing the data and control of a SOUL
program are stored in a Knowledge Base of logic clauses. During the interpretation process,
clauses are looked up (read) in this logic repository, via the Clause Selector.

When interpreting a query, it is decomposed into more primitive terms, each of which will
be interpreted separately (using the bindings of the already interpreted ones). To interpret a
term, it is passed to a Clause Selector which has the task of �nding all clauses (i.e., facts or
rules) in the repository, that have a head which matches the term being interpreted. During
this process, the formal parameters of the clauses in the repository are uni�ed with the actual
argument values of the term being looked up. These bindings of variables to values are stored in
the Working Memory. Finally, the matching clauses are returned to the Rule Interpreter for
further processing.

In addition to the features provided by a typical logic programming language like Prolog, SOUL
provides some language primitives | called `Smalltalk terms' | that enable the execution of blocks
of Smalltalk code as part of logic clauses. To interpret these primitives, the Rule Interpreter
accesses the Smalltalk image directly. More speci�cally, the Smalltalk compiler is invoked to
compute the value of these primitives. To increase the expressiveness of the symbiosis between
SOUL and Smalltalk even further, it is allowed for `Smalltalk terms' to refer to logic variables, but
only if they are instantiated. Before compilation, these logic variables will be substituted by their
values. If there remain uninstantiated logic variables in the `Smalltalk term', a run-time error will
occur.

As a �nal remark on the `rule-based interpreter' view of Figure 4.5, we draw the reader's
attention to the fact that the `Interpret' port of the `Rule Interpreter' concept has two links
attached to it. As both links are connected to a (port of a) di�erent relation, this implies that the
`Rule Interpreter' concept participates in two di�erent architectural relations via its `Interpret'
port. In Section 5.4, we will see that the semantics of an architectural view is the conjunction
of all architectural relations in that view. In this particular case, the semantics of the two links
attached to the `Interpret' port of the `Rule Interpreter' concept implies that there exists both an
`Updates' relation and a `Uses data' relation between `Rule Interpreter' and `Working Memory'.

4.4. APPLICATION ARCHITECTURE 49

4.4 Application architecture

The previous architectural views described SOUL from the points of view of `user interaction' and
`rule-based interpretation'. The architectural view discussed in this section focuses on the actual
implementation structure of SOUL, such as how it is decomposed into classes and class hierarchies,
and how these relate.

4.4.1 The SOUL class hierarchies

The complete syntax of the SOUL language is presented in BNF format in Appendix A. We will
not go into the details of the language here. It su�ces to say that the language is very similar to
Prolog, modulo some minor syntactic di�erences and a special language construct for manipulating
Smalltalk expressions.

The class decomposition of the SOUL implementation closely resembles the abstract syntax tree
of the SOUL language. There are two main inheritance hierarchies in the SOUL implementation:
SOUL clauses and SOUL terms. The `clause' hierarchy contains classes representing SOUL facts,
rules and queries. The full `clause' hierarchy is shown below, where the indentation of the class
names indicates their nesting in the inheritance hierarchy. For example, the class SOULQuery

inherits from the class SOULBasicClause, which in turn inherits from SOULClause, but SOULQuery
itself has no subclasses.

SOULClause

SOULBasicClause

SOULClauses

SOULQuery

SOULRule

SOULCachedRule

SOULFact

These clauses are typically built up from terms, which are de�ned by the `term' hierarchy below.

SOULAbstractTerm

SOULGeneratePredicate

SOULTerm

SOULNamedTerm

SOULCompoundTerm

SOULFixedNameCompoundTerm

SOULList

SOULPartialRepresentationList

SOULVariableTerm

SOULUnderscoreVariableTerm

SOULSmalltalkConstantTerm

SOULAdvancedSmalltalkTerm

SOULSmalltalkMetaPredicate

SOULCachedSmalltalkTerm

SOULTerms

SOULAndTerms

SOULOrTerms

SOULTrueTerm

4.4.2 The application architecture view

Figure 4.6 gives an overview of the entire `application architecture' view of the SOUL system. We
admit that the diagram is a bit dense. This is mainly due to the fact that we deliberately chose
to represent all architectural relations explicitly (as rounded rectangles). The diagram could be
simpli�ed a lot by drawing all Is Kinds Of, Has Part and other relations, as special arrows that

50 CHAPTER 4. CASE: THE ARCHITECTURE OF SOUL

connect the participating concepts. (For example, by using a UML-like notation.) However, as the
main focus of this dissertation is on the underlying architectural formalism, we explicitly wanted
to show all architectural entities on the picture. Nevertheless, we do think that an industrial-
strength tool which incorporates our conformance checking formalism should provide support for
simpli�ed and customized graphical notations (see 8.3.4).

Figure 4.6: SOUL `application architecture' view.

The only possible �rst-class expression in SOUL is a Clause, of which Fact, Rule and Query
are special kinds. This is expressed by the Is Kind Of architectural relations. In fact, a Fact is a
special kind of Rule, namely a rule with a `true' body.

To allow SOUL applications to declare multiple facts and rules simultaneously, or a sequence
of queries that should be executed one after the other, a Clause can also be a Clause Sequence,
which in turn contains a number of Clauses. This relationship between Clause and Clause

4.4. APPLICATION ARCHITECTURE 51

Sequence is described by the Is Composite architectural relation. It expresses the fact that the
composite element is both a kind of some other element type and that it is a container of elements
of that type.

A Term is the most basic building block out of which the basic clauses Fact, Rule and Query
are built. Terms can only be part of those clauses, and cannot occur as �rst-class entities in the
SOUL language themselves. The `term' class hierarchy describes the di�erent kinds of terms that
can be distinguished. Typical actions that all terms have in common are comparison, uni�cation
and interpretation.

In our `application architecture', we only mention those terms that are considered being im-
portant. On the one hand, there is a need for some kind of Term Sequence that represents the
body of a rule. Similar to a Clause Sequence, a Term Sequence is composed of other terms (in
the sense of the composite pattern: it contains terms, and is itself a kind of term as well). This is
necessary because the body of a rule is typically composed of many di�erent terms. On the other
hand, the head of a rule consists of a single Functor term, which is an atomic expression of the
form f(a1; : : : ; an). In other words, functors have a name f , an arity n, which is a number, and
a list of n arguments a1; : : : ; an which can either be instantiated or not. Thus, a Rule has two
parts : a body, which is a Term Sequence, and a head, which is a Functor. Since a Functor
has a list of arguments, which are all terms, it also has a Term Sequence as its part.

As already mentioned, a Fact can be considered as a special kind of Rule with a body that
always succeeds. In order to be able to represent this, we need a True Term which corresponds
to the Boolean value true. So although a Fact also has a head and a body as parts, its body can
only be a True Term.

The most primitive kind of terms in SOUL are logic Variable and Constant terms. Besides
variables and constants, SOUL also contains a notion of Smalltalk Term. SOUL rules and facts
can use Smalltalk Terms to explicitly perform Smalltalk code during the logic interpretation
process. Smalltalk Terms can have as parts Variable terms that are �lled in at interpretation-
time, to allow for a better symbiosis between SOUL and Smalltalk.

52 CHAPTER 4. CASE: THE ARCHITECTURE OF SOUL

4.5 Summary

In this Chapter, we presented the case that is used throughout this dissertation. We described the
architecture of the SOUL system from three di�erent points of view. The `user interaction' view
focused on the interaction of a user with the SOUL system. The `rule-based interpreter' focused on
the interpretation of logic rules. The `application architecture' was more implementation oriented
and focused on the actual structure of the SOUL implementation.

For each of these architectural views, we used the same architectural notation. In the next
chapter, this notation will be de�ned more formally. Moreover, we will explain how to map
architectural views that use this notation to the implementation, so that conformance of the
implementation to these architectural view can be checked. Using such an `architectural mapping',
we actually check conformance of the SOUL implementation to each of the three described views.
In Chapter 7, we revisit these architectural views and show in detail what their architectural
mappings look like.

Chapter 5

The Architectural Formalism

We explain both our architecture language and architectural conformance checking algorithm. An
architectural model described in the architecture language declares the conceptual architecture of
some software implementation, as well as the mapping of this declared architecture to the imple-
mentation artifacts and their dependencies. The architecture language consists of an architecture
description language and an architectural mapping language. An architecture is described in the
architecture description language. An architectural mapping is declared in the architectural map-
ping language. The conformance checking algorithm combines the architecture descriptions with
the declared mappings to verify architectural conformance of some implementation.

5.1 Overview of the architecture language

The purpose of our architecture language is twofold. On the one hand, it describes what the archi-
tecture looks like, and on the other hand, it describes how the di�erent architectural entities are
mapped to the implementation. Obviously, how an architecture is mapped to an implementation
depends strongly on the implementation under consideration, as well as on the chosen implementa-
tion language. Nevertheless, the architecture language itself is essentially independent of the chosen
implementation, and to a certain extent also of the implementation language. While explaining
the architecture language, we will clearly point out those parts that are implementation-language
speci�c. In Chapter 7, we give a concrete example of how the architecture language can be used to
describe and check a conformance mapping between a speci�c architecture and implementation.

Because the architecture language is used to describe an architecture as well as its mapping
to the implementation, we split the language in two sub-languages: the architecture description
language (ADL) and the architecture mapping language (AML). An architectural mapping de�ned
in the AML again consists of several parts: an architectural instantiation, expressed in the ar-
chitectural instantiation language, and an architectural abstraction, expressed in the architectural
abstraction language. Furthermore, to de�ne an architectural abstraction, an architect can use a
library of prede�ned logic predicates. Following R. Wuyts [86], we call this library the declarative
framework1

Describing the di�erent submodels of an architectural model (i.e., its architecture description,
architectural instantiation and architectural abstraction) separately enables a higher degree of
reusability. For example, to describe another software system with a similar architecture, we
might want to reuse only the description of the architecture (or parts of it). Or we might want to
reuse some architectural abstraction to map it to other architectural entities, or to de�ne other
architectural abstractions.2

1This terminology is taken from [54, 86]. Recall from 4.1 that the logic language SOUL provides a layered library
of rules at several levels of abstraction, ranging from a primitive Smalltalk-speci�c layer to higher-level layers for
reasoning about design patterns and architectural constraints. Wuyts calls this library a `declarative framework'.

2For example, in Subsection 7.2.1 we will show how the same virtual classi�cation can be mapped to two di�erent

53

54 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Figure 5.1: Schematic overview of the architecture language.

Figure 5.1 presents a schematic overview of how an architecture and its mapping to the imple-
mentation are represented in our architecture language:

Architecture Description Language The ADL can be used to de�ne the conceptual architec-
ture of a software system. The conceptual architecture describes a software system from
multiple high-level architectural point(s) of view, abstracting away the implementation de-
tails of the system. Each architectural view focuses on a di�erent aspect of the structure of
the software system.

The ADL de�nes only the syntax of a conceptual architecture. It allows us to name the
architectural entities in the di�erent architectural views and to describe how they are inter-
connected. The semantics of these entities is not de�ned in the ADL, but is described in the
AML.

Architectural Mapping Language The AML allows us to codify the mapping to the imple-
mentation for each of the architectural views described in the ADL, thus de�ning the mean-
ing of the di�erent architectural entities in each of these views. Every architectural entity is
de�ned in terms of implementation artifacts and their dependencies.

architectural concepts belonging to di�erent architectural views. Another example (see Subsection 7.1.3) will show
how a virtual classi�cation can be used both as an architectural abstraction for de�ning an architectural concept
and as an auxiliary building block for de�ning another virtual classi�cation.

5.1. OVERVIEW OF THE ARCHITECTURE LANGUAGE 55

An architectural mapping expressed in the AML consists of an architectural instantiation and
an architectural abstraction. An architectural instantiation merely associates architectural
entities with intermediary abstractions de�ned in the architectural abstraction language.
These intermediary abstractions de�ne the actual mapping to the implementation. But
instead of having to de�ne these abstractions directly in terms of implementation artifacts
and their dependencies, the AML provides a declarative framework of prede�ned auxiliary
predicates that can be used to de�ne an architectural abstraction.

Architectural instantiation language In this language, we can map architectural enti-
ties de�ned in the ADL to the intermediary abstractions de�ned in the architectural
abstraction language.

Architectural abstraction language This language provides intuitive high-level abstrac-
tions of sets of implementation artifacts and their dependencies that can straightfor-
wardly be mapped to the di�erent kinds of architectural entities of the ADL.

Declarative framework (DFW) This is a layered library of prede�ned logic predicates
ranging from very high-level predicates for de�ning architectural mappings to very
primitive predicates that reason about artifacts in the implementation language. These
prede�ned predicates are de�ned in terms of more primitive predicates, which are in
turn de�ned in terms of even more primitive predicates. Table 5.1 summarizes the
di�erent layers of the declarative framework. Each of these layers, together with the
predicates they provide, will be discussed in more detail in Subsections 5.3.3 to 5.3.6.

Architectural layer

Architectural mapping predicates

Prede�ned predicates for de�ning architectural abstractions

Implementation layer

Design patterns layer

Predicates for codifying design patterns and styles

Coding conventions layer

Predicates for codifying coding conventions and styles

Base layer

Predicates for reasoning about implementation artifacts and their dependencies

Representational layer

Predicates for retrieving artifacts from the implementation repository

Logic meta-programming layer

Repository access

Language-independent predicates for accessing the implementation repository

Logic layer

Built-in predicates of the logic language

Table 5.1: Layers of the declarative framework.

56 CHAPTER 5. THE ARCHITECTURAL FORMALISM

The ADL is entirely independent of the particular software system under consideration3 and
even of the implementation language that was used. The same holds for the architectural instan-
tiation language and architectural abstraction language. Only the declarative framework, which
contains a set of prede�ned predicates to reason about the implementation, relies on the chosen
implementation language. Some layers of the framework are more dependent on the implementa-
tion language than others, however. And even the declarative framework is essentially independent
of the particular implementation under consideration. Of course, the syntax and implementation
of the predicates provided by the declarative framework do depend on the chosen LMP language.
But a similar set of predicates could be de�ned in any other declarative language.

3In other words, it is an `implementation independent' ADL.

5.2. THE ARCHITECTURE DESCRIPTION LANGUAGE (ADL) 57

5.2 The architecture description language (ADL)

In this section, we introduce the ADL in which the conceptual architecture of a software system
can be described. The conceptual architecture describes the architecture of a software system at
an abstract conceptual level, ignoring the details of implementation, algorithm, and data repre-
sentation of that system. Our ADL is essentially the same as the one used by Shaw and Garlan
[74]. Their approach to architectural representation is based on seven kinds of entities: compo-
nents, connectors, con�gurations, ports, roles, representations and bindings. The last two are
needed to allow nesting of sub-architectures inside components or connectors. Essentially the
same constructs (though sometimes with a di�erent name) form the basis of our ADL: concepts,
relations, links, ports, roles, sub-architectures and bindings, respectively. Additionally, we also
have architectural views.

We preferred to use an existing ADL, rather than de�ning yet another one. We chose Shaw and
Garlan's notation, because it is simple and general. We agree with J. Kramer and J. Magee [37]
that a language for describing architectural structures should be simple and concise, and explicitly
designed for this purpose. This is the case for Shaw and Garlan's ADL. The di�erent language
constructs needed for de�ning a conceptual architecture are explained informally below.

Conceptual architecture Because we want to allow multiple architectural views, each focusing
on a di�erent aspect of the structure of some software system, a global name space in which
all these architectural views reside is needed. We will call this set of architectural views
the conceptual architecture of the system. For example, in the case of the SOUL system,
the conceptual architecture consists of a `user interaction' architectural view, a `rule-based
interpreter' architectural view and an `application architecture' view.

Architectural views Every architectural view has a name (which is unique within its conceptual
architecture) and groups a set of architectural concepts and relations with the links that glue
them together. In Chapter 4, we encountered several examples of architectural views.

Architectural concepts and relations We distinguish two kinds of architectural elements: con-
cepts and relations. Whereas the architectural concepts represent the concepts of interest in
a particular architectural view, the architectural relations describe the important relation-
ships between these concepts. Examples of architectural concepts in the `user interaction'
architectural view are `Input Window', `User Application' and `Query Result'. Examples of
architectural relations are `Asks', `Activates' and `Is Created By'.

Ports and roles Every architectural element contains a set of gates representing the external
interface of that element. For example, for an architectural concept representing an Input
Window, a gate may represent the events that can be generated by this window. Every gate
belongs to exactly one architectural element and has a name that is unique in that element.
The gates of an architectural concept are called ports and represent the interaction points
of that concept with its environment. The gates of an architectural relation are called roles
and identify the participants of that relation.

Links Architectural elements are connected by means of links that map element gates to other
element gates. The presence of a link between two gates expresses that there is some ow of
information or control between the gates. Links always connect a concept port with a relation
role and can only relate gates that belong to elements de�ned in the same architectural view.

Although links are essentially undirected, in our pictures we often do put arrows on the
links. As explained in Subsection 4.1.3, these arrows have no semantics and are only meant
to make the diagrams more readable.

Only one link can exist between two gates. It is allowed however, to have multiple links
attached to the same port (resp. role), provided that all linked roles (resp. ports) are
di�erent. When multiple links are attached to a single relation role, we interpret this as

58 CHAPTER 5. THE ARCHITECTURAL FORMALISM

a disjunction: the relation should hold for at least one of the concepts linked to this role.
Two examples of this in the `user interaction' architectural view are the `Action' role of
the `Activates' relation and the `Creator' role of the `Is Created By' relation (see Subsection
4.2.2). Recall from 4.2.2 that if we want a conjunctive interpretation rather than a disjunctive
one, we explicitly need two separate relations, as the semantics of an architectural view is
the conjunction of the semantics of all its relations.

Sub-architectures and bindings. In Subsection 6.4.5 we will explain how composite architec-
tural concepts and relations can be de�ned in terms of sub-architectures and a notion of
bindings.

Figure 4.1 (page 42) illustrates the graphical representation of some of the entities of a concep-
tual architecture. It depicts a subset of the `user interaction' architectural view containing three
concepts: Input Window, User Application and Auxiliary Application, and two relations:
Activates and Is Created By. The User Application concept has two ports: Request and Type,
through which it interacts, via the relations, with the Event port of the Input Window and the
Type port of the Auxiliary Application concept, respectively. The Activates and Is Created
By relations each have two roles identifying the two actors (Trigger and Action, and Created and
Creator, respectively) playing a role in the relation.

Some important remarks should be made about this example. First of all, it illustrates that the
same role can be connected to more than one port. Secondly, the example seems to suggest that
architectural relations always represent \actions". This is not necessarily the case. For example,
in the `application architecture' view of SOUL (see 4.4.2), the architectural relations represent
structural relationships such as an \is a" or \part of" relationship. Finally, the example seems to
indicate that ports and or roles may have some kind of meaning attached to them. However, in
the conceptual architecture, a port or a role only have a name. A meaning is attached to them by
de�ning an architectural mapping in the AML.

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 59

5.3 The architectural mapping language (AML)

In order to allow conformance checking of the implementation of a software system to the architec-
tural views declared in a conceptual architecture, a mapping between the declared architectural
views and the implementation needs to be established. This mapping is de�ned in the AML.
As explained in Section 5.1, the AML is split into three parts. An architectural instantiation is
declared in the `architectural instantiation language' and maps architectural entities in the con-
ceptual architecture to architectural abstractions. These architectural abstractions are described
in the `architectural abstraction language' and de�ne the actual mapping to the implementation.
Rather than de�ning the architectural abstractions directly in terms of implementation artifacts
and dependencies, they are de�ned in terms of the prede�ned predicates provided by the `declar-
ative framework'. The following subsections elaborate on the architectural abstraction language,
the architectural instantiation language and the declarative framework. Table 5.2 summarizes the
di�erent constructs of each of these languages and shows how they relate to the constructs of the
ADL.

Architectural Mapping Language
ADL Arch. Inst. Lang. Arch. Abstr. Lang. DFW

architectural view
concept concept mapping virtual classi�cation \prede�ned
relation relation mapping virtual dependency architectural
port port mapping �lter mapping
role role mapping argument number predicates"
link link mapping quanti�er

Table 5.2: Overview of the architectural mapping language.

5.3.1 The architectural abstraction language

The architectural abstraction language we propose in this dissertation is a re�nement of the
mapping language we proposed in an earlier paper [52]. As in that paper, we will associate
architectural concepts with virtual classi�cations that compute a set of implementation artifacts
that corresponds to those concepts. Architectural relations will be mapped to virtual dependencies
expressing high-level implementation relationships that will be applied to the elements of the
virtual classi�cations.

Architectural abstraction Semantics in terms of implementation artifacts and dependencies
Virtual classi�cation Computed set of implementation artifacts, such as:

classes, methods, variables, . . .
Virtual dependency High-level relationship among implementation artifacts
Filter Function selecting a subset from a set of artifacts
Argument number Number referring to one of the arguments of a logic predicate
Quanti�er Quanti�er over a set of artifacts

Table 5.3: Constructs of the architectural abstraction language.

Below, we informally explain each of the di�erent constructs of the architectural abstraction
language. Table 5.3 summarizes them.

Virtual classi�cations A virtual classi�cation groups a set of related implementation artifacts.
It is virtual in the sense that the elements of the set are not explicitly enumerated. Instead,
the set is declared intentionally, by means of some high-level logic predicate, so that it can
be computed when needed. Such virtual classi�cations provide an interesting abstraction

60 CHAPTER 5. THE ARCHITECTURAL FORMALISM

in which terms to model architectural concepts. They have intuitive appeal and have a
concise representation. They are also interesting from the perspective of evolution: even
when the implementation changes, the virtual classi�cations may still compute the intended
artifacts, thanks to their intentional declaration. Finally, they are particularly well-suited
to model concepts of architectural views that `cut across' the implementation structure.
One implementation artifact may belong to multiple virtual classi�cations, and one virtual
classi�cation can contain many implementation artifacts that are spread throughout the
code.

As an example, consider the Query Interpreter concept in the `user interaction' archi-
tectural view of the SOUL system. The virtual classi�cation associated with this concept
computes all Smalltalk classes and methods that address the concern of `interpreting queries'.
Such a classi�cation can be de�ned in many ways: by simply enumerating all these classes
and methods; by making use of some naming conventions, for example that they all have a
name which starts with the same pre�x `interpret'; by using explicit tagging information or
structured documentation in the source (e.g., all methods in the Smalltalk method protocol
named `interpretation'); or by using some semantic inferencing, such as that they are all
invoked or accessed by some method which is supposed to start the interpretation process.

Virtual dependencies Whereas virtual classi�cations model architectural concepts, virtual de-
pendencies are the constructs for modeling architectural relations. Because architectural
relations intuitively represent the interaction among architectural concepts, we will model
them as high-level relationships over these concepts. More precisely, since architectural
concepts are modeled as (computed) sets of implementation artifacts, we will specify only
how the artifacts in the di�erent sets should be related. Hence, a virtual dependency is
some high-level design or implementation relationship among implementation artifacts. It is
virtual because it may require some computation to derive it from the implementation.

Filters In the ADL, concept ports intuitively represent the external interface of a concept. Be-
cause concepts are modeled in terms of (computed) sets of implementation artifacts (i.e.,
virtual classi�cations), we model concept ports as �lters over these sets. Such a �lter `deletes'
all information from the set that is not relevant for a particular port. This corresponds to
the intuition that a concept port is a kind of peep-hole through which (only) part of the
internals of the concept can be seen.

For example, consider the User Application concept in the `user interaction' architectural
view. This concept classi�es all implementation artifacts that model applications in the
SOUL system. In particular, for each type of user application it contains a class implementing
that application, as well as all methods of that class. The User Application concept
has two ports: Request and Type. Intuitively, the Type port models all possible types
of user applications and the Request port models all possible requests that can be sent
to those applications. Because in the Smalltalk implementation of the SOUL system, the
user applications are modeled as classes, we associate with the Type port a `class �lter'
which �lters only the classes from the classi�cation. Similarly, because the methods of these
classes represent the requests the applications can handle, we associate with the Request
port a `method �lter' to �lter only the methods from the classi�cation.

Filtering serves two purposes. On the one hand it will improve the e�ciency of the con-
formance checking algorithm, by reducing the number of elements of a virtual classi�cation
that need to be considered. Indeed, to avoid having to check all elements of a virtual classi-
�cation, relations are not linked to a concept directly, but to one of its ports. On the other
hand, �ltering may be interesting for typing purposes. For example, after applying a `class
�lter' only artifacts of type `class' remain. This knowledge is useful when de�ning virtual
dependencies.

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 61

Argument numbers Architectural relations are represented by logic predicates representing
high-level dependencies among implementation artifacts. Relation roles correspond to the
arguments of those predicates. We need to de�ne precisely which role corresponds to which
argument. To de�ne this correspondence, we use the argument numbers.

For example, we will see in Subsection 7.1.5 that the virtual dependency associated with
the Is Created By architectural relation in the `user interaction' view, is de�ned by the logic
predicate isCreatedBy C C(Class1, Class2). In this predicate, the �rst argument repre-
sents the created class, and the second argument represents the creating class. Therefore, the
`Created' role on the Is Created By architectural relation corresponds to argument number
1, and the `Creator' role corresponds to argument number 2. (Note that we did not mention
these argument numbers on the �gures, in order not to clutter them too much.)

Quanti�ers Since a virtual dependency does not work directly on sets of artifacts, but on single
artifacts, we need a way of generalizing it to a relationship over sets. To this extent, we
need some more information such as: do we need to consider all artifacts in the set, or is it
su�cient to check the relationship for only one artifact? This information is speci�ed by the
quanti�ers to which the links are mapped. They state how a virtual dependency should be
`applied' over the elements of a virtual classi�cation. Typical quanti�ers are set quanti�ers
such as 8 and 9. Figure 5.2 shows a re�ned version of Figure 4.4 where every link has been
annotated explicitly with a quanti�er.

Figure 5.2: The `user interaction' architectural view with quanti�ers.

For example, consider the Asks1 architectural relation between the architectural concepts
User Application and Query Interpreter in the `user interaction' architectural view.
This architectural relation has two links, one for the role `Interrogator' and one for the role
`Interrogated', with associated quanti�ers 8 and 9 (respectively). These quanti�ers should
be interpreted as follows: \every interrogator element (i.e., every type of user application)

62 CHAPTER 5. THE ARCHITECTURAL FORMALISM

asks for information to at least one interrogated element (i.e., some query interpretation
request)".

One could argue that the quanti�ers should not be speci�ed by the architectural mapping
but by the architecture description, because they contain important information on how to
interpret an architecture. Furthermore, this information is independent of the implementa-
tion under consideration. For now, however, we declare the quanti�ers only as part of the
architectural mapping. In Subsection 5.4.6 we will explain what changes are needed to the
formalism if we would want to include quanti�ers in the ADL.

This concludes our de�nition of the various constructs of the architectural abstraction language.
Subsection 6.2.2 will explain how each of these constructs are represented in our LMP medium. We
stress that none of these constructs make special assumptions about the kinds of implementation
artifacts that are considered. Therefore, the architectural abstraction language is independent
of the chosen implementation and implementation language. The same will be the case for the
architectural instantiation language.

5.3.2 The architectural instantiation language

We have explained the ADL, which allows us to de�ne the architectural concepts, relations, ports,
roles and links in the di�erent architectural views, and the architectural abstraction language, in
which we can de�ne virtual classi�cations, virtual dependencies, �lters and quanti�ers. Now we
explain the architectural instantiation language, which can be used to de�ne architectural instanti-
ations. An architectural instantiation associates architectural concepts with virtual classi�cations,
architectural relations with virtual dependencies, ports with �lters, roles with argument numbers
and links with quanti�ers. To de�ne these associations, the architectural instantiation language
provides the following language constructs:

Concept mapping Concept mappings associate architectural concepts with virtual classi�ca-
tions, thus de�ning the set of implementation artifacts that corresponds to each of those
concepts.

Port mapping As architectural concepts are mapped to sets of implementation artifacts, we map
concept ports to �lters that select a relevant subset from the set associated with the concept.

Relation mapping An architectural relation is mapped to a virtual dependency which expresses
the relation among the artifacts classi�ed according to the concepts linked to the architectural
relation.

Role mapping The roles of an architectural relation are mapped to argument numbers of the
virtual dependency that is associated with the architectural relation.

Link mapping Link mappings are used to associate a quanti�er with each link.

The mappings that can be de�ned in the architectural instantiation language are very simple.
Every entity in a conceptual architecture is mapped to an architectural abstraction. Because of
this trivial mapping, one might argue that the architectural instantiation language is not really
necessary. Instead, we could adopt an implicit mapping, by using the same names for concepts
in the conceptual architecture as for the virtual classi�cations in the architectural abstraction,
and likewise for the relations and ports. However, this alternative approach has a number of
shortcomings. For example, what if we need two di�erent architectural relations that correspond
to the same virtual dependency? We cannot use the same name, because we need to distinguish
them (they can be linked to di�erent concepts). And what if we have a concept with di�erent
ports that are associated with the same �lter? It may not be opportune to combine the two ports
to one single port, just because they are instantiated with the same �lter. The fact that they both
correspond to the same �lter may be an accidental feature of the instantiation for a particular

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 63

implementation, and could be di�erent when the architecture is instantiated for another system.
Using an explicit architectural instantiation avoids such problems by making explicit the mapping
between a conceptual architecture and the architectural abstractions.

To conclude, we point out that the architectural instantiation language is completely indepen-
dent of the chosen implementation and implementation language. It just maps ADL constructs
to constructs of the architectural abstraction language. No assumptions whatsoever are made of
the underlying implementation (language).

5.3.3 The declarative framework (DFW)

Architectural abstractions de�ne the actual mapping of architectural entities to implementation
artifacts and their dependencies. Because we use a LMP approach, when de�ning a particular
architectural abstraction (e.g., a particular virtual classi�cation) we can take advantage of the full
expressive power of a logic meta-programming language. Technically speaking, it is almost obvious
that, given some meta-programming language that is su�ciently expressive, it is possible to de�ne
any architectural mapping. In practice, however, de�ning a particular architectural mapping is
not trivial, because many architectural constraints are implicit in the source code and because
there is often no one-to-one mapping of architectural abstractions to implementation entities.

Therefore, to aid us in de�ning architectural abstractions, in addition to having an expressive
LMP language, we would like to have some library of prede�ned predicates which capture the most
common mapping schemes for the di�erent kinds of architectural abstractions. In other words,
when de�ning most architectural mappings, it should be su�cient to just select the appropriate
logic predicate(s) from the library and �ll in the required parameters. We call this library the
declarative framework (DFW). This library has an explicit layered structure where the predicates
in the higher layers are de�ned in terms of those in the lower layers. The terminology `declarative
framework' stems from [54, 86].

For some architectural mappings, the framework may not (yet) provide prede�ned predicates
that codify these mappings. In these cases, we can rely on the expressive power of the LMP
language to de�ne our own predicates (which can be added to the DFW so that they can be
reused later on to de�ne similar architectural mappings). When de�ning such predicates, the
framework may o�er some help, because of its layered structure. The predicates it provides are
distributed over several layers of abstraction. So even if we do not �nd a particular predicate
we need at a certain level of abstraction, the abstraction level below may very well provide the
predicates we need to de�ne the required predicate. In other words, we do not necessarily have to
descend all the way down to the implementation layer to de�ne our architectural mapping.

Below, we briey introduce this layered declarative framework. We enumerate the di�erent
layers and explain the kind of predicates each such layer contains. We explain the most primitive
layers �rst, and then proceed with the more abstract ones. The layers were subdivided in three
main groups: a logic meta-programming layer, an implementation layer and an architectural layer.
Figure 5.3 on page 95 provides an overview of some of the layers of the DFW and illustrates how
predicates in the higher-level layers make use of predicates de�ned in the lower-level ones.

Logic meta-programming layer A �rst technical layer provides some primitive predicates of
the LMP language, that is, some primitives of the logic language as well as some primitive
predicates for accessing the implementation repository.

Logic layer The bottom layer merely contains primitive logic predicates that can be found
in many logic languages, such as not, findall, read, etc.

Repository access Next, we have a layer containing primitives for accessing the repository
containing the implementation artifacts. These predicates can be used to access infor-
mation in the repository, but are independent of the actual kind of information that
is stored in that repository. For example, if the repository is a database, a primitive
predicate addRecord is provided to add a record to some table in the database.

64 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Implementation layer The implementation layer de�nes the most frequently-used predicates
for reasoning about artifacts in some implementation language. Of course, this layer highly
depends on the chosen implementation language. In our experiments, we used Smalltalk.

Representational layer First of all, the representational layer is a Smalltalk-speci�c layer
that contains predicates for retrieving Smalltalk artifacts from the repository. For
example, a predicate class can be used to retrieve a Smalltalk class from the repository
(or to check whether a certain class can be found in the repository).

Base layer The base layer adds a whole range of predicates to the representational layer, to
facilitate reasoning about the implementation. Typing predicates, such as instVarTypes,
that infer the types of instance variables and other Smalltalk expressions are an example
of typical functionality o�ered by the base layer.

Coding conventions Built on the base layer, we have several other layers containing even
higher-level predicates. One such layer codi�es the typical coding conventions and styles
that Smalltalk programmers use. It also contains some more generic predicates such as
the predicate findMethod which can be used to �nd all methods that match a certain
pattern.

Design patterns Another, even more abstract level, codi�es rules for capturing design
patterns. For example, the predicate compositePattern checks for occurrences of the
Composite design pattern.

Architectural layer Finally, the architectural layer provides some predicates that capture the
most common ways of mapping architectural abstractions to implementation artifacts and
their dependencies.

Architectural mapping predicates This layer de�nes some auxiliary and template pred-
icates for de�ning architectural abstractions. E.g., the findMethodsFromClasses pred-
icate can be used to compute the methods that should belong to some virtual classi�-
cation, based on the classes that already belong to that classi�cation.

From the above descriptions, it should already be clear that the implementation layer highly
depends on the fact that the chosen implementation language is Smalltalk. Nevertheless, even in
this layer, we try to reduce the Smalltalk-dependence to a minimum. We take advantage of the
layered structure of the framework to restrict the Smalltalk-speci�c predicates to the lowest layers
as much as possible.

It is also important to realize that the DFW is not really speci�c to our architecture language.
It is a general library of logic predicates that can be used for any kind of declarative reasoning
about Smalltalk source code. In fact, the same DFW is currently being used in other contexts by
other researchers at our lab. Only the architectural layer of the DFW contains some predicates
that are speci�c for our experiments on architectural conformance checking.

In Subsections 5.3.4 to 5.3.6, we discuss each of the layers of the DFW in more detail, again
starting with the least abstract ones. For each layer we also mention to which extent it depends
on the fact that the chosen implementation language is Smalltalk.

5.3.4 The logic meta-programming layer of the DFW

The logic meta-programming layer consists of two sublayers: the logic layer and the repository-
access layer. All predicates in the logic meta-programming layer are independent of the chosen
implementation language.

Logic layer

The most primitive layer is the logic layer which contains the primitive logic predicates that are
provided by most logic languages. It includes predicates de�ning arithmetic functions (is, <,

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 65

>, . . .), program control (not, call, findall, forall, . . .), data handling (list handling, string
handling, term type checking, . . .), input and output (read, write, . . .), etc. We will not discuss
the details of this layer here; instead we refer to a Prolog manual [85].

Because the predicates in this layer are only primitive logic predicates that do not support
reasoning about the implementation artifacts in some base language, they are clearly independent
of the chosen base language.

Repository-access layer

The repository-access layer de�nes some very speci�c predicates for accessing an implementation
repository. For example, if the implementation repository would be an ODBC-compliant database,
the repository-access layer would contain some general predicates that use ODBC primitives to
translate the information in the database to logic terms. The repository-access layer is de�ned on
top of the logic layer, because it uses some of the primitives provided by that layer. Because of
the very technical nature of the repository-access layer, we do not explain it in detail here. More
technical details on how the logic meta language can access the implementation repository (i.e.,
which languages, environments, interfaces, repositories and tools were used, and how they were
combined), are given in Section 6.1 and Subsection 8.4.3.

This layer is also independent of the chosen base language. Although the repository-access
layer provides predicates for accessing the information stored in a repository, these predicates are
still independent of the actual kind of information that is stored in that repository.

5.3.5 The implementation layer of the DFW

The implementation layer provides a whole range of predicates for reasoning about implemen-
tations in the Smalltalk language. Obviously, many of these predicates are Smalltalk-speci�c,
although some may be valid for other object-oriented languages as well. However, they are not
dependent on the particular implementation that is considered. They can be used for reasoning
about any implementation in Smalltalk.

The implementation layer consists of three sublayers: the representational layer, the base layer,
the coding conventions layer and the design patterns layer.

Representational layer

In order to check conformance of an implementation to a described architecture, our DFW should
be able to reason about the implementation artifacts and structures in the implementation repos-
itory. This is the responsibility of the `representational layer'. It de�nes the meta-level interface
between the LMP language and the underlying base language. In our case, the base language is
Smalltalk. Therefore, this layer contains a set of predicates for retrieving Smalltalk artifacts (such
as classes, methods and instance variables) and their structural relationships (such as inheritance)
from the implementation repository. All layers that are de�ned on top of the representational
layer use this layer to reason about the implementation. The predicates of the representational
layer make use of the underlying repository-access layer to access the implementation repository.

Table 5.4 lists some of the predicates provided by the representational layer. We distinguish
three di�erent kinds of predicates:

1. predicates that retrieve a Smalltalk artifact from the repository;

2. predicates that select the name of some Smalltalk artifact;

3. predicates that reason about structural relationships among artifacts.

From the table, we see that all predicates are speci�cally targeted towards reasoning about an
object-oriented base language. Some predicates, like category and protocol are speci�c to

66 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Predicate name and arguments Meaning of the predicate

Retrieving implementation artifacts
class(Cl) Cl is a Smalltalk class or meta class
baseClass(Cl) Cl is a Smalltalk class (but not a meta class)
metaClass(MC) MC is a Smalltalk meta class
method(Me) Me is a Smalltalk method
instVar(IV) IV is a Smalltalk instance variable
temporaryVar(TV) TV is a temporary variable of a method
argumentVar(AV) AV is a method argument
category(Ca) Ca is a Smalltalk class category
protocol(Pr) Pr is a Smalltalk method protocol
.

Selecting implementation artifact names
className(Cl,CN) Class Cl has name CN
methodName(Me,MN) Method Me has name MN
instVarName(IV,IN) Instance variable IV has name IN
argumentVarName(AV,AN) Method argument AV has name AN
temporaryVarName(TV,TN) Temporary variable TV has name TN
categoryName(Ca,CN) Class category Ca has name CN
protocolName(Pr,PN) Method protocol Pr has name PN
.

Structuring of implementation artifacts
classImplementsMethod(Cl,Me) Class Cl implements method Me

classImplementsMethodNamed(Cl,MN,Me) Class Cl implements method Me with name MN
inheritance(C1,C2) Class C2 inherits from class C1
metaClass(Cl,MC) Class Cl has meta class MC
methodParseTree(C,M,A,T,S) Computes a method parse tree
instVar(Cl,IV) Class Cl has instance variable IV
methodArgument(Me,AV) Method Me has argument AV
methodTemporary(Me,TV) Method Me has temporary variable TV
classInCategory(Ca,Cl) Class Cl belongs to class category Ca

methodInProtocol(Cl,Pr,Me) Method Me in class Cl belongs to
method protocol Pr

.

Table 5.4: Some predicates provided by the representational layer.

Smalltalk, whereas others, like class, method and inheritance are relevant for other object-
oriented languages as well.

Because of the multi-way reasoning capabilities of our logic meta language, all these predicates
can be used in multiple ways, depending on which of their arguments are left uninstantiated.
For example, a predicate classImplementsMethod(Cl,Me) can be used in four di�erent ways: to
check whether some speci�ed class implements some speci�ed method, to compute all classes that
implement some speci�ed method, to compute all methods that are implemented by some class,
or to compute all class-method pairs such that the class implements the method.

A particularly important predicate of the representational layer is:

methodParseTree(ClassName, MethodName, ArgumentList, TemporariesList, StatementList)

This predicate takes a ClassName and MethodName as input (or they can be left uninstantiated, in
which case the appropriate values are generated for them) and returns the di�erent parts of the
method parse tree for the method named MethodName and belonging to a class named ClassName.
Both the list of method arguments (ArgumentList) and the list of temporary variables of that

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 67

method (TemporariesList) are returned, as well as the parse tree (StatementList) of the method
in a structured format.
For example, consider the following simple Smalltalk method which belongs to the class SOULTerms:

at: anInteger

b self terms at: anInteger

For this method, the query methodParseTree('SOULTerms','at:',Args,Tmps,Tree) would re-
turn the following result:

Args = [anInteger]

Tmps = []

Tree = [return(send(send(variable(self),terms,[]),'at:',[variable(anInteger)]))]

Based on the methodParseTree predicate, we can de�ne many useful predicates that reason about
the implementation structure. In fact, methodParseTree is a generic predicate that is only sup-
posed to be used as an auxiliary predicate to de�ne other predicates. (That is why we printed it
in italics in Table 5.4.)

Base layer

The representational layer is a very primitive layer de�ning only the most primitive logic predicates
for reasoning about the underlying Smalltalk base language. On top of this layer, a more elaborate
`base layer' is de�ned, which extends these predicates with some extra predicates that are often
used for reasoning about the implementation artifacts and their dependencies. All predicates in
this base layer are de�ned directly in terms of predicates of the representational layer. They do
not access the implementation repository or the repository-access layer directly. We distinguish
three groups of predicates in the base layer:

1. predicates that are de�ned in terms of a method parse-tree traversal;

2. predicates that infer the type of certain Smalltalk expressions;

3. predicates that implement complex structural relationships.

Each of these groups is discussed below and summarized in Table 5.5. For the actual implemen-
tation of (some of) these predicates, we defer to Subsection 6.2.4 and Chapter 7.

Method parse-tree traversing. To reason about the structure of Smalltalk methods, the
representational layer provides a predicate methodParseTree. Based on this predicate, many
useful base-layer predicates can be de�ned which reason about methods. For example, a predicate
isSentTo which checks for an invocation relationship can be de�ned by examining a method
parse tree in search for method sends that occur in the body of the method. Similar predicates
assignStatement and returnStatement can be de�ned to check for a variable assignment or a
return statement, respectively. Because all these predicates exhibit many similarities, we decided
to factor out their commonalities in a very general method parse-tree traversal predicate

traverseMethodParseTree(ClassName,MethodName,Environment,Found,Process)

This predicate traverses the parse tree of a method named MethodName in some class named
ClassName, looking for some information to be stored in (or checked against) the variables in
the passed Environment. This predicate is a second-order logic predicate as it takes two �rst-
order predicates Found and Process as argument. These �rst-order predicates de�ne the kind of
information we are looking for in the parse tree (Found) as well as how this information should
be processed (Process) to extract the required pieces of information to be accumulated. Using
this predicate traverseMethodParseTree we can easily de�ne (amongst others) the following
predicates:

68 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Predicate name and arguments Meaning of the predicate

Method parse-tree traversing
traverseMethodParseTree(C,M,E,F,P) Traverse a method parse tree
isSentTo(CN,MN,Rcvr,Msg,Args) Find message sends in a method
assignStatement(M,Var,Val) Find variable assignments in a method
returnStatement(CN,MN,E) Find return statements in a method
.

Type inferencing
mayHaveType E M C(E,M,C) Infer type C of expression E in method M

mayHaveType V M C(V,M,C) Infer type C of variable V in method M

returnType(M,C) Infer return type C of method M

instVarTypes(C,IV,TL) Infer the valid types TL for an instance variable
IV of class C

classVarTypes(Cl,CV,TL) Infer the valid types TL for a class variable
CV of class Cl

temporaryTypes(M,V,TL) Infer the valid types TL for a temporary variable
V of method M

argumentTypes(M,A,TL) Infer the valid types TL for an argument A
of method M

.

Structural relationships
closure(Relation,Term1,Term2) Compute transitive closure of a binary relation
hierarchy(Super,Sub) Class Sub belongs to the class hierarchy of Super
instVarFlattened(Cl,IV) Class Cl or a superclass has instance variable IV
understands(Cl,Msg) Class Cl understands message Msg
.

Table 5.5: Some predicates provided by the base layer.

� isSentTo(ClassName,MethodName,Receiver,Message,Arguments) checks whether some
method named MethodName in a class named ClassName sends some Message with some
list of Arguments to some Receiver class.

� assignStatement(Method,Variable,Value) checks whether some Method assigns some
Value to some Variable.

� returnStatement(ClassName,MethodName,Expression) checks whether a method named
MethodName in a class named ClassName returns some Expression.

Just like the generic predicate methodParseTree of the representational layer, the base-layer
predicate traverseMethodParseTree was printed in italics in Table 5.5: it is a generic predicate
that is only supposed to be used as an auxiliary predicate to de�ne other predicates.

Type inferencing. Smalltalk is a dynamically typed language, meaning that type information
is not explicitly declared in the source code and that types are only checked at run-time (i.e.,
`message not understood' errors are generated when invalid messages are sent to a certain expres-
sion). Nevertheless, type information is often useful when reasoning about the implementation.
Therefore, the base layer includes a set of typing predicates that `guess' the types of variables
and other Smalltalk expressions. Since Smalltalk is a pure object-oriented language, we consider
classes as types, and say that the type of an object is the class that implements it.

� Our ability to reason about type information is limited because of the absence of explicit
type declarations in Smalltalk, and because we reason only about the static structure of the

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 69

implementation and do not take run-time information into account. But even within these
constraints, we managed to implement a predicate mayHaveType E M C(E,M,C) to infer the
type C of some expression E that occurs in the body of some method M. The predicate was
implemented as follows: to infer the type of an expression, we take a look at all messages
that are sent to that expression (in the context where it occurs). In order for a class to be
a valid type for that expression, it should understand at least all these messages (if not, a
`message not understood' error may occur at run-time). Every class that does understand
all these expressions is a possible type.

Unfortunately, sometimes there are multiple candidate classes4 for this type, and it is im-
possible to decide which one is the correct choice, without using dynamic information or
doing extensive (and costly) data-ow analysis or type inferencing. Hence, the described
approach only provides an approximate answer, but it is the best we can do under the given
circumstances. (The more messages are sent to an expression, the more precise the answer
will be.)

� The predicate mayHaveType V M C(V,M,C) is a more speci�c version of mayHaveType E M C

where the expression is a variable V (instance variable, class variable, temporary variable,
method argument, . . .) occurring in the body of method M.

� A predicate returnType(M,C) which checks whether a method M returns an object of type
C can be de�ned straightforwardly in terms of mayHaveType E M C and returnStatement.

� Using a similar technique as for mayHaveType E M C, the instVarTypes(C,IV,Types) pred-
icate computes a list of possible Types for an instance variable IV of some class C.

� The predicates classVarTypes, temporaryTypes and argumentTypes for inferring the types
of class variables, temporary variables and method arguments are de�ned similarly.

Structural relationships. The representational layer contains some very primitive predicates
for reasoning about structural relationships among Smalltalk implementation artifacts. For exam-
ple, it de�nes a predicate classImplementsMethodNamed for checking whether a class implements
a method with a certain name, a predicate instVar for checking whether some class contains a
certain instance variable and a predicate inheritance for checking whether two classes are in an
inheritance relationship. Based on predicates such as these, the base layer de�nes some predicates
for reasoning about more complex structural relationships.

� Transitive closure. A �rst way to de�ne more complex relationships from more primitive
ones is by computing the transitive closure of those more primitive relationships. A con-
crete example of this is the hierarchy predicate which is the transitive closure of the more
primitive inheritance predicate.

To compute the transitive closure of binary relationships, the base layer provides a generic
second-order logic predicate closure(Relation,Term1,Term2). It takes a binary predicate
Relation as argument, as well as a start expression Term1 and an end expression Term2, and
checks whether Relation holds directly or transitively between the two expressions Term1
and Term2. (The predicate is de�ned in such a way that duplicate results and in�nite loops
are avoided.)

� Smalltalk scoping rules. The predicate instVarFlattened(Cl,IV) generalizes the more
primitive predicate instVar. instVar(Cl,IV) merely checks whether a certain class Cl

contains a certain instance variable IV. Due to the scoping rules of Smalltalk, however, all
instance variables that belong to a superclass of some class are also visible to that class itself.

4To avoid having multiple solutions, we could turn them into a single solution by computing the common
superclass of all candidate classes. Of course, if two classes are in separate inheritance hierarchies, the only common
superclass may be Object.

70 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Therefore, the predicate instVarFlattened takes the entire hierarchy into account to check
whether a certain instance variable IV is visible in some class Cl.

Similarly, understands(Cl,Msg) generalizes the predicate classImplementsMethodNamed

to compute all messages that can be understood by (instances of) some class. That is,
all messages corresponding to a method that is implemented by this class or one of its
superclasses, with the exclusion of all superclass methods that have been cancelled. (There
was no such exclusion for instance variables: instance variables cannot be cancelled.) Because
the understands predicate is used so often (for example, when doing type inferencing) but
is rather computationally intensive, the results of this predicate are cached persistently.

As the predicates in the base layer are more high-level than the predicates in the representa-
tional layer, we expect them to be less Smalltalk-dependent. Unfortunately, this is not always the
case. For example, the typing predicates are Smalltalk-speci�c because they may provide multi-
ple candidate results. For statically typed object-oriented languages, we would probably prefer
variants of these typing predicates that provide a unique result5. E.g., a predicate instVarType

instead of instVarTypes and a predicate hasType instead of mayHaveType.
The predicates that implement the high-level structural relationships are relevant for other

object-oriented languages as well. However, their implementation may sometimes be slightly dif-
ferent for those other languages because of possible di�erences in scoping rules. For example, for
Smalltalk, the understands predicate needs to take into account that methods may be cancelled.
Method cancellation is not supported by many object-oriented languages, though. For this par-
ticular example, it may su�ce just to replace the predicate that checks for cancelled methods by
one that always fails, indicating that no methods can be cancelled in those other languages. (In
Subsection 5.3.5 we will show how to check for cancelled methods in the Smalltalk language.)

The predicates that rely on method parse-tree traversal are also relevant for other object-
oriented languages, but again, their implementation may be somewhat di�erent, due to di�erences
in the parse-tree representation for those other languages. Most changes, however, will need to
be made only to the generic traverseMethodParseTree predicate and not to the predicates that
are de�ned in terms of this one.

Finally, as in the representational layer, the base layer may also contain predicates that reason
about Smalltalk-speci�c language constructs. Obviously, these predicates are highly Smalltalk-
speci�c. When porting the declarative framework to another object-oriented language, these
predicates become obsolete and extra predicates are needed for reasoning about constructs speci�c
to that language. Of course, this remark is relevant for all other layers of the DFW as well.

Coding conventions layer

There is such a thing as a `Smalltalk culture' which makes that Smalltalk programmers use a lot
of widespread conventions [5, 22] to express important intentions for which no explicit language
constructs are available. Because of this, for a language like Smalltalk, when declaring architectural
mappings we often make use of naming or coding conventions, programming idioms, programming
or design styles, design patterns, and so on. Also, due to the absence of (explicit and static) type
information in Smalltalk, it is sometimes di�cult to express the kinds of architectural mappings
we need. Expressing them in terms of conventions often provides a convenient alternative.

A problem with using conventions (or rather, with de�ning architectural abstractions based
on conventions) is that it cannot be guaranteed that the conventions will always be followed in
a consistent manner. When some conventions would no longer be followed, some architectural
abstractions might produce incorrect results. It is important to see things in the right perspective,
though.

First of all, Smalltalk programmers tend to respect the conventions that are part of their
culture. Secondly, if a programmer knows that respecting the conventions is important for correct

5But even for statically typed object-oriented languages, �nding a unique result is not always possible if the
language supports type casts.

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 71

architectural conformance checking, he or she may be more motivated and disciplined to respect the
conventions. Thirdly, we are not forced to de�ne architectural mappings in terms of conventions.
Whenever possible, we prefer more precise descriptions based on some kind of semantic inferencing.
Unfortunately, sometimes such descriptions require extensive source-code analysis. For example,
if we have di�culties describing something due to the lack of type information, we could do a kind
of type inferencing (using the typing predicates provided by the base layer). Such a description,
however, will probably be more complex and computationally intensive than a description based
on conventions. Finally, to aid the programmers in using and respecting the conventions, some
language environment support could be o�ered.

We will come back to most of these issues later in the dissertation (Subsections 7.1.7, 8.3.4
and 8.4.1). In this subsection we merely describe the `coding conventions layer' which contains
many predicates that codify typical Smalltalk coding conventions and styles. Here, we only men-
tion the conventions of which we encountered occurrences in our particular case study (although
the conventions themselves are case-independent). Table 5.6 summarizes the corresponding logic
predicates that codify these conventions. Based on K. Beck's book on Smalltalk best practice
patterns [5], Appendix B provides a more exhaustive list of relevant coding conventions and styles
for the Smalltalk language.

Predicate name and arguments Meaning of the predicate

Naming conventions
patternMatch(N,P) artifact name N matches pattern P

stringStartsWith(S1,S2) string S1 starts with substring S2

stringEndsWith(S1,S2) string S1 ends with substring S2

stringContains(S1,S2) string S1 contains substring S2

stringSplit(S1,S2,S3,S4) split up string S1 into substrings S3 and S4

occurring before and after substring S2

.

Coding idioms for methods
findMethod(C,M,P) method M of class C matches pattern P

abstractMethod(C,M) method M of class C is abstract
cancelledMethod(C,M) method M of class C is cancelled
mutator(C,M,V) method M of class C is mutator of variable V
mutatorMethod(M) method M is a mutator method
accessor(C,M,V) method M of class C is accessor of variable V
accessorMethod(M) method M is an accessor method
oneToManyStatement(M,V) method M implements a one-to-many relationship
instanceCreationMethod(C,M) method M in class C is an instance-creation method
.

Table 5.6: Some predicates provided by the coding convention layer.

Naming conventions. When considering an implementation, a lot of important information
on the intentions of developers is implicit in the naming conventions that are adopted [5]. The
representational layer already provides some very primitive predicates for extracting or retrieving
the names of implementation artifacts. However, these are not su�cient for reasoning about
the naming conventions that are used. We need more �ne-grained predicates that can reason
about names at a sub-string level to check whether a name matches a certain string pattern.
To this extent we implemented a generic predicate patternMatch(Name,Pattern) which takes
two arguments: an artifact Name and a string Pattern to be matched against that name. The
pattern resembles a regular expression and supports wildcards, exact matches, pre�x matches,
post�x matches, (multiple) substring matches, and logic combinations of more primitive patterns:
conjunction, disjunction and negation. Some examples of successful pattern matches are listed
below:

72 CHAPTER 5. THE ARCHITECTURAL FORMALISM

patternMatch('the lonesome man', exact('the lonesome man'))

patternMatch('the lonesome man', contains('lonesome'))

patternMatch('the lonesome man', pattern([_,'lone','some',_,'man',_]))

patternMatch('the lonesome man', and(prefix('the'),postfix('man'),contains('lonesome')))

patternMatch('the lonesome man', or(prefix('a'),prefix('the ')))

patternMatch('the lonesome man', not(contains('x')))

This general pattern-match predicate was de�ned in terms of some more primitive predicates that
handle each of the speci�c cases. For example, stringStartsWith checks whether a string starts
with a certain substring, stringEndsWith checks whether a string ends with a certain substring,
stringContains checks whether a string contains a certain substring, stringSplit splits up a
string into substrings occurring before and after a given substring, etc.

Coding idioms for methods. Based on the generic patternMatch predicate, a predicate for
lexically analyzing a method can be de�ned: findMethod(Class,Method,Pattern). This pred-
icate checks whether some Method in some Class matches some Pattern. The pattern will be
matched to the string-representation of the method's parse tree. Many useful coding idioms that
reason about the structure of a method can be de�ned using this pattern-match predicate:

� abstractMethod(Class,Method) In Smalltalk, abstract methods can be recognized because
they send a subclassResponsibility self send. In other words, (the string representation
of) their parse trees matches the following pattern:

or(exact('[send(variable(self),subclassResponsibility,[])]'),

exact('[return(send(variable(self),subclassResponsibility,[]))]'))

� cancelledMethod(Class,Method) Whereas abstract methods can be recognized because
they make a subclassResponsibility self send, in Smalltalk, cancelled methods can be
recognized because they make a shouldNotImplement self send.

� mutator(Class,Method,VarName) Mutator methods are methods that assign a value to
some variable. These methods can easily be recognized because they typically have the
same name as the variable, appended with a `:'. Furthermore, in their body, they only
perform an assignment of a value to that variable.

� mutatorMethod(Method) veri�es whether Method is a mutator method and is de�ned in
terms of mutator(Class,Method,VarName).

� accessor(Class,Method,VarName) Accessor methods retrieve the value of some variable.
They typically have the same name as the variable. Simple accessors do nothing more than
returning the value of that variable. (Lazy accessor methods use lazy initialization, which is
also characterized by a typical coding idiom. See predicate lazyInitialisedAccessorMethod
in Appendix B.)

� accessorMethod(Method) veri�es whether Method is an accessor method and is de�ned in
terms of accessor(Class,Method,VarName).

� oneToManyStatement(Method,InstVar) In Smalltalk, the typical way to iterate over a col-
lection of elements is to send it an enumerator message (like do:, collect:, select: or
detect:), pass it a block with one argument representing the element of the collection
under consideration, and process that element inside the block by sending the appropri-
ate messages to it. How the results are accumulated or combined depends on the cho-
sen enumerator message. Relying on this coding convention, we can de�ne a predicate
oneToManyStatement(Method,InstVar) which checks whether some Method enumerates
over the elements of a collection held in an instance variable InstVar.

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 73

In addition to analyzing the names or structure of methods, Smalltalk method protocols can
provide very useful information on the methods that belong to some protocol. For example, it is
a commonly accepted Smalltalk convention to put all instance-creation methods of a class in the
same method protocol named `instance creation' on the meta class. Using this convention, it is
very easy to de�ne a predicate instanceCreationMethod(Class,Method) which veri�es whether
some method is an instance-creation method.

Many other coding conventions can be codi�ed. For more examples of how to codify coding
conventions by means of logic predicates we refer to Appendix B and references [54, 86, 87].

Regarding its dependence on the underlying implementation language, the situation for the
coding conventions layer is similar to that of the base layer. Some predicates, such as the pred-
icates for string pattern matching, are entirely independent of the chosen implementation lan-
guage. Other predicates have a Smalltalk-speci�c implementation, e.g. abstractMethod and
instanceCreationMethod, but could be rede�ned for other object-oriented languages as well.
Yet others, e.g. cancelledMethod, are about speci�c properties or constructs of the Smalltalk
language and are therefore of little use for other languages.

Design patterns layer

Based on the more primitive predicates that were declared in the previous layers, we can de�ne
some logic predicates that express the structure of design patterns. Examples of such predicates
are given in [86, 87]: a rule de�ning the structure of the Composite design pattern is worked out
in [86]; [87] shows how to express the Visitor design pattern; and in the context of his Ph.D.
research, R. Wuyts declared some other design patterns as well: the Abstract Factory, Factory
Method, Singleton and Bridge pattern. In this subsection, we mention only two examples which
we encountered in our case study: the Composite and Factory Method design patterns.

Predicate name and arguments Meaning of the predicate
compositePattern(A,C,M) Abstract class A and composite class C conform to

the structure of the Composite design pattern
factoryMethod(C,M) Method M is a Factory Method for class C
.

Table 5.7: Some predicates provided by the design patterns layer.

Composite. We explain the Composite design pattern by means of a concrete example. The
Smalltalk implementation of SOUL contains an instance of the Composite design pattern in the
class hierarchy representing logic terms. Di�erent kinds of logic terms can be distinguished:
variables, constants, functors and term sequences. Term sequences are a special kind of terms
which represent a composition of other terms. This is indeed an occurrence of the Composite
pattern. The key to this pattern is an abstract class which represents both primitives and their
containers. For the term hierarchy, there is such a class: every kind of term is represented by a
class which inherits from an abstract superclass SOULAbstractTerm. In particular, term sequences
are represented by a class SOULTerms which inherits from that superclass. The class SOULTerms
contains an instance variable representing a collection of terms. As required by the abstract
superclass, it also implements a set of typical operations on terms such as interpretation and
the substitution of bindings. These operations on SOULTerms are implemented by methods which
recursively invoke the same method on each of the terms it contains and then combine the returned
results in the appropriate way. For more details on the Composite design pattern, we refer to [23,
p. 163].

This structural relationship between the composite class (in our example, SOULTerms) and the
abstract superclass (in our example, SOULAbstractTerm) can easily be codi�ed in a logic rule

compositePattern(Abstract, Composite, Message)

74 CHAPTER 5. THE ARCHITECTURAL FORMALISM

The third argument is optional and represents the name of the method on the composite class
that is recursively called on the components it contains.

Factory Method. We also explain the Factory Method design pattern on the basis of a concrete
example. In the Smalltalk implementation of SOUL, logic repositories are represented by the
abstract class SOULAbstractRepository or one of its subclasses. To provide some exibility
regarding the kinds of repositories that may be created, the SOUL developers avoided to state
the names of classes representing repositories explicitly into the code. Instead, a Factory Method
design pattern is used to create new instances of SOUL repositories. To this extent, a factory class
SOULFactory is de�ned which implements, amongst others, some methods to create repositories.
These methods are called Factory Methods. (The same factory class also contains some Factory
Methods for other SOUL-speci�c classes.) In order to instantiate the repository classes, these
creation methods directly refer to them. In all places in SOUL where repositories need to be
created, this is done indirectly by calling one of these Factory Methods, instead of directly invoking
an instance-creation method on a repository class.

The Factory Method pattern can easily be codi�ed by means of a logic predicate

factoryMethod(Class, Method)

A Factory Method is merely a Method which does nothing more than directly sending an instance-
creation message to some Class. This predicate can be used, amongst others, to �nd every
potential Factory Method for some Class, by verifying whether the method matches the pattern.
For more details on the Factory Method pattern, we refer to [23, p. 107].

The predicates in the design patterns layer express high-level design structures that are relevant
for most object-oriented languages. Although the concrete implementation of a design pattern may
depend on the chosen implementation language, the structure is largely language-independent.
Therefore, the same predicates (but possibly with a slightly di�erent implementation) may be
relevant for other object-oriented languages.

5.3.6 The architectural layer of the DFW

Finally, we turn our attention to the architectural layer of the declarative framework. Currently,
this layer contains only one sub-layer. Essentially, this sub-layer de�nes a whole range of predicates
that capture the most common ways of mapping architectural abstractions to implementation
artifacts and their dependencies.

Architectural mapping predicates

We structure our discussion of the predicates in this layer according to the di�erent kinds of
architectural abstractions. For each kind we discuss which prede�ned predicates are useful to
de�ne typical architectural mappings for those architectural abstractions. As before, some of
these predicates are largely independent of the chosen implementation language, whereas some
others are Smalltalk-speci�c.

Virtual classi�cations. We repeat that virtual classi�cations are computed sets of implemen-
tation artifacts. Such virtual classi�cations can be de�ned in many ways:

1. Directly, in terms of more primitive predicates de�ned by the lower-level layers:

� A predicate like findMethod (see coding conventions layer) can be used to �nd all
methods that match a certain pattern. Similar predicates can be de�ned in terms of
the patternMatch predicate to �nd all artifacts of other kinds (e.g., classes or instance
variables) that match a certain pattern.

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 75

� Some predicates of the implementation layer that reason about classes can be used to
compute a classi�cation consisting of classes. For example, we can use:

{ classInCategory to compute all classes that belong to some Smalltalk class cate-
gory;

{ hierarchy to compute all classes that belong to the hierarchy of some root class;

{ classImplementsMethodNamed to compute all classes that implement a method
with a certain name;

{ methodInProtocol to compute all classes that have at least one method in a given
method protocol.

� Some predicates of the implementation layer that reason about methods can be used
to compute a classi�cation consisting of methods. For example, we can use:

{ classImplementsMethod to compute all methods belonging to some class;

{ methodInProtocol to compute all methods that belong to a given method protocol.

� Some predicates of the implementation layer that reason about instance variables can
be used to compute a classi�cation consisting of instance variables. For example, we
can use:

{ instVar to compute all instance variables that belong to some class;

{ instVarFlattened to compute all instance variables that belong to some class or
one of its superclasses.

2. In terms of an already declared virtual classi�cation. This can either be done directly in
terms of the primitive predicate classifiedAs(ClassificationID,Artifact)which checks
whether a certain artifact belongs to a speci�ed classi�cation, or we can use a more high-level
predicate like

findClassesFromMethods(Class, ClassificationID)

which can be used to compute all classes that implement a method belonging to some
speci�ed classi�cation. A similar predicate

findMethodsFromClasses(Method, ClassificationID)

can be used to compute all methods that belong to a class in some speci�ed classi�cation.
Many other similar predicates can be de�ned.

3. By combining already de�ned classi�cations with operators such as union, intersection
and difference.

4. In terms of high-level dependencies among implementation artifacts. For example, we can
use:

� mentions M M to compute all methods that explicitly mention (or are mentioned by) a
certain method;

� invokes M M to compute all methods that invoke (or are invoked by) a given method;

� createsInstanceOf C C to �nd all classes that create an instance of (or are created
by) some other class.

All these predicates are summarized in Table 5.8, according to the same four categories.

76 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Predicate name and arguments Meaning of the predicate

Lower-level predicates in terms of which to de�ne virtual classi�cations
findMethod(C,M,P) method M of class C matches pattern P

classInCategory(Ca,Cl) class Cl belongs to class category Ca

hierarchy(Root,Cl) class Cl belongs to the hierarchy of class Root
classImplementsMethod(Cl,Me) method Me belongs to class Cl
classImplementsMethodNamed(Cl,MN,) class Cl implements a method with name MN
methodInProtocol(Cl,Pr,) class Cl has at least one method in protocol Pr
methodInProtocol(,Pr,Me) method Me belongs to method protocol Pr
instVar(Cl,IV) instance variable IV belongs to class Cl
instVarFlattened(Cl,IV) instance variable IV belongs to class Cl

or a superclass
.

Predicates that compute virtual classi�cations from already de�ned ones
classifiedAs(C,A) artifact A belongs to classi�cation C

findClassesFromMethods(Cl,C class Cl implements a method belonging
to classi�cation C

findMethodsFromClasses(Me,C) method Me belongs to a class in classi�cation C

findMetaClassesFromClasses(MC,C) MC is meta class of a class in classi�cation C

.

Predicates that implement operators on virtual classi�cations
union(C1,C2,A) artifact belongs to union of 2 classi�cations
intersection(C1,C2,A) artifact belongs to intersection of 2 classi�cations
difference(C1,C2,A) artifact belongs to di�erence of 2 classi�cations
.

High-level dependencies among implementation artifacts
asks M M(M1,M2) method M1 invokes method M2 and

uses the returned result afterwards
asks C M(C,M) some method of class C invokes method M and

uses the returned result afterwards
uses C M(C,M) class C has a method which uses method M

uses M E(M,E) expression E is used somewhere
inside the body of method M

invokes M M(M1,M2) method M1 invokes method M2

invokesMutator M M(M1,M2) method M1 invokes a (direct or indirect)
mutator method M2

specializes C C(C1,C2) class C1 is specialization of class C2
specializes M M(M1,M2) method M1 is specialization of method M2

concretizes M M(M1,M2) method M1 is concretization of method M2

hasPart C C(C1,C2) class C1 has instance of class C2 as part
isComposite C C(C1,C2) class C1 is special kind of class C2 and

contains instances of class C2
hasParameterType M C(M,C) method M has argument of type C
mentions M M(M1,M2) method M1 explicitly mentions the name

of method M2 in its body
createsInstanceOf M C(M,C) method M creates instance of class C
createsInstanceOf C C(C1,C2) class C1 creates instance of class C2
.

Table 5.8: Some architectural mapping predicates for de�ning virtual classi�cations and virtual
dependencies.

5.3. THE ARCHITECTURAL MAPPING LANGUAGE (AML) 77

Virtual dependencies. The last category of predicates in Table 5.8 describes high-level depen-
dencies among implementation artifacts. These predicates cannot only be used to de�ne virtual
classi�cations (as explained above), but also for de�ning virtual dependencies. Virtual dependen-
cies can represent simple implementation relationships that can be derived almost directly from
the source code such as message invocation (invokes M M) or inheritance (specializes C C).
More complex relationships such as class instantiation (createsInstanceOf M C) may depend
on the use of certain coding conventions (e.g., instance-creation methods belong to the `instance
creation' method protocol of a class) and design patterns.

Filters. The most frequently-used �lters are those which accept only artifacts of a certain kind
(i.e., base classes, meta classes, methods, instance variables, etc.). For example, baseClassFilter
accepts only base (i.e. non-meta) Smalltalk classes and a methodFilter succeeds only for Smalltalk
methods. The name of these �lters suggest the kind of artifacts they accept. There are also two
trivial �lters: identityFilter is the trivial �lter which accepts all artifacts and forgetfulFilter
is the trivial �lter which rejects all artifacts. Table 5.9 lists all these �lters.

Predicate name and arguments Meaning of the predicate
identityFilter(Artifact) accepts any Artifact (always succeeds)
forgetfulFilter(Artifact) accepts nothing (always fails)
classFilter(Artifact) accepts only classes (either base or meta classes)
baseClassFilter(Artifact) accepts only base classes
metaClassFilter(Artifact) accepts only meta classes
methodFilter(Artifact) accepts only methods
instVarFilter(Artifact) accepts only instance variables
.

Table 5.9: Some architectural mapping predicates representing prede�ned �lter predicates.

Ports that represent actions or processes are typically mapped to method �lters. Ports that
represent types are typically mapped to class �lters. Ports that represent data are often mapped
to instance variable �lters. In addition to these general prede�ned �lters, it is possible for an
architect to de�ne his or her own domain-speci�c �lters. An example of this will be given in
Section 7.2.

Given a �lter and a virtual classi�cation, the following second-order logic predicate can be used
to generate artifacts that belong to the classi�cation and satisfy the �lter:

filteredIsClassifiedAs(Classification, Filter, Artifact) :-

classifiedAs(Classification, Artifact),

Filter(Artifact).

Quanti�ers. Quanti�ers specify how to generalize a relationship among artifacts to a relation-
ship among sets of artifacts. The DFW provides prede�ned predicates representing the set quan-
ti�ers 8 and 9 as well as some special versions of these predicates which report special information
to the user in case of failure. Table 5.10 summarizes these prede�ned quanti�er predicates. All
these quanti�er predicates are very general second-order predicates that are independent of the
chosen implementation language.

In our experiments we only used the 8 and 9 quanti�ers. Therefore, they are the only ones
that have been implemented in the DFW (as well as their `debug' versions). In addition to these
prede�ned quanti�er predicates, other useful examples of quanti�er predicates are:

� existsUnique applies the Test predicate one by one to each of the generated values. The
application should succeed for exactly one of the generated values.

78 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Predicate name and arguments Meaning of the predicate
forall(Generator,Test) does Test(X) hold 8 X that satisfy Generator(X)

exists(Generator,Test) 9 X that satis�es Generator(X) and Test(X)

forallDebugOne(Generator,Test) same as forall, but reports �rst failure on console
forallDebugAll(Generator,Test) same as forall, but reports all failures on console
existsDebug(Generator,Test) same as exists, but reports all generated values on

console in case of failure
.

Table 5.10: Some architectural mapping predicates representing prede�ned quanti�er predicates.

� Other predicates could be imagined that represent various quanti�ers, cardinalities or mul-
tiplicities (2 or more, between 3 and 5, less than 4, more than half, . . .), UML quali�ers or
quali�ed associations, and so on.

5.4. FORMAL DEFINITIONS 79

5.4 Formal de�nitions

In this section we formalize our approach to architectural conformance checking in four steps:

1. we formalize the ADL by de�ning the structure of well-formed conceptual architectures
(Subsection 5.4.2);

2. we formalize the architectural abstraction language by de�ning the di�erent kinds of archi-
tectural abstractions in terms of implementation artifacts (Subsection 5.4.3);

3. we formalize the architectural instantiation language by de�ning mapping functions from
ADL constructs to architectural abstractions (Subsection 5.4.4);

4. we formalize the conformance checking algorithm by de�ning a denotational semantics which
maps conceptual architectures to Boolean values (Subsection 5.4.5).

The purpose of the formalization is to de�ne the semantics of a conceptual architecture A in
terms of the implementation I to which it is mapped. Because we are merely interested in the
result of performing a conformance check and not in how it is actually achieved, we use a denota-
tional semantics [59]. The semantics of a conceptual architecture is a truth value which indicates
whether or not the implementation conforms to the architecture.6 Before de�ning this semantic
function and the domains on which it operates, we present some notations that are needed in our
formalization.

5.4.1 Notations

Total function.
The domain of all total functions from A to B is denoted as A! B.

Whereas a total function f : A ! B maps every element of A to an element of B, partial
functions may be unde�ned for some elements of the function domain A.

Partial Function.
The domain of all partial functions from A to B is denoted as A ,! B.

Because total functions are a special case of partial functions, sometimes we simply use the term
`function' when we actually mean `partial function'.

Domain and range.
Let f : A ,! B;
The function domain of f is de�ned as: dom(f) = f a 2 A j 9 b 2 B : f(a) = b g
The range of f is de�ned as: range(f) = f b 2 B j 9 a 2 A : f(a) = b g

Note that for a total function f : A! B, dom(f) = A.

Injective, surjective and bijective functions.
A function f : A ,! B is injective , 8 a1; a2 2 A : f(a1) = f(a2)) a1 = a2.
A function f : A ,! B is surjective , range(f) = B.
A function f : A ,! B is bijective , f is injective and f is surjective.

A function is said to be �nite if its domain is �nite.

6In an industrial-strength tool, we would like to have some more information on the result of a conformance
check. More precisely, when conformance checking fails (i.e., when the semantic function returns false), we would
like to know where and why the conformance conict occurred. We will come back to this issue in Section 7.4,
where we show how the conformance checking algorithm can be enhanced to generate such information.

80 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Finite Function.
The domain of all �nite partial functions from A to B is de�ned as:
A ,!fin B = f f : A ,! B j dom(f) is �nite g

Note that, if f 2 A ,!fin B then range(f) is also �nite.
The restriction of a function to a subset of its function domain is de�ned as follows:

Restriction.
Let f : A ,! B and D � A;

fjD : D ,! B : d 7! f(d)

In addition to these notations for denoting functions, we need the following notations for
denoting the powerset of some set (i.e., the set of all subsets of some set).

Powerset.
The powerset of a set A is denoted and de�ned as:
P(A) = f K j K � A g

The �nite powerset of a set A is the set of all �nite subsets of A:
Pfin(A) = f K j K is �nite and K � A g

N denotes the set of all natural numbers (i.e., positive integers) and N0 is the set of all non-zero
natural numbers.

Natural numbers.
N = f0; 1; 2; 3; : : :g
N0 = N n f0g = f1; 2; 3; : : :g

Finally, the symbol + represents string concatenation and � generalizes this notation over
domains of strings. More precisely, A � B is the domain of all strings which are a concatenation
of a string in A with a string in B.

Sring concatenation.
+ : String � String ! String : (a; b) 7! s such that s is the string concatenation of a and b.

� : P(String)�P(String)! P(String) : (A;B) 7! f a+ b j a 2 A ^ b 2 B g

5.4.2 Formalizing the architecture description language

We formalize the ADL by de�ning domains7 representing the di�erent parts of a conceptual
architecture and by de�ning well-formedness constraints on the elements of those domains.

ADL Syntax

To simplify the formalization, we assume that every entity in a conceptual architecture (i.e.,
an architectural view, concept, relation, port or role) is uniquely identi�ed by its name. This
assumption is somewhat over-restrictive, though. It would su�ce to assume that every entity has
a name which is unique in its scope (as we did in Section 5.2). For example, it should be allowed for
two ports to have the same name, as long as they belong to a di�erent concept. (For example, in
Figure 4.4 on page 46, both the concept User Application and Auxiliary Application have a
port named Type, but this causes no confusion as the concepts themselves have di�erent names.)
In such cases a unique name can always be constructed by appending the name of the nested

7We describe the syntax in terms of domains, rather than using BNF or some other notation, because we need
these domains when de�ning our denotational semantics.

5.4. FORMAL DEFINITIONS 81

entity to the unique name of the entity in which it is nested. (Applying this to Figure 4.4 would
mean that we should qualify the concepts named `User Application' and `Auxiliary Application'
with the pre�x `User Interaction.' representing the name of the architectural view. The `Type'
port of each of these concepts should be pre�xed with `User Interaction.User Application.' or
`User Interaction.Auxiliary Application.' representing the unique name of the concept.) Hence, we
adopt the following naming convention, where String denotes the set of all possible alphanumerical
character strings.

Names.
ArchName [V iewName [ConceptName [RelName[PortName [RoleName � String

ArchName \ V iewName \ ConceptName \ RelName\ PortName \ RoleName = ;

As explained in Section 5.2, we de�ne a conceptual architecture as a name space of architectural
views. This name space is �nite: intuitively, a conceptual architecture consists of a �nite set of
architectural views. A conceptual architecture also has a unique name. This is expressed by the
injectiveness constraint on ArchName.

Conceptual architecture.
The domain of all conceptual architectures is:
Architecture = ArchName� (V iewName ,!fin V iew)
where the �rst projection function is injective on Architecture.

For a given conceptual architecture A 2 Architecture, archName(A) returns the name of that
conceptual architecture; views(A) denotes the (�nite) set of all architectural views belonging to
A; viewA(n) returns the unique architectural view with name n in A.

Architecture selectors.
archName : Architecture ,! ArchName : (N; f) 7! N

views : Architecture ,! Pfin(V iew) : (N; f) 7! range(f)

Let A = (N; f) 2 Architecture;
viewA : V iewName ,!fin V iew : n 7! f(n)

An architectural view consists of a �nite set of concepts, a �nite set of relations, and a �nite
set of links between them.

Architectural view.
The domain of all architectural views is:
V iew = Pfin(Concept)�Pfin(Relation)�Pfin(Link)

Of course, the links in an architectural view should connect only (ports of) concepts and (roles of)
relations that belong to that architectural view. Later on, we will express this as a well-formedness
constraint on architectural views.

We use the notations concepts(V), relations(V) and links(V) to retrieve the di�erent parts
of some architectural view V 2 V iew. They correspond to the �rst, second and third projection
functions.

View selectors.
concepts : V iew ! Pfin(Concept) : (C;R;L) 7! C

relations : V iew ! Pfin(Relation) : (C;R;L) 7! R

links : V iew ! Pfin(Link) : (C;R;L) 7! L

82 CHAPTER 5. THE ARCHITECTURAL FORMALISM

In an architectural view, every concept has a unique name and a �nite set of ports de�ning
the external interface of that concept. Uniqueness of the name is again expressed by an injectivity
constraint. Relations are similar to concepts, the only di�erence being that they contain a set of
roles instead a set of ports.

Concepts.
Concept = ConceptName�Pfin(Port)
where ConceptName = ArchName � f0:0g � V iewName � f0:0g � LocConcName

and LocConcName � String

and the �rst projection function is injective on Concept.

Relations.
Relation = RelName�Pfin(Role)
where RelName = ArchName � f0:0g � V iewName � f0:0g � LocRelName

and LocRelName � String

and the �rst projection function is injective on Relation.

The `.' symbol is used as part of a string to denote the nesting of concepts or relations in archi-
tectural views. Note that the de�nition ConceptName = ArchName � f0:0g � V iewName �
f0:0g � LocConcName does not conict with the earlier restrictions put on ConceptName when
we de�ned the naming conventions. Instead, it re�nes those earlier restrictions with an extra
constraint. Concept names are globally unique and local concept names are unique with respect
to an architectural view. The same remark holds for relation names.

We use the notations concName(c), relName(r), ports(c) and roles(r) to retrieve the di�erent
parts of some concept c or relation r. Again, these selector functions are mere projections.

Element selectors.
concName : Concept! ConceptName : (n; P) 7! n

ports : Concept! Pfin(Port) : (n; P) 7! P

relName : Relation! RelName : (n;R) 7! n

roles : Relation! Pfin(Role) : (n;R) 7! R

To retrieve a concept or relation with a certain name from some conceptual architecture A,
the following functions can be used.

Architecture selectors (2).
Let A 2 Architecture;

conceptA : ConceptName ,!fin Concept : n 7! c

such that 9 V 2 views(A) : c 2 concepts(V) ^ concName(c) = n

relationA : RelName ,!fin Relation : n 7! c

such that 9 V 2 views(A) : r 2 relations(V) ^ relName(r) = n

Note that the concept c and relation r in the above de�nition are uniquely de�ned, because every
concept and relation have a unique name. Also note that both selector functions are �nite partial
functions. Partial because not every possible concept name (resp. relation name) necessarily has a
concept (resp. relation) assigned to it. Finite because every conceptual architecture has a �nite set
of architectural views and every architectural view contains a �nite set of concepts and relations.

If we are interested in knowing all concepts or relations that belong to some conceptual archi-
tecture A, we can use the following shortcuts:

5.4. FORMAL DEFINITIONS 83

Architecture shortcuts.
Let A 2 Architecture;

ConceptsA = range(conceptA)
RelationsA = range(relationA)

Note that ConceptsA 2 Pfin(Concept) and RelationsA 2 Pfin(Relation).

Ports and roles are characterized by their name only, which is a concatenation of their local
name and the name of the architectural element in which they are nested.

Ports.
Port = PortName

where PortName = ConceptName � f0:0g � LocPortName

and LocPortName = String

Ports.
Role = RoleName

where RoleName = RelName � f0:0g � LocRoleName

and LocRoleName = String

Similar to the construction of names for concepts and relations, the name of a port is constructed
by appending its local name to the name of the concept to which it belongs. Again, we note
that this de�nition only re�nes our earlier naming conventions, and that port names are globally
unique and local port names are unique with respect to the concept to which they belong. The
same remark holds for role names.

To retrieve the names of concept ports or relation roles, we use the functions portName and
roleName which are mere identity functions.

Port and role selectors.
portName : Port! PortName : p 7! p

roleName : Role! RoleName : r 7! r

Finally, we de�ne links between ports and roles as couples that associate a port with a role.

Links.
Link = Port�Role

Note that a link is uniquely de�ned by a port and a role. In other words, there can be only one
link between a port and a role. However, it is allowed for multiple roles to be associated with the
same port and vice versa (via di�erent links). Also note that links have no direction associated
with them. They just connect a port to a role.

We will use the projection functions port(l) and role(l) to retrieve the di�erent parts of some
link l 2 Link.

Link selectors.
port : Link ! Port : (p; r) 7! p

role : Link ! Role : (p; r) 7! r

To �nd a port or role with a certain name in some conceptual architecture A, or to �nd the
(unique) link between some port and role, we can use the functions below. The functions are
well-de�ned, because the de�nitions of ports and roles imply that there can be only one port or
role associated with a certain name.

84 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Architecture selectors (3).
Let A 2 Architecture;

portA : PortName ,!fin Port : n 7! p

such that 9 V 2 views(A) : 9 c 2 concepts(V) : p 2 ports(c) ^ portName(p) = n

roleA : RoleName ,!fin Role : n 7! r

such that 9 V 2 views(A) : 9 rel 2 relations(V) : r 2 roles(rel) ^ roleName(r) = n

linkA : Port �Role ,!fin Link : (p; r) 7! l = (p; r)
such that 9 V 2 views(A) : l 2 links(V)

Note again that both selector functions portA and roleA are �nite partial functions. Partial
because not every possible port name (resp. role name) necessarily has a port (resp. role) in A

assigned to it. Finite because every conceptual architecture has a �nite set of architectural views,
every architectural view contains a �nite set of concepts (resp. relations), and every concept (resp.
relation) has a �nite set of ports (resp. roles). The selector function linkA is also a �nite partial
function. Finite because A has a �nite set of architectural views, each with a �nite set of links.
Partial because not every port and role are linked.

If we are interested in knowing all ports, roles or links that belong to some conceptual archi-
tecture A, we can use the following shortcuts:

Architecture shortcuts (2).
Let A 2 Architecture;

PortsA = range(portA)
RolesA = range(roleA)
LinksA = range(linkA)

Note that PortsA 2 Pfin(Port), RolesA 2 Pfin(Role) and LinksA 2 Pfin(Link).

Well-formedness of the ADL

For the above de�nitions to be well-formed, some extra constraints need to be satis�ed. First
of all, an architectural view is well-formed if there exists no other architectural view with the
same name in the conceptual architecture (which is always satis�ed, thanks to the de�nition of a
conceptual architecture) and if the links for that architectural view only mention ports of concepts
and roles of relations that belong to the same view.

Well-formed architectural view.
Let A 2 Architecture and V 2 views(A);

V is well-formed if 8 l 2 links(V):
(9 c 2 concepts(V) : port(l) 2 ports(c)) ^ (9 r 2 relations(V) : role(l) 2 roles(r))

A concept (resp., relation) is well-formed if its name is consistent with the view and conceptual
architecture to which it belongs. In other words, the view name and architecture name mentioned
as a pre�x in the concept's (resp., relation's) full name must be the one of the view and architecture
in which it is nested.

Well-formed concept.
Let A 2 Architecture and c 2 Concept;

c is well-formed in A if
concName(c) = archName(A) + 0:0 + viewName + 0:0 + locConcName

where viewName 2 V iewName and c 2 concepts(viewA(viewName))
and locConcName 2 LocConcName

5.4. FORMAL DEFINITIONS 85

Well-formed relation.
Let A 2 Architecture and r 2 Relation;

r is well-formed in A if
relName(c) = archName(A) + 0:0 + viewName + 0:0 + locRelName

where viewName 2 V iewName and r 2 relations(viewA(viewName))
and locRelName 2 LocRelName

Similarly, a port is well-formed if its name is consistent with the name of the concept to which
it belongs. In other words, the concept name mentioned in the port's full name must be the one
of the concept in which the port is nested.

Well-formed concept port.
Let A 2 Architecture and p 2 Port;

p is well-formed in A if
portName(p) = concName + 0:0 + locPortName

where concName 2 ConceptName and p 2 ports(conceptA(concName))
and locPortName 2 LocPortName

Note that in the well-formedness constraint for ports, we do not need to check the view and
architecture in which the port occurs, as this is already checked by the well-formedness constraint
for concepts.

The well-formedness constraint for roles is very similar.

Well-formed relation role.
Let A 2 Architecture and r 2 Role;

r 2 Role is well-formed in A if
roleName(r) = relName + 0:0 + locRoleName

where relName 2 RelName and r 2 roles(relationA(relName))
and locRoleName 2 LocRoleName

For the above well-formedness constraints to be unambiguously de�ned, we must assume that
view names and local names of concepts, relations, ports or roles are not allowed to contain
the symbol `.'. Otherwise, there may be multiple solutions for the name equality. For example,
consider the equality concName(c) = archName + 0:0 + viewName + 0:0 + localConceptName.
If the concept c would have name `a.b.c.d', it is not clear whether the name of the conceptual
architecture would be `a' or `a.b'; whether the name of the view would be `b', `c', or even `b.c';
and so on. To solve this problem we need to impose an additional well-formedness constraints on
names: for local names, view names and names of conceptual architectures it is not allowed to use
strings that contain the symbol `.'. NoDotString denotes the set of all alphanumeric character
strings that do not contain the character `.'.

Well-formed names.
ArchName [V iewName [LocConcName [LocRelName [LocPortName [LocRoleName

� NoDotString � String

5.4.3 Formalizing the architectural abstraction language

In this subsection, we de�ne the di�erent constructs of the architectural abstraction language:
virtual classi�cations, virtual dependencies, �lters, and quanti�ers. These constructs are inter-
mediary abstractions to de�ne the mapping of architectural entities to an implementation. To
keep things simple, we formalize an implementation I as a set of implementation artifacts in some
programming language L.

86 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Implementation artifact.
For some programming language L,
ArtifactL denotes the domain of all possible implementation artifacts in that language L.

We do not give a formal de�nition of ArtifactL, as this strongly depends on the chosen program-
ming language L. In general, an implementation artifact a 2 ArtifactL is a well-de�ned language
construct in language L. For example if L = Smalltalk than ArtifactL is the set of all possible
classes, methods, instance variables, etc.

An implementation in programming languageL is a �nite set of implementation artifacts in that
language. Of course, not every set of implementation artifacts constitutes a valid implementation.
Extra constraints are needed to specify when an implementation is well-formed. We do not formally
de�ne these constraints, as they strongly depend on the programming language. One example of
such a constraint on Smalltalk implementations is that there can be no two classes with the same
name.

Implementation.
The domain of all implementations in some programming language L is de�ned as:

ImplementationL = Pfin(ArtifactL)

Note that the above de�nitions of `implementation' and `implementation artifact' are very gen-
eral. In fact, there is no need to restrict ourselves to implementation artifacts and programming
languages. The same de�nitions would remain valid for, for example, design artifacts and design
languages. Our formalism is entirely independent of the chosen base language. However, because
the main focus of this dissertation is on checking architectural conformance of an implementation,
we prefer to talk about `implementations' and `implementation artifacts'.

We formally de�ne a software classi�cation for some implementation I in programming lan-
guage L as a �nite set of implementation artifacts belonging to that implementation. (The set is
�nite because the implementation itself is already �nite.)

Software classi�cation.
The domain of all software classi�cations for some implementation I 2 ImplementationL in some
programming language L is de�ned as:

ClassificationI;L = Pfin(I)

We do not make a distinction between virtual and ordinary software classi�cations. Whereas
ordinary classi�cations are de�ned extensionally, virtual classi�cations are declared intentionally
and can be computed `by need'. Of course, we could formalize virtual classi�cations as functions
that compute a set of implementation artifacts upon invocation (rather than de�ning them directly
as a set of implementation artifacts). The main purpose of the formalization, however, is to
rigorously de�ne the semantics of a conceptual architecture in terms of the implementation to
which it is mapped. Whether or not to represent classi�cations intentionally is not relevant in
such a denotational semantics.

We de�ne �lters as functions that take a classi�cation of implementation artifacts as input and
return a subset of their input.

Filters.
The domain of all �lters for some implementation I 2 ImplementationL in some programming
language L is de�ned as:

FilterI;L =
fF 2 ClassificationI;L ! ClassificationI;L j 8 C 2 ClassificationI;L : F (C) � C g

5.4. FORMAL DEFINITIONS 87

Intuitively, virtual dependencies represent relationships over implementation artifacts in some
programming language L. Formally, a relationship is a set of tuples on some domain of values.

Relation.
The domain of all relationships on some domain of values A is de�ned as:

RelationshipA =
S
n2N0

RelationshipA;n where RelationshipA;n = P(An)

Using the above de�nition, we formalize a virtual dependency as a relationship on implemen-
tation artifacts.

Virtual dependencies.
The domain of all virtual dependencies for some implementation I 2 ImplementationL in pro-
gramming language L is de�ned as:
DependencyI;L = RelationshipI

The domain of all n-ary virtual dependencies for some implementation I 2 ImplementationL in
programming language L is de�ned as:
DependencynI;L = RelationshipI;n where n 2 N0

To determine the arity of a virtual dependency, we provide the following function:

Arity.
Let L be some programming language and I 2 ImplementationL;
arity : DependencyI;L ! N0 : d 7! n such that d 2 DependencynI;L

Finally, we formalize the notion of quanti�ers. Intuitively, a quanti�er is a second-order func-
tion which takes two inputs:

1. a (�rst-order) function �x:f(x) 2 ArtifactL ! Boolean which takes as input an implemen-
tation artifact x and returns a Boolean;

2. a set C 2 ClassificationI;L of implementation artifacts.

It applies the function �x:f(x) to each of the implementation artifacts x 2 C, and combines
all returned (Boolean) results to produce a new Boolean value. In general, the domain of all
quanti�ers can be de�ned as follows:

Quanti�ers.
The domain of all quanti�ers for some implementation I 2 ImplementationL in some program-
ming language L is de�ned as:

QuantifierI;L = (ClassificationI;L � (ArtifactL ! Boolean))! Boolean

For example, a quanti�er corresponding to `8' takes the conjunction of all results, and a
quanti�er corresponding to `9' takes the disjunction of all results:

Prede�ned quanti�ers.
Let L be some programming language and I 2 ImplementationL;

ForallI;L : (ClassificationI;L � (ArtifactL ! Boolean))! Boolean : (C; �x:f(x)) 7!
^

x2C

f(x)

ExistsI;L : (ClassificationI;L � (ArtifactL ! Boolean))! Boolean : (C; �x:f(x)) 7!
_

x2C

f(x)

88 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Other quanti�ers can be de�ned in a similar way. For example, a quanti�er ExistsUniqueI;L cor-
responding to the quanti�er symbol `9!' takes the exclusive disjunction (i.e., `xor') of all expressions
f(x) for all x 2 C.

When checking conformance, quanti�ers are used to apply virtual dependencies over software
classi�cations. Unfortunately, virtual dependencies are modeled as sets of tuples, whereas quanti-
�ers expect a unary Boolean function as input. Therefore, we need a way of transforming virtual
dependencies into such unary Boolean functions. We will do this by translating a relationship R

into a `curried' function �xn : : : �x2:�x1:f(x1; x2; : : : ; xn) such that f(x1; x2; : : : ; xn) is true if and
only if (x1; x2; : : : ; xn) 2 R. Instead of taking its arguments all at once, a curried function con-
sumes its arguments one by one. Note that we also reverse the order of the arguments, requiring
the last argument to be input �rst; we will explain later why we do this.

Currying.
Let A be some domain of values;

We recursively de�ne the following domains of `curried' Boolean functions on A:
CurriedFunctionA;1 = A! Boolean

CurriedFunctionA;n = A! CurriedFunctionA;n�1 8 n > 1

The following function transforms relationships into curried Boolean functions:
curryA;n : RelationshipA;n ! CurriedFunctionA;n : R 7! �xn : : : �x2:�x1:f(x1; x2; : : : ; xn)
where f(x1; x2; : : : ; xn) = True , (x1; x2; : : : ; xn) 2 R

5.4.4 Formalizing the architectural instantiation language

Now that we have formally de�ned the domains of the ADL and of the architectural abstraction
language, we can de�ne the architectural instantiation language as a set of mapping functions from
architectural entities (in the ADL) to architectural abstractions (in the architectural abstraction
language):

Architectural instantiation.
Let L be some programming language, I 2 ImplementationL and A 2 Architecture;

conceptMappingAI;L : Concept ,!fin ClassificationI;L
portMappingAI;L : Port ,!fin FilterI;L
relationMappingAI;L : Relation ,!fin DependencyI;L
roleMappingAI;L : Role ,!fin N0

linkMappingAI;L : Link ,!fin QuantifierI;L

Note that these mapping functions are parameterized by the architecture A and implementation
I of some software system under consideration (as well as by the programming language L). Also
note that the mapping functions are partial functions. For example, consider the concept mapping.
All concepts that do not belong to some architectural view of conceptual architecture A are not
mapped to anything. The same holds for the port mapping, relation mapping, role mapping and
link mapping. They are also �nite because every architecture has a �nite number of architectural
views, each with a �nite number of concepts, relations, ports, roles and links.

In order for an architectural instantiation to be well-formed, we need to specify some additional
well-formedness constraints on the above mapping functions. For example, regarding the role
mapping, we must ensure that for every architectural relation:

� every role of that relation is mapped to a number between 1 and the total numbers of roles
belonging to that relation;

� every role is mapped to a unique number: no two relation roles can have the same number;

� there are no numbers left unassigned: every number has a role mapped to it.

5.4. FORMAL DEFINITIONS 89

All these constraints can be captured in a single bijectiveness constraint between the set of roles
belonging to the relation and the set f1,. . . ,ng, where n is the total number of roles belonging to
the relation.

Well-formed role mapping.
Let L be some programming language, I 2 ImplementationL and A 2 Architecture;

8r 2 RelationsA : roleMappingAI;L j roles(r)
: roles(r)! f 1; : : : ; jroles(r)j g is bijective

Regarding the relation mapping, we must ensure that every relation is mapped to a virtual
dependency of which the arity is equal to the total number of roles belonging to the relation.

Well-formed relation mapping.
Let L be some programming language, I 2 ImplementationL and A 2 Architecture;

8r 2 RelationsA : jroles(r)j = arity(relationMappingAI;L(r))

Of course, we also require that every entity (i.e., concept, port, relation, role or link) in some
architectural view is mapped to exactly one architectural abstraction. Because the mapping func-
tions are functions, it is trivial that no more than one architectural abstraction can be associated
with such an entity. However, because the mapping functions are partial, we do need to ensure
that there every architectural entity in a conceptual architecture has an architectural abstraction
associated with it.

Well-formed architectural instantiation.
Let L be some programming language, I 2 ImplementationL and A 2 Architecture :

conceptMappingAI;L(c) is de�ned , c 2 ConceptsA
relationMappingAI;L(r) is de�ned , r 2 RelationsA
linkMappingAI;L(l) is de�ned , l 2 LinksA
portMappingAI;L(p) is de�ned , p 2 PortsA
roleMappingAI;L(r) is de�ned , r 2 RolesA

5.4.5 Formalizing architectural conformance checking

In essence, checking conformance of an implementation I to a conceptual architecture A involves
not much more than the transformation of A into a logical expression. (As we will see, the
constructed expression is not �rst-order but second-order, because it contains some second-order
variables representing quanti�ers.) The truth value of the constructed expression indicates whether
the implementation I is conform to the conceptual architecture A. In this subsection, we formalize
the construction of such a logical expression in terms of a semantic function []I;L on conceptual
architectures. Note that the semantic function is parameterized with the implementation I under
consideration, as well as with the programming language L.

Architectural conformance.
An implementation I in programming language L conforms to a conceptual architecture A
, [A]I;L = True

We de�ne this semantic function []I;L compositionally. More precisely, the semantics of
conceptual architectures is de�ned in terms of the semantics of architectural views, which is in
turn de�ned in terms of the semantics of architectural relations.

Because a conceptual architecture consists of multiple architectural views, we de�ne the se-
mantics of a conceptual architecture in terms of the semantics of its architectural views. More
precisely, for some conceptual architecture A, [A]I;L is the conjunction of all [V]

A
I;L for all

90 CHAPTER 5. THE ARCHITECTURAL FORMALISM

architectural views V belonging to A. This formalizes the intuition that an implementation is
conform to some conceptual architecture A if and only if it is conform to each architectural view
in A.

Semantics of conceptual architectures.
Let L be some programming language, I 2 ImplementationL and A 2 Architecture;

[A]I;L =
V
V 2views(A) [V]AI;L

Note that this de�nition implies that the semantics of an empty conceptual architecture (i.e., one
with no architectural views) is always true. In other words, every implementation is conform to a
conceptual architecture that does not contain any architectural view.

The semantics of an architectural view V can be de�ned in terms of the semantics of the
architectural relations in that view. More precisely, for some architectural view V , [V]

A
I;L is the

conjunction of all [r]A;VI;L for all architectural relations r in V . This formalizes the intuition that
an implementation is conform to some architectural view if and only if it satis�es the constraints
expressed by each of the architectural relations in that view.

Semantics of architectural views.
Let L be some programming language, I 2 ImplementationL, A 2 Architecture

and V 2 views(A);

[V]
A
I;L =

V
r2relations(V) [r]

A;V
I;L

This de�nition implies that the semantics of an architectural view which contains no architectural
relations is always true, regardless of whether or not it does contain architectural concepts. In other
words, every implementation is in conformance with an architectural view without architectural
relations. This is because in our architecture language, architectural relations are the only way to
impose high-level constraints over implementation artifacts. If there are no architectural relations,
the implementation does not need to satisfy any architectural constraint.

Finally, we need to de�ne the semantic function on architectural relations. However, because
this de�nition will be rather elaborate we �rst de�ne an auxiliary function h iAI;L to compute

the semantics of a concept or a port.8 Intuitively, the semantics of an architectural concept c is
the set of implementation artifacts that is described by the classi�cation to which that concept is
mapped.

Semantics of architectural concepts.
Let L be some programming language, I 2 ImplementationL, A 2 Architecture

and c 2 ConceptsA;

h c iAI;L = conceptMappingAI;L(c)

Note that it is not prohibited for the classi�cation associated with c to be empty. In that case
the semantics of c is the empty set. Also note that the concept mapping is unde�ned for concepts
that do not belong to A.

The semantics of a port p of concept c is the set of all implementation artifacts belonging to
that concept (or more precisely, to its semantics), �ltered by some �lter F to which the port p is
mapped.

8We use a di�erent notation for this semantic function because it does not return a Boolean, but a software
classi�cation.

5.4. FORMAL DEFINITIONS 91

Semantics of concept ports.
Let L be some programming language, I 2 ImplementationL, A 2 Architecture,
c 2 ConceptsA and p 2 ports(c);

h p iAI;L = F (h c iAI;L) where F = portMappingAI;L(p)

Again, we note that the semantics of the port can be the empty set if the classi�cation associated
with the port's concept is empty (or if the �lter associated with the port rejects all artifacts in
the classi�cation).

Now that we have de�ned these auxiliary semantic functions on architectural concepts and
ports, we can �nally de�ne the semantics of architectural relations. We �rst give a formal de�nition.
Then we intuitively explain the di�erent parts of the de�nition.

Semantics of architectural relations.
Let L be some programming language, I 2 ImplementationL, A 2 Architecture,
V 2 views(A) and r 2 relations(V);

Let n = jroles(r)j and F = curryI;n(relationMappingAI;L(r));

8 i 2 f1; : : : ; ng, let rolei 2 roles(r) such that roleMappingAI;L(rolei) = i;

8 i 2 f1; : : : ; ng, let Portsi = f p j (p; rolei) 2 links(V) g;

[r]
A;V
I;L =

W
p12Ports1

Qp1(Cp1 ;
W
p22Ports2

Qp2(Cp2 ; : : : ;
W
pn2Portsn

Qpn(Cpn ; F) : : :))

where Cpi = h pi i
A
I;L

and Qpi = linkMappingAI;L((pi; rolei))

Now, let us take a closer look at this de�nition. We want to compute the semantics of some
architectural relation r which has n roles. This relation r is mapped to a virtual dependency R.
From the well-formedness constraint on relation mappings we know that R has arity n. We then
transforming R into a curried function F = �xn : : : �x2:�x1:f(x1; x2; : : : ; xn). The semantics of
the relation r is the expression f(x1; : : : ; xn) with the xi's bound to the appropriate values.

So let us explain to which values each of the variables xi will be bound. The purpose of the
role mapping is to associate every role of r with exactly one of the arguments xi of R. Let rolei
be the role that corresponds to argument xi. From the well-formedness constraint on the role
mappings, we know that this role is uniquely de�ned. If this rolei is linked to a single port pi (we
will explain later what happens if rolei is linked to multiple ports), we want to consider as set of

values for xi the �ltered classi�cation Cpi to which pi is mapped. Note that h pi i
A
I;L is de�ned to

compute this classi�cation. So the semantics of r is the expression f(x1; : : : ; xn), where xi 2 Cpi

for each i 2 f1; : : : ; ng.
But how do we apply the xi 2 Cpi over the expression f(x1; : : : ; xn)? This is determined by the

quanti�er Qpi to which the link between rolei and port pi is mapped. For example, if Qpi is the
ForallI;L quanti�er, we evaluate the expression f(x1; : : : ; xn) for each xi 2 Cpi . In other words,
we take the conjunction of all expressions that are obtained by substituting xi in f(x1; : : : ; xn)
one by one for each of the values in Cpi . So the semantics of r is the expression

Qp1(Cp1 ; Qp2(Cp2 ; : : : ; Qpn(Cp1 ; �xn : : : �x2:�x1:f(x1; x2; : : : ; xn)) : : :))

where each Qpi is the quanti�er associated with the link between port pi and rolei and where each

Cpi = h pi i
A
I;L.

The only thing we did not yet take into account is that rolei may be linked to more than one
port pi. So we de�ne Portsi as the set of all ports pi to which rolei is linked. Now, recall from
Subsections 4.2.2 and 5.2 that when multiple ports are linked to the same role, this is interpreted
as a disjunction. Therefore, for each xi 2 Cpi we need to take the the disjunction over all ports

92 CHAPTER 5. THE ARCHITECTURAL FORMALISM

pi 2 Portsi, which �nally yields the expression

_

p12Ports1

Qp1(Cp1 ;
_

p22Ports2

Qp2(Cp2 ; : : : ;
_

pn2Portsn

Qpn(Cpn ; F) : : :))

As a concrete example of the semantic function on architectural relations, consider the archi-
tectural relation r = Is Created By on Figure 5.2 of page 61. It has a port named `Created', which
is connected to the architectural concept `Auxiliary Application', and a port named `Creator',
which is connected to the architectural concepts `User Application' and `Auxiliary Application'.
In other words, for this relation r, we have:

n = 2

F = �x2:�x1:isCreatedByC;C(x1; x2)

role1 = `UserInteraction.IsCreatedBy.Created'

role2 = `UserInteraction.IsCreatedBy.Creator'

Ports1 = f `UserInteraction.AuxiliaryApplication.Type' g

Ports2 = f`UserInteraction.UserApplication.Type',`UserInteraction.AuxiliaryApplication.Type'g

QUserInteraction:AuxiliaryApplication:Type1 = ForallI;L

QUserInteraction:UserApplication:Type2 = ExistsI;L

QUserInteraction:AuxiliaryApplication:Type2 = ExistsI;L

Hence, the semantics of r = Is Created By is the expression

ForallI;L(CAux; (ExistsI;L(CUser ; F) _ ExistsI;L(CAux; F))

where CUser is the set of artifacts in the virtual classi�cation to which the `User Application'
concept is mapped and CAux is the set of artifacts in the virtual classi�cation to which the
`Auxiliary Application' concept is mapped. By substituting the de�nitions for ForallI;L, ExistsI;L
and F , this expression can further be re�ned to:

^

x12CAux

(
_

x22CUser

isCreatedByC;C(x1; x2) _
_

x22CAux

isCreatedByC;C(x1; x2))

or equivalently:

8 x1 2 CAux : (9 x2 2 CUser : isCreatedByC;C(x1; x2) _ 9 x2 2 CAux : isCreatedByC;C(x1; x2))

This concludes our explanation of the semantic function, which formalizes the conformance
checking algorithm. A more elaborate example will be worked out in Section 6.3 where we explain
the implementation of the algorithm.

5.4.6 Discussion

To conclude this section, we discuss some problems and shortcomings of the current formalization
and explain how these problems could be resolved.

A �rst minor aw is that we required the quanti�ers to be declared as part of the architectural
abstraction language instead of as part of the ADL. Because these quanti�ers provide important
information to an architect on how a diagram should be interpreted, it would be better to consider
them as part of the ADL. In this way, the architect is not forced to consider both the ADL and
the architectural mapping to know how to interpret the links in some architectural view. Fixing
this aw requires only some super�cial changes to the formalism. The ADL should allow for links
to be annotated with quanti�er symbols. Note that we already did this in Figure 5.2, although it
was not supported by the architectural formalism. The architectural instantiation language should

5.4. FORMAL DEFINITIONS 93

still maps links to quanti�ers, with an additional constraint that the quanti�er to which a link is
mapped is the one speci�ed by the quanti�er symbol attached to the link. (For example, a link
annotated with a 9 symbol should be mapped to an exists quanti�er predicate.)

Of course, once quanti�ers have been made explicit in the ADL, so must be the role numbers,
otherwise one cannot correctly interpret an architectural diagram due to order of the quanti�ers.
(For example, 8x 2 A : 9y 2 B : r(x; y) is not the same as 9y 2 B : 8x 2 A : r(x; y).) The
role numbers are needed to know in which order to apply the di�erent quanti�ers. Supporting
explicit role numbers requires only some small changes to the formalism: the ADL should allow the
annotation of roles with these numbers, and the architectural instantiation has an extra constraint
that roles are mapped to the numbers with which they are annotated.

We already mentioned earlier that the direction of links is unimportant in our formalism: in
our formalization, all links are undirected. Nevertheless, we still put arrows on the links in our
diagrams, as a guideline for an architect on how to read the diagrams. When the role numbers
are made explicit in the diagrams, these arrows are not needed anymore. The role numbers by
themselves provide su�cient information. (Recall that we adopted the convention to associate an
incoming link with the role representing the subject of the relation and outgoing links with the
other roles. With role numbers, we can adopt a similar convention by associating number 1 with
the role representing the subject of the relation.)

When multiple ports are attached to the same role, we assume a disjunctive semantics rather
than a conjunctive one. This was indeed the intended semantics in the architectural views we
considered. In those cases were we would prefer a conjunctive semantics, we can always achieve
the same e�ect by splitting one architectural relation with multiple links attached to some role, into
multiple architectural relations, each with one link attached to that role. After all, we know that
the semantics of multiple relations is the conjunction of the semantics of those relations. However,
this work-around is sometimes a bit cumbrous and leads to diagrams with a lot of redundancy.
Therefore, a cleaner solution would be to make the intended semantics of multiple roles explicit
on the diagrams. For example, we could annotate the links attached to such a port with a special
notation indicating whether to interpret them disjunctively or conjunctively (or a combination
of both, or maybe even another interpretation such as an exclusive disjunction). Of course, this
special notation should be taken into account by the conformance checking formalism. This can
be done by de�ning the semantics of an architectural relation as

[r]
A;V
I;L = 	1

p12Ports1Qp1(Cp1 ; 	
2
p22Ports2Qp2(Cp2 ; : : : ; 	

n
pn2PortsnQpn(Cpn ; F) : : :))

where 	i is a Boolean operator which speci�es how to interpret the di�erent ports that are linked
to the ith role of relation r.

In addition to the above shortcomings, we mention some special characteristics of our architectural
formalism that are worth noting.

What is the semantics when multiple links are attached to the same port of some concept?
If the links are connected to the roles of a di�erent relation, these links should be interpreted
conjunctively, simply because the semantics of an architectural view is the conjunction of the
semantics of all architectural relations in that view. If multiple links are connected to the roles of
a single relation, this simply means that the same port plays di�erent roles in that relation.

As stressed before, we repeat that the semantics of an architectural view is simply the con-
junction of all architectural relations in that view. No more, no less. In particular, this implies
that architectural concepts only play a secondary role. The architectural concepts by themselves
impose no constraints on an implementation. Only when they participate in an architectural re-
lation will their semantics be taken into account. We stress this fact because it goes against the
usual expectations that a concept in a software architecture declares the required presence of a
corresponding component in the implementation.

A �nal comment has to do with the semantics of a concept that is mapped to an empty virtual
classi�cation. All ports of this concept will return an empty set. If such a port is linked to
some role with a 8 quanti�er, the semantics of the relation will be automatically true, due to the

94 CHAPTER 5. THE ARCHITECTURAL FORMALISM

semantics of 8. This may seem a bit awkward for those who are accustomed to more traditional
architectural formalisms with components and connectors instead of concepts and relations. In
such a formalism, the usual expectation when a component X is linked to some connector Y is
that this represents a constraint of the form \there exists a component X in the implementation,
which is related in a Y fashion to . . . ". In our formalism, on the other hand, the presence of an
architectural concept does not necessarily imply the presence of some implementation component.
For example, if a virtual classi�cation attached to some concept is empty, and all ports of that
concept are linked through universal links, the implementation may not implement the concept at
all (since the virtual classi�cation contains no implementation artifacts), and still be considered
conform to the architecture.

To resolve this problem, we could put an extra constraint on the architectural mapping to
disallow empty virtual classi�cations. In this way, every architectural concept will correspond to
at least some implementation artifacts. But this still does not solve the problem entirely. We
should also disallow concept ports to return empty classi�cations (i.e., they are not allowed to
reject all artifacts in the classi�cation associated with the port's concept). If not, we still have the
same problem as above. Furthermore, it seems strange to link an empty port to some relation.
Such a situation is more than likely an indication of some kind of problem with the architectural
mapping.

5.5. SUMMARY 95

5.5 Summary

Our architecture language de�nes the architecture of a software implementation in two parts. In
the ADL, we describe what the conceptual architecture looks like. It consists of di�erent archi-
tectural views which are each built up from architectural concepts, relations, ports, roles and
links. In the AML, we declare the meaning of each of these architectural entities by mapping
them to implementation artifacts and their dependencies. The AML provides a �xed set of archi-
tectural abstractions (i.e., virtual classi�cations, virtual dependencies, �lters, argument numbers
and quanti�ers) which the di�erent architectural entities are instantiated with, as well as a li-
brary of prede�ned predicates at di�erent levels of abstraction (the DFW) in which terms these
architectural abstractions are mapped to the implementation. The di�erent kinds of architectural
abstractions and the library predicates are independent of the particular software system under
consideration, but many of the library predicates are Smalltalk-dependent.

Figure 5.3: Overview of the declarative framework.

Figure 5.3 gives an overview of the di�erent layers of the DFW, illustrates the dependencies
between predicates in the di�erent layers, and shows how the AML maps these predicates to
architectural entities de�ned in the ADL.

In Section 5.4, we formalized the ADL and AML, as well as the conformance checking al-
gorithm, in terms of a denotational semantics. More precisely, an implementation I de�ned in
some programming language L is conform to a conceptual architecture A de�ned in the ADL, if
the denotational semantics [A]I;L is `true'. The semantic function []I;L uses the architectural
abstractions and architectural instantiation declared in the AML to relate the architecture A to
the implementation I . In the next chapter (Section 6.3), we will sketch a Prolog implementation
of the conformance checking algorithm.

96 CHAPTER 5. THE ARCHITECTURAL FORMALISM

Chapter 6

Implementing the Architecture

Formalism using LMP

Now that we have de�ned the architectural formalism we show how it can be implemented
straightforwardly in a logic meta-programming language. We sketch the setup of the logic meta-
programming environment, implement the architecture language (i.e., the architecture description
language, architectural instantiation language, architectural abstraction language and the declar-
ative framework) and show the implementation of the conformance checking algorithm. We con-
clude the chapter with some future extensions of the formalism and explain how these could also
be implemented in the logic meta-programming language.

6.1 The logic meta-programming language

Before explaining how to implement the architectural formalism in a LMP language, we give an
overview of the setup of the LMP environment in which we conducted our experiments.

6.1.1 Setup

Figure 6.1: Schematic overview of the logic meta-programming setup.

Figure 6.1 gives a schematic overview of the setup of our LMP environment. To present this
setup, we could have used the uniform architectural notation we have been using throughout
this dissertation. However, to make the �gure more understandable, we chose the following more
speci�c notation:

97

98 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

� (logic) code fragments are represented as white rectangles with a thin border;

� data is denoted by cylinders;

� interfaces between applications are represented as white rectangles with a thick border;

� languages are rendered as shaded, labeled rectangles that may contain code and data;

� control ow and other relationships between the di�erent elements are represented as labeled
arrows.

This notation can be seen as a customization of our more general architectural notation. Section
8.3.4 elaborates on the need for customizable graphical representations of software architectures.

Since we use a LMP approach to check conformance of the implementation of a software sys-
tem to its conceptual architecture, there are three main elements in the setup. First of all, we
have a Logic Language in which both the Conformance Checking Algorithm and the Archi-
tectural Mapping are implemented. As these logic programs reason about the implementation
artifacts of some software implementation, they are actually meta programs. The base-level im-
plementation artifacts are stored in some Software Repository that can be accessed from within
the logic language. The conformance checking algorithm veri�es whether these artifacts satisfy
the declared high-level architectural relationships. The architecture descriptions which describe
the architectural structure to which the implementation artifacts should conform, are stored in
some Architectural Repository which contains the conceptual architecture (i.e., the set of all
architectural views).

As explained in Chapter 5, the architectural mapping consists of an Architectural Instantiation
and an Architectural Abstraction. The architectural instantiation maps architectural entities to
elements of the architectural abstraction. The architectural abstraction is an abstraction layer
between the logic language and the software repository. The conformance checking algorithm
uses the architectural instantiation to check whether the architectural abstractions conform to
the constraints imposed by the conceptual architecture. Depending on how and where the im-
plementation repository and architectural repository are represented, an extra Interface between
the logic language (i.e., the architectural abstraction and the conformance checking algorithm,
respectively) and these repositories may be needed.

The schematic overview of Figure 6.1 was deliberately kept as general as possible:

� It is left open which particular logic language is used. We experimented with two di�erent
logic languages: SOUL and Prolog.

� We did not specify how the software repository and architectural repository were represented.
Although the �gure seems to indicate that the repositories are external to the logic language,
this does not have to be the case. For example, one or both repositories may be represented
implicitly as a set of facts in the knowledge base of the logic language.

� Also, although the �gure may suggest this, both repositories do not necessarily need to be
physically distinct.

� Although our case study was mainly concerned with checking architectural conformance of a
software implementation, we will see in Subsection 8.4.2 that the approach is equally suited
for checking architectural conformance of other software artifacts, such as design models.

� We did not specify precisely what the optional interfaces between the logic language and the
repositories look like. In fact, this strongly depends on how the repositories are represented.
For example, this interface may be an ODBC interface (e.g., if the repository is an external
database or tool repository), a translation layer, a combination of both, or may be left out
entirely (e.g., if we use the internal fact base of the logic language as repository).

In the next subsections we discuss two speci�c instances of this general setup.

6.1. THE LOGIC META-PROGRAMMING LANGUAGE 99

Setup of SOUL experiments

To validate our approach, we performed a case study using two alternative setups. In the �rst
setup, the logic language SOUL was used to allow powerful logic reasoning about Smalltalk code
fragments. This experiment was performed entirely in a Smalltalk development environment, as
depicted in Figure 6.2.

Figure 6.2: Setup for conformance checking in SOUL.

VisualWorksTM Smalltalk was used as an implementation medium for SOUL. The SOUL
language contains primitive constructs for evaluating Smalltalk code blocks inside logic rules. This
allows SOUL expressions to reason about Smalltalk source code by making direct meta calls to
the Smalltalk image. Alternatively, the image may be accessed through a meta-level interface for
SOUL containing a prede�ned set of typical operations on the image. All architectural descriptions
are stored directly as facts in the knowledge base of the SOUL language.

Setup of PROLOG experiments

In a second setup, standard Prolog was used as the logic meta language, and the implementation
artifacts were stored in an external Microsoft AccessTM database. Accessing the database from
within Prolog was done using an ODBC interface, called ProdataTM . To translate the database
tables to a more suitable representation, an additional repository-access layer was implemented
in Prolog. As in the previous setup, the architectural descriptions were simply stored in the fact
base of the logic language. This setup is sketched in the upper half of Figure 6.3.

The bottom half of the �gure explains how the implementation repository was generated. The
database containing the implementation artifacts is �lled up front by means of a SOUL program.
The reason we used SOUL for this purpose was precisely because of its powerful features for
manipulating Smalltalk code. For doing the actual insertion of data values in the database, the
SOUL program calls some Smalltalk ODBC primitives.

6.1.2 Logic language

SOUL

As mentioned above, we have experimented with two di�erent, yet similar, logic languages:
SOUL and Prolog. SOUL, being implemented entirely in Smalltalk, provided direct access to
the Smalltalk image. It was more e�cient in the sense that no slow connections to an external
repository were needed and that e�cient prede�ned Smalltalk methods for browsing the Smalltalk
image could be called directly. Furthermore, the SOUL system was developed `in house' (at the
Programming Technology Lab) which allowed us to modify, extend or optimize it whenever needed.

100 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

Figure 6.3: Setup for conformance checking in PROLOG.

Unfortunately, these advantages were also its main disadvantages. Because the SOUL language
is strongly biased towards reasoning about Smalltalk code, it is not trivial to extend it to other
kinds of software artifacts (e.g., other programming languages or design languages). Also, because
SOUL was under constant evolution, existing and working SOUL programs often had to be re-
implemented. A third problem was that because of the experimental nature of the SOUL language,
its interpretation engine was less optimized than that of commercially available logic languages.
It was also less easy to use or debug. (Debugging SOUL code typically had to be done by tracing
the Smalltalk code of the interpreter.) For all these reasons | although the �rst experimental
results with architectural conformance checking in SOUL were promising (see [52]) | we switched
to a standard Prolog implementation for our later experiments.

PROLOG

Standard Prolog was chosen because it is well known and well documented, and because many
e�cient and well-supported commercial implementations are available on many platforms. In
particular, we chose LPA WIN-PROLOGTMbecause it had an optional ProdataTM interface,
which provides a tight coupling between the Prolog language and all ODBC 2 compliant database
management systems [42]. In this way, we had all the advantages of using standard Prolog, while
still being able to reason about data (e.g., implementation artifacts) stored in a database or any
other ODBC-compliant repository.

6.1. THE LOGIC META-PROGRAMMING LANGUAGE 101

6.1.3 Implementation repository

Smalltalk image

In the SOUL setup, the implementation repository is simply the Smalltalk image. It can be
accessed either directly or through a special meta-level interface. This meta-level interface is a
prede�ned set of Smalltalk expressions, encapsulated in Smalltalk methods, which are often used
inside SOUL rules to manipulate the Smalltalk image. Instead of having to call these expressions
explicitly from within SOUL, a simple meta call to one of the methods su�ces to access the
Smalltalk image. For example, when using SOUL to reason about Smalltalk implementations, we
often want to compute the inheritance hierarchy of some class. Therefore, the meta-level interface
has a prede�ned method hierarchy which invokes some speci�c methods in the Smalltalk system
to compute this hierarchy. Apart from reducing duplication of complex Smalltalk expressions inside
logic rules, this meta-level interface makes the SOUL code more independent of the particular
Smalltalk system used (only the meta-level interface needs to be updated). Usage of the meta-
level interface is not enforced by SOUL, however. It still remains possible to evaluate arbitrary
Smalltalk expressions within logic rules.

External database

In the Prolog setup, the most straightforward choice for representing the implementation repository
would be to store all implementation artifacts as facts in Prolog memory. However, due to the
vast amounts of data needed, this was infeasible. Instead, we opted to store all artifacts in an
external database that could be accessed through the ProdataTM ODBC interface, which allows
database tables to be accessed transparently1 from Prolog as though they existed within the Prolog
environment as facts.

Using an external repository that is accessed through ODBC has the advantage that we can
choose any ODBC-compliant database management system. For example, to reason about another
software implementation, we merely have to provide another database in which the implementation
artifacts for that implementation are stored. Of course, both databases should have the same
database scheme, so that the Prolog predicates that transparently access the database through
the ProdataTM interface remain valid. When this database scheme is carefully designed, it may
even be possible, with a minimal e�ort, to reason about other kinds of software artifacts. For
example, we want to use the same database scheme for representing either Smalltalk source code,
Java source code or even UML class diagrams2.

Of course, using an external database has several disadvantages as well. First of all, accessing
the database externally through ODBC is less e�cient than when the data would be stored directly
in Prolog memory or in an internal repository such as in the SOUL case. To improve the e�ciency,
prede�ned and highly optimized SQL queries may be de�ned, but this comes at the cost of loosing
generality, reusability and portability. Secondly, there is the overhead involved in exporting all
implementation artifacts to the database. Related to this is the problem that the database should
be updated every time the implementation is modi�ed. Of course, we may be lucky to work in a
development environment or CASE tool of which the repository can be accessed directly through
ODBC. In that case, there is no generation overhead, and the repository is always up to date.
However, because the repository probably uses a database scheme that di�ers from the one we
expect, we may need to add an extra translation layer to access that repository. This translation
layer may either be implemented in Prolog, or it may be part of the repository (e.g., under the form

1ProdataTM facilitates the use of Prolog rules over the contents of the database, with no need to download any
part of the database, as all database accesses are done on the y. Backtracking, cut, call, negation and all other
standard Prolog mechanisms work identically over the table accesses and the internal database, thus achieving the
highest level of transparency possible [42].

2In the context of an industrial research project [51], experiments have been carried out in which UML class
diagrams were extracted from some CASE tool and stored in the same database format we use for storing Smalltalk
implementation artifacts. Even more, the same primitive Prolog predicates were used to manipulate and to reason
about the data in this database.

102 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

of virtual tables). Again, this translation may have a negative impact on the e�ciency. To avoid
the extra translation layer we could actually re-implement all Prolog predicates that access the
repository, but this is not only a lot more work, the Prolog code would also become less portable.

In our Prolog setup, we were not able to access the VisualWorksTM Smalltalk repository
directly through ODBC. (Although some Smalltalk ODBC primitives were available, they could
only be used for export purposes, not for accessing the Smalltalk image.) Therefore, as explained,
we had to write a generator to export all relevant implementation artifacts in the Smalltalk image
(or part of it) to a database in the correct format. In spite of some technical problems caused by the
collaboration of many di�erent tools (VisualWorksTM , SOUL, ODBC and Microsoft AccessTM),
this was a fairly simple task, mainly thanks to the powerful abilities of SOUL to reason about
object-oriented code at a high level of abstraction, and thanks to the simplicity of ODBC. The
generator uses a set of ODBC primitives, implemented in Smalltalk, that allow a Smalltalk system
to access an external database. After having made available these primitives to the SOUL language,
which is also implemented in Smalltalk, we merely had to write a fairly straightforward SOUL
program to extract each relevant artifact from the Smalltalk repository, and export it to the
database. The result was a database in the desired format, containing all implementation artifacts
of part of the Smalltalk system (more precisely, we only exported all Smalltalk categories and
classes that implemented the SOUL system).

6.1.4 Architectural repository

Both in the SOUL and in the Prolog setup, we stored the architecture descriptions directly in
the fact base of the logic language. Since there are typically only a few of those architecture
descriptions (as compared to the huge amount of implementation artifacts), they can easily be
stored in memory. In this way the descriptions can be retrieved e�ciently, and we do not have to
implement yet another repository and interface between the logic language and this repository. If,
for some reason, we would prefer to store the architectural descriptions in an external repository,
an approach similar to that of the previous subsection could be followed.

6.1.5 SOUL versus PROLOG

As a �nal remark we want to stress that we deliberately tried to keep both alternative setups
as similar as possible. For example, because SOUL's syntax is similar to Prolog's, it is easy to
automatically translate Prolog facts and rules into SOUL and vice versa. When switching from
SOUL to Prolog, we actually extended the SOUL system to export all SOUL code in Prolog format.
More recent versions of the SOUL system include an option to use Prolog syntax instead of SOUL
syntax and to switch between both notations. All logic code fragments in this dissertation are
shown in Prolog-syntax.

We also tried to keep the primitive Prolog predicates that transparently access an external
Microsoft AccessTM database, as similar as possible to the primitive SOUL predicates that access
the internal Smalltalk repository. For this purpose, we implemented an additional repository-
access layer in Prolog which hides some of the dirty details of the ProdataTM interface as well as
the database format. (The computational overhead of this extra abstraction layer was minimal.)
In this way, many of the higher-level predicates are exactly the same (up to a change in syntax)
for both approaches. This makes it fairly easy to return to SOUL for future experiments, which
still has the advantage of providing a single environment in which the code repository is always
up to date. At the moment of writing this dissertation, however, even with the overhead of having
to access an external repository, the Prolog setup still turned out to be more e�cient than the
SOUL setup.

6.2. IMPLEMENTING THE ARCHITECTURE LANGUAGE 103

6.2 Implementing the architecture language

Now that we have sketched the setup of the LMP environment, in this section we explain how
to represent the architecture language in that environment. The architecture language consists
of three di�erent languages (the architecture description language, the architectural instantiation
language and the architectural abstraction language) plus a layered declarative framework which
serves as a library of prede�ned architectural mappings. As we adopt a LMP approach, we de�ned
each of these languages and the DFW on top of our general LMP language. We refrained from
inventing a special-purpose syntax for each of these languages (although it would be no problem
whatsoever to do so). As a consequence, the models expressed in each of these languages are
nothing more than declarations in the underlying LMP language. Of course, not every logic meta
program is a well-formed program in one of these languages. Every language imposes its own
speci�c constraints on the expected format of the declarations. In this section, we explain what
the declarations look like for each of the languages. We also show the implementation of some of
the prede�ned mapping predicates of the DFW.

6.2.1 Implementing the architecture description language

The ADL is very simple. A conceptual architecture described in this ADL is represented as a set
of logic facts. There is one fact for every architectural view, which has the following format:

view(soul, soulUserInteraction).

The �rst argument represents the name of the conceptual architecture, and the second argument
is the name of an architectural view in that conceptual architecture.

There is also one fact for every entity in an architectural view. All these facts have essentially
the same format. The name (label) of the fact is the kind of entity it represents and the �rst
argument is the name of the architectural view to which this entity belongs. For concepts and
relations we additionally mention their name (which is unique in the architectural view). For
example, the User Application concept in the `user interaction' view is represented by the fact:

concept(soulUserInteraction, userApplication).

For concept ports (respectively, relation roles), we mention their name as well as the name of the
concept (respectively, relation) to which they belong. For example, the following fact declares that
the User Application concept has a port named Type.

port(soulUserInteraction, userApplication, type).

Links are declared by indicating the port and role that are linked. Because ports have a name
that is unique only in the concept to which it belongs, to identify the port, we need to specify
both the concept's name and the port's name. The same holds for roles. For example, the link
between the Type port of User Application and the Interrogator role of the Asks1 relation is
described by the fact:

link(soulUserInteraction, userApplication, type, asks1, interrogator).

A concrete example of an architectural view described in the above format will be given in
Subsection 7.1.1. Of course, this way of describing or inspecting architectural views is rather
verbose. Therefore, it would be useful to have a tool which allows architects to input their
architectures graphically (e.g., using the notation of Figure 4.1) and automatically convert this
graphical representation to logic facts such as the above. (See Subsection 8.3.4.)

6.2.2 Implementing the architectural abstraction language

The architectural entities declared in the ADL are mapped to constructs of the architectural ab-
straction language. These constructs represent high-level abstractions of implementation artifacts
and their dependencies. Each of the di�erent kinds of constructs (i.e., virtual classi�cations, vir-
tual dependencies, etc.) are de�ned in terms of the prede�ned mapping predicates provided by
the DFW. In this subsection, we discuss and illustrate the format of these constructs.

104 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

Virtual classi�cations

One of the most important constructs of the architectural abstraction language is the virtual
classi�cation. It de�nes a set of implementation artifacts intentionally, by means of some high-
level logic predicate. Every virtual classi�cation is codi�ed by a set of logic rules of the form

classifiedAs(ArtifactKind (VCName), Artifact) :-

some logic code that declares when a certain Artifact of kind

ArtifactKind belongs to the classification named VCName

In the above template code, the parameter VCName should be �lled in with the name of the virtual
classi�cation being de�ned and the parameter ArtifactKind with the kind of artifact (e.g., class,
method, instance variable) for which we are de�ning the virtual classi�cation. There should be a
rule for every kind of artifact of which there are elements in the classi�cation. If a certain kind
of artifacts, say instance variables, is not needed in the classi�cation, no separate rule should be
de�ned for that ArtifactKind. The logic code in the body of the rule can make use of any of the
predicates provided by the DFW. However, one should always try to use predicates de�ned in the
highest layers of the framework and try to avoid as much as possible to use low-level predicates.
Also, if no high-level predicate is available for your purpose, it is better to de�ne one �rst, add it to
the framework, and then use it rather than hard-coding the implementation of this new high-level
predicate in the body of the virtual classi�cation.

As an illustration, consider the following de�nition of the virtual classi�cation `userApplica-
tion'. It consists of two rules, one de�ning which classes belong to the classi�cation (based on
their category and name) and one de�ning which methods belong to it (based on the classes that
were already classi�ed). There are no other rules as the classi�cation contains only methods and
classes but no other kinds of artifacts. The details of this example will be explained in Subsection
7.1.3.

classifiedAs(class('userApplication'), Class) :-

categoryName(Category, 'SOULUIApplications'),

classInCategory(Category, Class),

className(Class, ClassName),

patternMatch(ClassName, and(prefix('SOUL'), postfix('App'))).

classifiedAs(method('userApplication'), Method) :-

findMethodsFromClasses(Method, 'userApplication').

Filters

Filters are represented as unary logic predicates that take an Artifact as input and check whether
or not this Artifact is accepted by the �lter. In other words, they have the following format:

FilterName (Artifact) :-

some logic code that succeeds if the Artifact should be accepted

or fails if the Artifact is to be rejected

The name of the �lter, FilterName, should be chosen so that it reects the purpose of the �lter.
For example, a �lter that only accepts methods and rejects anything else is named methodFilter;
a �lter that accepts anything is named identityFilter.

In general we want to keep the �lters as simple as possible. In practice, we use the �lters only
to select the artifacts of a certain kind from a classi�cation, and leave the computation of these
artifacts to the virtual classi�cation.

6.2. IMPLEMENTING THE ARCHITECTURE LANGUAGE 105

Virtual dependencies

A virtual dependency is a declaratively de�ned relationship among implementation artifacts:

VirtualDependencyName (Artifact1, ..., ArtifactN) :-

check whether some n-ary relationship holds among

implementation artifacts Artifact1 to ArtifactN

An n-ary architectural relation will be mapped to an n-ary virtual dependency predicate. Its
roles will be mapped to the arguments of this predicate. Note that, if necessary, the de�nition of
the predicate may consist of several rules (all with the same head VirtualDependencyName and
the same number of arguments).

The name of the virtual dependency, VirtualDependencyName, should be chosen so that it
gives an indication of the relation to be checked. Furthermore, we adopted the convention to
end every VirtualDependencyName with an indication of the expected argument types (M stands
for method, C for class, etc.). For example, mentions M M is a virtual dependency which checks
whether there is a `mentions' relationship between two methods.

Argument numbers

The roles of an architectural relation are mapped to integers ranging from 1 to the total number
of roles of the architectural relation. Every number in this range is associated with exactly one
role of the relation.

Quanti�ers

We represent a Quantifier by a second-order logic predicate of the form

Quantifier (Generator, Test)

The idea is that the Generator predicate generates possible values to which the Test predicate
should be applied. (The Generator will correspond to a virtual classi�cation and the Test to a
virtual dependency.) To which values and how exactly the application is performed depends on the
predicate. A typical example of such a Quantifier is the primitive second-order logic predicate
forall. forall(Generator, Test) checks, for all solutions of Generator, whether Test is true.
In other words, the Test predicate is applied to each of the generated values, in the order in which
they were generated. The application should succeed for all values.

6.2.3 Implementing the architectural instantiation language

Just like every architectural view described in our ADL is represented as a set of logic facts, its
architectural instantiation will also be represented as a set of logic facts. There is one fact for each
architectural entity, declaring the architectural abstraction to which that entity is mapped.

Concept mappings associate virtual classi�cations with architectural concepts in some archi-
tectural view and are declared by facts of the form:

conceptMapping(ArchitecturalView, Concept, VCName).

were VCName is the name of the virtual classi�cation.
A port mapping associates a port of an architectural concept with a �lter that acts on the

virtual classi�cation associated with the concept and is de�ned by a fact of the form:

portMapping(ArchitecturalView, Concept, Port, Filter).

Relation mappings are facts of the form:

relationMapping(ArchitecturalView, ArchitecturalRelation, VirtualDependency).

106 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

They map an architectural relation in some architectural view to some virtual dependency. For
this mapping to be correct, the number of arguments of the virtual dependency must be equal to
the number of roles of the relation to which it is associated.

Role mappings map a role of some architectural relation to an argument (number) of the virtual
dependency associated with the relation. Hence, role mappings are declared by facts of the form:

roleMapping(ArchitecturalView, Relation, Role, ArgumentNumber).

Finally, a link mapping maps a link to its associated quanti�er, by means of a fact of the
following form:

linkMapping(ArchitecturalView, Concept, Port, Relation, Role, Quantifier).

For a concrete example of an architectural instantiation in the above format we refer to Sub-
section 7.1.2.

6.2.4 Implementing the declarative framework

Finally, we take a look at how the DFW is implemented in our LMP language. We show the
implementation of some of the prede�ned predicates in each layer of the DFW. Only the sub-
layers of the logic meta-programming layer (i.e., the logic layer and the repository-access layer)
are not discussed because of their very technical nature, and because most predicates in these
layers are hard-coded primitives of the LMP language.

Representational layer

Internally, in our LMP language, we represent implementation artifacts as data structures of the
form ArtifactKind(ArtifactName, Identifier).3 ArtifactName is the name of the artifact
and ArtifactKind is its kind (e.g., class, method or instance variable). The Identifier is a
unique number that is used internally when other information associated with the artifact needs
to be retrieved from the repository. Whenever we are not interested in this identi�er, it will be
written as a variable. Some examples:

class('SOULTerms',1989)

metaclass('SOULTerms class',)

method('at:',1992)

method('interpret:repository:',1279)

method('interpret:repository:',1651)

argument('term',735)

methodProtocol('instance creation', 73)

methodProtocol('instance creation',)

...

It is possible to have multiple artifacts with the same kind and name, but with a di�erent iden-
ti�er. For example, there may be multiple methods named `interpret:repository:' that belong to
di�erent classes. They can only be distinguished by their identi�er, or by calling one of the prim-
itive predicates which use the identi�er to look up information in the repository. For example,
the logic query classImplementsMethod(C,method('interpret:repository:',1651)) has the
unique result C = class('SOULRule',1624).

The repository-access layer contains primitive predicates like artifact(ID,Kind,Artifact) to
retrieve an Artifact with identi�er ID of a certain Kind from the implementation repository, and
artifactNestingID(PartID,WholeID) to check whether an artifact with identi�er PartID is in a

3As the method parse-tree structure is often too verbose, methods will also be represented by this internal data
structure instead of by their parse tree. In this way, we obtain a uniform data structure for all artifact kinds.
However, the method parse trees are still cached in the repository, so that they can be retrieved whenever they are
needed, based on a method's identi�er.

6.2. IMPLEMENTING THE ARCHITECTURE LANGUAGE 107

nesting relationship with an artifact with identi�er WholeID. The predicates of the representational
layer are de�ned directly in terms of predicates such as these. Some representative examples are
given below:

baseClass(Class) :-

artifact(_ID, class, Class).

methodName(Method,MethodName) :-

artifact(ID, method, Method),

Method = method(MethodName, ID).

classImplementsMethod(Class,Method) :-

artifact(MethodID,method,Method),

(artifact(ClassID,class,Class);

artifact(ClassID,metaclass,Class)),

artifactNestingID(MethodID,ProtocolID),

artifactNestingID(ProtocolID,ClassID).

Base layer

The base layer contains predicates for traversing method parse trees, type inferencing predicates
and predicates that implement structural relationships.

As an example of the �rst kind of predicates, below we show the implementation of the
isSentTo predicate. It is de�ned in terms of the generic predicate traverseMethodParseTree.
The implementation of the other method parse-tree traversal predicates is similar. Other (includ-
ing user-de�ned) predicates that need to traverse a method parse tree can also be de�ned in the
same way.

isSentTo(ClassName, MethodName, Receiver, Message, Arguments) :-

traverseMethodParseTree(ClassName, MethodName,

[Receiver, Message, Arguments],

foundMessageSend, processMessageSend).

% foundMessageSend specifies how to recognize a message send statement in the parse tree.

foundMessageSend(send(Receiver, Message, Arguments)).

% processMessageSend specifies how to retrieve the different parts of a message send.

processMessageSend(send(Receiver, Message, Arguments), [Receiver, Message, Arguments]).

Note that method parse-tree traversal predicates such as the one above require no knowledge of
the representational layer, other than what the format is of method parse trees.

As a concrete example of a type inferencing predicate, we show the implementation of the
predicate instVarTypes(C,IV,Types), which computes a list of potential Types for an instance
variable IV of some class C. The predicate yields an approximate answer only. It infers the possible
types for the instance variable by statically looking at all the messages sent to that variable (from
the class C up to the �rst superclass that implements the variable). All classes that understand
all these messages are then accumulated in a type list Types. Every one of these classes is a
possible candidate for the type of the variable (it is in general impossible to �nd the unique type
statically). The precision of the answer depends on the amount of messages that are sent to the
instance variable of which we need to compute the type. The more information we have, the more
precise the type can be inferred (i.e., the less candidate types are generated).

108 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

instVarTypes(Class,InstVar,Types) :-

% does Class or one of its superclasses contain a variable InstVar?

instVarFlattened(Class,InstVar),

% compute the set of all Messages sent to this variable

instVarName(InstVar,InstVarName),

instVarMessages(Class,InstVarName,Messages),

Messages \= [], % Fail if no messages are sent to the variable

% compute all classes that understand all these Messages

findall(Type,understandsAll(Type,Messages),Types).

Another type-inferencing predicate is returnType(Method, Type) which infers the return
Type of some Method. Note that it relies on two other base-layer predicates, namely returnStatement
and mayHaveType E M C.

returnType(Method, Type) :-

classImplementsMethod(Class, MethodName, Method),

className(Class, ClassName),

returnStatement(ClassName, MethodName, Expression),

mayHaveType_E_M_C(Expression, Method, Type).

As an example of a predicate implementing a structural relationship, we show the implemen-
tation of the hierarchy predicate, which is the transitive closure of the inheritance predicate.

hierarchy(Super,Sub) :-

class(Super), class(Sub), closure(inheritance,Super,Sub).

Coding conventions layer

As a typical example of a method coding convention, we show the abstractMethod predicate.
As explained in 5.3.5, abstract methods in Smalltalk can be recognized because they make a
subclassResponsibility self send.

abstractMethod(Class,Method) :-

findMethod(Class,Method,

or(exact(`[send(variable(self),subclassResponsibility,[])]`),

exact(`[return(send(variable(self),subclassResponsibility,[]))]`))

).

The implementation of many other coding convention predicates (like instanceCreationMethod,
mutatorMethod and accessorMethod) is given in Appendix B.

Design patterns layer

In Subsection 5.3.5, we mentioned two examples of predicates that describe the structure of some
design pattern: compositePattern and factoryMethod. We do not include the exact implementa-
tion of the compositePattern predicate here; it is explained in detail in [86]. The factoryMethod
predicate is implemented as follows:

% Does Method send an instance-creation message to Class?

factoryMethod(Class,Method) :-

% Does Method send a message to Class?

classImplementsMethodNamed(C,MN,Method), className(C,CN),

isSentTo(CN,MN,Receiver,Message,Arguments),

className(Class,Receiver),

% Is the message an instance-creation message for Class?

methodName(M,Message),

instanceCreationMethod(Class,M).

6.2. IMPLEMENTING THE ARCHITECTURE LANGUAGE 109

Architectural mapping predicates

Finally, we show the implementation of some of the prede�ned architectural mapping predicates.

Virtual classi�cations. We distinguish four categories of architectural mapping predicates in
terms of which to de�ne virtual classi�cations:

1. predicates that were already de�ned in lower layers of the DFW;

2. predicates that compute virtual classi�cations from already de�ned ones;

3. predicates that implement operators on virtual classi�cations;

4. predicates that implement high-level dependencies among implementation artifacts.

We only discuss predicates of the second and third categories here. Predicates of the �rst category
are implemented by the previous layers. Predicates of the fourth category will be explained in the
paragraph on virtual dependencies.
All virtual classi�cations are de�ned by means of the classifiedAs predicate. Therefore, a �rst
way to de�ne a virtual classi�cation in terms of an already existing one is by directly calling this
predicate. Alternatively, we can use more high-level predicates like findMethodsFromClasses,
findMetaClassesFromClasses, findClassesFromMethods, and so on. The implementations of
these predicates are rather straightforward:

% Does Method belong to a class in the classification with name VCName?

findMethodsFromClasses(Method, VCName) :-

classifiedAs(class(VCName), Class),

classImplementsMethod(Class, Method).

% Is MetaClass the meta class of a class in the classification with name VCName?

findMetaClassesFromClasses(MetaClass, VCName) :-

classifiedAs(class(VCName), Class),

metaClass(Class, MetaClass).

Only the implementation of findClassesFromMethods is a bit more subtle: because a classi�cation
may contain multiple methods that belong to the same class, we need to remove duplicate classes.

% Does Class implement one of the methods in the classification with name VCName?

findClassesFromMethods(Class, VCName) :-

findall(SomeClass,

(classifiedAs(method(VCName), Method),

classImplementsMethod(SomeClass, Method)),

Classes),

removeDuplicates(Classes, NoDups),

member(Class, NoDups).

We can also de�ne a virtual classi�cation as a combination of other ones, using binary operators
like union, intersection, difference, etc. Because virtual classi�cations are computed sets of
implementation artifacts, these operators are de�ned in terms of the logic operators disjunction
(;), conjunction (,) and negation (not).

union(VC1,VC2,Artifact) :-

classifiedAs(VC1,Artifact); classifiedAs(VC2,Artifact).

intersection(VC1,VC2,Artifact) :-

classifiedAs(VC1,Artifact), classifiedAs(VC2,Artifact).

difference(VC1,VC2,Artifact) :-

classifiedAs(VC1,Artifact), not classifiedAs(VC2,Artifact).

110 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

Filters. There are two kinds of prede�ned �lters. The `trivial �lters' always succeed or always
fail. The `kind �lters' that only accept artifacts of a certain kind can be de�ned straightforwardly
in terms of primitive predicates of the representational layer such as baseClass, metaClass and
method.

% identityFilter is the trivial filter which accepts all artifacts

identityFilter(Artifact) :- true.

% forgetfulFilter is the trivial filter which rejects all artifacts

forgetfulFilter(Artifact) :- fail.

% baseClassFilter is a filter which accepts only base (i.e., non-meta) classes

baseClassFilter(Artifact) :- baseClass(Artifact).

% metaClassFilter is a filter which accepts only meta classes

metaClassFilter(Artifact) :- metaClass(Artifact).

% methodFilter is a filter which accepts only methods

methodFilter(Artifact) :- method(Artifact).

...

Virtual dependencies. As concrete examples of virtual dependency predicates, we discuss two
predicates that are needed for de�ning architectural relations in the `user interaction' architectural
view. The �rst is the predicate mentions M M which takes two methods as arguments and checks
whether the one mentions the name of the other somewhere in its body. This is implemented in
terms of the auxiliary predicate findMethod.

mentions_M_M(Method1,Method2) :-

methodName(Method2,MN2),

findMethod(_,Method1,contains(MN2)).

A second, more complex, example of a virtual dependency predicate is the asks C M predicate
which checks whether (a method of) some class C2 asks some method M1 for information (and
actually uses the returned information). It is de�ned in terms of a more primitive predicate
isAskedBy M M which checks for an invocation relation using the isSentTo predicate. Next, it
checks whether the found message send is actually used in the method performing the invocation,
by means of the isUsedBy E M predicate. This auxiliary predicate uses a mixture of e�cient
string pattern matching and more precise (but less e�cient) parse-tree traversing to check for all
possible manners in which an expression may be used (assigning the value to a variable, passing
the value as an argument to some method, returning the value, . . .). We will revisit the issues of
e�ciency and precision in Subsection 7.1.7.

asks_C_M(C2,M1) :-

classImplementsMethod(C2,M2),

isAskedBy_M_M(M1,M2).

% isAskedBy_M_M(M1,M2) checks if M1 is asked for information by some method M2

isAskedBy_M_M(M1,M2) :-

% First we check whether method M2 invokes method M1

classImplementsMethodNamed(C2,M2Name,M2),

className(C2,C2Name),

methodName(M1,M1Name),

isSentTo(C2Name,M2Name,Receiver,M1Name,Arguments),

mayHaveType_E_M_C(Receiver,M2,ReceiverClass),

classImplementsMethod(ReceiverClass,M1),

% Then we check whether M2 actually uses the result of the message send

isUsedBy_E_M(send(Receiver,M1Name,Arguments),M2).

Note that we also used the auxiliary predicate mayHaveType E M C in the above predicate. This
is because the isSentTo predicate does not check whether the method M2 actually invokes M1; it
only checks whether M2 sends a message with the same name as the method M1. To be sure that

6.2. IMPLEMENTING THE ARCHITECTURE LANGUAGE 111

it is actually the method M1 that is being invoked, we use the predicate mayHaveType E M C to
infer the type of the class that receives the message, and verify that this is indeed the class that
implements M1.

For more examples of virtual dependency predicates we defer to Chapter 7.

Quanti�ers. Two prede�ned quanti�er predicates provided by the DFW are forall and exists,
representing the set quanti�ers 8 and 9. The second-order predicate forall is actually a primitive
predicate of the logic layer. The quanti�er exists can also be de�ned easily, by making use of
the primitive second-order predicate one that is provided by the logic layer. one(X) checks for
the �rst valid solution of some logic expression X. exists(Generator, Test) applies the Test
predicate one by one to each of the generated values, in the order in which they were generated,
until one is found for which Test succeeds.

exists(Generator, Test) :-

one((Generator, Test)).

In addition to these two quanti�er predicates, we also implemented some special versions of these
predicates which report special information to the user in case of failure. Below, we show the imple-
mentation of two debugging versions of the forall predicate. In case of failure, forallDebugOne
aborts on the �rst failure and prints the test that failed on screen. forallDebugAll does not
abort after the �rst failure, but accumulates all subsequent failures as well and reports these to
the user.

forallDebugOne(Generator, Test) :-

one((Generator, not Test)) -> (write(Test), fail);

otherwise -> true.

forallDebugAll(Generator, Test) :-

findall(Test,

(Generator, not Test),

Failures),

(Failures = [] -> true;

otherwise -> (write(Failures), fail)).

At this time, no other quanti�ers are implemented in the declarative framework, because we did
not need any others for our case study. However, there is no problem whatsoever to add new ones
to the framework if they would be needed.

112 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

6.3 Implementing the conformance checking algorithm

Based on the architectural formalism introduced in Chapter 5, we explain how the conformance
checking algorithm is implemented in our LMP environment. We �rst discuss the conformance
checking algorithm informally and then sketch its Prolog implementation.

6.3.1 Informal de�nition

When checking conformance of the implementation of a software system to a conceptual architec-
ture, the conformance checking algorithm constructs a logic expression which corresponds to that
conceptual architecture. The construction process of this logic expression is very similar to the
denotational semantics we de�ned in Subsection 5.4.5. After having constructed the expression,
conformance checking merely corresponds to computing its truth value. The expression contains
logic variables, predicates representing relations, second-order predicates representing quanti�ers
and predicates representing (�ltered) domains of values. Every relation predicate in the expression
corresponds to an architectural relation, the logic variables correspond to the roles of that relation,
the quanti�er predicates correspond to the quanti�ers associated with links, the predicates repre-
senting domains of values correspond to the virtual classi�cations associated with the architectural
concepts, and the �lter predicates correspond to the �lters associated with the concept roles.

Now, let us illustrate in more detail how the logic expression is constructed, taking the ar-
chitectural view of Figure 5.2 on page 61 as an example. For reasons of clarity, we explain the
construction process as a sequence of transformations that transform an architectural view step
by step, until the desired logic expression is obtained. Note that the actual conformance checking
algorithm of Subsection 6.3.2 will perform all these transformations in one single pass.

Step 1

In a �rst transformation step, we transform the architectural view into a semi-formal formula,
which is a conjunction of logic clauses, one clause for each architectural relation. For example, the
architectural view depicted in Figure 5.2 is transformed into the following formula:

9 Trigger 2 Event(InputWindow) :
(9 Action 2 Request(UserApplication) : Activates(Trigger; Action)
_ 9 Action 2 Request(AuxiliaryApplication) : Activates(Trigger; Action))

^ 8 Created 2 Type(AuxiliaryApplication) :
(9 Creator 2 Type(UserApplication) : IsCreatedBy(Created; Creator)
_ 9 Creator 2 Type(AuxiliaryApplication) : IsCreatedBy(Created; Creator))

^ 8 Interrogator 2 Type(UserApplication) :
9 Interrogated 2 Interpret(QueryInterpreter) : Asks1(Interrogator; Interrogated)

^ 8 Interrogator 2 Type(UserApplication) :
9 Interrogated 2 Request(Repository) : Asks2(Interrogator; Interrogated)

^ 8 Creator 2 Type(UserApplication) : 9 Argument 2 Type(QueryResult) :
9 Created 2 Creation(OutputV iewer) : CreatesWith(Creator; Argument; Created):

Because this transformation is fairly straightforward, we do not discuss it in detail here. We
only mention that, as explained earlier, for an architectural relation with more than one link
attached to one of its roles, a disjunction is used to enumerate all architectural concepts linked to
this role. (For example, there is a disjunction for the `Activates' relation to capture the fact that
it interacts with either a `User Application' or an `Auxiliary Application'.)

In the previous formula, the order of the di�erent conjuncts (and disjuncts) is unimportant. The
order of the di�erent subexpressions in one such conjunct is important, however. For example, as in
mathematical logic, 8x 2 A : 9y 2 B : r(x; y) does not mean the same as 9y 2 B : 8x 2 A : r(x; y).
We need to respect the intended order of the di�erent quanti�ers in each subexpression. This is
precisely why we associated argument numbers with roles: the quanti�ers attached to roles with a

6.3. IMPLEMENTING THE CONFORMANCE CHECKING ALGORITHM 113

lower argument number will precede those of roles with a higher number. The argument numbers
also determine the order of the arguments occurring in the relations.

Step 2

The second transformation involves the replacement of:

1. the relation names with the names of the virtual dependency predicates to which they are
mapped by the architectural instantiation (e.g., Activates is mapped to mentions M M)

2. the role names with logic variables

3. the conjunction symbol ^ by its equivalent Prolog operator `,' and the disjunction symbol
_ by its equivalent Prolog operator `;'

4. the quanti�er symbols 8 and 9 by the second-order logic predicates forall and exists that
implement these quanti�ers.

Performing all these replacements yields the following expression in Prolog pseudo-code:

exists(X1 IN Event(InputWindow),

(exists(X2 IN Request(UserApplication),

mentions_M_M(X1,X2));

exists(X2 IN Request(AuxiliaryApplication),

mentions_M_M(X1,X2))),

forall(X3 IN Type(AuxiliaryApplication),

(exists(X4 in Type(UserApplication),

isCreatedBy_C_C(X3,X4));

exists(X4 IN Type(AuxiliaryApplication),

isCreatedBy_C_C(X3,X4))),

forall(X5 IN Type(UserApplication),

exists(X6 IN Interpret(QueryInterpreter),

asks_C_M(X5,X6))),

forall(X7 IN Type(UserApplication),

exists(X8 IN Request(Repository),

asks_C_M(X7,X8))),

forall(X9 IN Type(UserApplication),

exists(X10 IN Type(QueryResult),

exists(X11 IN Creation(OutputViewer),

createsWith_C_C_C(X9,X10,X11)))).

Step 3

In the third and �nal transformation step we replace the concept and port names by, respectively,
the virtual classi�cations and �lters to which they were mapped by the architectural instantiation.

For example, X1 IN Event(InputWindow) is replaced by X1 IN methodFilter(userInput)

because the architectural instantiation maps the Input Window concept to the virtual classi�-
cation userInput and the port Event of that concept to a methodFilter.

Furthermore, as explained in Subsection 5.3.6, the predicate filteredIsClassifiedAs(C,F,X)
can be used to generate an artifact X that belongs to a virtual classi�cation C and satis�es the
�lter F. Therefore, we further transform X1 IN methodFilter(userInput) to
filteredIsClassifiedAs(userInput,methodFilter,X1).

114 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

Applying this transformation process to the entire previous expression in Prolog pseudo-code
yields the following Prolog-expression:

exists(filteredIsClassifiedAs(userInput,methodFilter,X1),

(exists(filteredIsClassifiedAs(userApplication,methodFilter,X2),

mentions_M_M(X1,X2));

exists(filteredIsClassifiedAs(auxiliaryApplication,methodFilter,X2),

mentions_M_M(X1,X2)))),

forall(filteredIsClassifiedAs(auxiliaryApplication,baseClassFilter,X3),

(exists(filteredIsClassifiedAs(userApplication,baseClassFilter,X4),

isCreatedBy_C_C(X3,X4));

exists(filteredIsClassifiedAs(auxiliaryApplication,baseClassFilter,X4),

isCreatedBy_C_C(X3,X4)))),

forall(filteredIsClassifiedAs(userApplication, baseClassFilter, X5),

exists(filteredIsClassifiedAs(queryInterpreter, methodFilter, X6),

asks_C_M(X5,X6))),

forall(filteredIsClassifiedAs(userApplication, baseClassFilter, X7),

exists(filteredIsClassifiedAs(repository, methodFilter, X8),

asks_C_M(X7,X8))),

forall(filteredIsClassifiedAs(userApplication,baseClassFilter,X9),

exists(filteredIsClassifiedAs(result,baseClassFilter,X10),

exists(filteredIsClassifiedAs(resultViewer,baseClassFilter,X11),

createsWith_C_C_C(X9,X10,X11)))).

This concludes the transformation process. Interpreting the obtained Prolog expression above
will return either true or false and indicates whether or not the implementation conforms to the
`user interaction' architectural view.

Multiple architectural views

We have illustrated the algorithm only for one single architectural view and not for a complete
conceptual architecture consisting of multiple architectural views. The algorithm can be easily
generalized to work on a conceptual architecture, by using an expression which is the conjunction
of the constructed expressions for each of the architectural views belonging to that conceptual
architecture.

This concludes our informal de�nition of the conformance checking algorithm. In the next
subsection, we sketch our Prolog implementation of the conformance checking algorithm.

6.3.2 Implementation

Checking conformance is achieved by means of a predicate architecturalConformance which
takes the name of an architectural view as input and checks whether the implementation artifacts
in the repository conform to the constraints imposed by that architectural view. This is done by
checking conformance to all relations in that architectural view.

architecturalConformance(ArchView) :-

forall(relation(ArchView, Relation),

relationConformance(ArchView, Relation)).

The auxiliary predicate relationConformance checks whether the implementation artifacts
in the code repository conform to the architectural relation Relation in some architectural view
ArchView and is de�ned as follows:

6.3. IMPLEMENTING THE CONFORMANCE CHECKING ALGORITHM 115

[01] relationConformance(ArchView, Relation) :-

% Get the VirtualDependency associated with this Relation

[02] relationMapping(ArchView, Relation, VirtualDependency),

[03] findall([Number, Quantifier, Filter, ID],

(% Find Role belonging to Relation in ArchView.

[04] role(ArchView, Relation, Role),

% Get the Number associated with this Role.

[05] roleMapping(ArchView, Relation, Role, Number),

% Find a Port linked with this Role. (multiple links possible)

[06] link(ArchView, Concept, Port, Relation, Role),

% Get Quantifier associated with this link.

[07] linkMapping(ArchView, Concept, Port, Relation, Role, Quantifier),

% Get Filter associated with this Port.

[08] portMapping(ArchView, Concept, Port, Filter),

% Get ID of virtual classification associated with this Concept.

[09] conceptMapping(ArchView, Concept, ID)

),

[10] RoleInfo),

% Regroup the returned list of quadruples [Number, Quantifier, Filter, ID]

% by number

[11] regroup(RoleInfo, Regrouped),

% Apply the predicate VirtualDependency to the Regrouped List.

[12] virtualApply(VirtualDependency, Regrouped).

Let us summarize the implementation of this predicate, without going into all implementation
details. On line 2, the predicate looks up the virtual dependency, associated with the Relation.
Eventually, on line 12, this virtual dependency is checked with the correct arguments. These
arguments correspond to the elements in the virtual classi�cations of the concepts to which the
Relation is linked. But only those elements that are �ltered by the concepts' ports should be
considered. To know how exactly the virtual dependency should be applied to the elements of
these �ltered classi�cations, the quanti�ers associated with the Relation's links need to be known.
Therefore, on lines 3 to 10, we accumulate all this information, as well as the argument number, for
each of the roles of the relation. (Lines 4 and 5 select the argument Number, lines 6 and 7 get the
Quantifier, line 8 retrieves the port Filter, and line 9 �nds the ID of the virtual classi�cation.)

Now we have the necessary information for applying the virtual dependency. For every argu-
ment of the virtual dependency, we know its Number as well as the corresponding Quantifier,
Filter and virtual classi�cation ID. In line 11, we regroup this information so that it is ordered
by increasing role number (Number). More precisely, we compile a list of triples of the form
[Quantifier, Filter, ID]: one for each of the arguments of the virtual dependency predicate.
(In fact, there can be more than one triple per argument, as there may be multiple ports associated
with the same role. For now, however, we assume that there is only one. We explain later what to
do in the case that there are more.) Note that we also drop the role number, as it can be derived
from the position in the regrouped list. On line 12, this Regrouped list, together with the virtual
dependency predicate itself, is then passed to an auxiliary predicate virtualApply which actually
applies the virtual dependency as explained below.

virtualApply(VirtualDependency,Regrouped) applies a predicate VirtualDependency to
a list Regrouped, which is a list of triples of the form [Quantifier, Filter, ID]. The idea is
that the Filter and ID of each such triple specify the possible set of values for the corresponding
argument of the VirtualDependencyName predicate as follows: it is the set obtained by applying
the Filter on the result of computing the virtual classi�cation with identi�er ID. The quanti�ers
are needed to know how the predicate should be applied to these elements. For example,

virtualApply(asks_C_M, [[forall, baseClassFilter, userApplication],

[exists, methodFilter, queryInterpreter]])

boils down to evaluating the following piece of PROLOG code:

116 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

forall(filteredIsClassifiedAs(userApplication, baseClassFilter, X1),

exists(filteredIsClassifiedAs(queryInterpreter, methodFilter, X2),

asks_C_M(X1, X2))).

However, there is still a small problem regarding the accumulated role information (Number,
Quantifier, Filter and ID). As noted above, there may be more than one result for the same
role number, which is the case when a role is linked to more than one port. In such a case, as
explained in Subsections 5.2 and 5.4.5, we want to take the disjunction over all possible ports
linked to that role.

Therefore, the Regrouped list produced in line 11 should not be a simple list of triples of
the form [Quantifier, Filter, ID], but a nested list of lists of such triples: the �rst sublist
represents all possible triples [Quantifier, Filter, ID] corresponding to the �rst role, the
second sublist represents all triples corresponding to the second role, and so on. The virtualApply
predicate should work with such lists. So, in the above example of the asks C M predicate, the
input should actually be:

virtualApply(asks_C_M, [[[forall, baseClassFilter, userApplication]],

[[exists, methodFilter, queryInterpreter]]

])

A more interesting example (also see 5.4.5) where there are multiple roles associated with the
same port is:

virtualApply(isCreatedBy_C_C, [[[forall, baseClassFilter, auxiliaryApplication]],

[[exists, baseClassFilter, userApplication],

[exists, baseClassFilter, auxiliaryApplication]]

])

which boils down to evaluating the following piece of PROLOG code:

forall(filteredIsClassifiedAs(auxiliaryApplication, baseClassFilter, X1),

(exists(filteredIsClassifiedAs(userApplication, baseClassFilter, X2),

isCreatedBy_C_C(X1, X2));

exists(filteredIsClassifiedAs(auxiliaryApplication, baseClassFilter, X2),

isCreatedBy_C_C(X1, X2))

)).

This concludes the sketch of our Prolog implementation of the conformance checking algorithm.
In the next subsection, we mention some caching techniques that were used to optimize the
e�ciency of the algorithm.

6.3.3 Some optimizations

To improve the time-e�ciency of the conformance checking algorithm, we incorporate caching
techniques in several places. We will not go into the technicalities of how this is implemented.

A �rst place where caching is used is in the representation of virtual classi�cations. A virtual
classi�cation is computed only the �rst time, at which point all of its values are cached. The next
time it is needed, the values are simply retrieved from the cache. Only when the implementation
or the architectural abstraction changes, it is necessary to recompute the virtual classi�cation.

A second place where caching is useful is in the computation of indirect and complex imple-
mentation relationships. Whereas some primitive implementation relationships can be retrieved
directly from the implementation repository, some frequently occurring higher-level relationships
need to be recomputed every time they are needed. A typical example is the transitive closure
of the inheritance relationship between classes (i.e., checking whether some class belongs to the
inheritance hierarchy of another one). Because this derived relation (i.e., hierarchy) is needed
so often, we compute and cache all such relationships beforehand, so that they can be simply
retrieved later when they are needed. The same is done for other frequently-needed relationships
such as understands.

Other places where caching can be used and other techniques to optimize the time-e�ciency
of the algorithm (as well as other optimizations) are discussed in Section 8.2.

6.4. EXTENDING THE ARCHITECTURAL FORMALISM 117

6.4 Extending the architectural formalism

The architectural formalism that was proposed in Chapter 5 is still very primitive. Consider for
example the proposed ADL: it only contains a notion of concepts and relations with ports and
roles that are connected by links. It does not (yet) allow us to express sub-architectures, nor does
it provide support for architectural styles and patterns. We consider these extensions as important
future work. In this section we take a closer look at these and other extensions and explain where
and how the architectural formalism should be updated to accommodate them.

6.4.1 Re�ned notation

The proposed architecture language is very exible and expressive. One could even argue that,
in some sense, it may be even too expressive. For example, consider some architectural view that
is described in our general ADL. Such an architectural view, especially in its graphical form, is
very important because it serves as a communication element between the members of a software
project. Its main purpose is precisely to provide a simple mental picture that allows software
engineers to quickly grasp the global structure of a software system. Therefore, just by looking at
the picture one should obtain some kind of intuition about the software structure.

Unfortunately, with the current generality of the architecture language, it is not always possible
to `understand' a system from the diagram only, without having to resort to the other levels of
the architecture language, i.e., the architectural instantiation and the architectural abstraction.
For example, suppose we have an architectural concept which is mapped to a virtual classi�cation
consisting of classes. What does this mean? Does each class in the classi�cation implement that
concept or do the classes taken collectively implement the concept? (In fact, both answers are
possible. For example, in the `user interaction' architectural view, the User Application concept
is mapped to a set of classes that, each on their own, represent a di�erent kind of user application.
The Query Result concept in the same architectural view, however, is mapped to a set of classes
that together represent the result of a query. One main class uses the state design pattern to
distribute its work over several auxiliary classes.) The current ADL does not allow us to answer
important questions such as these; the declarations in the AML need to be considered as well.

Therefore, it is important future work to re�ne the ADL (and its corresponding graphical
notation) to make this intuition more clear. Depending on the kind of semantics intended, a
di�erent notation could be used. For example, we could have a special denotation for architectural
concepts that represent some generic concept that is mapped to a set of classes, each of which
implements a speci�c variant of that concept. Architectural concepts that are mapped to a set
of classes that collectively represent the concept could be depicted by another notation. Using
such a more re�ned notation, an architectural view would give a better insight in the intended
semantics, without forcing us to take the architectural mapping into account.

In addition, a more re�ned ADL has some other advantages as well. First of all, the di�erent
notations may have di�erent constraints associated with them. For example, suppose again that
one has an architectural concept which is mapped to a set of classes that each implement the
concept. This concept will typically need a `Type' port to be associated with it, to retrieve the
di�erent classes that represent the concept. Such a port may have little or no use for other kinds
of concepts. Secondly, the di�erent notations also impose constraints on the allowed architectural
mappings. For example, a certain kind of concepts will typically mapped to the implementation
according to a certain mapping scheme (there may be multiple alternative mapping schemes)
whereas another kind of concepts may have other default mapping schemes associated with it.
Also, if we have a concept mapped to a set of classes that each implement the concept, we know
not only that the concept should probably have a `Type' port, but we also know that this port
should be mapped to a class �lter.

To accommodate all this, the following extensions to the architecture language are needed:

� Extend the ADL with specialized notations, allowing di�erent kinds of architectural concepts,
relations, ports, roles, etc.

118 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

� Extend the ADL so that it supports the declaration and enforcement of architectural con-
straints on these new kinds of architectural entities.

� Extend the (architectural layer of the) DFW with an extra layer describing the typical kinds
of architectural mappings for each of the new kinds of architectural entities.

� Extend the AML to allow the declaration and enforcement of constraints on how architectural
entities are mapped to the implementation. Positive constraints may indicate which mapping
scheme to choose. Negative constraints may exclude certain mapping schemes.

6.4.2 Architectural styles

Our current architectural language provides no support for architectural styles. Adding this feature
essentially requires the same extensions to the architectural language as those discussed in the
previous subsection. To adequately support architectural styles, we need customized notations,
speci�c constraints for each of those notations, default mapping schemes for the di�erent kinds
of architectural entities in a certain style, and constraints on the instantiation of certain entities
with certain architectural mappings.

In Subsection 2.1.2, we mentioned the `pipe and �lter' and `pipeline' styles as particular ex-
amples of architectural styles. A style such as a `pipeline' may require customized notations to
represent `pipes' and `�lters', and may declare some constraints on how the di�erent kinds of
architectural entities can (and cannot) be interconnected in an architectural view that complies
to this style. (Examples of constraints in the `pipeline' architectural style are: `�lter' concepts
can only be connected through `pipe' relations; pipes connect exactly two ports; there can be no
`dangling' pipes; ports of �lters can connect to no more than one pipe; etc.) Furthermore, default
mappings could be associated with `pipes' and `�lters', representing the typical ways how they
could be implemented in the base language. Again, these default mappings should be put in an
extra architectural layer of the DFW which groups all mappings that are speci�c to a certain
architectural style. Constraints can be used to declare which kinds of style-speci�c architectural
entities can and cannot be instantiated with which mappings.

As a concrete example of a structural constraint that is imposed by a certain architectural
style, we repeat an experiment from an earlier paper.4 More precisely, we de�ne a parameterized
predicate that describes the general structure of a `pipeline' architecture, which is composed out
of �lter concepts and pipe relations. It implements a complex architectural pattern that uses LMP
to declare the architectural con�guration of all involved architectural relations and concepts.

pipeFilterPattern(ArchView, [Filter1, Filter2 | OtherFilters], [Pipe1 | OtherPipes]) :-

link(ArchView, Filter1, out, Pipe1, source),

link(ArchView, Filter2, in, Pipe1, target),

% recursive call:

pipeFilterPattern(ArchView, [Filter2 | OtherFilters], OtherPipes).

% end of recursion:

pipeFilterPattern(ArchView, [LastFilter], []).

The �rst argument de�nes the scope (i.e. the current architectural view) in which we are working.
When supplied with a list of �lters (second argument) and a list of pipes (third argument), the
predicate checks whether the pipes connect the �lters, in respective order. In other words, the
�rst �lter should be linked to the second �lter by the �rst pipe, the second �lter to the third �lter
by the second pipe, and so on.

4At the time of writing this dissertation, the experiment has not yet been tried out in the current version of
our architectural formalism. It was tested, however, in a slightly older version [52] and is presented here using our
current notations.

6.4. EXTENDING THE ARCHITECTURAL FORMALISM 119

6.4.3 Architectural correspondence

We agree with Kruchten [38] that the various architectural views on a software implementation
need not be fully independent. Elements of one view may be connected to elements in other
views, following certain rules. Just like we codi�ed the mapping between the implementation and
the di�erent architectural views in a logic meta language, we could also codify the correspondence
between (elements of) the various architectural views. To this extent, the ADL should be extended
to allow the declaration of such correspondences and the conformance checking algorithm should
be extended to verify these correspondences as well.

Because we use a full-edged LMP language, we have no doubt that it is possible to de�ne
(and verify) these correspondences in that language. However, some research should be put into
what kinds of architectural correspondences are possible and useful, as well as how they should be
modeled and represented in our conformance checking formalism, and how they could be veri�ed.
Below, we give an indication of some possible kinds of architectural correspondences.

Correspondences among concepts relate concepts in di�erent architectural views. Two kinds
of such correspondences may be distinguished: those that can be represented as architectural
relations among concepts, and those that cannot. The �rst kind of correspondences allow
to reason only about the artifacts that belong to the virtual classi�cations to which the
concepts are mapped. The second kind of correspondences require extra information about
the concepts such as their ports or the name of the virtual classi�cations with which they
are instantiated. Examples of the �rst kind are:

� Requiring that two concepts have the same extension, i.e., the virtual classi�cations to
which they are mapped compute the same set of artifacts.

� Requiring that two concepts have a disjoint extension.

� Requiring that two concepts have an overlapping extension.

� Declaring that a concept is a strengthening or weakening of another one (in the sense
that their classi�cations are in a subset or superset relationship).

� Expressing other architectural relations between concepts in di�erent architectural
views. For example, we could assert that there should be a Creates relationship be-
tween the User Application concept from the `user interaction' view and the Query
concept from the `application architecture' view.

Examples of correspondences between architectural concepts that cannot be expressed by
ordinary architectural relations are:

� Requiring that two concepts have the same intention, i.e., they are mapped to exactly
the same virtual classi�cation. (Of course, this implies that their extension will also be
the same.) An example of this is the correspondence between the Repository concept
in the `user interaction' view and the Knowledge Base concept in the `rule-based
interpreter' view, or the Query Interpreter concept in the `user interaction' view and
the Rule Interpreter concept in the `rule-based interpreter' view.

� Requiring that two concepts have the same set of ports; or a disjoint set of ports; or an
overlapping set of ports; or checking for a subset relationship between the set of ports.

Correspondences among relations declare some relationship between architectural relations
in di�erent architectural views. For example, we could declare that two architectural rela-
tions are mapped to the same virtual dependency.

Other correspondences may include correspondences among ports, among roles, or even cor-
respondences among architectural entities of di�erent kinds such as concepts and relations.
(We might even want to express correspondences among correspondences.)

120 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

The correspondences among concepts that can be expressed by means of architectural relations
can easily be incorporated in our formalism. For the other kinds of architectural correspondences,
we need to investigate in detail how they can best be modeled and veri�ed in our formalism.

6.4.4 Architectural deviations

Although changes to the implementation that do not conform to the architecture should be avoided,
sometimes this is not possible (due to technical problems, time pressure, etc.). In such a situation
these deviations from the architecture should be annotated explicitly and should be taken into
account during the conformance checking process. For example, when checking conformance to a
certain architectural relation, the relation should be veri�ed for all relevant artifacts, except for
the deviations.

6.4.5 Sub-architectures

As will be illustrated in Chapter 7, our architecture language supports the de�nition of composite
virtual classi�cations and composite virtual dependencies that are de�ned in terms of more prim-
itive virtual classi�cations and virtual dependencies. However, the architecture language does not
yet support the de�nition of composite architectural concepts or composite architectural relations
that are de�ned in terms of sub-architectures consisting of more primitive architectural concepts
and relations and their interconnections. As this was one of our expressiveness requirements (see
3.2.2), in this subsection we explain in short how the architecture language and conformance
checking algorithm could be extended to deal with such composite entities.

Composite concepts

As in Subsection 6.4.2, we illustrate this extension of the architectural language by repeating an
experiment from an earlier paper.5 More precisely, we will describe the computational process of
the Rule Interpreter concept in the `rule-based interpreter' view in terms of a sub-architecture
(instead of directly in terms of a virtual classi�cation).

Figure 6.4: The `Rule Interpreter' sub-architecture.

We base our description of this sub-architecture on the insight that interpreting a rule actually
proceeds in two steps: an interpretation phase where all terms and clauses occurring in the rule
are interpreted recursively, and a substitution phase where bindings found during uni�cation are

5At the time of writing the dissertation, this extension has not yet been included in the current version of
our architecture language and conformance checking algorithm. It was implemented, however, in a slightly older
version. The experiment presented here is a retake of an experiment in that older version [52] and was adapted to
our current notations.

6.4. EXTENDING THE ARCHITECTURAL FORMALISM 121

substituted in the term that is currently being interpreted. We de�ne this sub-architecture in terms
of two architectural concepts Interpretation and Substitution, connected by means of Asks
relations, as illustrated in Figure 6.4. The Asks4 relation represents the fact that substitutions are
performed during the interpretation phase, and the Asks5 relation represents the recursive nature
of the interpretation phase.

The sub-architecture of Figure 6.4 is described by the facts listed in Table 6.1. There is one
fact for each concept, relation, port, role and link. The only di�erence with the description of
an architectural view, is that instead of a view fact, we need to declare a subArchitecture fact.
Whereas the view fact de�nes the name of an architectural view and the conceptual architecture
it belongs to, the subArchitecture fact declares the name of a sub-architecture and the name
and view of the concept it is de�ning.

subArchitecture(soulRuleBasedSystem, ruleInterpreter, ruleInterprSubArch).

concept(ruleInterprSubArch, interpretation).

concept(ruleInterprSubArch, substitution).

relation(ruleInterprSubArch, asks4).

relation(ruleInterprSubArch, asks5).

port(ruleInterprSubArch, interpretation, interpret).

port(ruleInterprSubArch, interpretation, smalltalkTerm).

port(ruleInterprSubArch, interpretation, unify).

port(ruleInterprSubArch, substitution, substitute).

role(ruleInterprSubArch, asks4, interrogator).

role(ruleInterprSubArch, asks4, interrogated).

role(ruleInterprSubArch, asks5, interrogator).

role(ruleInterprSubArch, asks5, interrogated).

link(ruleInterprSubArch, interpretation, interpret, asks4, interrogator).

link(ruleInterprSubArch, substitution, substitute, asks4, interrogated).

link(ruleInterprSubArch, interpretation, interpret, asks5, interrogator).

link(ruleInterprSubArch, interpretation, interpret, asks5, interrogated).

Table 6.1: Architectural description of the `Rule Interpreter' sub-architecture.

Because the Rule Interpreter concept is now described by the sub-architecture shown in
Figure 6.4 and Table 6.1 (instead of by some virtual classi�cation), we do not need to declare
a concept mapping for that concept anymore. Instead, the meaning of the Rule Interpreter
concept will be derived from the architectural mappings associated with each of the entities in its
sub-architecture. These architectural mappings are shown in Table 6.2.

For example, the Interpretation concept is mapped to the virtual classi�cation `queryInter-
preter' in terms of which theRule Interpreter concept was originally de�ned. The Substitution
concept is mapped to a virtual classi�cation `substitution' containing all methods that belong to
a method protocol named `substitution'. It also contains all classes that implement one of these
methods. This virtual classi�cation is de�ned by the rules below:

classifiedAs(method('substitution'), Method) :-

classifiedAs(class('soul'), Class), % restrict scope to 'SOUL' classes

protocolName(Protocol, 'substitution'),

methodInProtocol(Class, Protocol, Method).

classifiedAs(class('substitution'), Class) :-

findClassesFromMethods(Class, 'substitution').

Just like the meaning of the composite Rule Interpreter concept will be derived from the
architectural instantiation of its sub-architecture, the meaning of the external ports of the Rule
Interpreter concept, will be de�ned in terms of the meanings of the internal ports (i.e., ports
belonging to concepts within the sub-architecture). We do not need to declare a port mapping for

122 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

conceptMapping(ruleInterprSubArch, interpretation, queryInterpreter).

conceptMapping(ruleInterprSubArch, substitution, substitution).

portMapping(ruleInterprSubArch, interpretation, interpret, methodFilter).

portMapping(ruleInterprSubArch, interpretation, unify, methodFilter).

portMapping(ruleInterprSubArch, interpretation, smalltalkTerm, smalltalktermClassFilter).

portMapping(ruleInterprSubArch, substitution, substitute, methodFilter).

relationMapping(ruleInterprSubArch, asks4, asks_M_M).

relationMapping(ruleInterprSubArch, asks5, asks_M_M).

roleMapping(ruleInterprSubArch, asks4, interrogator, 1).

roleMapping(ruleInterprSubArch, asks4, interrogated, 2).

roleMapping(ruleInterprSubArch, asks5, interrogator, 1).

roleMapping(ruleInterprSubArch, asks5, interrogated, 2).

linkMapping(ruleInterprSubArch, interpretation, interpret, asks4, interrogator, exists).

linkMapping(ruleInterprSubArch, substitution, substitute, asks4, interrogated, exists).

linkMapping(ruleInterprSubArch, interpretation, interpret, asks5, interrogator, exists).

linkMapping(ruleInterprSubArch, interpretation, interpret, asks5, interrogated, exists).

Table 6.2: Architectural instantiation for the `Rule Interpreter' sub-architecture.

the external ports of Rule Interpreter anymore. Instead, each external port should be bound
to one (or more) internal port(s). Figure 6.5 and Table 6.3 show these bindings for the Rule
Interpreter concept. (Note that we left out the architectural relations and links in the �gure, to
avoid cluttering the �gure.)

Figure 6.5: Bindings for the `Rule Interpreter' sub-architecture.

portBinding(soulRuleBasedSystem, ruleInterpreter, interpret,

ruleInterprSubArch, interpretation, interpret).

portBinding(soulRuleBasedSystem, ruleInterpreter, interpret,

ruleInterprSubArch, substitution, substitute).

portBinding(soulRuleBasedSystem, ruleInterpreter, unify,

ruleInterprSubArch, interpretation, unify).

portBinding(soulRuleBasedSystem, ruleInterpreter, smalltalkTerm,

ruleInterprSubArch, interpretation, smalltalkTerm).

Table 6.3: Port bindings for the `Rule Interpreter' sub-architecture.

6.4. EXTENDING THE ARCHITECTURAL FORMALISM 123

This concludes the de�nition of the composite concept Rule Interpreter in terms of a sub-
architecture. The next section informally explains how the conformance checking algorithm uses
all this information to check conformance for such a composite concept.

Checking conformance to composite concepts

We explain how the original conformance checking algorithm should be updated to work in the
current situation; where concepts can be instantiated with sub-architectures that are, in turn,
built up from many other concepts and relations.

1. First of all, in addition to checking conformance to every architectural view, the algorithm
should check conformance to every sub-architecture as well. Indeed, the architectural re-
lations in sub-architectures represent additional constraints that should be satis�ed by the
implementation.

2. Secondly, whenever the values on an external port of a composite concept are needed, the
port bindings need to be taken into account as follows: the set of all values corresponding
to an external port of a composite concept is the union of all values corresponding to each
of the internal ports to which this external port is bound. (If the composite concept would
be de�ned in terms of a sub-architecture which in turn contains another composite concept,
we simply apply this rule recursively.)

Composite relations

In Subsection 7.3.3, we will show how the Is Composite architectural relations are de�ned directly
in terms of a virtual dependency isComposite C C, which is a conjunction of the virtual depen-
dencies specializes C C and containsElementsOfType C C. However, just like we can de�ne
composite concepts, it is possible to de�ne composite relations. Therefore, alternatively we could
de�ne Is Composite as a composite architectural relation in terms of the more primitive relations
Is Kind of and Contains, as illustrated in Figure 6.6.

Figure 6.6: A composite architectural relation: `Is Composite'.

To de�ne such a composite relation, a similar approach as for de�ning a composite concept
should be followed. First of all, we need to describe all entities of the sub-architecture and their
architectural mapping. For the composite relation itself, we do not need to de�ne a relation
mapping anymore. Also, for its (external) roles, we do not need to de�ne role mappings anymore.
We do need to declare role bindings to bind every external role of the composite relation to one or
more roles of internal relations (i.e., relations belonging to relations within the sub-architecture).

124 CHAPTER 6. IMPLEMENTING THE ARCHITECTURE FORMALISM USING LMP

Checking conformance to composite relations

In order to be able to handle composite relations, the conformance checking algorithm should be
updated as follows:

1. In addition to checking conformance to all architectural views and all sub-architectures of
composite concepts, the algorithm should also check conformance to all sub-architectures of
composite relations.

2. Whenever a composite relation is checked with certain values, the role bindings are used
to propagate the values to the corresponding roles of internal relations, and these internal
relations should be checked instead.

6.5 Summary

In Chapter 5, we introduced and formalized the architecture language and de�ned a notion of
architectural conformance. In this chapter, we explained how to implement this architectural
formalism in a LMP language. This was very easy and straightforward, due to the declarative
nature and expressive power of LMP, and due to the `logic avor' of the architectural formalism.

We sketched the setup of our LMP environment, showed how to represent the architecture
language(s) in this environment and presented the implementation of an architectural conformance
checking algorithm in the LMP language. We concluded the chapter with a discussion of some
extensions to the architectural formalism.

Chapter 7

Case Study

In this chapter, we elaborate on the case study we conducted as a validation of the thesis. We
illustrate how we checked conformance of the implementation of SOUL to the di�erent architectural
views presented in Chapter 4. This case study proves the validity of our approach and shows
that combining logic meta programming with the notions of virtual classi�cations and virtual
dependencies o�ers a very expressive medium for checking architectural conformance.

7.1 The user interaction architectural view

Figure 7.1: The `user interaction' architectural view with quanti�ers.

Now that we have explained the architectural formalism and how it was implemented in a
LMP language, we turn our attention to the conducted case study. For each of the architectural

125

126 CHAPTER 7. CASE STUDY

views presented in Chapter 4, we take a closer look at how the architectural mapping was de�ned,
we discuss some of the di�culties encountered, and we illustrate why our approach is indeed
an expressive one. In this particular section, we elaborate on our experiences with checking
conformance of the Smalltalk implementation of SOUL to the `user interaction' architectural view
of Section 4.2.2. For easy reference, we repeat Figure 5.2 of the `user interaction' view here (Figure
7.1).

7.1.1 Declaring the user interaction architectural view

As explained in Subsection 6.2.1, we describe architectural views by declaring the entities they
contain as a set of Prolog facts. All these facts together describe the `user interaction' architectural
view. Table 7.1 shows some of the facts for the `user interaction' architectural view depicted in
Figure 7.1. Some facts have been left out and are indicated by `...'.

view(soul, soulUserInteraction).

...

concept(soulUserInteraction, inputWindow).

concept(soulUserInteraction, userApplication).

concept(soulUserInteraction, queryInterpreter).

...

relation(soulUserInteraction, activates).

relation(soulUserInteraction, asks1).

...

port(soulUserInteraction, inputWindow, event).

port(soulUserInteraction, userApplication, request).

port(soulUserInteraction, userApplication, type).

port(soulUserInteraction, queryInterpreter, interpret).

...

role(soulUserInteraction, activates, trigger).

role(soulUserInteraction, activates, action).

role(soulUserInteraction, asks1, interrogator).

role(soulUserInteraction, asks1, interrogated).

...

link(soulUserInteraction, inputWindow, event, activates, trigger).

link(soulUserInteraction, userApplication, request, activates, action).

link(soulUserInteraction, userApplication, type, asks1, interrogator).

link(soulUserInteraction, queryInterpreter, interpret, asks1, interrogated).

...

Table 7.1: Declaring the `user interaction' architectural view.

7.1.2 Declaring the architectural instantiation

In Subsection 6.2.3, we explained how an architectural instantiation is represented in our LMP lan-
guage. Tables 7.2 to 7.6 present the complete architectural instantiation for the `user interaction'
architectural view of Figure 7.1.

Table 7.2 lists the facts that de�ne the concept mappings. Note that in many cases the concept
name and the name of the associated virtual classi�cation (second and third argument) are the
same. This is not a problem, because they are stored separately in the repository.

The port mappings for the concepts in the `user interaction' view are shown in Table 7.3. The
relation mappings are listed in Table 7.4, and Table 7.5 presents the role mappings for the `user
interaction' architectural view. Finally, the link mappings for this architectural view are given in
Table 7.6.

7.1. THE USER INTERACTION ARCHITECTURAL VIEW 127

conceptMapping(soulUserInteraction, inputWindow, userInput).

conceptMapping(soulUserInteraction, userApplication, userApplication).

conceptMapping(soulUserInteraction, auxiliaryApplication, auxiliaryApplication).

conceptMapping(soulUserInteraction, outputViewer, resultViewer).

conceptMapping(soulUserInteraction, queryInterpreter, queryInterpreter).

conceptMapping(soulUserInteraction, repository, repository).

conceptMapping(soulUserInteraction, queryResult, result).

Table 7.2: Concept mappings for the `user interaction' architectural view.

portMapping(soulUserInteraction, inputWindow, event, methodFilter).

portMapping(soulUserInteraction, outputViewer, creation, baseClassFilter).

portMapping(soulUserInteraction, userApplication, request, methodFilter).

portMapping(soulUserInteraction, userApplication, type, baseClassFilter).

portMapping(soulUserInteraction, repository, request, methodFilter).

portMapping(soulUserInteraction, queryInterpreter, interpret, methodFilter).

portMapping(soulUserInteraction, queryResult, type, baseClassFilter).

portMapping(soulUserInteraction, auxiliaryApplication, request, methodFilter).

portMapping(soulUserInteraction, auxiliaryApplication, type, baseClassFilter).

Table 7.3: Port mappings for the `user interaction' architectural view.

relationMapping(soulUserInteraction, activates, mentions_M_M).

relationMapping(soulUserInteraction, createsWith, createsWith_C_C_C).

relationMapping(soulUserInteraction, asks2, asks_C_M).

relationMapping(soulUserInteraction, isCreatedBy, isCreatedBy_C_C).

relationMapping(soulUserInteraction, asks1, asks_C_M).

Table 7.4: Relation mappings for the `user interaction' architectural view.

roleMapping(soulUserInteraction, activates, trigger, 1).

roleMapping(soulUserInteraction, activates, action, 2).

roleMapping(soulUserInteraction, isCreatedBy, created, 1).

roleMapping(soulUserInteraction, isCreatedBy, creator, 2).

roleMapping(soulUserInteraction, asks1, interrogator, 1).

roleMapping(soulUserInteraction, asks1, interrogated, 2).

roleMapping(soulUserInteraction, asks2, interrogator, 1).

roleMapping(soulUserInteraction, asks2, interrogated, 2).

roleMapping(soulUserInteraction, createsWith, creator, 1).

roleMapping(soulUserInteraction, createsWith, argument, 2).

roleMapping(soulUserInteraction, createsWith, created, 3).

Table 7.5: Role mappings for the `user interaction' architectural view.

7.1.3 Virtual classi�cations

Now that we have presented the implementation of the architecture description and architectural
instantiation of the `user interaction' architectural view, we show how the architectural abstrac-
tion is represented. We explain this for each of the di�erent kinds of architectural abstractions
separately, starting with the virtual classi�cations.

128 CHAPTER 7. CASE STUDY

linkMapping(soulUserInteraction,inputWindow,event,activates,trigger,exists).

linkMapping(soulUserInteraction,userApplication,request,activates,action,exists).

linkMapping(soulUserInteraction,auxiliaryApplication,request,activates,action,exists).

linkMapping(soulUserInteraction,auxiliaryApplication,type,isCreatedBy,created,forall).

linkMapping(soulUserInteraction,userApplication,type,isCreatedBy,creator,exists).

linkMapping(soulUserInteraction,auxiliaryApplication,type,isCreatedBy,creator,exists).

linkMapping(soulUserInteraction,userApplication,type,asks1,interrogator,forall).

linkMapping(soulUserInteraction,queryInterpreter,interpret,asks1,interrogated,exists).

linkMapping(soulUserInteraction,userApplication,type,asks2,interrogator,forall).

linkMapping(soulUserInteraction,repository,request,asks2,interrogated,exists).

linkMapping(soulUserInteraction,userApplication,type,createsWith,creator,forall).

linkMapping(soulUserInteraction,queryResult,type,createsWith,argument,exists).

linkMapping(soulUserInteraction,outputViewer,creation,createsWith,created,exists).

Table 7.6: Link mappings for the `user interaction' architectural view.

As a �rst and simple example of a virtual classi�cation, we de�ne the `userApplication' virtual
classi�cation which is used to model the architectural concept User Application in the SOUL
system. This virtual classi�cation is fairly easy to de�ne thanks to the coding conventions adopted
by the developers of the SOUL system. In particular, all user applications (as well as some
auxiliary applications) were implemented as Smalltalk classes that are stored together in the same
class category `SOULUIApplications'. Furthermore, the naming convention was adopted to end
the name of every class representing a user application with `App'. Also, as for all other classes
in the SOUL implementation, these classes start with the string `SOUL'. All this is codi�ed by
the Prolog predicate below. The predicate head should be read as: \the virtual classi�cation
userApplication contains those elements Class of type class, that satisfy . . . ".

classifiedAs(class('userApplication'), Class) :-

categoryName(Category, 'SOULUIApplications'),

classInCategory(Category, Class),

className(Class, ClassName),

patternMatch(ClassName, and(prefix('SOUL'), postfix('App'))).

Such an intentional and declarative de�nition has many advantages over a more extensional
(i.e., enumerating) one (also see Subsection 2.3.4). First of all, it contains more knowledge,
because it makes some of the developer's assumptions explicit. Secondly, it is more compact than
an exhaustive enumeration of all elements. And �nally, it is more reusable and robust towards
evolution than an extensional de�nition. For example, if the developer would want to add new user
applications while respecting the same coding conventions, after this modi�cation, the intentionally
de�ned virtual classi�cation would still correctly de�ne its elements.

In addition to artifacts of type class, the virtual classi�cation `userApplication' also contains
artifacts of type method, representing the requests that can be handled by user applications. In
other words, this classi�cation is an example of a heterogeneous virtual classi�cation containing
a mixture of both Smalltalk classes and methods. The methods are de�ned straightforwardly in
terms of the already declared class elements.

% 'userApplication' methods are methods that belong to 'userApplication' classes

classifiedAs(method('userApplication'), Method) :-

findMethodsFromClasses(Method, 'userApplication').

A second example of a heterogeneous virtual classi�cation is the `queryInterpreter' virtual clas-
si�cation which groups all classes and methods that have something to do with the interpretation
of queries in the SOUL system. Again, we are fortunate, because the SOUL developers adopted a
coding convention to store all query-interpretation methods in the same Smalltalk method protocol
`interpretation', `interpreting' or `uni�cation'.

7.1. THE USER INTERACTION ARCHITECTURAL VIEW 129

classifiedAs(method('queryInterpreter'), Method) :-

classifiedAs(class('soul'), Class), % restrict the scope to 'SOUL' classes

interpretingProtocolName(ProtocolName), % select interpretation method protocol

protocolName(Protocol, ProtocolName),

methodInProtocol(Class, Protocol, Method). % extract the methods from this protocol

% Auxiliary predicate:

interpretingProtocolName('interpretation').

interpretingProtocolName('interpreting').

interpretingProtocolName('unification').

This classi�cation de�nes a real cross-cut of the Smalltalk code of the SOUL system, as the
interpretation methods are distributed over many di�erent classes in the SOUL class hierarchy.
(Almost every class representing a node in the SOUL abstract grammar implements one or more
of these methods.)

The classes that belong to the `queryInterpreter' virtual classi�cation can be computed straight-
forwardly from the already declared method elements. This is the opposite situation of the previous
example, where the classi�ed methods were de�ned in terms of the already declared class elements.

% 'queryInterpreter' classes are all classes that implement a 'queryInterpreter' method.

classifiedAs(class('queryInterpreter'), Class) :-

findClassesFromMethods(Class, 'queryInterpreter').

Thanks to our use of a LMP language and the prede�ned logic predicates provided by the
DFW, both virtual classi�cations above are codi�ed in a concise, intuitive and readable way. As a
further example of the expressive power of using a LMP language, consider the virtual classi�cation
`auxiliaryApplication' for the Auxiliary Application concept, in which we make explicit use of
logic negation. The Smalltalk category `SOULUIApplications' groups all classes representing user
applications, auxiliary applications and output viewers. Hence, auxiliary applications correspond
to those classes that belong to this category and that are not a `userApplication' class, nor a
`resultViewer' class1.

classifiedAs(class('auxiliaryApplication'), Class) :-

categoryName(Category, 'SOULUIApplications'),

classInCategory(Category, Class),

not classifiedAs(class('userApplication'),Class),

not classifiedAs(class('resultViewer'),Class).

Similar to the `userApplication' classi�cation, the virtual classi�cation for auxiliary applications
also contains methods, and these methods can be derived straightforwardly from the already
declared class elements.

classifiedAs(method('auxiliaryApplication'), Method) :-

findMethodsFromClasses(Method, 'auxiliaryApplication').

In addition to illustrating the use of negation in virtual classi�cations, the previous exam-
ple also shows how virtual classi�cations can be de�ned in terms of other virtual classi�cations :
`auxiliaryApplication' classes were de�ned in terms of the classes classi�ed as `userApplication' or
`resultViewer'.

The `resultViewer' classi�cation corresponds to theOutput Viewer architectural concept and
is de�ned as follows:

classifiedAs(class('resultViewer'), Class) :-

hierarchy(class('SOULFindResultPresenter',_), Class);

hierarchy(class('SOULResultPresenterInspector',_), Class).

1`resultViewer' is the name of the virtual classi�cation associated with the Output Viewer concept.

130 CHAPTER 7. CASE STUDY

In other words, the `resultViewer' classes are the SOUL classes SOULFindResultPresenter and
SOULResultPresenterInspector and their subclasses. For now, we simply enumerate these pos-
sibilities.

The architectural concept Query Result is mapped to a virtual classi�cation `result' which
groups all classes that implement the results of queries in the SOUL system. This is essentially
the SOULResultPresenter class. However, this class delegates part of its data and behavior to
some auxiliary classes such as SOULResultState and its subclasses. Fortunately, in the SOUL
implementation, the convention was adopted to pre�x the name of all these classes with the
string `SOULResult'. To reduce the scope, we additionally require that these classes belong to the
SOULObject class hierarchy.

classifiedAs(class('result'), Class) :-

hierarchy(class('SOULObject',_), Class),

className(Class, ClassName),

patternMatch(ClassName, prefix('SOULResult')).

The Input Window concept is de�ned in terms of a virtual classi�cation `userInput' which
groups all methods representing events that can be triggered by users, i.e., all methods for handling
window buttons, �elds or menus. Again, this can be de�ned straightforwardly based on the
following coding conventions: methods associated with window buttons and �elds are typically
stored in a method protocol `interface specs', and methods associated with window menus in a
protocol named `resources'.

classifiedAs(method('userInput'), Method) :-

userInputProtocol(ProtocolName),

methodInProtocol(_, methodProtocol(ProtocolName, _), Method).

userInputProtocol('interface specs'). % methods associated with window buttons and fields

userInputProtocol('resources'). % methods associated with window menus

Finally, we have the Repository concept which is mapped to the classi�cation `repository':

% 'repository' classes are subclasses of the class SOULAbstractRepository.

classifiedAs(class('repository'), Class) :-

hierarchy(class('SOULAbstractRepository', _), Class).

% 'repository' meta classes are the meta classes of 'repository' classes.

classifiedAs(metaclass('repository'), Meta) :-

findMetaClassesFromClasses(Meta, 'repository').

% 'repository' methods belong to 'repository' classes or metaclasses,

classifiedAs(method('repository'), Method) :-

findMethodsFromClasses(Method, 'repository').

% OR are Factory Methods that create 'repository' classes

classifiedAs(method('repository'), Method) :-

findMethodsFromClasses(Method, 'soul'), % restrict scope to SOUL classes

classifiedAs(class('repository'), Class),

factoryMethod(Method, Class).

In the SOUL implementation, repositories are represented by the class SOULAbstractRepository
or one of its subclasses. The virtual classi�cation for Repository contains these classes, as well
as all their meta classes and all their methods. Furthermore, in addition to these methods, we
also include all methods in the SOUL implementation that are factory methods for repository
classes. Indeed, the SOUL implementation uses the Factory Method design pattern where new
instances of repository classes are always created through the appropriate factory methods (which
are all de�ned on a factory class SOULFactory). As these factory methods represent the interface
to create new repositories, we include them in the `repository' classi�cation (even though they are
not implemented by a repository class).

7.1. THE USER INTERACTION ARCHITECTURAL VIEW 131

The above examples illustrate, amongst others, the ability to de�ne heterogeneous virtual
classi�cations; virtual classi�cation based on naming conventions, coding conventions and design
patterns; the use of semantic inferencing; the ability to de�ne virtual classi�cations in terms of
other virtual classi�cations and virtual dependencies; the use of logic negation; and so on. Further-
more, most rules de�ning virtual classi�cations are surprisingly concise, intuitive and readable. In
the next sections, more examples will follow.

7.1.4 Port �lters

The architectural layer of the DFW provides a whole range of prede�ned port �lters (see 6.2.4),
such as method �lters and class �lters. These prede�ned �lters are su�cient to de�ne most port
mappings.

Ports representing actions (an event that is sent, a request that can be handled, the interpre-
tation of a query, . . .) are typically de�ned in terms of a method �lter. For example, the Query
Interpreter concept in the `user interaction' view has an Interpret port which selects all methods
that take part in the interpretation process. So the �lter associated with this port is a method
�lter which selects only the methods from the classi�cation associated with Query Interpreter.

Ports representing the type or kind of things (a type of user or auxiliary application, a kind of
output viewer that can be created, a kind of query result, . . .) are typically de�ned in terms of
(base) class �lters.

Table 7.3 lists all port mappings for the `user interaction' view on the SOUL implementation.

7.1.5 Virtual dependencies

Some of the virtual dependencies required by the `user interaction' architectural view, were already
explained in Subsection 6.2.4. The mentions M M predicate, which implements the Activates
architectural relation, was de�ned in terms of simple string pattern matching. The asks C M

predicate, which implements the Asks1 and Asks2 relations, uses a mixture of pattern matching
and parse-tree traversing.

The Creates With architectural relation has three roles and is de�ned in terms of a ternary
predicate createsWith C C C which checks whether some SourceClass creates a ViewClass to
view an instance of some class Type. The predicate distinguishes two cases, codifying the di�erent
ways in which this creation behavior can be achieved. The �rst case veri�es whether SourceClass
contains a method which can create an instance of the ViewClass (by sending some instance-
creation message directly to this class), and whether this creation method takes an argument of
class Type. As an example, consider the de�nition of the following Smalltalk method:

showResult: aResultPresenter

aResultPresenter result isFailed

ifTrue: [Dialog warn: 'Nothing found']

ifFalse: [SOULFindResultPresenter openOnResults: aResultPresenter]

This method of class SOULFinderApp takes an argument of type SOULResultPresenter and creates
an instance of the view class SOULFindResultPresenter. The method openOnResults: indeed
belongs to the instance-creation protocol of SOULFindResultPresenter. The rule which captures
this abstract code pattern is given below:

% Example of code pattern 1:

% createsWith_C_C_C(SOULFinderApp, SOULResultPresenter, SOULFindResultPresenter)

createsWith_C_C_C(SourceClass, Type, ViewClass) :-

% Is a direct Message sent from SourceClass to ViewClass?

className(SourceClass, SrcClName),

className(ViewClass, ViewName),

isSentTo(SrcClName, SrcMthName, variable(ViewName), Message, Args),

% Does the Message have an argument of the given Type?

classImplementsMethodNamed(SourceClass, SrcMthName, Method),

132 CHAPTER 7. CASE STUDY

member(Arg, Args),

mayHaveType_E_M_C(Arg, Method, Type),

% Does the Message correspond to an instance-creation method of the ViewClass?

metaClass(ViewClass, Meta),

understands(Meta, Message),

creationProtocolName(ProtocolName),

methodNameInProtocolFlattened(Meta, methodProtocol(ProtocolName, _), Message).

% instance-creation protocols are:

creationProtocolName('instance creation').

creationProtocolName('view creation').

The above rule is de�ned in terms of the auxiliary predicates isSentTo and mayHaveType E M C.
We repeat that the isSentTo predicate performs a parse-tree traversal in search for some mes-
sage send (see 6.2.4) and that the mayHaveType E M C predicate tries to infer the type of some
expression in the body of some method.

The above rule codi�es the �rst way in which some SourceClass can create a ViewClass to
view an instance of some class Type. The second way captures the more complex interaction where
the SourceClass implements a method that sends a parameterless message (e.g., inspect) to an
instance of class Type, which in turn sends a creation message to the ViewClass with itself as
argument. As an example of this interaction pattern, consider the following Smalltalk method,
which belongs to the class SOULQueryApp:

evaluate

self evaluateEditField inspect

The method evaluate sends an argumentless message inspect to the result of the expres-
sion self evaluateEditField. The method evaluateEditField in this expression invokes a
method basicEvaluateEditField which returns the result of interpreting a query. In other
words, the expression self evaulateEditField is of type SOULResultPresenter. This class
SOULResultPresenter indeed understands a method `inspect'. Its implementation is shown be-
low. It sends an instance-creation message openOn: to SOULResultPresenterInspector (the
view class) with the current SOULResultPresenter (self) as argument.

inspect

InputState default shiftDown

ifTrue: [super inspect]

ifFalse: [SOULResultPresenterInspector openOn: self]

This complex interaction pattern is codi�ed in the following Prolog rule:

% Example of code pattern 2:

% createsWith_C_C_C(SOULQueryApp, SOULResultPresenter, SOULResultPresenterInspector)

createsWith_C_C_C(SourceClass, Type, ViewClass) :-

% Does the SourceClass send an argumentless Message to some Receiver?

className(SourceClass, SrcClName),

isSentTo(SrcClName, Method, Receiver, Message, []),

% Is the Receiver of the expected Type?

mayHaveType_E_M_C(Receiver, Method, Type),

% Does the Method corresponding to the argumentless Message invoke a method

% on the ViewClass?

isSentTo(_ResultClass, Message, variable(TrgtClName), CreationMsg, Args),

className(ViewClass, TrgtClName),

% Is the invoked method an instance-creation method?

metaClass(ViewClass, Meta),

creationProtocolName(ProtocolName),

methodNameInProtocolFlattened(Meta, methodProtocol(ProtocolName, _), CreationMsg),

% Is 'self' passed as an argument?

member(variable(self), Args).

7.1. THE USER INTERACTION ARCHITECTURAL VIEW 133

As opposed to the �rst code pattern, this pattern is a non-local one: it involves multiple methods
in multiple classes.

Virtual dependencies are often de�ned in terms of other virtual dependencies. As an example,
consider the isCreatedBy C C predicate, which implements the Is Created By architectural
relation. It is de�ned in terms of the more primitive isPartOf M C and createsInstanceOf M C

virtual dependencies. The former veri�es whether a method is part of some class; the latter checks
whether some method creates an instance of some class.

% is an instance of Class1 created by (an instance of) Class2?

isCreatedBy_C_C(Class1, Class2) :-

isPartOf_M_C(Method, Class2),

createsInstanceOf_M_C(Method, Class1).

createsInstanceOf M C checks for the typical coding patterns that indicate the creation of an
instance of a class. In Smalltalk, this is typically done by sending an instance-creation message.
(The implementation of the predicate instanceCreationMethod is given in Appendix B.)

% Does method M create an instance of class C?

createsInstanceOf_M_C(M, C) :-

% Does method M send a Message to class C?

classImplementsMethodNamed(Class, MethodName, M),

className(Class, ClassName),

className(C, Receiver),

isSentTo(ClassName, MethodName, variable(Receiver), Message),

% Is Message the name of an instance-creation method?

instanceCreationMethod(C, M),

methodName(M, Message).

The above examples clearly illustrate the expressiveness of a LMP approach to declare virtual
dependencies. The powerful techniques of parse-tree traversing, string pattern matching, uni�ca-
tion and backtracking are used to codify complex coding patterns and interaction protocols. In
addition we showed how virtual dependencies can be de�ned in terms of more primitive virtual
dependencies.

7.1.6 Quanti�ers

As explained in Subsection 5.3.1, quanti�ers specify how a virtual dependency, associated with
an architectural relation, should be abstracted to a relationship among architectural concepts.
Since a virtual dependency only de�nes a relationship over single implementation artifacts, but
architectural concepts are mapped to sets (i.e., virtual classi�cations) of such artifacts, a virtual
dependency needs to be abstracted to a relationship among virtual classi�cations. The quanti�ers
specify how to consider the di�erent artifacts in a virtual classi�cation. For example, an 9 quanti-
�er means that it is su�cient for the intended relationship to hold for at least one of the artifacts
in a virtual classi�cation. The 8 quanti�er states that it should hold for all elements in a virtual
classi�cation.

The di�erent quanti�ers for the `user interaction' view of Figure 7.1 should be interpreted as
follows:

� every auxiliary application is created either by some type of user application or by some
type of auxiliary application;

� every type of user application asks the repository to execute some request;

� every type of user application creates some kind of output window using some type of query
result;

� every type of user application asks some part of the rule interpreter to interpret a query;

134 CHAPTER 7. CASE STUDY

� some input window events trigger an action to activate some request on a user application
or an auxiliary application.

Although other quanti�ers than 8 and 9 are imaginable, in the case study we conducted we
never felt the need to use any other quanti�ers. We were able to express everything we wanted to in
terms of these two quanti�ers, in combination with well-chosen de�nitions of virtual classi�cations,
virtual dependencies and port �lters. When the need for other quanti�ers would arise, however,
they can readily be included in the architectural formalism.

7.1.7 Encountered di�culties

Problems with naming conventions

Overall, we were quite lucky with the naming conventions adopted by the SOUL developers.
Many good naming conventions for both classes and methods were consistently used throughout
the implementation. Also, the use of Smalltalk method protocols and class categories as built-in
classi�cation mechanisms provided by the Smalltalk language were often of great help in de�ning
our virtual classi�cations.

However, using naming conventions to de�ne virtual classi�cations does not always work.
In Subsection 7.1.3, the `resultViewer' virtual classi�cation was de�ned as an enumeration of
two separate class hierarchies (i.e., the hierarchies with root classes SOULFindResultPresenter
and SOULResultPresenterInspector). Using naming conventions to de�ne these classes did
not work here, because the class names were not so well chosen. For example, although both
classes SOULFindResultPresenter and SOULResultPresenterInspector contain the same string
`ResultPresenter' in their name, there are some other classes in the SOUL system that also contain
this string but do not represent a result viewer class.

Apart from the fact that good naming conventions are not always available, on page 70 we
mentioned some other problems with de�ning virtual classi�cations in terms of such naming con-
ventions. Of course, we are not obliged to describe a virtual classi�cation in terms of naming and
coding conventions. In cases where it is not possible, or not opportune because the conventions
are not consistently followed throughout the implementation, we can still de�ne the virtual clas-
si�cation in other ways. First of all, we can use a classi�cation which explicitly enumerates its
elements (but then, of course, it would no longer be `virtual'). Or, we can try to give a de�nition
that is not based on conventions but that makes us of semantic inferencing. Such a more semantic
de�nition is often harder to write, but is typically more robust towards changes.

For example, a more semantic de�nition of the `resultViewer' virtual classi�cation could be
that `resultViewer' classes are all classes that have an (instance or view) creation method which
can take an argument of type SOULResultPresenter. This corresponds to the intuition that the
result of a query, wrapped as an instance of the SOULResultPresenter class, is used by a result
viewer class to create a view in which the result can be shown in an appropriate format to the
user. Unfortunately, such a semantic de�nition is harder to write down than an extensional one,
or one based on simple naming conventions. This particular intentional de�nition, for example, is
not so easy to implement due to the lack of static type information in Smalltalk.

Lack of dynamic information

As already mentioned earlier, our current implementation takes a static approach towards archi-
tectural conformance checking. In most cases, this did not cause many problems, but sometimes
we had di�culties expressing the things we wanted due to a lack of run-time information. For
example, dynamic information might have helped in providing a more precise answer regarding
the possible type of some expression.

We also encountered another example of a problem caused by a lack of dynamic information.
In SOUL, when a user application invokes the query interpreter, a result is returned to the user
application so that it can present this result to the user using some output viewer. Currently, the

7.1. THE USER INTERACTION ARCHITECTURAL VIEW 135

`user interaction' view only captures this interaction partially. It does contain an architectural
relation describing that the user application asks the query interpreter for some (query) result, as
well as an architectural relation describing that the user application creates an output viewer with
some query result. It does not describe however, that both query results should actually be the
same object.2 With our static approach, we can only reason about classes, methods and variables.
To reason about objects, more dynamic information is needed.

It is important to note that our formalism, and the use of a LMP medium in which to reason
about the software, does not inhibit a more dynamic approach. If we would have access to dynamic
information, we could easily write logic predicates that reason about this information and de�ne
our virtual classi�cations and virtual dependencies in terms of these predicates. In fact, we consider
this as an important area of future research.

Intentionality versus e�ciency

Another di�culty we often had to face has to do with the trade-o� between intentionality and e�-
ciency. On the one hand, an intentional de�nition of a virtual classi�cation or virtual dependency
has the advantage of providing a more correct (more semantic) description, and is often more
robust towards change. On the other hand, it is typically less e�cient than a more pragmatic de�-
nition that is based, for example, on simple naming conventions. As a concrete example, reconsider
the second rule de�ning which methods belong to the 'repository' virtual classi�cation:

classifiedAs(method('repository'), Method) :-

findMethodsFromClasses(Method, 'soul'), % restrict scope to SOUL classes

classifiedAs(class('repository'), Class),

factoryMethod(Method, Class).

This rule uses the factoryMethod predicate to make sure that all `factory methods' which
create repositories are also included in the classi�cation. However, we know that in the implemen-
tation of SOUL, all factory methods are localized in a single class SOULFactory. We also know
that all factory methods for creating repositories are grouped in the method protocol `repositories'
on that class. Therefore, an alternative de�nition of the above rule could be to simply include all
methods from that class and method protocol. The current de�nition is more intentional though,
as it uses some kind of semantic inferencing, and is not based on the implicit convention that all
these methods are grouped in the same protocol. Our intentional de�nition does not even mention
the name of this class SOULFactory, nor the method protocol. On the downside, however, the
intentional de�nition is rather time-consuming. (See Table 7.8 on page 137: computing the entire
'repository' virtual classi�cation takes more than two hours.)

In general, a more intentional de�nition should always be preferred whenever this is feasible.
It is not necessarily a problem that a virtual classi�cation takes a long time to compute. In our
current implementation, every virtual classi�cation is computed only once, after which its values
are cached persistently so that they can be retrieved e�ciently.

Parsing versus pattern matching

Finally, we discuss the trade-o� between string pattern matching and parse-tree analysis. Both
techniques can be used to de�ne virtual dependencies and virtual classi�cations. Analyzing code
by means of string pattern matching has the advantage of being very e�cient. Analyzing a parse
tree typically takes more time, but can provide more precise results. In our LMP language, we

2The problem is that by using two independent architectural relations (Asks1 and Creates With), we loose
important information that allows us to infer that the query result returned by Asks1 is the same as the one that
is used by Creates With. Nevertheless, it would be possible to describe this complex interaction statically, by
using one single architectural relation which codi�es the following check: \the user application invokes the query
interpreter which returns some query result that is subsequently used by the user application to create an output
viewer with it". However, the two original relations are much more simple, understandable and reusable than this
highly speci�c and complex relation.

136 CHAPTER 7. CASE STUDY

implemented some powerful predicates both for doing parse-tree analysis and for doing complex
string pattern matching. Which technique to choose depends on the particular situation. Fur-
thermore, nothing prevents us from combining both techniques, thus achieving the best of both
worlds.

In Subsection 6.2.2, we explained the virtual dependency asks C M. It was de�ned in terms
of an auxiliary predicate isUsedBy E M, which veri�es whether a certain expression is used inside
the body of some method.3 To implement this predicate, there are two obvious alternatives. The
�rst alternative is to use e�cient string pattern matching to search for the expression inside the
method body. However, due to a lack of information on the actual structure of the method, this
string-based approach sometimes leads to false positives. A more precise alternative is to traverse
the parse tree of the method in search for the desired expression. Such a parse-tree search is
typically less e�cient than performing a string pattern match, though.

To obtain a maximum of e�ciency, without loosing precision, we decided to combine both
approaches in our implementation of the isUsedBy E M predicate. First, string pattern matching
is used to �nd the expression in the method, and then (if necessary), a parse-tree search is done
to check whether the found match is not a false positive. Also note that our string pattern
matching does not work on a string representing the Smalltalk code of some method, but on a
string representation of the parse tree of that method. (All methods are stored in that format
in the repository.) This representation has some advantages. It is easier to recognize expressions
lexically, as they are all tagged with their kind. For example, every return statement is of the
form `return(...)'.

Without going into the details, below we show our Prolog implementation of isUsedBy E M.
We repeat that the auxiliary predicate findMethod is a powerful predicate for performing string
pattern matches.

isUsedBy_E_M(E, M) :-

write(E) ~> S, % Convert expression E to a string S

(findMethod(_, M, pattern([_,'return(',S,')',_]))

-> true; % is expression used as return statement?

findMethod(_, M, pattern([_,'send(',S,_]))

-> true; % is expression used as receiver of a message

findMethod(_, M, pattern([_,'send(',_,'[',_,S,'])',_]))

-> % possibly used as the argument of a message

(classImplementsMethodNamed(C, MN, M), className(C, CN),

isSentTo(CN, MN, _Rcvr, _Msg, Arguments), % parse-tree search

member(E, Arguments));

findMethod(_, M, pattern([_,'assign(',_,S,')',_]))

-> % possibly used as assignment value

assignStatement(M, _Var, E) % parse-tree search

).

7.1.8 Timings

To get an idea of the time needed for checking conformance of the SOUL implementation to the
`user interaction' view, Table 7.7 lists the time needed to check each of the architectural relations,
as well as the total time for checking the entire architectural view. The times were taken on a
Pentium 133 processor with 16 MB of RAM; all other timings in this chapter were taken on the
same machine.

We can conclude that for this particular architectural view, the conformance checking algo-
rithm performs reasonably e�cient (total time of about 16 minutes). However, since all virtual
classi�cations were cached before conformance was checked, the above timings do not include the
time needed for computing the virtual classi�cations associated with the di�erent concepts in the

3Note that this predicate again illustrates the problems caused by a lack of dynamic information. Without
dynamic information or extensive data-ow analysis, we cannot always know whether the expression will actually
be used inside the method body. Therefore, we can only give an approximate answer.

7.1. THE USER INTERACTION ARCHITECTURAL VIEW 137

Relation Time (in seconds)
Activates 112
Is Created By 198
Asks1 74
Asks2 395
Creates With 191
Total 970

Table 7.7: Timings for checking conformance to the `user interaction' view.

`user interaction' view. These timings are listed in Table 7.8. To give an idea of the size of the
computed classi�cations, we also list the number of artifacts in each virtual classi�cation.

Concept Time (in seconds) Number of classi�ed artifacts
User Application 16 116
Output Viewer 23 66
Auxiliary Application 33 161
Input Window 13 51
Query Result 36 200
Repository 8640 268
Query Interpreter 343 162
Total 9104

Table 7.8: Timings for computing the virtual classi�cations of the `user interaction' view.

Most virtual classi�cations can be computed rather e�ciently. Only for the Repository
architectural concept, it took a long time to compute its classi�cation (about 2.5 hours). This is
because it was not based on simple naming conventions but had an intentional de�nition in terms
of a virtual dependency. Also, it contains more artifacts than all other classi�cations. However,
it is not such a problem that some virtual classi�cations may take a while to compute, as every
virtual classi�cation is computed only once and is then cached for further usage.

138 CHAPTER 7. CASE STUDY

7.2 The rule-based interpreter architectural view

Now that we have explained in detail the `user interaction' architectural view, we take a closer
look at the `rule-based interpreter' architectural view. For easy reference, we copied Figure 4.5 to
Figure 7.2. We did not bother to annotate the links with quanti�ers, as all links have the same
quanti�er 9 attached.

Figure 7.2: The `rule-based interpreter' architectural view.

We will not show the facts that describe the architecture description and architectural instanti-
ation for this particular architectural view. This is completely similar as for the `user interaction'
view (see Subsections 7.1.1 and 7.1.2). Instead, we focus on the de�nition of the architectural
abstractions.

7.2.1 Virtual classi�cations

We start by explaining for each of the architectural concepts in the `rule-based interpreter' view,
to which virtual classi�cation it is mapped (the architectural instantiation), and how this virtual
classi�cation is de�ned (the architectural abstraction).

The Rule Interpreter concept in the `rule-based interpreter' view and the Query Inter-
preter concept in the `user interaction' view are de�ned in terms of exactly the same virtual
classi�cation `queryInterpreter'. They are simply two di�erent views on the same thing (only
their name and associated ports di�er). This example motivates why it is useful to split up the

7.2. THE RULE-BASED INTERPRETER ARCHITECTURAL VIEW 139

AML into two parts: an architectural instantiation language, which is used to associate virtual
classi�cations with architectural concepts and an architectural abstraction language, which is used
to de�ne the virtual classi�cations. Indeed, here we have an example where the same virtual clas-
si�cation is used to instantiate two di�erent architectural concepts in two di�erent architectural
views.

Similarly, both the Knowledge Base concept in the `rule-based interpreter' view and the
Repository concept in the `user interaction' view are de�ned by exactly the same virtual classi-
�cation `repository'.

The virtual classi�cation for Working Memory is an example of a virtual classi�cation
which simply enumerates the classes that belong to it. It contains both the class SOULBindings
and the class SOULResult (and their subclasses). Intuitively, the Working Memory remembers
the bindings of logic variables to values that were made during the logic interpretation process.
SOULBindings represents a kind of dictionary, associating logic variables with their values. And
the class SOULResult not only represents the result of interpreting a SOUL clause, but is also used
to pass around bindings. It contains the necessary methods for updating (i.e., adding, removing
or inspecting) the current bindings.

classifiedAs(class('workingMemory'), Class) :-

hierarchy(class('SOULBindings',_), Class);

hierarchy(class('SOULResult',_), Class).

% 'workingMemory' methods are methods that belong to 'workingMemory' classes.

classifiedAs(method('workingMemory'), Method) :-

findMethodsFromClasses(Method, 'workingMemory').

When looking at the implementation of SOUL, the Clause Selector architectural concept
seems to correspond to a Smalltalk method calculateUnifiers: aRepository which tries to
calculate all clauses, in some knowledge base aRepository, that unify with the current clause
under investigation. There are many of these methods: one for each kind of clause in the SOUL
abstract grammar.

Unfortunately, things are not quite that simple. At closer inspection, the calculateUnifiers:
methods do not seem to directly access the knowledge base, as is required by the architecture. This
is because the calculateUnifiers: methods are only very small methods which delegate most of
their work to other methods, which in turn may delegate part of their work to yet other methods.
It are some of these indirectly called methods which eventually access the knowledge base. For
example, the method calculateUnifiers: aRepository on the Smalltalk class SOULNamedTerm
invokes an auxiliary method unifyingClauses: aRepository which in turn calls a method
candidateClauses: aRepositorywhich eventually asks the knowledge base to return all clauses
matching the current term.

calculateUnifiers: aRepository

...

(self unifyingClauses: aRepository) do: ...

...

unifyingClauses: aRepository

...

(self candidateClauses: aRepository) do: ...

...

candidateClauses: aRepository

b aRepository clausesForTerm: self

It is important to note that the parameter aRepository representing the knowledge base that
is eventually accessed, is passed around through all these invocations. This pattern of collaboration
occurs frequently in object-oriented implementations: one method delegates much of its work to
others while passing them the necessary parameters.

To capture this intuition that the Clause Selector corresponds to all calculateUnifiers:
aRepository methods as well as all their `auxiliary' methods, we de�ne it in terms of a virtual

140 CHAPTER 7. CASE STUDY

classi�cation which computes the reexive and transitive closure of all methods invoked by a
calculateUnifiers: aRepository method and with at least one argument in common. Since
computing a transitive closure can be very computationally intensive, we reduce its scope by con-
sidering only methods that belong to classes representing clauses in the SOUL abstract grammar.

classifiedAs(method('ruleSelection'), Method) :-

closure(invokesWithSameArgumentInSOULSyntax,

method('calculateUnifiers:',_),

Method).

The above predicate uses the second-order predicate closure(Relation, Start, Target) which
computes every Target in the reexive and transitive closure of some binary Relation, for some
starting point Start. The particular relation invokesWithSameArgumentInSOULSyntax we are
interested in, is the method invocation relationship, but with the extra restriction that one of
the caller's arguments is passed with the invocation, and with the scope restricted to `soulSyntax'
methods. `soulSyntax' is an auxiliary virtual classi�cation, which was speci�cally de�ned to restrict
the scope of classes and methods in the `ruleSelection' classi�cation. It is de�ned as the set of all
classes representing clauses or terms in the SOUL abstract grammar, together with their methods.

classifiedAs(class('soulSyntax'), Class) :-

hierarchy(class('SOULAbstractTerm',_), Class);

hierarchy(class('SOULClause',_), Class).

% 'soulSyntax' methods are methods that belong to 'soulSyntax' classes.

classifiedAs(method('soulSyntax'), Method) :-

findMethodsFromClasses(Method, 'soulSyntax').

The main di�erence between SOUL and Prolog is SOUL's close symbiosis with Smalltalk. More
speci�cally, SOUL provides a special kind of `Smalltalk terms' that allow for Smalltalk blocks, as
part of logic clauses, to be computed during the interpretation process. Interpreting `Smalltalk
terms' is achieved by directly calling the Smalltalk system. The classes belonging to the core of
Smalltalk can be recognized easily, as they all belong to one of the `System' categories (`System-
Compiler Support', `System-Code Storage', . . .). All these categories start with the same string
`System-'.

classifiedAs(class('smalltalk'), Class) :-

categoryName(Category, SystemCategory),

stringStartsWith(SystemCategory, 'System-'),

classInCategory(Category, Class).

Again, the de�ned virtual classi�cations were concise, intuitive and readable. Some were
straightforward, merely enumerating some class hierarchies, or making use of simple naming con-
ventions or tagging information. Others required some more intricate semantic inferencing: to
de�ne the virtual classi�cation `ruleSelection' we had to compute the reexive and transitive clo-
sure of the invocation relationship, with the extra constraint that one argument should remain
the same over the transitive invocations.

We also illustrated that there is not always a one-to-one mapping between virtual classi�cations
and architectural concepts. Some virtual classi�cations, e.g., the `soulSyntax' classi�cation, may
not instantiate any architectural concept, but serve only as an auxiliary building block for de�ning
other virtual classi�cations. Other virtual classi�cations, e.g., `queryInterpreter' or `repository',
are used to instantiate multiple concepts in di�erent architectural views.

7.2. THE RULE-BASED INTERPRETER ARCHITECTURAL VIEW 141

7.2.2 Port �lters

As in the previous architectural view, most ports in the `rule-based interpreter' view are mapped
to the prede�ned class and method �lters of the DFW. In fact, most ports represent actions
(i.e., reading, interpreting, unifying, updating, matching clauses, selecting candidate clauses and
accessing working data) and are therefore mapped to a method �lter. Only the port `Stored Data',
representing the kind of data stored in the Working Memory, is mapped to a class �lter.

portMapping(soulRuleBasedSystem, knowledgeBase, read, methodFilter).

portMapping(soulRuleBasedSystem, clauseSelector, matchingClauses, methodFilter).

portMapping(soulRuleBasedSystem, clauseSelector, candidateClauses, methodFilter).

portMapping(soulRuleBasedSystem, clauseSelector, workingData, methodFilter).

portMapping(soulRuleBasedSystem, ruleInterpreter, interpret, methodFilter).

portMapping(soulRuleBasedSystem, ruleInterpreter, unify, methodFilter).

portMapping(soulRuleBasedSystem, workingMemory, update, methodFilter).

portMapping(soulRuleBasedSystem, workingMemory, storedData, baseClassFilter).

In addition to these prede�ned port �lters, ports can be mapped to user-de�ned �lters as well.

portMapping(soulRuleBasedSystem, ruleInterpreter, smalltalkTerm, smalltalktermClassFilter).

portMapping(soulRuleBasedSystem, smalltalk, compiler, compilerClassFilter).

As an example, consider the port `Smalltalk Term' of theRule Interpreter concept. The clas-
si�cation associated with Rule Interpreter contains (amongst others) all classes implementing
interpretation methods, that is, practically every class which represents a node of the SOUL ab-
stract grammar. Mapping the `Smalltalk Term' port to the prede�ned `class �lter' would yield all
these classes. This does not correctly capture our intention that the port corresponds to Smalltalk
terms only. Therefore, we use a �lter which takes only a subset of all classi�ed classes, namely
the class SOULAdvancedSmalltalkTerm and its subclasses, which represent precisely the Smalltalk
terms.

smalltalktermClassFilter(Artifact) :-

classFilter(Artifact),

hierarchy(class(SOULAdvancedSmalltalkTerm,_), Artifact).

The attentive reader may have noticed that, in our explanation of the `smalltalk' virtual clas-
si�cation in the previous subsection, we did not specify precisely which part of the Smalltalk
system is accessed by the Rule Interpreter, when Smalltalk terms need to be computed. The ac-
tual computation of Smalltalk terms will be done by the Smalltalk compiler. Therefore, the port
`Compiler' will restrict the set of all classes representing the Smalltalk system, to the `Compiler'
classes only.

compilerClassFilter(Artifact) :-

classFilter(Artifact),

% Does the class Artifact contain the string 'Compiler' in its name?

className(Artifact, Name),

stringContains(Name, 'Compiler').

Instead of using the above user-de�ned �lter, we could have included the �ltering of all classes
that contain a string `Compiler' directly in the de�nition of the `smalltalk' virtual classi�cation.
We will explain in Subsection 7.2.5 why we preferred not to do so.

The above examples illustrate that it is both useful and possible (and easy) to instantiate
ports with user-de�ned �lters. Furthermore, these �lters can themselves be de�ned in terms of
more primitive �lters. For example, both the user-de�ned �lters smalltalktermClassFilter and
compilerClassFilter use the prede�ned �lter classFilter.

142 CHAPTER 7. CASE STUDY

7.2.3 Virtual dependencies

Both the Asks1 and Asks2 relations of the `rule-based interpreter' architectural view are linked
at both ends to ports that are mapped to method �lters. Therefore, we map both architectural
relations to the asks M M virtual dependency between methods, which is de�ned in terms of its
symmetric predicate isAskedBy M M. This predicate isAskedBy M M was already introduced and
explained in Subsection 6.2.4, as an auxiliary predicate for the de�nition of asks C M.

asks_M_M(M1, M2) :-

isAskedBy_M_M(M2, M1).

The Asks3 architectural relation betweenRule Interpreter and Smalltalk codi�es the knowl-
edge that the rule interpreter requests the Smalltalk system to compile a Smalltalk term. Because
both the ports `Smalltalk Term' (on Rule Interpreter) and `Compiler' (on Smalltalk) generate
classes, we de�ne the Asks3 architectural relation in terms of the asks C C virtual dependency
between classes. asks C C itself is de�ned directly in terms of asks C M:

asks_C_C(C1, C2) :-

classImplementsMethod(C2, M2),

asks_C_M(C1, M2).

A Uses Data architectural relation expresses the fact that some architectural concept uses some
kind of data provided by another architectural concept. In the case of the architectural relations
Uses Data1 and Uses Data2, the used data corresponds to one of the Working Memory classes.
In the Uses Data1 relation, data is used by the interpretation process; in the Uses Data2 relation,
it is accessed during the selection and matching of clauses. When looking at the implementation of
SOUL, the Used Data architectural relation boils down to the fact that interpretation methods or
clause selection/matching methods take some instance of a Working Memory class as argument.
Therefore, we implement both Uses Data1 and Uses Data2 in terms of the virtual dependency
hasParameterType M C which checks whether some method has a parameter of some type (class).

hasParameterType_M_C(M, C) :-

methodArgument(M, Argument),

argumentVarName(Argument, VarName),

mayHaveType_V_M_C(VarName, M, C).

Finally, the Updates architectural relation can be checked straightforwardly by verifying whether
some mutator method is invoked directly or indirectly. A mutator method is a method that up-
dates the value of some variable (see Appendix B). An indirect mutator is one that does not
perform the update itself, but transitively invokes a direct mutator, passing it the new value for
the variable.

% invokesMutator_M_M checks whether a method M1 invokes a mutator method M2

invokesMutator_M_M(M1, M2) :-

% Is M2 a direct or indirect mutator method?

(mutatorMethod(M2); indirectMutatorMethod(M2)),

% Does M1 invoke M2 ?

invokes_M_M(M1, M2).

Similar to the createsWith C C C virtual dependency, the invokes M M virtual dependency in the
predicate above is de�ned in terms of the auxiliary predicates isSentTo and mayHaveType E M C.

invokes_M_M(M1, M2) :-

classImplementsMethodNamed(Class, MethodName, M1),

className(Class, ClassName),

methodName(M2, Message),

isSentTo(ClassName, MethodName, Receiver, Message),

mayHaveType_E_M_C(Receiver, M1, ReceiverClass),

classImplementsMethod(ReceiverClass, M2).

7.2. THE RULE-BASED INTERPRETER ARCHITECTURAL VIEW 143

7.2.4 Quanti�ers

The architectural relations in the `rule-based interpreter' architectural view explain how some parts
of the rule interpretation process interact with some parts of the working memory, knowledge base,
Smalltalk system, and clause selector; as well as how some parts of the clause selection process
interact with some parts of the working memory and knowledge base. Therefore, it su�ced to
add a simple 9 quanti�er to all links in this architectural view. Below, we show some of the link
mappings which associate this quanti�er to the links.

linkMapping(soulRuleBasedSystem, clauseSelector, candidateClauses, asks2, interrogator,

exists).

linkMapping(soulRuleBasedSystem, knowledgeBase, read, asks2, interrogated, exists).

linkMapping(soulRuleBasedSystem, clauseSelector, workingData, usesData2, user, exists).

linkMapping(soulRuleBasedSystem, workingMemory, storedData, usesData2, data, exists).

...

7.2.5 Encountered di�culties

Prede�ned versus user-de�ned port �lters

In Subsection 7.2.2, we encountered some examples of user-de�ned port �lters. E.g., the `Compiler'
port of the Smalltalk concept was de�ned in terms of a user-de�ned �lter compilerClassFilter.
An alternative solution would have been to de�ne the Smalltalk concept in terms of a virtual
classi�cation that contains only the compiler classes in the Smalltalk system. In that case, we
could have de�ned the `Compiler' port in terms of a prede�ned baseClassFilter. However, this
alternative way of modeling things does not correctly capture the intention of the Smalltalk
concept, which intuitively corresponds to the core of the Smalltalk system, and not only to the
compiler classes. This would lead to problems when the Smalltalk concept would participate in
other architectural relations.

Generic virtual dependencies

We already encountered several variants of the asks virtual dependency: one for classes, one for
methods, and so on. The variant that is chosen to instantiate a particular architectural relation
depends on the kind of artifacts that are generated by the ports to which this relation is linked.
This implies that, when the port �lters are changed, the virtual dependency may need to be
changed as well. But in fact, there is no reason why we cannot de�ne a more general `asks' virtual
dependency, that is more robust towards such changes, and that works for all kinds of artifacts.
Depending on the kind of artifacts it is called with, it simply decides which more speci�c variant
of the asks virtual dependency to call. Of course, the same reasoning holds for other virtual
dependencies as well.

The predicate below implements such a more generic asks virtual dependency. It contains a
big case statement (the notation with `->' and `;' is Prolog syntactic sugar for a case statement)
which chooses the appropriate variant depending on the types of the provided arguments. Instead
of implementing such a generic version for every virtual dependency, a cleaner solution would be to
use the technique of `generic operations' [1] where a translation matrix decides how to translate a
certain generic operation into a more speci�c one, based on the types of the arguments provided.4

asks(A1, A2) :-

(class(A1), class(A2)) -> asks_C_C(A1, A2);

(class(A1), method(A2)) -> asks_C_M(A1, A2);

(method(A1), method(A2)) -> asks_M_M(A1, A2);

...

4This is the approach we took in [52].

144 CHAPTER 7. CASE STUDY

7.2.6 Timings

Table 7.9 lists the timings for checking the architectural relations in the `rule-based interpreter'
view. (Note that the times are indicated in minutes, not in seconds.) All relations could be checked
in a reasonable time. Only the Asks2 relation took a very long time (more than 24 hours).

Relation Time (in minutes)
UsesData1 6
UsesData2 1
Updates1 210
Asks1 31
Asks2 (> 24 hours)
Asks3 26

Table 7.9: Timings for checking conformance to the `rule-based interpreter' view.

As before, in Table 7.10 we mention the time needed for computing the virtual classi�cations
associated with the di�erent concepts in this architectural view, as well as the number of classi�ed
artifacts for each of these virtual classi�cations. The timing for the Knowledge Base concept
is exactly the same as that for Repository concept in Table 7.8, as they are both mapped to
the same classi�cation. The same holds for the architectural concept Rule Interpreter, which
is mapped to the same classi�cation as the concept Query Interpreter in the `user interaction'
view. These timings were not included in the total: if we assume that the virtual classi�cations for
the `user interaction' view have already been computed, the virtual classi�cations for Knowledge
Base and Rule Interpreter have been cached and will not be re-computed.

Concept Time (in seconds) Number of classi�ed artifacts
Working Memory 23 106
Clause Selector 456 48
Smalltalk 37 258
Knowledge Base 8640 268
Rule Interpreter 343 162
Total 516

Table 7.10: Timings for computing the virtual classi�cations of the `rule-based interpreter' view.

We can conclude from Table 7.10 that the time needed for computing the virtual classi�cations is
acceptable.

7.3. THE APPLICATION ARCHITECTURE VIEW 145

7.3 The application architecture view

The architectural views discussed in the previous two sections both focused on a speci�c concern
of the system (i.e., `rule-based interpretation' and `user interaction'). These architectural views
express the important concepts and relations for those particular concerns, independent of how
the software itself is structured. As a consequence, the architectural mapping for those views
cuts across the implementation structure. In this section, we discuss the `application architecture'
of SOUL, which does explicitly focus on the implementation structure. It identi�es the main
implementation components of the system as well as how they relate to each other.

Figure 7.3: The `application architecture' view with quanti�ers.

In Figure 7.3, we repeat the entire `application architecture' view of Figure 4.6, with a quanti�er
added to every link.

146 CHAPTER 7. CASE STUDY

7.3.1 Virtual classi�cations

The `application architecture' view describes the general implementation structure of the SOUL
system. The concepts of interest in this architectural view are the important implementation
components. For an object-oriented implementation, these components are typically classes or
class hierarchies (i.e., an abstract class and its concretizing classes). Therefore, most virtual
classi�cations corresponding to the di�erent architectural concepts in the `application architecture'
view are de�ned in terms of the hierarchy predicate.

classifiedAs(class('clause'), Class) :- % Clause

hierarchy(class('SOULClause',_), Class).

classifiedAs(class('clauses'), Class) :- % Clause Sequence

hierarchy(class('SOULClauses',_), Class).

classifiedAs(class('query'), Class) :- % Query

hierarchy(class('SOULQuery',_), Class).

classifiedAs(class('rule'), Class) :- % Rule

hierarchy(class('SOULRule',_), Class).

classifiedAs(class('fact'), Class) :- % Fact

hierarchy(class('SOULFact',_), Class).

classifiedAs(class('term'), Class) :- % Term

hierarchy(class('SOULAbstractTerm',_), Class).

classifiedAs(class('terms'), Class) :- % Term Sequence

hierarchy(class('SOULTerms',_), Class).

classifiedAs(class('compoundTerm'), Class) :- % Functor

hierarchy(class('SOULCompoundTerm',_), Class).

classifiedAs(class('variable'), Class) :- % Variable

hierarchy(class('SOULVariableTerm',_), Class).

classifiedAs(class('smalltalkTerm'), Class) :- % Smalltalk Term

hierarchy(class('SOULSmalltalkConstantTerm',_), Class).

classifiedAs(class('trueTerm'), Class) :- % True Term

hierarchy(class('SOULTrueTerm',_), Class).

Only the virtual classi�cation `constant' is not de�ned as a class hierarchy, but as a single class
SOULSmalltalkConstantTerm. This is because it contains some subclasses which do not present
constants, but `Smalltalk terms'.

classifiedAs(class('constant'), Class) :- % Constant

className(Class, 'SOULSmalltalkConstantTerm').

In fact, in the SOUL implementation, constant terms themselves are a special kind of `Smalltalk
terms' that do not contain any variables. The subclasses of SOULSmalltalkConstantTerm extend
this functionality to include more complex kinds of `Smalltalk terms'. This is why we de�ned the
`smalltalkTerm' virtual classi�cation as the class hierarchy that has SOULSmalltalkConstantTerm
as its root.

7.3.2 Port �lters

Because all architectural concepts in this view are mapped to virtual classi�cations that are de�ned
in terms of classes or class hierarchies, every port in the `application architecture' view of SOUL is
mapped to a class �lter. Alternatively, we could have chosen to map them to identity �lters, which
would have exactly the same result (as the classi�cations contain nothing but classes anyway).
However, if in the future we would decide to add other kinds of artifacts to one of the classi�cations,
the class �lter will still generate only classes, whereas the identity �lter would not.

7.3. THE APPLICATION ARCHITECTURE VIEW 147

portMapping(soulApplication, clause, type, baseClassFilter).

portMapping(soulApplication, clauseSequence, type, baseClassFilter).

portMapping(soulApplication, query, type, baseClassFilter).

portMapping(soulApplication, query, term, baseClassFilter).

...

portMapping(soulApplication, smalltalkTerm, type, baseClassFilter).

portMapping(soulApplication, smalltalkTerm, variable, baseClassFilter).

portMapping(soulApplication, constant, type, baseClassFilter).

7.3.3 Virtual dependencies

Every Is Kind Of relation is mapped to a virtual dependency specializes C C(C1, C2), which
checks whether a class C1 is a (direct or indirect) subclass of a class C2.

specializes_C_C(C1, C2) :-

hierarchy(C2, C1).

Every Has Part architectural relation is mapped to a virtual dependency hasPart C C, which
checks whether a class Part is a part of a class Whole. We do this by checking whether Whole has
an instance variable of type Part. We make use of the auxiliary predicate instVarTypes which
computes the possible types of some instance variable Var of the class Whole. (We will discuss
this predicate in more detail later in subsection 7.3.5).

hasPart_C_C(Whole, Part) :-

instVarTypes(Whole, Var, TypeList),

member(Part, TypeList).

Every Is Composite architectural relation is mapped to a virtual dependency isComposite C C,
which checks whether some Composite class is a special kind of class Type and is a container of
elements of that Type. It can be de�ned in terms of the previously discussed virtual dependency
specializes C C and a new virtual dependency containsElementsOfType C C. (We will discuss
this new predicate in more detail later in subsection 7.3.5).

isComposite_C_C(Composite, Type) :-

specializes_C_C(Composite, Type),

containsElementsOfType_C_C(Composite, Type).

In the `application architecture', some architectural relations can be mapped straightforwardly
to simple implementation dependencies. For example, the Is Kind Of architectural relation cor-
responds to the inheritance implementation relationship, and the Has Part architectural relation
to variable containment. Other architectural relations in the `application architecture' view, such
as the Is Composite relation, did not directly correspond to implementation dependencies, but
represented more complex relationships.

7.3.4 Quanti�ers

In this architectural view, all links (except for one) originating in an architectural concept have
a 8 quanti�er attached, and every link arriving in an architectural relation has an 9 quanti�er
attached. Again we repeat that the direction of links has no real semantics associated with it.
It just aids an architect in reading the architecture: we adopt the convention that an incoming
arrow on a relation is the `subject' of the relation, and the outgoing arrows are `direct and indirect
objects'. For example, the Is Kind Of2 relation should be interpreted as: every fact is some kind
of rule; and the Has Part1 relation as: every query has some kind of term as a part.

148 CHAPTER 7. CASE STUDY

linkMapping(soulApplication, clauseSequence, type, isComposite1, composite, forall).

linkMapping(soulApplication, clause, type, isComposite1, element, exists).

linkMapping(soulApplication, query, type, isKindOf1, child, forall).

linkMapping(soulApplication, clause, type, isKindOf1, parent, exists).

linkMapping(soulApplication, query, term, hasPart1, whole, forall).

linkMapping(soulApplication, term, type, hasPart1, part, exists).

...

The only exception is the relation Has Part5 where the originating link has an 9 quanti�er.
This is because not every kind of Smalltalk Term can contain variables. In the implemen-
tation of SOUL, there are multiple classes representing `Smalltalk terms' in the SOUL language:
SOULSmalltalkConstantTerm, SOULAdvancedSmalltalkTermand SOULSmalltalkMetaPredicate.
The �rst SOULSmalltalkConstantTerm is used only to make Smalltalk constants available to
SOUL, and cannot contain any variables. The other two represent more complex Smalltalk terms
that can reference logic variables.

7.3.5 Encountered di�culties

Lack of type information

Again we encountered some di�culties due to the lack of type information in Smalltalk. For
example, for the hasPart C C virtual dependency we wanted to determine whether some class
Whole had some instance variable of type Part. To compute the type of this instance variable, we
made use of an auxiliary predicate instVarTypes. Due to the lack of static type information, this
predicate only yields an approximate answer. It infers the possible types of an instance variable
in some class Whole by statically looking at all the messages sent to that variable (from the class
Whole up to the �rst superclass that implements the variable). All classes that understand all
these messages are then accumulated in a TypeList. Every one of these classes is a possible
candidate for the type of the variable (it is in general impossible to �nd a unique type statically).
After calling this auxiliary predicate instVarTypes, the only thing that remains to be done by
hasPart C C is to check whether the class Part belongs to this list of possible types.

instVarTypes(Class, InstVar, TypeList) :-

% does Class or one of its superclasses contain a variable InstVar?

instVarFlattened(Class, InstVar),

% compute the set of all Messages sent to this variable

instVarName(InstVar, InstVarName),

instVarMessages(Class, InstVarName, Messages),

Messages \= [], % Fail if no messages are sent to the variable

% compute all classes that understand all these Messages

findall(Type, understandsAll(Type, Messages), TypeList).

Similarly, the virtual dependency isComposite C C was de�ned in terms of an auxiliary pred-
icate containsElementsOfType C C which statically tries to derive the possible types of the el-
ements contained in some instance variable representing a container of elements. Without going
into all the technical details, the predicate proceeds as follows: the container variable is typically
manipulated by iterating over its elements. During such an iteration, messages are sent to the
contained elements. In a way similar to what is done in the predicate instVarTypes, from these
message sends we can derive the type of the elements.

In both examples, the virtual dependency only provides an approximate answer, where the
precision of the answer depends on the amount of messages that is sent to the instance variable
of which we need to compute the type. The more information we have, the more precise the type
can be guessed.

One could argue that problems such as these make it much harder to de�ne virtual depen-
dencies. This is not entirely true. In fact, our predicates for inferring the types of expressions
should not be regarded as being part of the virtual dependencies, but belong to the base layer of

7.3. THE APPLICATION ARCHITECTURE VIEW 149

the DFW (see 5.3.5). They are prede�ned primitive predicates that are speci�cally designed for
reasoning about Smalltalk code. When de�ning new virtual dependencies, we can make use of any
of these prede�ned predicates, and do not need to bother with how they should be implemented.

7.3.6 Timings

Checking architectural conformance was rather e�cient. Table 7.11 lists the time needed to check
each of the architectural relations, as well as the total time needed for checking conformance of
the SOUL implementation to the entire application architecture view.

Relation Time (in seconds)
Is Kind Of1 10
Is Kind Of2 4
Is Kind Of3 20
Is Kind Of4 4
Is Kind Of5 8
Is Kind Of6 12
Is Kind Of7 17
Is Kind Of8 6
Is Composite1 12
Is Composite2 74
Has Part1 30
Has Part2 97
Has Part3 97
Has Part4 34
Has Part5 76
Has Part6 132
Total 633

Table 7.11: Timings for checking conformance to the `application architecture' view.

Since all virtual classi�cations were cached before conformance was checked, the above timings
do not include the time needed for computing the virtual classi�cations. Thanks to the straight-
forward mapping of the virtual classi�cations to classes and class hierarchies, and because they
do not contain many elements, it does not take long to compute the virtual classi�cations of the
`application architecture' view. See Table 7.12.

Concept Time (in seconds) Number of classi�ed items
Clause 15 7
Clause Sequence 6 1
Query 6 1
Rule 7 3
Fact 6 1
Term 9 18
Term Sequence 6 3
Functor 6 4
Smalltalk Term 3 4
True Term 6 1
Variable 6 2
Constant 4 1
Total 80

Table 7.12: Timings for computing the virtual classi�cations of the `application architecture' view.

150 CHAPTER 7. CASE STUDY

7.4 Dealing with conformance conicts

The Smalltalk implementation of SOUL was conform to all architectural views explained in the
previous sections. However, during the extraction of an architectural view from the implementa-
tion, or when implementing a software system in accordance with an architecture view, we often
encounter situations where the implementation is not in conformance with the architecture. We
call such a situation an architectural conformance conict. We provide an example of a confor-
mance conict, explain how it was resolved, and show how the conformance checking algorithm
can be used to help in detecting the cause of such conicts.

7.4.1 Example of a conformance conict

As an example, we discuss a conformance conict that we actually encountered during our ex-
periments with the `application architecture' view. As functors are expressions of the form
f(a1; : : : ; an), where each argument ai can either be bound or not, we originally modeled this
at the architectural level by declaring a Has Part relation between Functor on the one hand, and
Constant and Variable on the other hand, as depicted in Figure 7.4.

Figure 7.4: A non-conform architectural relation.

When checking conformance of the SOUL implementation to an `application architecture' view
containing the architectural relation of Figure 7.4, our conformance checking algorithm decided
that the implementation did not satisfy this architectural view. After identifying the source of
this failure (Subsection 7.4.2 explains how this was done), we realized that the problem was
caused by the architectural relation Has Part6. More speci�cally, the problem was that the
class SOULList (which was classi�ed as a Functor) did not have any of the classes represent-
ing a Variable (i.e., SOULVariableTerm or SOULUnderscoreVariableTerm) or a Constant (i.e.,
SOULSmalltalkConstantTerm) as its part. This contradicted the described relation that every
class representing a functor could have a variable or a constant as its part.

To resolve the problem, we manually tried out the predicate hasPart C C(Whole,Part) with
Whole bound to the problematic class SOULList and the second argument Part left uninstantiated.
Thus, we found out that the only possible parts for class SOULList (i.e., the only results for Part
generated by the query) were the class SOULTerms and it subclasses. At that point we realized that
the algorithm probably made the correct decision: a functor should not directly have variables or
constants as its parts, but an ordered collection of terms representing the argument list. In other
words, a Functor has as its part a Term Sequence. When modeling the Has Part6 relation like
this (as we did in Figure 7.3), the conformance check did succeed.

7.4. DEALING WITH CONFORMANCE CONFLICTS 151

This new way of representing the relation also solved another problem with the representation
of Figure 7.4. In that representation, it seems as if a functor can have only constants or variables
as arguments. This is not correct. Every kind of term, including Smalltalk terms and functors
themselves, can be an argument of a functor. With the new representation, a functor indeed has
an argument list which is a term sequence that can contain any kind of term. Yet another problem
with the representation of Figure 7.4 is that it did not allow a functor to have an empty argument
list.

A similar conformance checking conict was encountered with the Is Composite architectural
relations. Originally, the isComposite C C virtual dependency (to which the Is Composite ar-
chitectural relations are mapped) was de�ned as a conjunction of the specializes C C and
hasPart C C virtual dependencies. Again, this was not correct because a Has Part relation was
not su�cient here. We should not check whether the composite contains a variable of a certain
type, but whether it contains a collection of elements which are of a certain type.

7.4.2 Resolving conformance conicts

Our original conformance checking algorithm is rather primitive, merely returning a `true' or
`false' depending on the success of a conformance check. This information is insu�cient: knowing
only that the implementation of a software system does not conform to the architecture, does
not provide enough information to �x the problem. We need more �ne-grained information on
which architectural relation is violated and on what are the implementation-level artifacts and
dependencies that caused this violation.

For example, let us revisit the conformance conict we discussed in Subsection 7.4.1. Our
original conformance checking algorithm simply returned false when the conformance conict was
encountered. To obtain a better insight in the actual problem, more information was required.
To start with, we needed to know which architectural relations caused the problem. In this
particular example, it was the Has Part6 relation between Functor and Variable, depicted in
Figure 7.4. For this particular relation, and taking into account the quanti�ers on its edges, we
needed to know for which particular implementation artifacts conformance was invalid. In this
case, non-conformance was caused by the class SOULList which did not have any of the classes
SOULVariableTerm, SOULUnderscoreVariableTerm or SOULSmalltalkConstantTerm as its part.
This information eventually allowed us to understand and resolve the conict, as explained in
Subsection 7.4.1.

Although the above information was not provided by our original implementation of the con-
formance checking algorithm, it was easy to extend its implementation to provide this information.
The ease by which this could be done is mainly due to the power of LMP. We only had to use
some `more intelligent' quanti�er predicates. For example, instead of using the primitive Prolog
predicate forall, which checks some logic expression for some set of generated values, we used
forallDebugOne (see Table 5.10 on page 78 and see page 111) which reports the �rst value that
failed to satisfy the expression (if any). Upon failure of the conformance check, this reported in-
formation could be inspected to see which values caused the forall predicate (or more precisely,
the forallDebugOne predicate) to fail.

Returning to the example, the �rst occurrence where a forall is used is to check conformance
of all architectural relations. Upon failure, forallDebugOne reports which particular architectural
relation fails (i.e., Has Part6). Failure of checking conformance for this architectural relation occurs
when checking whether every class classi�ed as Functor has at least one of the classes classi�ed
as Variable or Constant as its part. Again, forallDebugOne reports which particular Functor
class (i.e., SOULList) fails to satisfy this architectural constraint.

For reasons of e�ciency, the primitive second-order Prolog predicate forall fails immediately
after the �rst generated value fails to satisfy the provided logic expression. The same holds for
forallDebugOne. However, when trying to identify what caused the conformance conict, it may
be useful to �nd out all values that have failed (rather than only the �rst one). In that case, we
should use the forallDebugAll predicate instead (see Table 5.10 on page 78 and see page 111).

152 CHAPTER 7. CASE STUDY

This predicate will check all values, even if the �rst one already failed. Although this predicate
generates more useful information, it will be less e�cient than forall and forallDebugOne. (Only
in the case of success, they will be equally e�cient: everything needs to be checked.) So there is
a bit of a trade-o� between e�ciency on the one hand and obtaining more debugging information
on the other.

It should be left as an option (e.g., a user setting) which of the above variants of the conformance
checking algorithm to use. If we only want to know whether conformance is valid or not, without
further details, the original algorithm should be preferred. If we want to see, in case of non-
conformance, precisely what went wrong, we should use the approach with special quanti�er
predicates. Depending on whether we want to see all problems at once, or just the �rst one, we
can again choose which variant we prefer. (Technically, we implemented this by just overriding
the primitive forall predicate by whatever version was preferred.)

7.5. CONCLUSION 153

7.5 Conclusion

In the light of our thesis statement that \automated support for checking conformance of the
implementation of a software system to its architectural views, can be achieved in a very ex-
pressive way by adopting a logic meta-programming approach", we draw some conclusions from
the case study presented in this chapter. In addition to clarifying the architecture language and
conformance checking algorithm explained in the previous chapters, the main goal of this case
study was to prove the feasibility (see Subsection 7.5.1) and expressiveness (see Subsection 7.5.3)
of our approach. In particular, we wanted to show that LMP not only provides an elegant way of
implementing the architectural model and conformance checking algorithm (see Subsection 7.5.2),
but more importantly, that it provides an expressive medium in which an architect can de�ne
the architectural mapping of architectural concepts and relations to implementation artifacts and
their dependencies.

7.5.1 Feasibility

The performed case study shows that our consistent use of a LMP language throughout all ab-
straction layers | from the di�erent layers of the DFW over the architectural abstraction and
architectural instantiation to the conceptual architecture | provides a viable formalism to rea-
son about architectural knowledge at a su�ciently high level of abstraction while still allowing
conformance checking of source code.

Virtual classi�cations proved their worth as suitable abstractions of architectural concepts.
They hide the details of the lower-level implementation artifacts on which they are mapped, yet
allowing us to reason about their relationships with other architectural concepts independently
of the artifacts they actually contain. Virtual dependencies provide a powerful way of de�ning
highly abstract relationships among architectural concepts, by building them up from lower-level
relationships that are again constructed from even lower level ones. As such, simple low-level
relationships can be successfully combined into complex high-level relationships. Based on these
mappings of architectural concepts to lower-level artifacts, and of architectural relations to lower-
level relationships, it was easy to implement the conformance checking rules by implementing
conformance checking at a high level in terms of conformance checking rules at lower levels.

We succeeded in checking conformance of the actual implementation of the SOUL system to
the architectural views introduced in Chapter 4. Whereas the `application architecture' view
mapped more or less directly to the implementation structure of the SOUL system, the `rule-
based interpreter' and `user interaction' view provided examples of cross-cutting architectural
mappings. Although the case study illustrated the feasibility of the approach, there are still many
di�culties to be resolved. Chapter 8 discusses some shortcomings and explains what is needed for
the approach to be applicable in an industrial context.

7.5.2 Logic programming as implementation medium

Our main motivation for choosing a logic language to implement the conformance checking al-
gorithm and architecture language, came from the observation that the proposed algorithm and
architecture language have a strong `logic avor'. Let us illustrate this by means of some examples:

� The most striking example is probably the conformance checking algorithm itself, which
revolves around the construction of a logic expression that can be evaluated to check for
architectural conformance.

� Other examples are the obvious mappings of di�erent kinds of architectural abstractions to
concepts in a logic programming language: virtual dependencies correspond to logic predi-
cates, and quanti�ers to second-order logic predicates such as forall and exists.

� In general, because of its declarative nature, a logic programming language seems to be a
good choice to represent and reason about architectural knowledge. The main advantage of a

154 CHAPTER 7. CASE STUDY

declarative approach over a procedural one is that it is better suited to declare knowledge and
provide conceptual de�nitions. Virtual classi�cations are a good example of this. Although
virtual classi�cations could be described in either a declarative or a procedural language,
describing them in a logic language leads to concise and intuitive de�nitions.

But the logic language is more than a suitable implementation medium for implementing the
architectural formalism. By o�ering an architect the full power of a logic language, with facilities
to access the implementation language and a prede�ned set of logic predicates at di�erent levels
of abstraction, a maximum of expressiveness is achieved. We will elaborate on this in the next
subsection.

7.5.3 Expressiveness

It should be clear from the examples in this chapter that our architectural conformance checking
formalism is indeed a very expressive one. By providing the full power of LMP to de�ne the archi-
tectural mapping, we could easily satisfy all expressiveness requirements put forward in Subsection
3.2.2.

Logic meta programming

To de�ne virtual classi�cations and virtual dependencies an architect can use the full expressive
power of the logic programming language, including logic uni�cation, backtracking, recursion,
negation, multi-way querying, and so on. This, in combination with the prede�ned mapping
predicates provided by the declarative framework, allows an architect to declare very complex
architectural mappings in a reasonably intuitive and concise way. To reason about implementation
artifacts, the LMP language provides access to their full parse-tree representations. These parse
trees can be analyzed either by traversing them, by lexically analyzing their string representation,
or by using a combination of both techniques.

In comparison to an explicitly enumerated classi�cation, a virtual classi�cation is more inten-
tional, as it provides a concise and intuitive description of which artifacts are intended to belong
to it. These descriptions can be based on simple naming or coding conventions; or they can be
based on some more complex semantic inferencing by using virtual dependencies that describe
complex relationships among implementation artifacts; or they can even be de�ned in terms of
other existing or auxiliary virtual classi�cations.

Virtual dependencies can represent simple implementation dependencies and coding patterns,
as well as more complex interaction protocols and design patterns. Our formalism provides a
whole range of prede�ned virtual dependencies. These can either be used directly to represent
architectural relations, or they can be used as building blocks in terms of which to de�ne more
abstract and more complex virtual dependencies.

Similarly, a whole range of prede�ned port �lters exists, but nothing prohibits us from de�ning
our own port �lters. Of course, these de�nitions can make use of the prede�ned port �lters and
of the full expressive power of the logic programming language.

Requirements

Thanks to the power of LMP, our formalism satis�es all requirements enumerated in the criterion
of expressiveness in Subsection 3.2.2:

1. The formalism should pose no a priori restriction on the kinds of implementation artifacts
and architectural entities and relationships that can be considered.

A virtual classi�cation can describe any set of implementation artifacts. We can even de-
�ne heterogeneous classi�cations that contain a mixture of di�erent kinds of implementation
artifacts (e.g., classes, methods, variables). A virtual dependency can codify any relation-
ship, ranging from simple implementation dependencies, to relationships describing complex

7.5. CONCLUSION 155

collaboration or interaction patterns. Our formalism is only restricted in that we consider
object-oriented implementations only, and that we only reason about the static structure.

2. The formalism should allow for composite architectural concepts and relations.

We gave many examples of how complex virtual dependencies were constructed from more
primitive virtual dependencies. We also showed how virtual classi�cations could be de�ned
in terms of more primitive virtual classi�cations and virtual dependencies. In addition
to being able to de�ne virtual classi�cations and virtual dependencies in terms of other
virtual classi�cations and virtual dependencies, the formalism can easily be extended to
allow for composite architectural concepts and relations (see Subsection 6.4.5). Composite
architectural concepts and relations are not mapped directly to virtual classi�cations or
virtual dependencies, but are de�ned in terms of sub-architectures containing other high-
level concepts and relations.

3. The formalism should allow for complex architectural relations.

We gave many examples of architectural relations that can deal with transitive closures,
interaction and collaboration protocols, naming and coding conventions, design patterns,
and so on. To manage the complexity, complex architectural relations are de�ned in terms
of high-level virtual dependencies that are in turn de�ned in terms of more primitive ones,
and so on, until an implementation dependency or a prede�ned virtual dependency is reached.

4. The formalism should allow for cross-cutting mappings of architectural concepts to imple-
mentation artifacts.

Many architectural concepts in the `rule-based interpreter' and `user interaction' view have a
cross-cutting mapping to the implementation, in the sense that the virtual classi�cation cor-
responding to such a concept generates a set of implementation artifacts that are distributed
throughout the entire implementation structure.

5. The formalism should support the de�nition of multiple, potentially overlapping, architec-
tural views on the same software system.

Our case study de�nes three architectural views on the SOUL software system, and illustrates
how architectural conformance can be checked to each of them. Some of these architectural
views are overlapping, in the sense that architectural concepts in di�erent views are mapped
to the same virtual classi�cation. Furthermore, many virtual classi�cations themselves are
overlapping in the sense that one implementation artifact can belong to multiple virtual
classi�cations.

7.5.4 Other criteria

In Subsection 3.2.2, we listed a number of criteria that a formalism for architectural conformance
checking should satisfy. We already discussed the criterion of expressiveness in the previous
subsection. Now we take a look at the criteria of simplicity, e�ciency, extensibility and generality.

Simplicity

The proposed formalism is rather simple. The architectural views are de�ned in a simple ADL,
and the mapping of the entities in this ADL to the implementation is also simple: architectural
concepts are mapped to sets of implementation artifacts (i.e., virtual classi�cations), ports to �lters
over these sets, and architectural relations are mapped to relationships among the artifacts in these
sets (i.e., virtual dependencies). Because of its simplicity, the formalism was easy to implement in
Prolog. As we saw in section 6.3, the conformance checking algorithm was implemented essentially
in a 12-line Prolog rule.

Virtual classi�cations, which describe how their elements are computed, are more abstract and
contain more information than ordinary classi�cations, that give an explicit enumeration of their

156 CHAPTER 7. CASE STUDY

elements. In spite of their more intentional character, our virtual classi�cations, described in a
logic medium, were typically very concise, intuitive and readable.

However, as virtual classi�cations and virtual dependencies can make full use of the power of
LMP, the architect needs to know the LMP language well. To simplify the declaration of such
virtual classi�cations and virtual dependencies, he or she can use a whole range of prede�ned logic
predicates provided by the DFW. In addition, in Subsection 8.3.4 we will discuss a number of
tools that could help the architect with the complex task of declaring the architectural mapping.

E�ciency

As can be seen from the timings in the previous sections, our conformance checking algorithm is
not so e�cient. This is mainly due to the fact that a lot of implementation artifacts are involved,
and that the virtual dependencies often require some heavy computation. Also, our use of a logic
language may not have been the best choice from the viewpoint of e�ciency. (Remember, however,
that e�ciency was not our major concern. We were mainly interested in an approach that was as
expressive as possible. For this purpose, the use of a logic language was a good choice.)

To make the approach more e�cient, in addition to the optimizations discussed in Subsection
6.3.3, in Chapter 8 we propose some more optimizations (Section 8.2), as well as a more incremental
version of the conformance checking algorithm (Section 8.1).

Extensibility and generality

We deliberately kept the design of our formalism as simple as possible. Some interesting extensions,
such as support for architectural styles, deviations, correspondences and sub-architectures, were
already discussed in Section 6.4. Some more generalizations will be discussed in Chapter 8:

� In Section 8.1 we explain how the current conformance checking algorithm could be extended
into a more incremental version. When changes are made to either the implementation or
the architecture, this incremental version re-checks conformance only for those places that
were a�ected by these changes.

� In Section 8.4 we motivate that the current formalism is not speci�cally tuned towards check-
ing conformance of Smalltalk implementations to software architectures. It could equally well
be used to check architectural conformance of implementations in other programming lan-
guages (object-oriented as well as others), or even to check architectural conformance of
design models.

Chapter 8

Towards an Industrial-Strength

Tool

The architectural formalism and conformance checking algorithm we proposed, and the prototype
tool we implemented, are still in an experimental stage. To be applicable in an industrial context,
the conformance checking formalism and tool should be improved and extended in many ways. A
�rst important extension is to allow for incremental conformance checking. Then we discuss some
optimizations that can make our algorithm more e�cient. Next, we explain how our conformance
checking tool could �t in an industrial-strength tool to support architecture-driven development.
We conclude with some future generalizations of the formalism and algorithm.

8.1 Incremental conformance checking

In Subsection 2.1.6, we explained why evolution of both the implementation and the architecture of
a software system are essential and unavoidable. After evolution of either the implementation, the
architecture or the architectural mapping, conformance checking techniques are needed to verify
whether the implementation still conforms to the architecture. If we assume that the implemen-
tation was conform to the architecture before the evolution, it is overkill to re-check conformance
entirely. Especially for large software systems and complex architectural mappings, the overhead
of re-checking conformance entirely may be inhibiting. Therefore, in the context of evolution, an
incremental conformance checking approach is more appropriate. With an incremental approach,
instead of re-checking conformance for the entire implementation and architecture, we only need
to analyze the parts that have evolved.

In this section we sketch how the architectural formalism of Chapter 5 could accommodate such
a more incremental approach. The approach is based on a categorization of possible evolutions
that can occur. For each possible evolution, we analyze its potential impact on architectural
conformance, and draw our conclusions regarding incremental conformance checking.

8.1.1 Kinds of evolution

We assume to start from an initial situation (as depicted on the left in Figure 8.1) where we have
an implementation of some software system, a description of its conceptual architecture, and an
architectural mapping between them (also see Figure 5.1). Any of these can evolve. We also
assume that, in the initial situation, the implementation conforms to the architecture. We are
interested in the impact of an evolution on this conformance.

In this subsection, we present a taxonomy of the kinds of evolution in our formalism (see Figure
8.1). For each of these kinds of evolution, we enumerate the di�erent kinds of changes that can

157

158 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

Figure 8.1: Possible evolutions of implementation and architecture.

occur. We will describe these possible changes as `evolution operators' and illustrate them with
examples from the `user interaction' architectural view.

Evolving the conceptual architecture

With respect to incremental conformance checking, evolving the conceptual architecture is prob-
ably the simplest kind of evolution. After making changes to the conceptual architecture, we
need to verify whether the implementation still conforms to it. If we know which parts of the
architecture evolved and how, we can easily assess how this a�ects architectural conformance.
Because architectural conformance checking compares architectural descriptions with the imple-
mentation, most changes to the architecture typically have only a local impact on architectural
conformance: conformance only needs to be re-checked for those architectural descriptions that
have been changed.

Architectures can evolve on three levels: on concepts or relations, on architectural views as a
whole or on the level of the entire conceptual architecture.

� For architectural concepts, we de�ne two evolution operators. Concept extension extends
the `interface' of an architectural concept by adding a new port to it. Concept cancellation
removes a port from some concept. The evolution operators for relations are similar. Relation
extension extends the `interface' of a relation by adding a new role to it. Relation cancellation
removes a role from that relation.

For example, originally, the User Application concept in the `user interaction' view only
had one port corresponding to classes representing user applications in the SOUL system.
Later we added an extra port (i.e., concept extension) corresponding to the methods of these
classes, to represent the requests that can be handled by SOUL user applications.

� On architectural views, we can de�ne the following useful evolution operators. View exten-
sion extends an architectural view by adding extra concepts or relations to it. The added
elements are not connected to any other element. View cancellation removes (unconnected)
concepts or relations from an architectural view. View re�nement re�nes an architectural
view by adding extra links between the concepts and relations in it. View coarsening removes
existing links between concepts and relations in the architectural view.

For example, in the `user interaction' view, originally we did not make a distinction between
user applications and auxiliary applications. The concept Auxiliary Application was only
introduced later (i.e., view extension) when we realized that there are some applications
which are created and activated by others in response to certain user requests.

� Finally, on conceptual architectures, which consist of multiple views, we also have two evo-
lution operators. Architecture extension extends a conceptual architecture with a new archi-
tectural view. Architecture cancellation removes an architectural view from the conceptual
architecture.

8.1. INCREMENTAL CONFORMANCE CHECKING 159

Again, the `user interaction' view is a good example. Initially, we de�ned only two archi-
tectural views on SOUL, namely the `rule-based interpreter' and `application architecture'
view. The `user interaction' view was only added later (i.e., architecture extension) because
we needed a view that focused on the user-interaction aspects of SOUL.

In Subsection 8.1.2, we will analyze the potential impact of these architectural evolution oper-
ators on conformance of the implementation to the architecture.

The choice and terminology of the evolution operators are strongly inspired by the research on
reuse contracts [40, 41, 53, 78], where we also use the evolution operators extension, cancellation,
re�nement and coarsening. The technique of reuse contracts supports the detection of evolution
conicts when two independent changes are made to the same software artifact. This is done
by comparing the evolution operators that describe the two evolutions, for potential unexpected
interactions. Furthermore, the above taxonomy of evolution operators on architectures is very
similar to the one proposed by N. Romero [71], although she used a slightly di�erent terminol-
ogy. N. Romero applied the technique of reuse contracts to manage the evolution of software
architectures.

It should be noted that the evolution operators enumerated above are not necessarily indepen-
dent. For example, a view coarsening may require a relation cancellation to retain a consistent
architecture. Indeed, an architecture which has a relation with a role that is not linked to any
port is not well formed. Also, an evolution of the architecture will often require an evolution of the
architectural mapping as well. The next subsection enumerates the possible evolution operators
for the architectural mapping.

Evolving the architectural mapping

Recall that the architectural mapping is split into an architectural instantiation and an architec-
tural abstraction.

Architectural instantiation Evolving the architectural instantiation typically has a local im-
pact. It a�ects only the architectural entities for which the instantiation is changed. In essence,
checking conformance after changing the architectural instantiation will require re-checking only
these entities (see Subsection 8.1.2).

The architectural instantiation maps concepts, ports, relations, roles and links to elements of
the architectural abstraction. For the architectural instantiation, the only kind of evolution that
is allowed is to replace the instantiation of some architectural entity by another instantiation, in
other words to `re-de�ne' the entity. We distinguish the following kinds of re-de�nitions: concept
re-de�nition, port re-de�nition, relation re-de�nition and link re-de�nition. For example, a concept
re-de�nition replaces the virtual classi�cation associated with a concept by another one. We also
have a roles re-de�nition: it takes a set of roles as input, and permutes the associated argument
numbers.

To illustrate this, let us return to the example of the User Application concept in the `user
interaction' view. As mentioned above, the Auxiliary Application concept was only introduced
later. At that moment, however, it was necessary to rede�ne the instantiation for the User
Application concept, so that it only referred to classes that did not represent auxiliary applications.
This involved a concept re-de�nition to instantiate the User Application concept with this new
de�nition.

Architectural abstraction Evolving the architectural abstraction has a larger impact, since
the abstractions it de�nes can be used in the instantiation of multiple architectural entities, or
even in the de�nition of other abstractions. Nevertheless, to some extent, we can still re-check
conformance incrementally, if we know exactly how the architectural abstraction changed. There-
fore, it is important to categorize the possible ways in which the architectural abstraction can
evolve.

160 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

The architectural abstraction de�nes virtual classi�cations, �lters, virtual dependencies and
quanti�ers in terms of logic predicates. Therefore, at this level, we consider the evolution operators
extension, cancellation, strengthening, weakening and re-de�nition, which correspond to the typical
changes that can be made to logic predicates.

It is clear that we need evolution operators for introducing new (i.e., extension), or removing
existing (i.e., cancellation) virtual classi�cations, �lters, etc. When removing things we assume
they are not referred to anymore.

More interesting evolution operators are re-de�nition, strengthening and weakening. Re-
de�nition changes the de�nition of an existing predicate. Strengthening a logic predicate `restricts'
the predicate so that it has less solutions than before. Weakening a logic predicate `relaxes' that
predicate so that it has more solutions than before. Now, let us take a closer look at these evolution
operators:

� Virtual classi�cation strengthening `removes' artifacts from a virtual classi�cation so that
the set of artifacts it computes is a subset of the original one.

For example, reconsider the example where we re-de�ned the User Application concept,
by �rst de�ning a new virtual classi�cation (i.e., virtual classi�cation extension) and then
replacing the old virtual classi�cation by this new one (i.e., concept re-de�nition). We could
equally well have achieved the same e�ect by using a virtual classi�cation strengthening
which does an `in place' rede�nition of the virtual classi�cation of User Application so that
it does not produce classes that represent auxiliary applications anymore. The di�erence
with a concept re-de�nition is that a virtual classi�cation strengthening does not de�ne a new
virtual classi�cation, but re-de�nes an existing one. (Note that the impact of performing
a virtual classi�cation strengthening may be higher, for example, when the same virtual
classi�cation is used to instantiate more than one concept.)

� Virtual classi�cation weakening `adds' artifacts to a virtual classi�cation, so that the classi-
�cation it computes is a superset of the classi�cation computed by the original one.

For example, the `queryInterpreter' classi�cation (in terms of which the Query Interpreter
concept is de�ned), originally included only those methods that belong to a method protocol
named `interpreting'. Later we added all methods that belonged to the `interpretation' and
`uni�cation' protocols as well.

� Virtual classi�cation re-de�nition is a mixture of virtual classi�cation strengthening and
weakening, where some artifacts are added to the classi�cation, and some others are removed.

� Filter strengthening makes a �lter more restrictive than before (e.g., by adding an extra
condition to it). All artifacts that are accepted by the new �lter, will also be accepted by
the original one, but not vice versa.

For example, at the moment, the `Request' port on User Application returns all methods
of classes that represent user applications. But we are not really interested in all those
methods, only in those that represent useful requests for user applications. Changing this
would require a �lter strengthening.

� Filter weakening makes a �lter less constraining than before (e.g., by removing one of its
�ltering conditions). It accepts all artifacts that were accepted before, and maybe some
more.

� Filter re-de�nition is a mixture of �lter strengthening and �lter weakening. The �lter is
changed such that some artifacts that were accepted before are not accepted anymore, but
some others that were not accepted before are accepted now.

� Virtual dependency strengthening strengthens the logic predicate representing a virtual de-
pendency. Everything that holds for the strengthened predicate still holds for the original
version but not vice versa. Strengthening shrinks the solution set of the predicate.

8.1. INCREMENTAL CONFORMANCE CHECKING 161

For example, the asks C M virtual dependency originally checked only whether the `In-
terrogator' class invoked the `Interrogated' method. Later, we strengthened this virtual
dependency to verify whether the result returned by the `Interrogated' method was actually
used by the `Interrogator'.

� Virtual dependency weakening weakens the predicate representing a virtual dependency. A
predicate is weaker than another one, if every solution to the original predicate is also a
valid solution to the modi�ed one, but not vice versa. In other words, the solution set of the
predicate is enlarged.

� Virtual dependency re-de�nition is a mixture of virtual dependency strengthening and weak-
ening, such that some tuples that were dependent before, are not anymore, whereas some
others that were not, are dependent now.

This concludes our taxonomy of evolution operators for the architectural mapping. An analysis of
the potential impact of these operations on architectural conformance follows in Subsection 8.1.2.

Evolving the implementation

After evolving the implementation, we need to check whether conformance to the architecture is
still valid for the evolved implementation. At �rst sight, it may seem that by categorizing the
di�erent kinds of implementation evolution operators and by comparing these evolution operators
with the architectural mapping, we can get an idea of the potential impact of this implementation
evolution on architectural conformance. However, as the architectural mapping makes use of a full
LMP language, assessing this impact is far from trivial. Furthermore, because there is no simple
one-to-one mapping of implementation artifacts to architectural entities, re-checking conformance
can become problematic. One implementation artifact can correspond to many architectural con-
cepts and can be involved in many architectural relationships. Similarly, one implementation
dependency may be used to de�ne many architectural relations or architectural concepts. As a
consequence, it may be necessary to re-check conformance for large fragments of the software archi-
tecture. Nevertheless, in the next subsection, we will propose a tentative solution for incrementally
checking architectural conformance when the implementation evolves.

8.1.2 Analyzing the impact on architectural conformance

Now that we have discussed the di�erent kinds of evolution, for each evolution operator we analyze
its impact on architectural conformance and draw conclusions on how conformance can be checked
incrementally. We only discuss this informally. At the time of writing, an incremental conformance
checking algorithm has not yet been implemented.

Impact of evolving the architecture

The situation for evolution of the architecture is rather simple. Incremental conformance checking
boils down to performing local re-checks of some architectural descriptions. For some kinds of
changes, we do not even have to re-check anything. Below, we assess the possible impact of archi-
tectural evolution on architectural conformance, by analyzing the di�erent kinds of architectural
entities that can be modi�ed: concepts, relations, views or the entire conceptual architecture. We
further split up our analysis based on the possible evolution operators for those entities.

� Concept extension and cancellation have no impact on architectural conformance, as adding
ports to or removing ports from an architectural concept is only allowed for ports that are not
linked to anything. When a port is not linked to any architectural relation, this means that
it does not participate in any architectural constraint, and thus does not pose any particular
constraint on the implementation. E.g., adding a `Request' port to the User Application
concept had no impact on architectural conformance, as long as it was not linked to any
architectural relation.

162 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

� Relation extension or cancellation adds a new role to or removes an old role from an archi-
tectural relation. As a consequence, the virtual dependency associated with the relation will
need to be replaced by a new one that takes the extra or removed argument into account.
Although the added or removed role is not allowed to be connected to anything else, the
other roles of the relation may be, so the new predicate needs to be checked again anyway.
(After having linked the added role, in case of an extension.)

As an example, consider the Creates With architectural relation in the `user interaction' view
of Figure 7.1. Initially, this relation had only two roles: the `Creator' role representing a user
application that needs to render some output, and a `Created' role representing the output
viewer on which the output would be rendered. Later we added a third role `Argument'
representing the type of output that needs to be rendered. Obviously, after making this
change, we also needed to replace the virtual dependency associated with Creates With by
one that took three arguments instead of two. To verify whether the implementation was
still conform to this changed architectural view, we only needed to re-check the changed
Creates With architectural relation.

� View extension and cancellation are only allowed if the architectural concept or relation to
be removed or added is not linked to any other element. Therefore, there is no impact on
architectural conformance, as the element does not participate in any architectural relation.
E.g., adding a new architectural concept Auxiliary Application obviously does not a�ect
architectural conformance, as long as it is not linked to anything.

� View re�nement adds links between architectural elements and requires re-checking the
architectural relation to which a link has been added. E.g., after introducing the Auxiliary
Application concept, we linked it to the (existing) Activates relation with the Input Window
concept. To verify conformance, we needed to re-check conformance of the implementation
to the Activates relation (but only for the Auxiliary Application concept).

� View coarsening removes a link from a role of some architectural relation. To analyze the
impact of this change on architectural conformance, we need to distinguish two cases. Either
the role had only one link attached to it, or it had multiple links attached. (In a well-formed
architecture, every relation role is supposed to have at least one link attached to it.) In
the former case, removing the link is not allowed (unless in the exceptional case that we
simultaneously remove the links to all other roles of the same architectural relation) because
it would yield a malformed architecture. In the latter case, after the link removal, the
architectural relation needs to be re-checked: as multiple outgoing links on the same role
represent a disjunction, the semantics will change by removing one link.

For example, suppose that we would want to remove the link from the `Action' role of the
Activates relation to the `Request' port of the Auxiliary Application concept (in Figure 7.1).
This is allowed, as the `Action' role is still linked to the `Request' port of the User Application
concept. However, after this removal the Activates relation needs to be re-checked as it may
not be valid anymore. (The fact that an Input Window activates at least one Auxiliary
Application or at least one User Application, does not imply that it will activate at least
one User Application.)

� Architecture extension obviously requires checking conformance for the entire added archi-
tectural view, but nothing more. E.g., when we introduced the `user interaction' view, we
had to check conformance of the implementation to this view, but we did not have to re-check
the other views.

� Architecture cancellation has no impact on architectural conformance. It merely deletes a
whole set of architectural constraints, described by the removed architectural view.

8.1. INCREMENTAL CONFORMANCE CHECKING 163

Impact of evolving the architectural instantiation

As evolving the architectural instantiation has a rather local impact, it requires only some lo-
cal re-checking of architectural conformance. Relation, link and roles re-de�nition require re-
checking architectural conformance for the relevant architectural relation only. Concept and port
re-de�nition require re-checking conformance for all architectural relations in which the a�ected
concept participates.

� Concept re-de�nition changes the instantiation of some architectural concept and may a�ect
all architectural relations in which that concept participates.

� Port re-de�nition changes the instantiation of a concept's port and may a�ect all architec-
tural relations that are linked to that port.

� Relation re-de�nition only a�ects the particular architectural relation for which the archi-
tectural instantiation is changed.

� Link re-de�nition only a�ects the architectural relation to which this link is connected.

� Role re-de�nition only a�ects the architectural relation to which this role belongs.

Before, we gave the example of re-de�ning the User Application concept. This would require re-
checking all relations to which it is connected. Unfortunately, this particular concept is connected
to all relations in the `user interaction' view, so we need to re-check every relation (in this view).
This is not the case for all concepts, however. If we re-de�ne the Input Window concept, for
example, then we only need to re-check the Activates relation.

Impact of evolving the architectural abstraction

When de�ning new elements in the architectural abstraction (i.e., extension), or removing existing
ones that are not referred to anymore (i.e., cancellation), there is obviously no impact on archi-
tectural conformance. The other evolution operators, however, which change an element of the
architectural abstraction, may have a large impact. The changed element might be used in many
instantiations, as well as in the de�nition of many other elements. Below, we explain for these
evolution operators how architectural conformance can still be checked incrementally.

� Virtual classi�cation strengthening, weakening and re-de�nition a�ect every architectural
concept that is instantiated with this virtual classi�cation, and therefore also every architec-
tural relation in which such a concept participates. All these architectural relations need to
be re-checked. Furthermore, all virtual classi�cations that are de�ned in terms of the changed
one, are also a�ected. To analyze the impact of these a�ected virtual classi�cations, a similar
analysis can be made.

Although we only need to re-check those architectural relations in which the a�ected ar-
chitectural concepts participate, this solution still seems rather ine�cient. Thanks to our
good choice of architectural abstractions and the use of LMP, however, re-checking an ar-
chitectural relation can often be done much more e�ciently than may seem at �rst sight.
More speci�cally, there is no need to re-check the virtual dependency associated with the
architectural relation for all artifacts of the virtual classi�cation associated with the a�ected
concept. It su�ces to re-check the architectural relation for some artifacts only, taking the
semantics of the quanti�ers into account.

For example, suppose that some architectural concept is instantiated with a virtual classi�-
cation which was weakened. This means that the virtual classi�cation now computes some
more artifacts than before. Assume further that this concept participates in some architec-
tural relation, and that it is linked to that relation with a 8 quanti�er. To verify conformance
for this relation we should check whether the virtual dependency to which it is mapped is

164 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

valid for all artifacts generated by the virtual classi�cation. However, under the assumption
that conformance was already valid before the weakening, we know that the virtual depen-
dency already holds for all original artifacts in the virtual classi�cation. Therefore, we need
to check the virtual dependency only for the new artifacts in the classi�cation. Obviously,
this is much more e�cient than re-checking it for all classi�ed artifacts. If the quanti�er
attached to the link is an 9 quanti�er, the situation is even better. The assumption that
conformance was already valid before the weakening implies that there already existed some
artifact that satis�ed the virtual dependency. As adding an artifact to the classi�cation does
not change this situation, nothing needs to be checked. (Our earlier example of weakening
the `queryInterpreter' classi�cation to add all methods belonging to the `interpretation' and
`uni�cation' method protocols, illustrates this. Nothing should be re-checked, as the Query
Interpreter concept is only linked to a relation by means of an 9 quanti�er.)

As a second example, suppose that we are dealing with a virtual classi�cation strengthening
instead of a weakening. This means that the virtual classi�cation is more restricted and
will produce less artifacts than before. Assume that some concept, instantiated with this
classi�cation, participates in some architectural relation, using a 8 quanti�er. If conformance
was already valid, it will remain valid: if the virtual dependency, associated with this relation,
already succeeded for all artifacts, it will still succeed for all remaining artifacts after the
strengthening. Therefore, nothing needs to be re-checked. However, when the quanti�er is
an 9, the situation is a bit more subtle. If the `removed' artifacts were not relevant for the
(existence of the) virtual dependency, there is no impact. But if we remove the artifact for
which the virtual dependency existed, conformance will fail, unless there still exists another
artifact for which the virtual dependency holds. In that case, we should look for such an
artifact in the changed virtual classi�cation. Note that, to know whether or not the `removed'
artifacts a�ect the relation, we need a `memoized' version of 9 which remembers the value(s)
for which it succeeded.

� Filter strengthening, weakening and re-de�nition a�ect every architectural relation linked to
a port that is instantiated with this �lter. All these relations need to be re-checked. Other
�lters that are de�ned in terms of this changed one, are also a�ected. For these a�ected
�lters, we can make a similar reasoning to assess their impact.

Again, re-checking an architectural relation can be done more e�ciently than may seem at
�rst sight. For example, a �lter strengthening has the e�ect of shrinking the set of artifacts
generated by a port. By taking the semantics of the quanti�ers into account, we can re-
compute the architectural relation more e�ciently. The situation is similar to that of a
virtual classi�cation strengthening : in both cases the set of artifacts shrinks. Analogously, a
�lter weakening enlarges the set of generated artifacts and is similar to a virtual classi�cation
weakening.

� Virtual dependency strengthening, weakening and re-de�nition a�ect every architectural re-
lation that is instantiated with this virtual dependency. Furthermore, it a�ects all virtual
classi�cations that use this virtual dependency in their de�nition (which will in turn a�ect
some concepts, relations and other virtual classi�cations, as explained above). It also a�ects
all virtual dependencies that use this virtual dependency in their de�nition.

It is a non-trivial problem to �nd all a�ected virtual classi�cations and virtual dependencies.
One possible solution is to use some kind of dependency analysis in the logic language to
�nd all predicates that depend on a certain predicate.

For the a�ected virtual classi�cations, checking incremental conformance can be done similar
to what was described above. We �rst re-compute each a�ected classi�cation and compare
it with its original version, to get an idea of which artifacts have been added, and which
have been removed from this classi�cation. Then we �nd the architectural concepts that use
this classi�cation, and re-check all architectural relations in which these participate. Based

8.1. INCREMENTAL CONFORMANCE CHECKING 165

on our knowledge of the added and removed artifacts, this can be done rather e�ciently, by
taking into account the semantics of the quanti�ers.

For the a�ected virtual dependencies, we need to re-check all architectural relations that are
instantiated with such a virtual dependency. Again, we investigate whether this re-check can
be made more e�cient, for example, by re-checking only those tuples for which the relation
has changed. A �rst solution would be to compare the solution set of the changed virtual
dependency with the solution set of its original version. Based on the tuples that have been
added to or removed from this set, and using the semantics of the quanti�ers, we can re-check
only what is necessary. However, this is not really an optimization as computing the solution
set entirely is precisely what we wanted to avoid. A second solution is to use second-order
predicates that are a bit more intelligent. For example, if we have a `memoized' 9 quanti�er
which `remembers' the artifacts for which the virtual dependency existed, we can �rst try
these artifacts. If we are lucky, the modi�ed virtual dependency still holds for at least one of
the same artifacts. If not, we do have to re-check the virtual dependency for all remaining
artifacts. In case of a 8 quanti�er, the situation is less advantageous, as we have to re-check
the virtual dependency for all artifacts.

Impact of evolving the implementation

As already mentioned earlier, changing the implementation has probably the highest impact on
architectural conformance. Mainly because of the cross-cutting nature of the architectural mapping
and because the architectural mapping makes use of a full-edged LMP language, every small
implementation change can a�ect this mapping in many ways. For example, when adding a
new method to the implementation, this change may a�ect every architectural abstraction that
(directly or indirectly) reasons about this method or parts of it.

To be able to incrementally check architectural conformance when the implementation evolves,
we propose to use an incremental constraint solving approach. We only mention this approach
very briey here, and refer to R. Wuyts' Ph.D. dissertation [87] for more technical details. In the
context of his Ph.D. research, in order to experiment with techniques for synchronizing design and
implementation, R. Wuyts implemented an incremental symbolic constraint solver in Smalltalk.

In this approach, instead of considering the architecture as a logic query that reasons about
the implementation, it is viewed as a set of constraints on the implementation, that is checked
when the implementation changes. An incremental symbolic constraint solving algorithm that
combines techniques from constraint logic programming and numeric incremental constraint solvers
is used to re-check only those constraints that are a�ected when a certain change is made to the
implementation. Incremental constraint solving means that the results of a previous run are not
just discarded, but are used when domains of variables change. These changes are then propagated
in order to update all the domains of the variables a�ected by the initial change. To make sure that
changes in the implementation a�ect the constraints expressed in the constraint network, every
time the implementation is changed, the incremental constraint network is triggered to propagate
the necessary changes.

As a concrete example, suppose that we add a new method to the implementation. This imple-
mentation change may a�ect every logic predicate of the representational mapping that reasons
about this method are parts of it. These predicates are used to de�ne higher-level predicates,
which are in turn used to de�ne virtual classi�cations and virtual dependencies, which are even-
tually used to de�ne the architectural constraints. To assess the impact of the implementation
change on these architectural constraints, we simply propagate the change through the constraint
network, until everything that is a�ected by the change has been re-checked.

It remains to be investigated whether the approach sketched above is feasible for our purposes,
though. As the constraint network needs to remember all previous results, the amount of memory
required to store all these results may be too high. And even if it would be possible to apply the
approach on our current case study, the question remains if it scales to larger software systems.

166 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

8.1.3 An example of architectural evolution

To illustrate part of the incremental conformance checking algorithm, we work out an example of
an interesting architectural evolution of the `user interaction' view. Until now, the Asks1 relation
was modeled as a binary relation between the User Application and Query Interpreter concepts.
In footnote 4 on page 46 we mentioned that representing this relation as a ternary relation linking
User Application, Query Interpreter and Query Result, would better reect our intuition that
a user application asks a query interpreter to compute some query result. Making this change
results in the evolved architectural view depicted in Figure 8.2. This �gure di�ers from Figure 5.2
in that Asks1 has an extra role `Result' which is linked to the `Type' port on Query Result. The
link has an 9 quanti�er attached to it.

Figure 8.2: An evolved version of the `user interaction' view.

To analyze the impact of this architectural evolution, we �rst decompose it in terms of primitive
evolution operators. The following evolution operators are needed:

1. a virtual dependency extension to introduce a new predicate asks C C C(Interrogator,

Interrogated, Result) which checks whether some Interrogator class invokes some
Interrogated class which returns a result of type Result to the Interrogator class.

2. a relation extension to add a `Result' role to the Asks1 relation.

3. a relation re-de�nition to replace the old virtual dependency which Asks1 was instantiated
with by the new one asks C C C.

4. a view re�nement to link the Asks1 relation to the Query Result concept. More speci�cally,
the `Result' role of Asks1 is linked to the `Type' port of Query Result, with an associated
quanti�er 9.

8.1. INCREMENTAL CONFORMANCE CHECKING 167

Using the analysis of Subsection 8.1.2, we can know assess the impact of these evolution
operators on architectural conformance. The virtual dependency extension has no impact on
architectural conformance, as it introduces a new virtual dependency that is not yet used by
anything. The relation extension adds a new `Result' role to Asks1, and requires the original
virtual dependency associated with Asks1 to be replaced by the new one. This is done by the
relation re-de�nition. Because Asks1 is now instantiated with a new virtual dependency, it should
be re-checked, after having linked its new `Result' role. This is done by the view re�nement.
Our careful analysis of Subsection 8.1.2 stipulates that this view re�nement, relation re-de�nition
and relation extension only require re-checking conformance of the implementation to the evolved
Asks1 architectural relation.

8.1.4 Conclusion

We categorized the di�erent kinds of changes that can be made to the conceptual architecture,
architectural mapping and implementation, and analyzed the impact of these changes on architec-
tural conformance. Using this analysis, we sketched a more incremental version of our conformance
checking approach that does not re-check conformance entirely, when changes are made, but only
re-checks those parts that are a�ected by the change.

As expected, architectural changes (including changes to the architectural instantiation) lend
themselves better to incremental conformance checking than changes to the architectural abstrac-
tion and implementation changes. The latter typically have a much higher impact due to the
fact that architectural views may cross-cut the implementation. One implementation artifact may
address several architectural concepts and one implementation dependency may be used in the
de�nition of multiple architectural relations and concepts.

Our formalism has some nice properties that facilitate incremental conformance checks. To
mention just a few, we can take advantage of multi-way reasoning to use a virtual classi�cation
for checking instead of generating purposes, and we can make intelligent use of the quanti�er
predicates to avoid re-checking architectural relations entirely. Again this con�rms our good
choice of architectural abstractions and of adopting a LMP approach.

Some extra reasoning mechanisms still need to be added to our logic medium, however. More
particularly, we need a mechanism for computing all logic predicates that are dependent on a
given predicate. We also need an incremental constraint solver for assessing the impact of im-
plementation changes on architectural conformance. Another mechanism that would be useful
is an automated synchronization mechanism between the logic meta language and the object-
oriented base language. This would allow the incremental conformance checking algorithm to be
triggered automatically whenever a change is made to the implementation. In the context of his
Ph.D. dissertation, which focuses on techniques for automated synchronization of object-oriented
implementations with design information codi�ed in a LMP language, R. Wuyts is currently ex-
perimenting with such mechanisms [87]. It is outside the scope of our dissertation to discuss these
mechanisms in more detail.

At this point, we did not yet implement, nor experiment with, our incremental conformance
checking algorithm. Before doing so, we think it is best to perform some more elaborate case
studies in an industrial context. As an alternative to an incremental approach, we may still use
the original conformance checking algorithm and run it in background, or overnight on a fast
computer. The case studies could demonstrate whether or not this approach is feasible and usable
in practice.

One interesting extension to make the incremental approach more practical would be to allow
submitting a whole set of changes simultaneously. The incremental algorithm sketched above
assumes that changes are made one at a time. Allowing multiple changes at the same time has the
advantage of allowing the implementation, during the course of these changes, to be temporarily
inconsistent with the architecture. This extension to the incremental algorithm requires some
careful investigation though, because the temporary inconsistency may cause extra complications.

An even further extension is to provide support for co-evolution, i.e., allowing multiple simul-

168 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

taneous changes at di�erent levels (for example, to both the implementation and the architecture).
This may prove even more di�cult, as changes are being made at two levels of abstraction at the
same time. At this point, it has not been investigated how the incremental approach should be
extended to deal with this.

8.2. FURTHER OPTIMIZATIONS 169

8.2 Further optimizations

Incremental conformance checking can be seen as an interesting optimization of the conformance
checking algorithm explained in Section 6.3 . In this section we discuss some further optimizations
and extensions that are valid for both the original and the incremental conformance checking
algorithm.

More detailed conict information

In Section 7.4, we discussed the need for the conformance checking algorithm to generate more
detailed information (rather than just a `yes' or `no') in the case of failure of a conformance check.
This information is necessary to be able to resolve encountered conformance conicts. As explained
in Subsection 7.4.2, the original algorithm could be extended easily to support this, by using
`debugging' versions of the quanti�er predicates (such as forallDebugOne and forallDebugAll)
that report failures to the user.

Optimizing time-e�ciency by means of caching

One of the most important problems with conformance checking is the large amount of computation
time required. This is mainly due to the vast amount of data involved (i.e., all implementation
artifacts), the combinatorial explosion of possible relationships and the cross-cutting nature of the
architectural mapping. In this subsection we discuss a number of optimizations that improve the
time-e�ciency at the cost of increased memory usage. They are all based on some form of caching.

1. We cache the set of artifacts that belong to some virtual classi�cation, so that the classi�-
cation does not need to be recomputed every time it is needed (see Subsection 6.3.3).

2. We cache the results of the most frequently-used virtual dependencies (see Subsection 6.3.3).

3. Just like we implemented special debugging versions of the quanti�er predicates, we could
implement `memoized' versions of the quanti�er predicates that remember their results. This
optimization was already discussed in the incremental conformance checking algorithm, to
improve the time-e�ciency of re-checking architectural relations after the implementation
or architectural abstraction had been modi�ed. For example, the original exists quanti�er
predicate merely checks whether at least one generated value satis�es a certain logic ex-
pression. The memoized version of exists also remembers for which values the expression
holds. We explained in Section 8.1 how this extra information is of use to quickly assess
the impact of an implementation change on the architectural constraint expressed by the
quanti�er predicate.

The three examples given above are only an indication of the e�ciency gains that can be
achieved through caching. It is future work to investigate where and how the time-e�ciency of
the conformance checking algorithms can be improved even more by using such techniques. As
always, there is an important trade-o� to be made here. Although caching may improve the time-
e�ciency, it typically increases the amount of data that needs to be stored. Therefore, only the
most computationally-intensive parts should be cached.

Optimized reasoning mechanisms

In all experiments we conducted, we used a Prolog-like LMP language. The disadvantage of such
a language is that it is restricted to one single search strategy: depth-�rst search [44]. Many
other strategies (e.g., breadth-�rst search) are imaginable, however. In addition, Prolog uses a
goal-driven reasoning strategy, invoking the rules backwards. Starting from a desired goal, only
those rules that lead to this goal are tried out. Every clause in the body of such a rule is a new
goal that needs to be resolved. A data-driven reasoning strategy, on the other hand, resolves

170 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

the rules in the forward direction, starting from an initial sets of facts, deriving more and more
facts in every step, until no more facts can be derived or until some desired solution is achieved.
As opposed to Prolog's backward reasoning strategy, many expert systems (e.g., KAN [76]) and
constraint solvers use forward reasoning (or a combination of backward and forward reasoning)
instead.

Another problem with Prolog, from the viewpoint of e�ciency, is its use of uni�cation, a kind
of deep-recursive and multi-way pattern matching. Although uni�cation is a powerful mechanism
in logic languages, and for reasoning about software architectures in particular (see [47]), for some
kinds of usage it is a bit of overkill. For example, instead of using uni�cation, G. Murphy [57] used
a conformance-checking approach based on simple GREP-like string-based pattern matching. Al-
though such an approach may be less precise than an approach (such as ours) based on uni�cation
over parse trees, it is much more e�cient. Therefore, it would be a good idea to include some
of Murphy's ideas into our approach. In fact, we already experimented with using string-based
pattern matching to optimize some computationally-intensive logic queries. As an example, in
Subsection 7.1.7 we discussed the predicate isUsedBy E M. It �rst uses string pattern matching
to quickly �nd an expression of interest and then uses a more precise parse-tree search based on
uni�cation to re�ne the found results.

Whereas it is clear that string-based pattern matching can greatly improve e�ciency in some
cases, it is not obvious how other search and resolution strategies (depth-�rst, breadth-�rst, for-
ward chaining, backward chaining, database queries, . . .), or other pattern matchers and advanced
uni�cation schemes could improve e�ciency (or precision). Therefore, we are planning to incorpo-
rate and experiment with some of these techniques in our LMP language. Ideally, choosing among
all these di�erent techniques should not become a burden for a user of the language. On the long
term, we envision having a LMP environment which implements di�erent search and resolution
strategies, where the most optimal strategy will be chosen transparently by the system, based on
an analysis of the initial query given by the user.

Optimizing memory-e�ciency

Although the problem of time-e�ciency is an important one, the issue of memory-e�ciency should
not be neglected either. In fact, the time-e�ciency problem is implicitly caused by the vast amount
of data that the algorithm needs to process. Since all this data needs to be stored somewhere, it is
clear that memory usage is an important concern. Furthermore, a lot of optimizations to increase
time-e�ciency are based on caching, thus increasing the amount of storage required. For example,
although virtual classi�cations can be stored concisely as predicates that compute a set of values,
in the optimized version, all values are stored explicitly in a cache. Similarly, although more
high-level dependencies can be computed from more primitive ones, for reasons of time-e�ciency,
some of them are cached and need to be stored explicitly as well.

Conformance checking compares architectural descriptions with the implementation. All these
implementation artifacts and their relationships, as well as all cached values and results, should be
stored in some repository that can be accessed by the logic language. Due to memory limitations,
the most straightforward approach to store these items as facts in the logic language is not feasible,
even for small software systems. Therefore, they have to be stored in an external repository, which
has the disadvantage that the access-time is higher. Using a database as an external repository,
however, allows even very large systems to be stored and intelligent database queries can be used
to retrieve the data e�ciently. In this context, it is important to investigate what the most optimal
storage scheme is. The data should be stored such that it can be retrieved as fast as possible,
without too much redundancy.

8.3. AN INDUSTRIAL-STRENGTH TOOL 171

8.3 An industrial-strength tool

The prototype implementation we described in Chapter 6 and used in Chapter 7 to conduct our
case study, still has many shortcomings. Therefore, in this section we take a closer look at what
a good \industrial-strength" tool for checking architectural conformance could look like.

For the sake of the discussion, assume the following scenario. We start out from some software
system of which only source code is available. The system has been reasonably well designed and
structured, but its architecture was never documented explicitly. Because major modi�cations
to the system are eminent, the management decides to take on the major e�ort of documenting
the system architecture. To assure that this is a one-time e�ort, a conformance checking tool
(such as the one we proposed) will be used to make sure that the source code of the system
is and remains conform to this architecture. A senior project member is assigned as software
architect. Modi�cations to the source code that do not conform to the architecture are not
allowed. Due to deadline pressure, however, sometimes such modi�cations cannot be avoided.
In such a case, the modi�cations can only occur with consent of the architect, who explicitly
documents these non-conform modi�cations. When major modi�cations of the system occur that
require an evolution of the architecture, the architect will make the necessary changes, and verify
whether the source code still conforms to this evolved architecture. If this is not the case, the
developers will be asked to refactor the source code to bring it back in line with the architecture.
(At this point, as far as possible, the explicitly documented deviations of the architecture are also
brought back in line.) With such an approach, and with an adequate tool to support it, it is
assured that the architecture provides an exact picture of the system (modulo some remaining
but explicitly documented deviations). At this point, the management obtains its return on
investment.1 Having an up-to-date architecture has many bene�ts: the re-engineered system has
become more maintainable, easier to understand, easier to evolve and reuse, and so on.

Of course, this scenario requires more than progressive managers and an adapted software
development process. Equally important is an integrated development environment which enables,
facilitates and supports such an architecture-driven development process. In the next subsections,
we explain step by step, following the requirements of the above scenario, which supporting tools
and techniques are needed in such an environment. But �rst we analyze the di�erent tasks and
activities in the scenario that need to be supported.

8.3.1 Reverse engineering the architecture

Probably the most labor-intensive (and thus most costly) task is reverse engineering one or more
architectural views from the implementation of the software system. Both the description of
the architectural view and its mapping to the implementation should be reverse engineered. The
complexity of this reverse engineering task may inhibit the use of a conformance checking approach
such as the one we proposed. Before explaining how the reverse-engineering process could be
supported by tools, we explain how it was achieved in our case study. From this experience we
derive which kind of tool support is useful and desired to support this reverse-engineering process.

Reverse engineering strategies Various strategies can be followed to reverse engineer an
architecture from the implementation [4]. Whereas a top-down strategy �rst de�nes the expected
architectural concepts and relations and then tries to �nd these in the code, a bottom-up strategy
tries to extract architectural concepts and relations from the code. An opportunistic strategy is a
mix of a bottom-up and a top-down approach.

1On the condition that the cost of extracting and maintaining the architecture and ensuring its conformance with
the source code, is lower than the cost of making the changes directly. Note that this cost strongly depends on the
availability of good tools to support extraction, conformance checking and maintenance of software architectures.
Also note that some hidden costs should also be taken into account. For example, it is typically more di�cult to
maintain a system if its architecture is ill-designed or unknown.

172 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

� For the `rule-based interpreter' architectural view, we adopted a top-down strategy. This
is because the architecture of a rule-based interpreter is well known [4, 31, 74]. As the
SOUL system includes a rule-based interpreter, we expected part of its implementation to
conform to this architecture. The main developer of SOUL, R. Wuyts, agreed that, from
a conceptual point of view, this architecture indeed provided a good description of the
rule-based interpretation process. However, he warned that the structure of his object-
oriented implementation did not immediately reect this architecture. Instead, the class
decomposition of his software system closely resembled the abstract syntax tree of the logic
language. This lead us to de�ning a cross-cutting mapping from the architectural concepts
to the implementation artifacts.

� As the purpose of the `application architecture' is to give an idea of the global implementation
structure, we obviously followed a bottom-up strategy to de�ne this architectural view. The
architectural mapping was a straightforward mapping of the architectural concepts to the
class structure of the implementation.

� After these two architectural views were de�ned, we still felt a need for a third additional
view which emphasized the `user interaction' aspect. Here we adopted a more opportunistic
approach. Based on our experiences with using the SOUL system, and based on the acquired
insights on the structure and workings of the system, we drew an initial sketch of the expected
`user interaction' architectural view. This sketch was re�ned after discussing it with the main
SOUL developer. At that point we tried to map it to the implementation, which triggered
some further re�nements.

The process of reverse engineering the architectural views for the SOUL system was rather labor
intensive, as it was done completely by hand, with little or no tool support. In retrospect, we
discuss which manual activities could have been simpli�ed by tools. In Subsection 8.3.4 we will
elaborate on a number of tools and techniques that support these activities. Most of these tools
are not speci�cally targeted to support the reverse-engineering process. Amongst others, they may
facilitate re-engineering as well.

Declaring architectural views graphically. It would be useful to have some support for declar-
ing architectural views in some graphical notation, which is automatically translated to the
corresponding declarations in the LMP language.

Understanding and browsing the implementation. When following a bottom-up strategy
to recover some architectural view, or when de�ning the architectural mapping, a lot of
insight in the implementation structure is needed. Therefore, we need sophisticated tools
for browsing and navigating through the code, and for �nding certain artifacts in the code.

Respecting coding conventions and design styles. Many virtual classi�cations are based on
coding conventions and design styles used by the programmers. A problem with such classi�-
cations is that their precision depends on how well these conventions and styles are respected
in the implementation. A partial solution to this problem is to enhance the development
environment with support for using and enforcing such conventions and styles.

De�ning virtual classi�cations is not trivial. A software architect explicitly has to declare
logic predicates that classify implementation artifacts in conceptual groups. This complex
task could be simpli�ed in various ways. First of all, a number of prede�ned auxiliary predi-
cates that are often used to de�ne virtual classi�cations can be provided. It is even possible to
de�ne template predicates that capture typical patterns of classi�cation. (This was exactly
the purpose of our declarative framework.) Secondly, a tool like the Classi�cation Browser
(see Subsection 2.3.3 and [12]), which already supports the de�nition of manual classi�ca-
tions, could be extended to support the de�nition and manipulation of virtual classi�cations
as well. Such a tool might provide a user-friendly interface for transparently constructing
virtual classi�cations.

8.3. AN INDUSTRIAL-STRENGTH TOOL 173

De�ning virtual dependencies is at least as complex as de�ning virtual classi�cations and can
be facilitated in similar ways: by providing prede�ned virtual dependencies; by providing a
prede�ned set of auxiliary predicates for de�ning virtual dependencies; by providing param-
eterized predicates that capture commonalities among virtual dependencies; by providing a
special tool that allows us to transparently construct virtual dependencies without explicitly
having to write them as logic predicates; etc.

Reverse engineering architectural views from the implementation is not so easy and could
be supported by tools that (semi-)automatically extract such architectural views from the
implementation.

8.3.2 Re-engineering the software

Documenting a software system by means of a software architecture does not make the system
more stable. However, it may improve the software understanding and enable the detection and
correction of mismatches with the desired architecture when changes are made to the software.
Furthermore, the architecture can make clear some of the imperfections of the software system,
and allows us to assess some of the system qualities. It is important to invest in re-engineering the
software and its architecture, so that some of its problems are �xed and its qualities are enhanced.
Such a re-engineering step can make the software system more stable.

Amongst others, the following tasks in the re-engineering process could be supported by tools:

Understanding and browsing the implementation. As for reverse engineering, sophisticated
tools for browsing and navigating through the implementation, and for �nding certain im-
plementation artifacts, can be of great help when re-engineering the software.

Architecture-driven browsing. Because the re-engineering process is driven by the software
architecture, tools are needed that allow us to browse the implementation from an archi-
tectural point of view. For example, browsing all implementation artifacts that correspond
to a certain architectural concept, navigating through the implementation based on some
architectural relation, computing all artifacts that are in a certain (architectural) relation
with another artifact, etc. A tool like the Classi�cation Browser [12] supports this kind of
architecture-driven browsing to a certain extent.

Code-generation facilities could be used, when re-engineering the software, to (partially) gen-
erate code so that the implementation (better) conforms to the architecture.

Refactoring the implementation is an important part of the re-engineering process that could
be supported by tools such as the Refactoring Browser [61, 70, 69].

Architectural deviations are changes to the source code that do not conform to the architec-
ture. Although such changes are not allowed, sometimes they cannot be avoided. To deal
with such changes, support should be o�ered so that the deviations are explicitly docu-
mented, and so that the conformance checking algorithm can take them into account. We
already mentioned this as future work in Subsection 6.4.4.

Resolving conformance conicts. When the implementation no longer conforms to the archi-
tecture, either because the implementation or the architecture has evolved, we need support
for resolving the conformance conicts. We already explained in Subsection 7.4 how we ex-
tended our conformance checking algorithm so that it can produce more detailed information
on which particular architectural relation is violated and on what are the implementation-
level artifacts that caused the violation.

Incremental conformance checking is useful to assess the impact of small changes to either
the implementation or to the architecture, without re-checking conformance entirely. De-
pending on the changes that were made, the incremental algorithm decides which parts may
require re-checking. (See Section 8.1.)

174 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

Partial conformance checking is related to incremental conformance checking, except that it
is not the conformance checking algorithm, but the architect who decides for which parts
of the architecture conformance should be checked. During the re-engineering process, it
cannot always be guaranteed that the implementation conforms to the architecture. How-
ever, even in those cases we may still want to check architectural conformance partially, or
for incomplete architectures. For example, by checking conformance for some designated
architectural relations only, or only for those architectural concepts and relations for which
an architectural mapping has been de�ned.

Again, we refer to Subsection 8.3.4 for a discussion on some tools that may facilitate the above
activities.

8.3.3 Synchronizing implementation and architecture

Once the implementation has been re-engineered in such a way that it has a `clean' architecture, it
is important to ensure that the software conforms to its architecture, whenever the implementation
or architecture is modi�ed. Obviously, an incremental conformance checking, which re-checks
architectural conformance incrementally, can be of help here.

To achieve a real synchronization between an implementation and its conceptual architecture,
however, the (incremental) conformance checking algorithm should be triggered automatically by
the development environment whenever a change is made to either the implementation or the
conceptual architecture. If conformance is violated, this should be reported to the developer or
the architect, so that the conformance conict can be resolved.

By enhancing the incremental conformance checking algorithm with such a synchronization
mechanism, we can provide real support for co-evolution (see 2.2.2) of the implementation and its
architectural views.

8.3.4 Tool support

In this subsection we describe some tools that support some of the activities that were enumerated
in the previous subsections.

Partial conformance checking

In addition to an incremental conformance checker (as explained in Section 8.1), it could be useful
to have a partial conformance checker as well. The purpose of the latter is to allow an architect
to perform a partial conformance check of the implementation to an architectural view. To some
extent, partial conformance checking is related to incremental conformance checking, in that the
latter sometimes resorts to a partial re-checking of the conformance mapping. The main di�erence,
however, is that with partial conformance checking it is the architect, and not the incremental
conformance checking algorithm, who decides what should be re-checked. Some useful examples
of partial re-checks could be:

� Checking conformance of some implementation module(s) only.

� Checking conformance to certain architectural relations only.

� Checking conformance to all architectural relations that are linked to some designated ar-
chitectural concept.

� Checking conformance to incomplete architectures, i.e., only for the instantiated architec-
tural concepts and relations.

Note that, per de�nition, our current conformance checking algorithm already supports partial
conformance checking to a given architectural relation, as a full conformance check is de�ned as
the conjunction of conformance checks for all architectural relations.

8.3. AN INDUSTRIAL-STRENGTH TOOL 175

Architectural visualization tools

To address the need for representing architectural views graphically, one of our graduate students,
J. Vanhentenryk, implemented a tool in which architectures can be drawn graphically, and which
automatically generates the corresponding logic declarations. Most ADL toolsets include such
graphical tools for visualizing and manipulating architectures, facilities for storing architectures,
and certain domain-independent forms of analysis (such as checking for cycles or the existence of
dangling connections) [27].

Figure 8.3: Visualizing the `rule-based interpreter' view in AcmeStudio.

As an illustration, Figure 8.3 shows a graphical rendering of (part of) our `rule-based inter-
preter' architectural view in AcmeStudio. AcmeStudio is an application for graphically editing
architectural descriptions in the Acme ADL [27]. AcmeStudio includes a mechanism to create
di�erent `diagram styles', which de�ne the visualizations for the di�erent types of architectural
entities. By using this mechanism, a user can use his or her own customized graphical notations
(domain-speci�c notations, user-de�ned notations, . . .). In fact, Figure 8.3 illustrates how we
could use AcmeStudio to represent an architecture in our own particular notation.

Customizable graphical representations can be used for many purposes. In general, customized
notations may enhance understandability, for example, by using notations that are speci�cally
tuned towards a particular architectural style (e.g., `pipe and �lter'). In one and the same archi-
tecture, we can even use di�erent notations for di�erent concepts (or relations), depending on their
type; for example, in Figure 6.1 we used cylinders for concepts representing data and rectangles
for concepts representing code. Finally, a simpli�ed notation could be used to hide details, for
example, by representing architectural relations as simple (labeled) arrows, instead of representing
them as rounded rectangles with links connected to their roles.

176 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

Sophisticated browsers and �nders

To �nd our way through the implementation, and to recover architectural and design abstractions
from the implementation, we need sophisticated source-code browsers and �nders.

� Smalltalk browsers. An environment like VisualWorksTM Smalltalk already provides some
interesting browsers for browsing class hierarchies, �nding senders and implementors of meth-
ods, and so on.

� The Classi�cation Browser signi�cantly enhances Smalltalk's capabilities of navigating through
the code. First of all, it includes some more advanced browsing facilities, to make it easier
to recover software classi�cations from the source code. Furthermore, these recovered soft-
ware classi�cations enhance the insight in the implementation by providing alternative views
on the software (especially when cross-cutting classi�cations and multiple classi�cation of
implementation artifacts are allowed), and can be used in other source-code searches (for
example, to restrict the scope of a search to those artifacts that belong to some classi�cation
of interest).

� The Structural Find Application (see Subsection 4.2.1) is a powerful source-code �nder that
facilitates the construction of complex search queries, such as �nding the \class with name
matching pattern SOUL*App and with a method with name matching pattern showResult:

and with a method that sends interpretIn:".

� The Query Application (also see Subsection 4.2.1) is even more powerful, as it provides
the user the full expressive power of a LMP language for querying the implementation of a
software system. The same kind of querying can also be done in our Prolog setup. During
our manual reverse engineering of architectural views from the SOUL implementation, we
often used our LMP language precisely for this purpose. Many of these queries eventually
found their way in the de�nition of various virtual classi�cations and virtual dependencies.

Enforcing coding conventions and design styles

As explained on pages 70 and 134, the use of coding conventions (and styles) in virtual classi�ca-
tions may lead to problems when the conventions are not followed. It is important to see things
in the right perspective, though. In a language like Smalltalk, it is common practice to use and
respect certain naming and coding conventions (see, for example, K. Beck's book on Smalltalk
best-practice patterns [5]). This self-inicted discipline of Smalltalk programmers is a kind of
counter-measure for the fact that a dynamically typed language like Smalltalk often provides too
much exibility. Because of this discipline, de�ning virtual classi�cations that rely on conventions
may not be as dangerous as may seem at �rst sight. In typed languages, conventions are typically
less respected, but there is also less need to de�ne virtual classi�cations in terms of conventions:
thanks to the extra type information, virtual classi�cations can often be de�ned more precisely
without using conventions.

Nevertheless, it still remains possible that virtual classi�cations are de�ned in terms of coding
conventions, and that problems arise when these conventions are not respected. To avoid such
problems, it would be useful if the development environment would provide support for using and
enforcing such conventions. Support for conventions and styles includes: checking whether some
implementation artifacts follow a certain convention, detecting implementation artifacts that do
not follow the convention, enforcing that certain conventions are respected in the implementation,
generating code templates for implementation artifacts so that they automatically follow some
convention, transforming unconventional code to code that does conform to the conventions, and
so on.

The SOUL-Smalltalk combination has proven to be an ideal medium for building sophisticated
software engineering tools that provide the above kinds of support. We repeat from Section 2.2
that experiments have already been carried out to support best-practice patterns, idioms, and

8.3. AN INDUSTRIAL-STRENGTH TOOL 177

coding conventions [54]; to detect and check design patterns in Smalltalk source code [86]; to log
violations of certain programming conventions and styles in a `to do' list dynamically; and more
recently to generate code that conforms to some convention (for example, automatically generate
the accessor methods for all instance variables of a class).

Prede�ned predicates

Both virtual classi�cations and virtual dependencies are de�ned as logic predicates that can make
full use of the power of LMP. Although this has many advantages from the viewpoint of expres-
siveness, it does require a lot of insight from the architect in both the implementation and the
LMP language. To simplify the declaration of such virtual classi�cations and virtual dependen-
cies, and to avoid that an architect should re-invent the same predicates over and over again,
the conformance checking tool provides a whole range of prede�ned predicates in terms of which
the architect can de�ne his or her own logic predicates. As explained in Subsections 5.3.3 to
5.3.6, these predicates are de�ned in the DFW. We refer to those subsections for a more elaborate
discussion of this library of predicates.

Classi�cation browser

The Classi�cation Browser, �rst discussed in Subsection 2.3.3 can be used in many di�erent ways.
We already mentioned some of its powerful navigation capabilities and its ability to manipulate
manually-de�ned software classi�cations.

A tool like the Classi�cation Browser could be extended with support for de�ning and managing
virtual classi�cations as well. Such a tool can provide a user-friendly interface for transparently
constructing virtual classi�cations. One way of achieving this is for the tool to provide access to the
set of prede�ned and template predicates of the DFW, and to support the interactive construction
of more complex predicates using logic operators. Another way is related to how macros are
recorded in, for example, MS-Word. We would use the tool for browsing the implementation
using its advanced navigation facilities, while in background the tool records all actions that are
undertaken by the user. Afterwards, if the user decides that the correct classi�cation has been
constructed, the tool can restore the set of performed actions. These actions form the description
of the constructed virtual classi�cation.

Later, we will also explain how a combination of the Classi�cation Browser with a software
tagging mechanism can be used, to a certain extent, for architectural recovery.

Dependency browser

Similar to the proposed extension of the Classi�cation Browser with support for virtual classi�ca-
tions, it would be useful to have a kind of Dependency Browser as well. This Dependency Browser
should support the construction of virtual dependencies, and provide some powerful navigation
capabilities based on these virtual dependencies. Using a similar approach as for the extended
Classi�cation Browser it could provide a user-friendly interface for transparently constructing
virtual dependencies, without requiring a user to explicitly write them as logic predicates.

Architectural extraction

We already discussed how manual reverse engineering of software architectures could be supported.
Obviously, we would also like some support for (semi-)automatically extracting architectures from
the implementation. We mention three relevant techniques:

� Ontologies. D. Deridder and B. Wouters make a case for the application of ontologies in
the domain of software engineering [16]. They state that by integrating techniques and for-
malisms from the domains of computer linguistics and arti�cial intelligence (in particular,
ontologies and ontology-related techniques) in existing software engineering tools, the soft-
ware development process may be enhanced signi�cantly. An ontology-based experiment was

178 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

conducted to reverse engineer UML diagrams from an existing application. It should be in-
vestigated whether a similar experiment could be set up to reverse engineer the architecture
of an existing system.

� Architectural recovery through software tagging. K. De Hondt and P. Steyaert con�rm that
a fundamental problem with large evolving software systems is a bad understanding of the
software architecture [13]. They claim that there are two crucial ingredients in managing
software evolution: the ability to trace past activities (i.e., keeping track of the changes that
were made, as well as the reasons why these changes were made) and the ability to capture
emergent patterns (i.e., capturing the architecture, components, and object collaborations
that were not recognized at the start of a project and that emerge as a result of development
activities). Software classi�cation (see Section 2.3) is proposed as a general framework that
provides the ability to trace past activities and to capture emergent patterns. They support
the use and de�nition of software classi�cation by means of two tools: software tagging and
the Classi�cation Browser. We already discussed the Classi�cation Browser on page 177.

The idea of software tagging is that when software engineers carry out development tasks,
they usually know the context in which changes are made. They know the module they
are changing, the software layer a class belongs to, the speci�cation they are implementing,
the bug they are �xing, etc. Normally, this knowledge is kept implicit in the heads of
the software developers. Software tagging makes this knowledge explicit, by requiring the
software engineers to transfer that knowledge in the form of classi�cation information when
changes are made, and registering that information in the form of a tag in the software.
Examples of tags are: time of change, modi�er, activity that gave rise to the change, customer
for whom the change was made, module, task (i.e. new development, implementation of
a speci�cation, bug �x, code review, testing, etc.), intention. Software tagging provides
important information on a software system, which can be used to de�ne some interesting
software classi�cations.

Furthermore, K. De Hondt and P. Steyaert explain how software classi�cation may be used
for the purpose of architectural recovery [13]. Whereas architectural concepts often exist
only as conceptual entities in the heads of the developers, when performing a development
task the developer needs a physical view in terms of classes and methods. By tagging the
di�erent classes and methods with the concept they belong to, a mapping is obtained of
architectural concepts to the relevant classes and methods. The recovery of architectural
concepts with classi�cation through software tagging results in multiple architectural views
on software. By browsing the generated classi�cations, the developers get a picture of the
software in terms of architectural concepts. The concepts that live in their heads have now
become physical entities (i.e. classi�cations) in the software development environment.

� Computing divergences. Another kind of information that could be useful to extract from
an implementation is where it diverges from its architecture. Divergences are important de-
pendencies that are present in the implementation, but are not reected in the architecture.
Such information could be useful, for example, during the re-engineering process: proba-
bly it is a good idea to update either the architecture to explicitly include the important
divergences, or to modify the implementation to get rid of these divergences.

In G. Murphy's approach to architectural conformance checking [57], she computes the
convergences (where the implementation agrees with the architecture), the absences (where
the implementation does not contain dependencies that are described by the architecture)
and the divergences (where the implementation has dependencies that are not predicted
by the architecture). Our conformance checking algorithm computes the convergences and
absences only. If conformance checking succeeds, there are no absences, only convergences.
If conformance checking fails, this is caused by absences of expected architectural relations
in the implementation. Our approach does not locate divergences, however.

8.3. AN INDUSTRIAL-STRENGTH TOOL 179

In our approach, one architectural view does not provide a `complete' picture of a software
implementation. Typically, there are multiple architectural views that all contribute to the
system's architecture. Hence, although the implementation of the software system may
contain dependencies that are not described by some architectural view (i.e., divergences),
these dependencies may be described by another architectural view. So if we want to compute
the divergences in our approach, we need to specify clearly with respect to which view(s)
of the conceptual architecture the divergences should be computed. For example, if we do
assume that some set of architectural views is supposed to provide a `complete' picture
of the system's architecture, it can be useful to generate the divergences with respect to
these views. Since the picture is supposedly complete, there should be no implementation
dependencies that are not reected in this (set of) architectural views.

There is a more important di�culty with computing the di�erences, though. In our approach,
computing the divergences will be an extremely computationally-intensive process, because
of the vast amount of implementation dependencies possible, and the even larger amount
of ways in which these may be combined and abstracted into architectural relations. G.
Murphy did not have this problem, because her approach always works with a restricted set
of relationships. She did not compare the full source code to the architecture, but only a
much smaller `source-code model' (e.g., a call graph), which was extracted from the source
code by some tool. Therefore, in practice, to be able to compute the divergences in our
approach, we should restrict the scope to a certain set of implementation dependencies or
architectural relationships.

Refactoring Browser

The Refactoring Browser [69, 70] is a tool for restructuring the implementation of an object-
oriented software system in a behavior-preserving way. A typical example of a `refactoring' is
the following: suppose we have some superclass of which all direct subclasses introduce the same
variable, which is not present in the superclass itself. In that case this variable can be removed
from all subclasses and added to the superclass.

Although the Refactoring Browser is not an `architectural tool', it can be useful during the
re-engineering phase. Refactorings are typically used to `clean up' a software system, which may
result, for example, in a cleaner architecture as well.

Code generation

T. Tourw�e and K. De Volder discuss how software classi�cations can be used to drive code gener-
ation [82]. The general idea behind their proposal is that a classi�cation groups together several
related entities which share some characteristics. Often, this is reected by these entities having
in common some state and behavior. Since these entities need not in any way be related through
inheritance, the state and behavior is spread out and duplicated. When using code generation
on classi�cations, this problem can easily be alleviated. Instead of manually duplicating the code
over the di�erent entities, we can de�ne behavior and state on the classi�cation itself and let the
code generator take care of all the work.

As a simple illustration of their approach, they give the example of the Visitor design pattern.
When implementing this pattern, there is a lot of code duplication in the di�erent classes that
are visited.2 Now suppose that we de�ne a virtual classi�cation consisting of all visited classes.
Instead of writing the duplicate code again and again for each such class, it is more opportune to
de�ne the duplicate code on the virtual classi�cation, and use a code generator to automatically
generate the correct code necessary for all classes in the classi�cation.

2For the sake of the argument, we simpli�ed the example somewhat. In fact, the code duplication depends not
only on the visited classes, but on a combination of the visitor and the visited classes. We refer to [82] for the full
example.

180 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

As architectural concepts precisely correspond to virtual classi�cations of implementation ar-
tifacts that may be spread over the entire implementation, we have exactly the situation sketched
above. The proposed code-generation approach can, for example, be useful when re-engineering a
software system so that it conforms to a new architecture. Suppose that we add an architectural
relation between two architectural concepts in some architectural view. This simple architectural
evolution may have a high impact on the implementation. For example, it might involve the addi-
tion of an extra invocation relationship from every artifact corresponding to the �rst architectural
concept to some artifact corresponding to the second concept. With a code generation approach,
however, the implementation changes that are required may be de�ned on the architectural con-
cepts themselves, and be carried out automatically by the code generator.

To support this kind of code generation based on virtual software classi�cations, T. Tourw�e
and K. De Volder suggest using a Codi�cation Browser which provides a much more intuitive and
user-friendly interface, than when everything needs to be speci�ed at the level of a LMP language.

Synchronization

There is a close relationship between the research in this Ph.D. dissertation and R. Wuyts' Ph.D.
research [87]. However, whereas the focus of our research is to develop an architectural formalism
for automated conformance checking of implementation to architecture, the focus of Wuyts' re-
search is on techniques for synchronizing design and implementation of a software system. Wuyts
also adopts a LMP approach, and argues that in a LMP medium, synchronization between design
and implementation can be achieved in a variety of ways:

� Conformance checking corresponds to evaluating a query which veri�es whether the imple-
mentation conforms to the design.

� Enforcement expresses design as a constraint on the implementation, and generates a warning
when the implementation violates the rules describing the design.

� Generation assures synchronization by generating parts of the implementation from the
design, or vice versa.

These di�erent approaches towards synchronization have varying degrees of `strongness'. Confor-
mance checking is a rather weak kind of synchronization. The check is initiated by a software
engineer, and only immediately after the conformance check the engineer knows whether the im-
plementation conforms to the design. Enforcement is a stronger kind of synchronization, although
the `strongness' depends on how and when violations are reported. For example, a weak form of
enforcement could check for violations in background, and log them in a to-do list for later inspec-
tion by the software engineer. A strong form of enforcement could check for violations whenever a
change is made to the system, and provide immediate support to the software engineer to resolve
potential conicts interactively. Finally, generation is a very strong form of synchronization, in
the sense that the generated code (resp. design) will be conform to the design (resp. code) by con-
struction. However, it is weak in the sense that the generation is typically initiated by a software
engineer, and that the code is only in conformance with the design immediately after generation
has taken place.

It is outside the scope of this dissertation to investigate which synchronization technique is
most opportune or how these techniques can be implemented. This is the subject of Wuyts'
Ph.D. dissertation [87]. Whereas Wuyts' contribution lies in providing a framework and envi-
ronment that can handle several forms of synchronization (i.e., conformance checking, generation
and enforcement), our contribution lies in providing an architecture language in which to describe
software architectures (the ADL) and their mapping to the implementation (the AML). The only
overlap is that we both adopt a LMP approach and that we both support conformance checking.
Our dissertation builds on this conformance checking to provide full support to describe and check
conformance to architectures, but `neglects' other forms of synchronization. Wuyts focuses on
supporting di�erent forms of synchronization, but only provides ad-hoc support for some design
notations.

8.3. AN INDUSTRIAL-STRENGTH TOOL 181

8.3.5 Conclusion

The goal of this section was to investigate how the conformance checking tool proposed in this
dissertation could be enhanced to an industrial-strength environment for architectural-driven soft-
ware development. Because of the many tools and techniques we mentioned, it may seem that
we still have a long way to go before such an environment can be constructed. It should be
stressed, however, that most of the required techniques and tools already exist or are currently
under investigation. Moreover, Smalltalk prototypes of most of the discussed tools are available.
Therefore, it is not unrealistic to assume that such a state-of-the-art environment can actually be
constructed by combining all these tools in a Smalltalk setting. More speci�cally, our state-of-the-
art industrial-strength environment could consist of a mixture of:

� a VisualWorksTM -like development environment, enhanced with

{ sophisticated browsers, �nders and source-code navigation facilities

{ an enhanced classi�cation browser and editor (including support for virtual classi�ca-
tions and virtual dependencies)

{ support to enforce coding conventions and styles

{ a refactoring browser

{ an ADL with a customizable graphical user interface

� a Prolog-like LMP language with a tight symbiosis with all of the previous. The logic
language comes with

{ a prede�ned library of logic predicates for de�ning virtual classi�cations, virtual depen-
dencies, etc.

{ an architectural conformance checker (including support for synchronization of the im-
plementation and the architecture)

{ an architectural extractor

{ code-generation facilities

182 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

8.4 Generalizing the formalism

The case study we performed in Chapter 7 focused on checking conformance of some Smalltalk
implementation (i.e., SOUL) to some architectural views. However, the proposed formalism is suf-
�ciently general to allow architectural conformance checking of implementations written in other
object-oriented programming languages (e.g., Java) or in entirely di�erent programming paradigms
(e.g., a logic programming language), or even conformance checking of design diagrams (e.g., UML
class diagrams). Although we did not implement nor experiment with any of these generaliza-
tions, in this section we discuss how they could be achieved, thus illustrating the generality and
expressiveness of the formalism even more.

8.4.1 Other object-oriented languages

When porting the approach to an object-oriented language other than Smalltalk, obviously many
changes are required to the prede�ned predicates of the DFW. Additional predicates are needed for
manipulating those language constructs that are not present in the Smalltalk language.3 Also, we
need to re-implement the predicates for those language constructs that have a di�erent semantics
than their Smalltalk counterparts (e.g., Smalltalk does not support multiple inheritance). For
those language constructs that only underwent a change in syntax, however, we have good faith
that the necessary changes can be kept within reasonable proportions, for several reasons.

1. The DFW is implemented as a layered library of rules. If we disregard the technical logic
meta-programming layers of the DFW, the lowest layer is a Smalltalk-speci�c layer which
de�nes some primitive predicates for manipulating Smalltalk source-code artifacts and im-
plementation relationships. On top of this `representational' layer resides a `base' layer that
adds some structural predicates de�ned directly in terms of the more primitive predicates.
Higher-level layers describe more high-level relationships, such as coding conventions, design
patterns and prede�ned architectural mapping schemes. Ideally, when switching to another
language, we only need to change predicates in the lowest layer(s). (In practice, however,
some higher-level predicates may require some changes as well.)

2. As most object-oriented languages have similar language constructs (e.g., message sends,
assignments, return statements) the parse-tree representations of methods will show many
similarities. Of course, as other object-oriented languages contain additional language con-
structs, the parse-tree structure will show some di�erences as well. But because our predi-
cates typically do not manipulate parse trees directly, but use a high-level parse-tree traversal
predicate instead, these di�erences may remain hidden for most predicates. Ideally, the only
thing that is required for those predicates is a re-implementation of the parse-tree traversal
predicate.

3. The implementation artifacts are stored in the source-code repository in a format that is fairly
general and language-independent. (Even the method parse-tree representations have essen-
tially the same format, although they may contain some language-dependent constructs.)

Of course, it remains to be investigated in practice whether the port to a new language will
be as easy as suggested above. But even if we would have to change all predicates, we can �nd
comfort in the fact that it only needs to be done once for that particular language. The important
thing is that after the DFW has been re-implemented for the new language, the conformance
checking tool can be used immediately.

The only thing that remains to be done is to make the implementation artifacts for some
software system in the new language available to our conformance checking tool. As explained in
Subsection 6.1.3, all implementation artifacts are stored in an external repository. Therefore, we

3Smalltalk has a fairly small and clean syntax. Most other languages contain additional constructs that are not
provided by the Smalltalk language. Obviously, all predicates for reasoning about these constructs will need to be
implemented from scratch.

8.4. GENERALIZING THE FORMALISM 183

merely need to provide a new ODBC-compliant repository containing implementation artifacts in
the new language. This can be done in two ways:

1. Store the implementation artifacts in a database with the same format as the database in
which our Smalltalk implementation artifacts were stored. This is possible, because we used
a language-independent format, that can be used for representing either Smalltalk source
code, Java source code or even UML class diagrams [51].

2. Use an existing source-code repository with a di�erent format, and rede�ne the Prolog-
predicates that implement the repository-access layer of the DFW.

One main di�erence between Smalltalk and many other object-oriented languages is that
Smalltalk is dynamically typed. In statically typed languages, we can make use of the static
type information to de�ne high-level implementation relationships statically. In Smalltalk, due
to the lack of static type information, we often encountered problems when we tried to de�ne
complex implementation relationships statically. To circumvent these problems we implemented
some (computationally-intensive) predicates that infer the type of certain expressions. Also, we
often relied on naming and coding conventions, taking advantage of the fact that Smalltalk has a
rich `culture' containing many conventions and `best practices' that are used by most Smalltalk
developers.

8.4.2 Design diagrams

A lot of contemporary CASE tools provide good support for mapping design to source code, as
design is quite close to the code.4 But there is not yet a good mapping from architecture to
design. In such a context, it might be more relevant to apply our architectural conformance
checking approach to design artifacts than to implementation artifacts.

Nothing prohibits our approach to be used for checking conformance of the design of a software
system to its architectural views. The formalism does not require any changes, except that the
LMP language will need to reason about design artifacts instead of about implementation artifacts.
As mentioned in the previous section and in Subsection 6.1.3, the same database format we used
for storing Smalltalk implementation artifacts, can be used to store UML class diagrams. In the
context of an industrial research project [51], a generator was developed which can generate a
database containing this information from a CASE tool like Select EnterpriseTM . To manipulate
and to reason about the data in this database, to a certain extent we can make use of the same
primitive Prolog predicates as we used for reasoning about Smalltalk implementation artifacts. Of
course, as in the previous generalization we will also need to add some new predicates and change
some existing predicates.

8.4.3 Logic programming language

Taking the Prolog implementation of our prototype conformance checking tool as an example, we
now explain how our approach could be generalized to support architectural conformance checking
of a Prolog implementation. In fact, this generalization is fairly straightforward. The only thing
we need is a LMP language that can reason about Prolog implementation artifacts instead of
about Smalltalk implementation artifacts. As Prolog is a reective language, we simply choose
Prolog both as LMP language and as base language. We do not need to change anything to our
implementation of the conformance checking formalism, except for the primitive predicates that
de�ne the mapping of the base language to the meta language. Instead of mapping Smalltalk im-
plementation artifacts (e.g., classes, methods) to Prolog terms (e.g., class('SOULTerms',1989),
method('at:',1992)) and implementation dependencies (e.g., method invocation, class instantia-
tion, inheritance) to predicates (e.g., invokes M M, createsInstanceOf M C, specializes C C),

4For example, our industrial partners at Getronics [51] follow a development approach whereby a large part of
the source code is generated automatically from UML design models.

184 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

the mapping now becomes a reective mapping. Prolog implementation artifacts (i.e., predicates,
rules, facts, queries and �les) and dependencies (e.g., Prolog calls) are mapped to Prolog terms
and predicates, respectively.

Figure 8.4: An architectural view describing the Prolog implementation of our conformance check-
ing tool.

Let us illustrate this with a concrete example. The architectural view of Figure 8.4 describes the
structure of the Prolog implementation of our prototype conformance checking tool. Apart from a
di�erence in notation, this �gure is essentially a retake of the top part of Figure 6.3 on page 100.
Note that we left out those parts that are not implemented in Prolog, such as the ODBC access
to an external source-code repository. All architectural concepts in Figure 8.4 correspond to some
part(s) of our Prolog implementation. Table 8.1 mentions how precisely each of the architectural
concepts in the architectural view of Figure 8.4 can be mapped to the Prolog implementation. The
�rst column mentions the name of the concept, the second column indicates the kind of Prolog
artifacts to which this concept is mapped, and the third enumerates the names of these Prolog
artifacts using `*' as a wildcard symbol.

As can be seen from Table 8.1, the concepts in the architectural view are typically mapped
to sets of �les or predicates. We did not describe these sets by explicitly enumerating all di�er-
ent �les or predicates. Instead, we provided a virtual description using a wildcard to describe
the names of all �les or predicates in some set. For example, all predicates in the ProdataTM

interface start with the string `db ' (e.g., db add record, db sql, db commit, etc.) [42], and all
�les declaring facts of the architectural instantiation start with the string `arch mapping ' (e.g.,
arch mapping soul implementation.pl, arch mapping soul userinteraction.pl, etc.). As before, we
can de�ne the architectural mapping for architectural concepts in terms of virtual classi�cations.

8.4. GENERALIZING THE FORMALISM 185

Concept Artifact kind Prolog artifact(s)

Conformance Checking set of �les arch conformance checking.pl

Algorithm arch adl.pl

Conceptual Architecture set of �les arch architecture *.pl

Architectural Abstraction set of �les arch vc *.pl

arch implementation relations*.pl

Architectural Instantiation set of �les arch mapping *.pl

Repository-access Layer set of �les arch repository *.pl

arch parsetreetraversal st.pl

Prodata Interface set of predicates db *

Table 8.1: Mapping architectural concepts to Prolog artifacts.

For example, the following rule describes the virtual classi�cation for the Architectural Instan-
tiation concept.

classifiedAs(file('ArchitecturalInstantiation'), File) :-

prologFile(File),

fileName(File, FileName),

patternMatch(FileName, and(prefix('arch_mapping_'), postfix('.pl'))).

Note that most of the virtual descriptions in Table 8.1 are based on certain naming conventions.
As in the Smalltalk case, Prolog programmers tend to use (and respect) a lot of these conventions,
to counter the fact that Prolog is an untyped language with little structuring facilities.

The architectural view of Figure 8.4 contains two kinds of architectural relations: Calls and
Refers To. The Calls relation is de�ned in terms of a virtual dependency which checks for an ordi-
nary calling relationship between Prolog-predicates. For example, the Repository-access Layer
contains some predicates (e.g., addRecord) that call predicates from the Prodata Interface (e.g.,
db add record):

addRecord(PredicateName, Record) :-

table(PredicateName, TableName, AccessType),

db_add_record(TableName, Record),

(AccessType = load -> createTupleFact(PredicateName, Record);

otherwise -> true).

In addition to calling another predicate, a predicate can also refer to some other predicate so that
this other predicate can be called dynamically later. A �rst example of this kind of relation was
given in Subsection 6.2.3 where we explained how the Architectural Instantiation could be
declared, by means of facts like the following:

conceptMapping(soulUserInteraction, inputWindow, userInput).

This particular fact refers to both an element of the Conceptual Architecture, namely the
concept `inputWindow', and an element of the Architectural Abstraction, namely the virtual
classi�cation `userInput'. This information is used later during conformance checking. (For
example, when checking conformance to the inputWindow concept, the userInput classi�cation
will be computed by calling the appropriate predicate.)

The virtual dependencies that codify the calling and refers to relationships reason about single
predicates. We can apply them to �les as well, by considering a �le as a set of predicates. For
example, a �le calls another �le when one of its predicates calls one of the predicates in the other
�le.

To conclude this section, we mention that some Prolog versions provide more reective capa-
bilities than others. It should be investigated whether there exists a Prolog version with enough
reective power to reason about Prolog source code at a su�ciently �ne-grained level. For ex-
ample, we should be able to reason about which predicates belong to a certain �le; about which

186 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

predicates (prede�ned as well as user-de�ned) are available in the Prolog system; about which
predicates are called or mentioned in the body of some predicate, rule or fact; and so on. If such a
Prolog version would not be available, we can still conduct an experiment using SOUL as a logic
language. SOUL has the advantage of having a completely open implementation, so that we can
add whatever reective capabilities that are needed.

8.4.4 Other programming languages

The previous subsection illustrated how our architectural conformance checking approach could be
applied to a logic programming language like Prolog. In fact, our approach could be generalized to
any other programming language as well. The only thing that is needed is a LMP language that can
reason (at a su�ciently �ne-grained level) about artifacts and dependencies in the programming
language of interest. This can be achieved either by implementing a reective logic meta layer in
that language (as in the SOUL setup), or by providing an external source-code repository that
can be accessed from within Prolog and by de�ning the necessary Prolog predicates for accessing
the source code in that repository (as in the Prolog setup). In addition, we need to de�ne a DFW
of prede�ned logic predicates for reasoning about and manipulating artifacts and dependencies in
that language.

8.5. SUMMARY 187

8.5 Summary

In this chapter, we elaborated on some future work that is required to elevate our prototype ar-
chitectural conformance checking tool to an `industrial-strength' tool. We �rst mentioned some
interesting optimizations, including a more incremental version of our conformance checking al-
gorithm. Then we talked about how our tool could assist an architecture-driven development
approach, and which other tools would be useful or needed to support such an approach. Finally,
we discussed how to generalize our architectural conformance checking approach to reason not
only about object-oriented implementations, but also about design models or implementations in
other programming languages.

188 CHAPTER 8. TOWARDS AN INDUSTRIAL-STRENGTH TOOL

Chapter 9

Conclusion

Throughout this dissertation, we defended the thesis that automated support for checking confor-
mance of the implementation of a software system to its architectural views, can be achieved in
a very expressive way by adopting a logic meta-programming approach. We summarize how we
supported and validated this thesis, and repeat why it is a solid advancement to the �eld. We
conclude with an enumeration of the major contributions of this dissertation, and mention some
future research topics.

9.1 Summary

Architectural conformance checking is the task of verifying whether the implementation of a soft-
ware system corresponds to the more high-level structure described by its software architecture.
In the introduction of this dissertation, the following thesis was put forward:

Automated support for checking conformance of an implementation of a software sys-
tem to its architectural views can be achieved in a very expressive way by adopting a
logic meta-programming approach.

To reduce the scope of the thesis, we con�ned ourselves to static conformance checking. In
other words, we only reason about the static structure of a software implementation, and do
not take dynamic (i.e., run-time) information into account. Another restriction we made was to
consider only object-oriented implementations, and Smalltalk implementations in particular.

We supported the thesis by presenting an elegant and simple architectural formalism, together
with an algorithm, for automatically checking conformance of the implementation of a software
system to one or more architectural views. To verify the feasibility of this formalism and algo-
rithm, a prototype of a conformance checking tool was implemented. Using this prototype, a case
study was conducted on an existing medium-sized Smalltalk application consisting of about 100
classes. Based on the results of this case study, we suggested some future improvements of, and
optimizations for, our conformance checking formalism and tool. One interesting extension was
explained in more detail: an incremental version of the conformance checking algorithm. This
extension is particularly useful in the context of evolution (of either the implementation or the
architecture). As further evidence of the generality and expressiveness of our approach to au-
tomated architectural conformance checking, we hinted on how it could be generalized to other
programming languages (not necessarily object-oriented), or even design languages.

The use of a LMP approach was a crucial and deliberate decision in the design of our archi-
tectural conformance checking approach. As most existing architectural conformance checking
approaches lack expressiveness, we decided to o�er the full power of a meta language to the
architect, thus providing him or her with a maximum of exibility in de�ning the mapping of
architectural entities to implementation artifacts. A logic meta-programming approach was advo-
cated because it enables an architect to describe this architectural mapping in a very expressive,

189

190 CHAPTER 9. CONCLUSION

yet concise and intuitive, way. To prove (amongst others) the expressiveness of the proposed LMP
approach, we presented a list of requirements that our conformance checking formalism should
satisfy and showed, on the basis of our case study, how each of these requirements was satis�ed in
our formalism.

The same LMP language that was provided to the architect, was also chosen as implementation
medium for constructing the prototype conformance checking tool. The main reason for this choice
was that the proposed formalism itself has a strong logic avor. We showed how the use of a LMP
language allowed us to implement the conformance checking algorithm and architecture language
in a very straightforward manner. Finally, we elaborated on how the prototype and formalism
could be extended to obtain a realistic and practically usable tool that provides automated support
for checking architectural conformance. In Section 9.4, we will discuss some more future work.

9.2 Conclusion

Software architectures are increasingly recognized as important design abstractions. They provide
a simple mental picture that allows software engineers to grasp the global structure of a software
system. Software architectures enhance the understandability of large and complex software sys-
tems and make it easier to maintain and modify these systems. Without support for checking
conformance between the implementation of a system and the architecture, however, the imple-
mentation will quickly drift away from its architecture, thus loosing all bene�cial properties of
having an up-to-date architecture.

Checking conformance of an implementation to one or more architectural views is a non-trivial
problem, especially when allowing architectural views that can cut across the implementation
structure. Although some architectural conformance checking approaches exist, they all lack
expressiveness. Typically, they impose some restrictions on the mapping of the architecture to the
implementation. Either they restrict the kinds of implementation artifacts and/or dependencies
that can be considered, or they disallow cross-cutting architectural mappings. In contrast, this
dissertation proposed a more expressive architectural conformance checking approach based on
LMP, which does not pose these restrictions. It allows an architect to declare complex architectural
mappings in terms of virtual classi�cations and virtual dependencies which are expressed as logic
predicates in a LMP language. Our case study illustrated that our consistent use of a LMP
language throughout all abstraction layers | from the implementation level over the architectural
abstraction and architectural instantiation to the conceptual architecture | provides a viable and
expressive formalism to describe architectural knowledge at a su�ciently high level of abstraction
while still allowing conformance checking of the implementation.

The architectural conformance checking formalism proposed in this dissertation is a �rst and
important step towards solving the problems of architectural erosion and architectural drift. We
provided a means of checking conformance of an implementation to its architecture, and even
sketched an incremental conformance checking algorithm. To solve the problem completely,
though, we need full support for co-evolution between architecture and implementation. More
precisely, we still need an automated synchronization mechanism between the implementation
and its architectural views, as well as support for simultaneous evolution of the implementation
and its architectural views.

Finally, this dissertation con�rms our beliefs that the emerging technique of LMP is an ideal
medium in which to build state-of-the-art software engineering support tools. Subsection 2.2.1
already mentioned a list of such tools. This dissertation adds another one to that list.

9.3. ACHIEVEMENTS 191

9.3 Achievements

In this section, we elaborate on the artifacts that were produced in the context of this dissertation,
and we repeat the main contributions.

9.3.1 Produced artifacts

The most important artifacts produced in the context of this dissertation were, of course, the
conformance checking formalism and tool. The conformance checking formalism consisted of an
architecture language and a conformance checking algorithm. We also discussed an incremental
version of the algorithm but did not work it out in detail, nor did we implement it.

Two versions of the conformance checking tool were implemented. A �rst version was imple-
mented in the SOUL language and used SOUL's close symbiosis with Smalltalk to reason about
Smalltalk source code. A more recent version was implemented in Prolog and used ODBC to ac-
cess implementation artifacts stored in an external repository. To generate a repository containing
Smalltalk source-code artifacts, we implemented a `database generator' in SOUL.

Another useful artifact was produced during our case study: we documented the architecture
of the SOUL system in terms of three architectural views and their mapping to the implementation
(see Chapters 4 and 7).

9.3.2 Contributions

We summarize the main contributions of this dissertation, in order of decreasing importance:

1. A formalism and tool for architectural conformance checking. We provided a general and
expressive formalism and tool for automatically checking conformance of the implementation
of some software system to its architectural views.

2. The expressive power of logic meta programming. We showed that the expressive power of
LMP enables an architect to describe the architectural mapping in a very expressive, yet
concise and intuitive, way.

3. Virtual classi�cations. We con�rmed K. De Hondt's claim [12] that software classi�cations
are a powerful means of capturing architectural abstractions in a software system. In ad-
dition, we promoted virtual software classi�cations as an even more expressive, elegant and
intuitive way of representing architecturally relevant abstractions of implementation arti-
facts.

4. Virtual dependencies. Similar to the notion of virtual classi�cations, we illustrated how
virtual dependencies constitute a high-level and intuitive mechanism for abstracting complex
relationships among implementation artifacts.

5. Multiple cross-cutting architectural views. As an important side-contribution we illustrated
the relevance of providing multiple overlapping architectural views. These architectural
views may cut across the implementation structure.

6. Logic meta programming as implementation medium. We demonstrated that LMP is a suit-
able implementation medium for implementing the proposed conformance checking algorithm
and architectural model.

7. Incremental conformance checking. We sketched how the original conformance checking
algorithm could be re�ned into an incremental version. This incremental version has the
advantage of being more e�cient, in the sense that conformance only needs to be checked
incrementally, depending on how the implementation or architecture has evolved.

Below, each of the above contributions will be discussed in a bit more detail.

192 CHAPTER 9. CONCLUSION

Formalism for architectural conformance checking

The general formalism for architectural conformance checking we proposed has a layered structure.
The four main layers are the conceptual architecture, the architectural instantiation, the archi-
tectural abstraction and the declarative framework. (The implementation could be considered as
a �fth layer.) Furthermore, each of these layers itself has a layered structure. For example, the
concepts and relations in the conceptual architecture can be described by sub-architectures con-
sisting of other architectural concepts and relations. In the architectural abstraction, the virtual
classi�cations and virtual dependencies can be de�ned in terms of other, more primitive virtual
classi�cations and virtual dependencies. The declarative framework is a layered library of predi-
cates, ranging from very high-level predicates that describe typical architectural mappings to very
low-level predicates for reasoning about source code.

By combining the declarations in each of these layers, an algorithm for checking architectural
conformance automatically can be constructed. More precisely, the mappings of architectural
concepts to lower-level artifacts and of architectural relations to lower-level relations, are used to
transform the high-level architectural relations among architectural concepts to veri�able predi-
cates over implementation artifacts.

Although the formalism has been validated only for checking architectural conformance of
object-oriented implementations, we are convinced it is general enough to support architectural
conformance checking of other kinds of software artifacts as well (e.g., artifacts in other program-
ming languages or in design languages).

We also sketched an incremental version of the conformance checking algorithm which does
not re-check conformance entirely, when changes are made, but only re-checks those parts that are
a�ected by the change. The incremental algorithm was based on a taxonomy of the di�erent kinds
of changes that can be made to the architecture, architectural mapping and implementation, and
on an impact analysis of these changes on architectural conformance.

Logic meta programming

Just like K. De Volder [14] proposed to use LMP as a way to extend the expressiveness of cur-
rent type systems (see 2.2.1), we proposed to use LMP to extend the expressiveness of current
architectural conformance checking approaches. By de�ning the architectural mapping in terms
of virtual classi�cations and virtual dependencies, which can make use of the full power of a LMP
language, we obtained a very expressive conformance checking formalism. It allows an architect
to declare complex architectural mappings in a reasonably intuitive and concise way.

We also used LMP to implement our architectural formalism. We repeat some of the reasons
why LMP is a convenient implementation medium. A logic language is typically well suited for
representing, describing and reasoning about (architectural) knowledge. LMP is also well-suited
for meta programming and language processing. Furthermore, a logic language may be the most
suitable implementation language, as the proposed formalism itself had a strong logic avor. For
example, the entire conformance checking algorithm revolves around the construction of a logical
expression which can be evaluated to check for architectural conformance.

Virtual descriptions

The notion of virtual classi�cations plays a crucial role in the proposed formalism. The idea of
using software classi�cations as an intermediary abstraction for describing architectural concepts
is strongly inspired by K. De Hondt's work on architectural recovery in evolving object-oriented
systems [12]. He promotes the use of software classi�cations as a powerful means of organizing
implementation artifacts in a exible and uniform manner. In particular, he uses these software
classi�cations to capture architectural abstractions that were reverse engineered from implemen-
tation artifacts and their interrelationships.

Our case study con�rms K. De Hondt's claim that software classi�cations o�er an elegant and
powerful abstraction mechanism for describing architectural concepts. By de�ning architectural

9.4. FUTURE WORK 193

concepts in terms of software classi�cations, the details of the lower-level artifacts on which they
are mapped are hidden, thus allowing us to reason about the concept's relationships with other
architectural concepts independently of the artifacts they actually contain. In particular, we
focused on virtual software classi�cations, which are special classi�cations that describe how to
compute their elements. This makes them more abstract, more compact, more expressive and
more intentional, than classi�cations which explicitly enumerate their elements. Also, such an
intentional representation is more robust towards change.

In addition to the notion of virtual classi�cations, virtual dependencies also played an important
role in our layered formalism. We can conclude from our case study that virtual dependencies
provide a powerful way of de�ning highly abstract relationships among architectural concepts, by
building them up from lower-level relationships that are again constructed from even lower level
ones. As such, simple low-level relationships can be successfully combined into complex high-level
relationships.

Multiple cross-cutting architectural views

Many traditional approaches towards software architecture assume a more or less direct mapping
of the architectural entities to implementation artifacts. During our case study we observed that
multiple, potentially overlapping, architectural views with a cross-cutting mapping to the imple-
mentation may provide a better insight in the overall structure, organization and functionality of
the implementation of a software system. In fact, this observation can be decomposed into two
di�erent claims:

1. A software system does not necessarily have one single dominant architecture, but may be
described by several, potentially overlapping, architectural views, each providing their own
perspective on the implementation.

2. The elements in an architectural view do not necessarily need to correspond directly to
implementation artifacts but may cross-cut the implementation structure.

Although it was not the main goal of this dissertation, our case study seems to validate these
claims (also see [48]). We de�ned multiple architectural views on the same software system,
each providing their own perspective on the implementation of that system. Not only were these
views partially overlapping, in the sense that they described di�erent aspects of the same system,
some of the concepts in these views were cross-cutting the implementation, in the sense that they
corresponded to implementation artifacts that were distributed across the entire implementation.

Our ability to elegantly express such cross-cutting mappings was a consequence of the followed
LMP approach (and of the choice of virtual classi�cations and virtual dependencies as power-
ful architectural abstractions), thus providing even more evidence of the expressiveness of the
approach.

9.4 Future work

We conclude this dissertation by summarizing some future research topics. Some of them were
already mentioned in Chapter 8 and are repeated here.

Fine-tuning and optimizing the formalism and tool. Our current architectural formalism,
conformance checking algorithm and prototype tool can be enhanced in many ways. Many
of these optimizations, enhancements and extensions were discussed throughout the dis-
sertation. In Section 6.4 we discussed the need for supporting architectural styles, corre-
spondences, deviations and sub-architectures. Section 8.2 discussed some memory and time
optimizations. Section 8.3 mentioned some other interesting extensions of the tool such as
providing a graphical user interface.

194 CHAPTER 9. CONCLUSION

Further validation and scalability. Extra case studies need to be carried out to further val-
idate the feasibility, expressiveness and ease of use of the proposed conformance checking
formalism and tool. We are planning to conduct a large case study in an industrial context.
Such a case study can also serve as a vehicle to study the scalability of the approach.

Incremental conformance checking. The incremental conformance checking algorithm that
was proposed in Section 8.1 should be worked out in more detail, and should be incorporated
in the current formalism and tool. Some evolution experiments (both architectural evolution
and implementation evolution) need to be carried out to validate the incremental algorithm.

Synchronization and co-evolution. In addition to an incremental conformance checking al-
gorithm, we also need to study support for co-evolution of, and synchronization between,
architecture and implementation.

Integration with other tools. In Section 8.3 we mentioned a whole range of tools that could
support an architecture-driven development process. Our conformance checking tool should
be integrated with all these tools (e.g., the Classi�cation Browser, the Refactoring Browser,
a graphical ADL tool and many SOUL tools). A Smalltalk environment is the most obvious
choice for this integration e�ort, as Smalltalk prototypes of most of these tools exist.

Other architectural tools. Whereas prototypes exist for many of the architectural tools men-
tioned in Section 8.3, this is not the case for all of them. Some of these tools still need
to be studied or worked out in more detail. E.g., a tool for reverse-engineering software
architectures from the implementation, a partial conformance checking tool, a tool for semi-
automatically resolving conformance conicts, a code generation tool, etc.

Using dynamic information. In this dissertation, a static conformance checking approach was
adopted which reasoned about the static software structure only. It should be investigated
how the approach can be extended to reason about dynamic information as well.

Generalizing the formalism. As explained in Section 8.4, our conformance checking approach
could be generalized to allow architectural conformance checking of software systems written
in other object-oriented languages (e.g., Java), other programming languages (e.g., a logic
programming language such as Prolog), design languages (e.g., UML), and so on. These
generalizations should be implemented, and validated on case studies.

A more di�cult generalization is to support architectural conformance checking of hybrid
software systems with di�erent parts implemented in di�erent programming languages.

Relation to conceptual graphs. We pointed out before that there are some syntactic similari-
ties between our ADL and the theory of conceptual graphs [75]. This resemblance should be
studied in more detail. For example, the theory of conceptual graphs (and in particular, its
notion of `canonical graphs' and `canonical formation rules') may be a useful candidate to
model architectural styles and patterns, and to serve as a formal foundation for compliance
checking of architectures to architectural styles [50]. Also, as in conceptual graphs, we could
allow concepts and relations to be typed. By mapping relation types to virtual classi�cations
and dependencies, we could enforce di�erent instances of the same relation (e.g., Asks1 and
Asks2) to have the same denotation. The type hierarchy can also be used for two kinds of
evolution | strengthening and weakening |- which correspond to type specialization and
generalization, respectively. Finally, `coreference links' could be used to show corresponding
concepts in di�erent views.

Appendix A

Syntax of the SOUL Language

In this appendix, the syntax of the SOUL language is presented in EBNF format.

clause = fact j rule j query j clauses

fact = 0Fact0 term 0:0

rule = 0Rule0 regularCompound 0if 0 terms 0:0

query = 0Query0 terms 0:0

clauses = (clause)+

term = simpleTerm j compoundTerm j specialT erm

simpleTerm = constantTerm j variableTerm j booleanTerm
constantTerm = word

variableTerm = normalV ariable j unnamedV ariable
normalVariable = 0?0word
unnamedVariable = 0 0

booleanTerm = 0true0 j 0false0 j 0fail0

compoundTerm = regularCompound j listT erm
regularCompound = simpleTerm0(0 possiblyEmptyTerms 0)0

listTerm = regularList j partialList
regularList = 0 <0 possiblyEmptyTerms 0 >0

partialList = 0 <0 terms 0 j0 (variableTerm j listT erm) 0 >0

specialTerm = smalltalkTerm j smalltalkMetaPredicate j cutTerm
smalltalkTerm = 0[0 \extended smalltalk code" 0]0

smalltalkMetaPredicate = 0f0 \extended smalltalk code" 0g0

cutTerm = 0!0

possiblyEmptyTerms = terms j �
terms = (term0;0)� term

195

196 APPENDIX A. SYNTAX OF THE SOUL LANGUAGE

Appendix B

Smalltalk Best Practice Patterns

One of the main bottlenecks in software engineering is human communication. Software architec-
tures try to address that problem at a global level by providing a simple mental picture of the
overall structure of a software system. Mapping this global structure to the detailed implementa-
tion is far from trivial. To discover the intent of a programmer, we often have to wade through
piles of documentation and code. However, by using commonly accepted coding conventions and
design patterns, it becomes much easier to recognize the intent of a programmer. Therefore, such
conventions and patterns can provide important intermediate abstractions in terms of which the
architectural mapping can be de�ned. In this appendix, we discuss some of K. Beck's Smalltalk
best practice patterns [5] and discuss how they can be codi�ed in logic predicates as part of our
declarative framework (also see [54, 86]), or how they can be of use when de�ning particular ar-
chitectural abstractions. (Most de�nitions of best practice patterns in this Appendix are taken
literally from [5].)

Beck's book on Smalltalk best practice patterns can be considered as a kind of style guide,
describing the coding conventions that are commonly used by experienced Smalltalk programmers.
It addresses topics such as how to choose names for objects, variables and methods, how to clearly
communicate certain intents through code, how to split up methods, and so on. 92 patterns are
discussed, subdivided in �ve categories:

Behavior Patterns for methods and messages.

State Patterns for using instance variables and temporary variables.

Collections The major collection classes and messages in the form of patterns.

Classes Patterns for classes.

Formatting Code formatting rules.

We structure this Appendix according to the same set of categories. For each category, we discuss
the most relevant patterns. Only formatting patterns are not discussed. Although we agree with
Beck that formatting can convey a lot of information on the structure of code, this is mainly
so for human readers. Computers have much less problems understanding or analyzing complex
structures. They typically ignore all formatting and focus on the structure itself. For example, in
our experiments we directly work with parse trees in which no formatting information remains.1

1This does not imply that formatting cannot provide extra information on a programmer's intentions. We just
do not consider this extra information in our experiments.

197

198 APPENDIX B. SMALLTALK BEST PRACTICE PATTERNS

B.1 Behavior

The �rst category we discuss are the behavior patterns. Behavior patterns tell programmers how
to specify behavior so that their intent is clearly communicated to the reader.

B.1.1 Methods

First, we focus on the method patterns. A programmer should write his or her methods so that
they perform the necessary behavior and so that they reveal the intent of the work being done.
According to Beck, carefully breaking a computation into methods and carefully choosing their
names communicates more about a programmer's intentions than any other programming decision,
besides class naming.

Composed Method

The Composed Method pattern states how a Smalltalk program should be divided into methods:

Divide your program into methods that perform one identi�able task. Keep all of the
operations in a method at the same level of abstraction. This will naturally result in
programs with many small methods, each a few lines long.

This pattern is typically used in combination with the Intention Revealing Selector pattern so
that the di�erent methods are given an easy-understandable name which reveals their intention.
The opportunity to communicate through intention revealing method names is the most compelling
reason to keep methods small. Small, clearly identi�ed methods are much easier to understand
than large ones that do many things at the same time. They allow us to isolate assumptions and
intentions, which is essential when we are de�ning architectural mappings. For example, as will be
illustrated in Subsection B.1.2 when we discuss the Intention Revealing Selector pattern, it allows
us to de�ne useful virtual classi�cations by grouping all methods with a similar name.

Constructor Method

The Constructor Method pattern suggests how to represent instance-creation methods:

Provide methods that create well-formed instances. Pass all required parameters to
them. Put these methods in a method protocol called `instance creation'.

The fact that all instance-creation methods are, by convention, put in the `instance creation'
method protocol, makes it very easy to de�ne a predicate instanceCreationMethod which rec-
ognizes constructor methods (see below) or to de�ne a predicate isCreatedBy C C which checks
for an instance-creation relationship (see Subsection 7.1.5).

% Is Method an instance-creation method for Class?

instanceCreationMethod(Class, Method) :-

metaClass(Class, Meta),

creationProtocolName(ProtocolName),

protocolName(Meta, Protocol, ProtocolName),

methodInProtocol(Meta, Protocol, Method),

returnType(Method, Class).

The auxiliary predicate creationProtocolName was de�ned in Subsection 7.1.5 on page 131. All
other auxiliary predicates were discussed in Subsection 5.3.5.

B.1. BEHAVIOR 199

Method naming and tagging conventions

The previous pattern is interesting because it speci�es a tagging convention which easily allows
us to recognize constructor methods. Beck mentions many other method patterns that specify
simple naming and tagging conventions which allow us to recognize certain kinds of methods. The
commonalities in all these patterns are captured by the following generic logic predicate:

recognizeMethod(Method, StringPattern, ProtocolName) :-

methodName(Method, MethodName),

patternMatch(MethodName, StringPattern),

protocolName(Protocol, ProtocolName),

methodInProtocol(_, Protocol, Method).

It checks whether some Method has a name that matches a certain StringPattern and whether
the Method belongs to a method protocol named ProtocolName.

Some of these method patterns that specify simple naming and tagging conventions are listed
below. For each method pattern in that list, we specify how the recognizeMethod predicate needs
to be instantiated to check the format for that particular pattern.

� Constructor Method. As mentioned above, by convention, every constructor method is
put in the `instance creation' method protocol. Its name can be anything.

constructorMethodFormat(Method) :-

recognizeMethod(Method, anything, 'instance creation').

% 'anything' is a wildcard pattern

� Converter Method. How does one represent simple conversion of an object to another
with the same protocol but di�erent format? Provide a method in the object to be converted
that converts to the new object. Name the method by pre�xing `as' to the class name of
the object returned. Put the method in a method protocol called `private'.

converterMethod(Method, Type) :-

returnType(Method, Type),

converterMethodFormat(Method, Type).

converterMethodFormat(Method, Type) :-

recognizeMethod(Method, pattern(['as',TypeName]), 'private'),

className(Type, TypeName).

� Query Method. How do you represent testing a property of an object? Provide a method
that returns a Boolean. Name it by prefacing the property name with `is'. Put the method
in a protocol called `testing'. If you use the logical inverse of a Query Method a lot, also
provide an inverse method. Name this inverse method by prefacing it with `not', or try to
�nd a positive way of saying the inverse (in which case the `is' pre�x should be used).

queryMethod(Method) :-

returnType(Method, Type),

className(Type, 'Boolean'),

queryMethodFormat(Method).

queryMethodFormat(Method) :-

recognizeMethod(Method, or(prefix('is'),prefix('not')), 'testing').

� Debug Printing Method. How do you code the default printing method? Override
printOn: to provide information about an object's structure to the programmer. Put
printing methods in the method protocol `printing'.

200 APPENDIX B. SMALLTALK BEST PRACTICE PATTERNS

debugPrintingMethod(Method) :-

overridenMethod(Method),

debugPrintingMethodFormat(Method).

debugPrintingMethodFormat(Method) :-

recognizeMethod(Method, exact('printOn:'), 'printing').

� Converter Constructor Method. How does one represent the conversion of an object
to another with di�erent protocol? Make a Constructor Method that takes the object to be
converted as an argument. Name the method by pre�xing `from' to the class of the object
being converted. Put the method in a method protocol called `instance creation'.

converterConstructorMethod(Method, Class) :-

hasParameterType_M_C(Method, Class),

converterConstructorMethodFormat(Method, Class).

converterConstructorMethodFormat(Method, Class) :-

recognizeMethod(Method, pattern(['from',ClassName]), 'instance creation'),

className(Class, ClassName).

� Constructor Parameter Method. How do you set instance variables from the parameters
to a Constructor Method? Code a single method that sets all the variables. Preface its name
with `set', then the names of the variables. Put this method in a method protocol called
`private'.

constructorParameterMethod(Method, Class) :-

classImplementsMethod(Class, Method),

constructorParameterMethodFormat(Method, Class).

constructorParameterMethodFormat(Method, Class) :-

recognizeMethod(Method, pattern(['set'|InstVarNames]), 'private'),

instVarNames(Class, InstVars), % retrieve list of inst. var. names

addColons(InstVars, Names), % add a colon after every inst. var. name

permutation(Names, InstVarNames).

Return types

Various types of method patterns also suggest return types. For example:

� Query Method suggests that the return type is a Boolean.

� Constructor Method returns objects of the class on which the constructor method is
de�ned. (Same for Converter Constructor Method which is a special kind of Constructor
Method.)

� Converter Method states that the method name is `as' appended with the class of the
object returned.

This information can be used to optimize the predicate returnType which infers the return type
of some method. If the method has one of the above formats we can readily extract its type, in
all other cases we use the original non-optimized version of the predicate.

returnTypeOptimized(Method,Type) :-

queryMethodFormat(Method) -> className(Type, 'Boolean');

constructorMethodFormat(Method) -> classImplementsMethod(Type, Method);

converterMethodFormat(Method, Type) -> true;

otherwise -> returnType(Method,Type).

B.1. BEHAVIOR 201

Method comments

About method comments, Beck writes that they are not often used in Smalltalk. This is mainly
because there exist commonly accepted coding conventions that let a developer communicate
tactical information without any supporting comments. Most information that could be provided
by a method comment is already captured in the code with various patterns. As (has been
or will be) discussed, Intention Revealing Selector communicates what the method does; Type
Suggesting Parameter Name says what the arguments are expected to be; and various types of
method patterns suggest return types, like Query Method for methods returning Booleans.

Type Suggesting Parameter Name

Beck categorized this pattern as a formatting pattern. We prefer to categorize it as a behavior
pattern, because it is about how to name the parameter of a method. Two pieces of information are
important for every variable: its type and the role it plays in the computation. Method keywords
communicate the role of some method parameter. Argument types are suggested by providing an
appropriate parameter name:

Name parameters according to their most general expected class, preceded by `a' or
`an'. If there is more than one parameter with the same expected class, precede the
class name with a descriptive word.

In Subsection 5.3.5, we mentioned some rather computation-intensive predicates to infer the
potential type of certain Smalltalk expressions. The above naming convention may provide a
low-cost alternative for guessing the type of method parameters. (Or we can use a combination of
both approaches to infer the most likely type among a set of candidate classes.) We merely need
to take the post�x of a parameter name (e.g., using the predicate stringEndsWith) to know its
type.

B.1.2 Messages

Beck's message patterns describe some tactical ways in which messages can be used. They provide
a set of common techniques for solving problems by manipulating the communication between
objects. We discuss some of these patterns here.

Intention Revealing Selector | Intention Revealing Message

We already mentioned the Intention Revealing Selector pattern while discussing the Composed
Method pattern in Subsection B.1.1. It tells us how to name a method:

Name methods after what they accomplish.

Rather than naming a method after how it accomplishes a task, it should be named after what it
is supposed to accomplish. The `how' can always be derived from the method body itself. Naming
methods like this reveals a lot of the programmer's intentions. The closely related Intention
Revealing Message pattern essentially states the same as the Intention Revealing Selector pattern,
but from the point of view of method invocation (as opposed to the method de�nition). It tells a
developer how to communicate his intent when sending a message:

Send a message to `self'. Name the message so that it communicates what is to be
done rather than how it is to be done. Code a simple method for the message.

By choosing Intention Revealing method names, it may become very easy to �nd all meth-
ods that correspond to a certain architectural concept. For example, the Query Interpreter
architectural concept in the `user interaction' view conceptually represents the interpretation pro-
cess. It is mapped to the set of all methods that implement this interpretation process. All

202 APPENDIX B. SMALLTALK BEST PRACTICE PATTERNS

these methods have names like interpret:repository:, representing what they are supposed
to accomplish, thus making it easy to identify the relevant methods. Therefore, we could have
de�ned the mapping by merely grouping all methods that have a name with some form of the
verb `interpret' in it. However, because all these methods were also tagged with the same method
protocol `interpretation' or `interpreting', which also clearly expresses their intent, we decided to
de�ne the grouping based on that information instead.

Double Dispatch

In Smalltalk, when a message with some arguments is sent to an object, only the class of the
receiver is taken into account when looking for a corresponding method. In some cases, though,
we want the behavior to be invoked to depend not only on the class of the receiver, but on the class
of one of the arguments as well. The Double Dispatch coding pattern provides a clean solution to
this problem:

Send a message to the argument. Append the class name of the receiver to the selector.
Pass the receiver as an argument.

The predicate below codi�es the Double Dispatch coding pattern.2

doubleDispatchMethod(Method) :-

classImplementsMethodNamed(Class, MN, Method),

className(Class, CN),

methodArgument(Method, Argument),

argumentVarName(Argument, VarName),

findMethod(Class, Method,

pattern(['return(send(',VarName,',',MN,CN,',[variable(self)]))'])).

A similar predicate could be de�ned to verify whether two methods communicate with each other
according to a double dispatch protocol.

Other communication protocols

In addition to the Double Dispatch communication protocol, Beck discusses many other commu-
nication protocols among methods, such as:

� Extending Super. How do you add to a superclass' implementation of a method? Override
the method and send a message to `super' in the overriding method.

� Simple Delegation. How do you invoke a disinterested delegate? Delegate messages
unchanged.

� Self Delegation. How do you implement delegation to an object that needs reference to the
delegating object? Pass along the delegating object (i.e., `self') in an additional parameter
called `for:'.

� Pluggable Selector. How do you code simple instance-speci�c behavior? Add an instance
variable that contains a selector to be performed. Append `Message' to the Role Suggesting
Instance Variable Name. Create a Composed Method that simply performs the selector.

� Pluggable Block. How do you code complex pluggable behavior that is not quite worth its
own class? Add an instance variable to store a block. Append `Block' to the Role Suggesting
Instance Variable Name. Create a Composed Method to evaluate the block to invoke the
pluggable behavior.

2The predicate actually codi�es only a very speci�c case of the Double Dispatch pattern, where the double
dispatch method has exactly one argument. Though a bit more complex, the pattern is similar for methods with
multiple arguments.

B.1. BEHAVIOR 203

� Collecting Parameter. How do you return a collection that is the collaborative result of
several methods? Add a parameter that collects their results to all of the submethods.

All these di�erent protocols can be codi�ed in logic predicates. We will not show the implementa-
tion of all these predicates. As an illustration, we only present the implementation of a predicate
simpleDelegationMethod which codi�es the Simple Delegation communication pattern.

simpleDelegationMethod(Method) :-

methodName(Method, Message),

methodArgumentsString(Method, Arguments),

findMethod(_, Method,

pattern(['send(',_Delegate,',',Message,',',Arguments,')'])).

where the auxiliary predicate methodArgumentsString produces a string representing the argu-
ment list of some method:

methodArgumentsString(Method, ArgumentsString) :-

% compute list of argument names for the method

findall(VarName,

(methodArgument(Method, Var), argumentVarName(Var, VarName)),

ArgumentList),

% convert this list to a string

list_string(ArgumentList,ArgumentsString).

204 APPENDIX B. SMALLTALK BEST PRACTICE PATTERNS

B.2 State

In Smalltalk, as well as in other object-oriented languages, behavior is considered more important
than state. However, the tactical decisions a programmer makes about representing state also
have an important impact on the quality and readability of his or her code. Following Beck [5],
this section considers two kinds of state: instance variables and temporary variables. We start
with the former.

B.2.1 Instance variables

Common State | Role Suggesting Instance Variable Name

How do you represent state, di�erent values for which will exist in all instances of a class?

Declare an instance variable in the class.

Instance variables have a very important communicative role to play. A set of objects reveals a lot
that was in the mind of the original programmer just by what the instance variables are and what
they are named. As was the case for methods, when the instance variable names are well chosen,
this allows us to de�ne useful virtual classi�cations by grouping all variables with a similar name.
The Role Suggesting Instance Variable Name pattern suggests how to name an instance variable:

Name instance variables for the role they play in the computation. Make the name
plural if the variable will hold a Collection.

Explicit Initialization | Lazy Initialization

To initialize instance variables to their default value, there are two alternatives: Explicit Initializa-
tion or Lazy Initialization. Both have their advantages and disadvantages. For a closer comparison
of both alternatives we refer to [5].

With Explicit Initialization the values of instance variables are initialized explicitly by some
initialization method:

Implement a method `initialize' that sets all the values explicitly. Override the class
message `new' to invoke it on new instances. Put `initialize' methods in a method
protocol called `initialize-release'.

The following predicate checks whether some Method is an Explicit Initialization Method.

explicitInitializationMethod(Method) :-

explicitInitializationMethodFormat(Method),

classImplementsMethod(Meta, Method),

metaClass(Class, Meta),

forall((instVar(Class, InstVar), instVarName(InstVar, VarName)),

findMethod(Meta, Method, pattern([_,'assign(variable(',VarName,'),',_]))

).

explicitInitializationMethodFormat(Method) :-

recognizeMethod(Method, exact('initialize'), 'initialize-release').

With Lazy Initialization, initialization is done lazily through some accessor method. The
variable is given some default value the �rst time the accessor is invoked. After that, the current
value of the variable is simply returned. The fact that the variable has not yet been initialized
can be recognized because it still contains a nil value.

Write an accessor method for the variable, which initializes the variable if necessary
with some default value.

B.2. STATE 205

The predicate lazyInitialisedAccessorMethod(Method, InstVar) below veri�es whether Method
is a Lazy Initialization Accessor Method for some instance variable InstVar:

lazyInitialisedAccessorMethod(Method, InstVar) :-

classImplementsMethodNamed(Class, MethodName, Method),

className(Class, ClassName),

instVar(Class, InstVar),

instVarName(InstVar, IVName),

methodParseTree(ClassName, MethodName, [], _,

[return(send(NilCheck,'ifTrue:ifFalse:',[_TrueBlock,FalseBlock]))]),

nilCheckStatement(NilCheck, variable(IVName)),

blockStatements(FalseBlock,[variable(IVName)]).

% nilCheckStatement defines the possible forms of a nil check statement

nilCheckStatement(send(Var,'isNil',[]), Var).

nilCheckStatement(send(Var,'==',[literal('nil')]), Var).

nilCheckStatement(send(Var,'=',[literal('nil')]), Var).

% blockStatements extracts the statementlist from a block

blockStatements(block(arguments(_),temporaries(_),statements(Statements)), Statements).

Direct/Indirect Variable Access | Getting and Setting Method

A �rst way to get and set the values of instance variables is to use the variables directly in all the
methods that need their values. This is what we call Direct Variable Access:

Access and set the variable directly.

The alternative to Direct Variable Access is Indirect Variable Access. Instead of directly accessing
the instance variable, a message is sent every time the variable needs to be used or changed:

Access and set the value of instance variables only through a Getting or Setting
Method.

Getting and Setting Methods are also known as accessing methods. A Getting Method, or accessor
method, speci�es how to provide read-access to an instance variable:

Provide a method that returns the value of the variable. Give it the same name as the
variable. Put private Getting Methods in a method protocol called `private-accessing'.
Put public Getting Methods in a method protocol called `accessing'.

As before, a convention like this one allows us to quickly recognize accessor methods based on
their naming and tagging convention.

accessorMethod(Method) :-

classImplementsMethod(Class, Method),

accessor(Class, Method, _VarName).

accessor(Class, Method, VarName).

instVar(Class, InstVar),

instVarName(InstVar, VarName),

accessorMethodFormat(Method, VarName),

findMethod(Class, Method, pattern(['return(variable(',VarName,'))'])).

accessorMethodFormat(Method, VarName) :-

accessingProtocol(ProtocolName),

recognizeMethod(Method, exact(VarName), ProtocolName).

accessingProtocol('accessing').

accessingProtocol('private-accessing').

206 APPENDIX B. SMALLTALK BEST PRACTICE PATTERNS

A Setting Method, or mutator method, speci�es how to update the value of an instance variable:

Provide a method that assigns a value to the variable. Give it the same name as the
variable, appended with a colon. Put private Setting Methods in a method protocol
called `private-accessing'. Put public Setting Methods in a method protocol called
`accessing'.

The Prolog code which codi�es this pattern is presented below:

mutatorMethod(Method) :-

classImplementsMethod(Class, Method),

mutator(Class, Method, _VarName).

mutator(Class, Method, VarName) :-

instVar(Class, Variable),

instVarName(Variable, VarName),

mutatorMethodFormat(Method, VarName),

findMethod(Class, Method, pattern(['assign(variable(',VarName,'),',_,')'])).

mutatorMethodFormat(Method, VarName) :-

accessingProtocol(ProtocolName),

recognizeMethod(Method, pattern([VarName,':']), ProtocolName).

Finally, by combining the accessorMethod and mutatorMethod predicates, we can de�ne a pred-
icate which checks for an accessing method (i.e., a Getting or Setting method):

accessingMethod(Method) :-

accessorMethod(Method);

mutatorMethod(Method).

B.2.2 Temporary variables

The patterns that deal with temporary variables are about how to store and reuse the value of
expressions in a method body, about how to improve the performance or readability of methods,
etc. They are very local and low-level and therefore of little interest for architectural purposes.
Therefore, we do not discuss any of these patterns.

B.3. COLLECTIONS 207

B.3 Collections

One of the great strengths of Smalltalk is that it o�ers a uni�ed protocol to all the varieties of
ways of representing one-to-many relationships. The Collection pattern states:

To represent a one-to-many relationship, use a collection.

The following best practice patterns summarize the uniform collection protocol:

� Enumeration. Use the enumeration messages to spread a computation across a collection.

� Do. Send do: to a collection to iterate over its elements. Send a one-argument block as the
argument to do:. It will be evaluated once for each element. For purposes of enumeration,
there is no di�erence between the collection classes in Smalltalk. You just send the message
`do:'.

� Collect. How do you operate on the result of a message sent to each object in a collection?
Use collect: to create a new collection whose elements are the results of evaluating the
block passed to collect: with each element of the original collection. Use the new collection.

� Select/Reject. How do you �lter out part of a collection? Use select: and reject:

to return new collections containing only elements of interest. Both take a one-argument
block that returns a Boolean. select: gives you elements for which the block returns true,
reject: gives you elements for which the block returns false.

� Detect. Search a collection by sending it detect:. The �rst element for which the
block argument evaluates to true will be returned. There is a variation of detect:,
detect:ifNone:, that takes an additional zero-parameter block as an argument. This vari-
ation is useful if you are not sure any element will be found.

� Inject:into: Use inject:into: to keep a running value as you iterate over a collection.
Make the �rst argument the initial value. Make the second argument a two element block.
Call the block arguments `sum' and `each'. Have the block evaluated to the next value of
the running value.

By using such a common set of messages to manipulate collections of elements, client code is
e�ectively decoupled from decisions about how to store a collection of elements. The following set
of facts de�nes the messages that are typically used for enumerating over such collections:

enumeratorMessage('do:').

enumeratorMessage('collect:').

enumeratorMessage('select:').

enumeratorMessage('reject:').

enumeratorMessage('detect:').

enumeratorMessage('detect:ifNone:').

enumeratorMessage('inject:into:').

Based on this knowledge, we can easily de�ne a logic rule that codi�es the typical structure of a
one-to-many statement. This is useful, for example, when declaratively codifying the Composite
design pattern. In [86], Wuyts de�nes a rule oneToManyStatement(Method,InstVar)which states
that a method Method contains a one-to-many relation if it enumerates over a collection held in
an instance variable InstVar.

208 APPENDIX B. SMALLTALK BEST PRACTICE PATTERNS

B.4 Classes

There is probably no coding decision with more e�ect on the quality of the code than the names
that are given to classes. Good class names provide insight into the purpose and design of a
system. Beck proposes the following class naming conventions:

� Simple Superclass Name. Name a class that is expected to be the root of an inheritance
hierarchy with a single word that conveys its purpose in the design. For example: Number,
Collection, Magnitude, Model.

� Quali�ed Subclass Name. Name subclasses in an inheritance hierarchy by prepending an
adjective to the superclass name. For example: OrderedCollection, SortedCollection,
LargeInteger. (Note that, if inheritance is used strictly for code sharing and the role of the
subclass is di�erent from the role of the superclass, we still use the Simple Superclass Name
convention.)

When naming conventions such as these are used, it is much more easy to understand the code
and to de�ne its mapping to the architecture. The name of a class often provides an indication
of the architectural concept(s) it may correspond to. For example, in the implementation of the
SOUL system, all classes representing repositories end with the string `Repository'. Based on
this convention, we could de�ne the Repository architectural concept by means of a virtual
classi�cation which computes all classes with such a name. (Although we adopted an alternative
mapping scheme which declares that all repository classes inherit from the same abstract superclass
`SOULAbstractRepository'.)

B.5. SUMMARY 209

B.5 Summary

To summarize this Appendix, Table B.1 shows a list of predicates codifying some of the Smalltalk
best practice patterns that were discussed in this chapter. In fact, all these predicates belong to
the coding conventions layer of the DFW, and should therefore be merged with Table 5.6 on page
71 (Subsection 5.3.5).

Predicate name and arguments Meaning of the predicate

Behavior category | Method patterns
recognizeMethod(M,Pa,Pr) generic predicate to pattern match a method's

name and check its protocol
instanceCreationMethod(C,M) M is Instance Creation Method for class C
converterMethod(M,C) M is Converter Method to class C
queryMethod(M) M is Query Method
debugPrintingMethod(M) M is Debug Printing Method
converterConstructorMethod(M,C) M is Converter Constructor Method from C

constructorParameterMethod(M,C) M is Constructor Parameter Method for C
returnTypeOptimized(M,C) M returns object of class C

Behavior category | Message patterns
doubleDispatchMethod(M) method M uses Double Dispatch
simpleDelegationMethod(M) method M uses Simple Delegation

State category | Instance variable patterns
explicitInitializationMethod(M) M is Explicit Initialization Method
lazyInitialisedAccessorMethod(M,V) M is Lazy Initialization accessor method

for some instance variable V
accessor(C,M,V) method M of class C gets value of variable V
accessorMethod(M) M is Getting Method
mutator(C,M,V) method M of class C updates value of variable V
mutatorMethod(M) M is Setting Method
accessingMethod(M) M is Getting or Setting Method

Collection category patterns
enumeratorMessage(N) message N is an Enumeration message
oneToManyStatement(M,V) method M implements a one-to-many relationship

Table B.1: Some predicates codifying Smalltalk best practice patterns.

210 APPENDIX B. SMALLTALK BEST PRACTICE PATTERNS

Appendix C

Terminology

ADL See architecture description language.

AML See architectural mapping language.

Architectural formalism In this dissertation, when we talk about the architectural formalism,
we mean the formalism that is explained in Chapter 5. That is, the architectural language
in which to describe the conceptual architecture and its mapping to the implementation,
as well as the conformance checking algorithm that is de�ned in terms of the constructs
provided by this architectural language.

Architectural abstraction In our conformance checking approach, architectural abstractions
are the intermediary abstractions that de�ne the actual mapping of architectural entities to
implementation artifacts and their dependencies.

Architectural abstraction language The architectural abstraction language, which is part of
the AML, provides intuitive high-level abstractions of sets of implementation artifacts and
their dependencies that can straightforwardly be mapped to the di�erent kinds of architec-
tural entities of the ADL.

Architectural concept Instead of talking about architectural `components', in this dissertation
we use the term `architectural concept'. This corresponds to our intuition that a software
architecture expresses relations (or structure) over abstract concepts that have some meaning
for the application domain.

Architectural conformance checking The task of verifying whether the implementation struc-
ture of some software system corresponds to the more abstract structure described by its
conceptual architecture.

Architecture description An architecture description is an explicit description of the structure
of some conceptual architecture. Architecture descriptions are described in an ADL.

Architecture description language (ADL) An ADL provides a formal notation in which soft-
ware architectures can be described explicitly, by specifying the syntax and semantics of the
architectural entities and their interactions.

The ADL used in this dissertation essentially describes the structure of the architecture (i.e.,
its syntax). The semantics of the di�erent architectural entities will be described implicitly
in terms of how they are mapped to the implementation. We do this in a separate language,
the AML.

Architectural instantiation An architectural instantiation associates architectural entities with
intermediary abstractions de�ned in the architectural abstraction language.

211

212 APPENDIX C. TERMINOLOGY

Architectural instantiation language In the architectural instantiation language, which is
part of the AML, we can map architectural entities de�ned in the ADL to intermediary
abstractions de�ned in the architectural abstraction language.

Architecture language The architecture language describes what a conceptual architecture
looks like and describes how the di�erent architectural entities are mapped to the imple-
mentation. For this purpose, the architecture language is split into an ADL and an AML.

Architectural mapping Architectural mappings are declared in the AML. An architectural
mapping consists of two parts: an architectural instantiation and an architectural abstrac-
tion.

Architectural mapping language (AML) The AML allows us to codify the mapping to the
implementation for each of the architectural views described in the ADL, thus de�ning the
meaning of the di�erent architectural entities in each of these views. Every architectural
entity is de�ned in terms of implementation artifacts and their dependencies.

Architectural relation Instead of talking about architectural `connectors', in this dissertation
we use the term `architectural relation'. Architectural relations describe the relationships
among architectural concepts.

Architectural view An architectural view describes the structure of a software system from
some conceptual point of view. It consists of a set of architectural concepts and architectural
relations together with the links that glue them together.

Conceptual architecture A conceptual architecture describes a software system from multiple
high-level architectural points of view, abstracting away from the implementation details of
the system. Each architectural view focuses on a di�erent aspect of the structure of the
software system.

Conformance conict When the implementation is not in conformance with its conceptual
architecture (i.e., with one of its architectural views), we call this situation an architectural
conformance conict.

Declarative framework (DFW) To de�ne architectural abstractions in a LMP language, an
architect can make use of a layered library of prede�ned logic predicates. We call this library
the declarative framework.

DFW See declarative framework.

Filter Filters are the architectural abstractions in terms of which concept ports are de�ned. A
�lter selects some subset of a software classi�cation.

Implementation artifact In our LMP approach, when we use the term `implementation arti-
fact', we mean the primitive base-level language constructs that can be manipulated and
reasoned about at meta level in the logic programming language.

For example, when using Smalltalk as a base-language, the implementation artifacts are
classes, meta classes, instance variables, class variables, method arguments, temporary vari-
ables, etc.

Incremental conformance checking With an incremental conformance checking approach, in-
stead of having to re-check conformance for the entire implementation and architecture (when
either the implementation or the architecture has evolved), we only need to analyze those
parts that were a�ected by the evolution.

Link In an architectural view, architectural concepts are connected to architectural relations by
linking ports to roles.

213

LMP See logic meta programming.

Logic meta programming (LMP) LMP is the use of a logic programming language at meta
level to reason about implementation artifacts and their dependencies in some base language.

In this dissertation, we use a Prolog-like logic language (i.e., SOUL or Prolog) at meta level
and an object-oriented language (i.e., Smalltalk) at base level.

Port Ports represent the interface of architectural concepts. Any concept may have multiple
ports.

Quanti�er In the context of the architectural formalism proposed in this dissertation, a quanti�er
speci�es how to apply some logic relation over a set of elements. (It `quanti�es' the relation
over the elements in the set.)

Role Roles represent the interface of an architectural relation. They identify the required partic-
ipants for that relation.

Software architecture A software architecture is commonly de�ned as a collection of compo-
nents, together with a description of interactions and relationships among those components
(the architectural connectors), and optionally a set of constraints on these components and
connectors.

In this dissertation, we call the components `architectural concepts', and the connectors
`architectural relations'. Furthermore, instead of using the term software architecture we
make a distinction between a `conceptual architecture' and an `architectural view'. This
is because we allow a software system to be described by multiple, potentially overlapping
architectural views. Architectural views are software architectures in the sense that they
are described in terms of concepts and relations. A conceptual architecture is the union of
all architectural views and provides a more complete picture of the software architecture of
some software system.

Software classi�cation A software classi�cation is a set of related implementation artifacts.
Artifacts can be classi�ed in multiple classi�cations.

SOUL The Smalltalk Open Uni�cation Language, SOUL, is a hybrid logic programming lan-
guage, implemented in Smalltalk and with a tight symbiosis with both the Smalltalk lan-
guage and development environment. The syntax of the language is similar to that of the
logic programming language Prolog, but has an extension that allows meta-level reasoning
about Smalltalk code.

Virtual dependency In our LMP approach, virtual dependencies correspond to logic predicates
that describe high-level implementation or design relationships among implementation arti-
facts.

Virtual classi�cation A virtual (software) classi�cation is a software classi�cation that is spec-
i�ed intentionally (i.e., in terms of a declarative description from which its elements can be
computed), as opposed to extensionally (i.e., by explicitly enumerating its elements).

In our LMP approach, we represent virtual classi�cations as logic predicates that compute
a set of implementation artifacts.

214 APPENDIX C. TERMINOLOGY

Bibliography

[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer
Programs. The MIT Electrical Engineering and Computer Science Series. MIT Press and
McGraw-Hill Book Company, 1985.

[2] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting object inter-
actions using composition �lters. In R. Guerraoui, O. Nierstrasz, and M. Riveill, editors,
Object-based Distributed Processing, volume 791 of Lecture Notes in Computer Science, pages
152{184. Springer-Verlag, 1993.

[3] C. Alexander. The Timeless Way of Building. Oxford University Press, 1979.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI Series in
Software Engineering. Addison Wesley Longman, 1998.

[5] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[6] S. A. Bohner and R. S. Arnold. Software Change Impact Analysis. IEEE Computer Society
Press, 1996.

[7] I. Borne, S. Demeyer, and G. H. Galal. Object-oriented architectural evolution. In A. Moreira
and S. Demeyer, editors, ECOOP 1999 Workshop Reader, volume 1743 of Lecture Notes in
Computer Science, pages 57{79. Springer-Verlag, 1999.

[8] M. Broy. A uniform mathematical concept of a component. Software | Concepts & Tools,
19(1):57{59, 1998.

[9] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Pl�a�sil, G. Pomberger, W. Pree, M. Stal, and
C. Szyperski. What characterizes a (software) component? Software | Concepts & Tools,
19(1):49{56, 1998.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture | A System of Patterns. John Wiley & Sons, 1996.

[11] P. Clements. A survey of architecture description languages. In Proceedings of the 8th inter-
national workshop on software speci�cation and design, pages 16{25. IEEE Computer Society
Press, March 1996.

[12] K. De Hondt. A Novel Approach to Architectural Recovery in Evolving Object-Oriented Sys-
tems. PhD thesis, Department of Computer Science, Vrije Universiteit Brussel, Belgium,
1998.

[13] K. De Hondt and P. Steyaert. Exploiting classi�cation for software evolution. Position paper,
MediaGeniX, March 2000. ECOOP 2000 Workshop on Objects and Classi�cation: a Natural
Convergence.

[14] K. De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Department of Computer
Science, Vrije Universiteit Brussel, Belgium, 1998.

215

216 BIBLIOGRAPHY

[15] K. De Volder. Aspect-oriented logic meta programming. In Proceedings of International
Reection 1999 Conference, volume 1616 of Lecture Notes in Computer Science, pages 250{
272. Springer-Verlag, 1999.

[16] D. Deridder and B. Wouters. The use of ontologies as a backbone for software engineering
tools. In Proceedings of the Fourth Australian Knowledge Acquisition Workshop AKAW99,
pages 187{200, 1999. December 5-6, Sydney, Australia.

[17] M. D'Hondt, W. De Meuter, and R. Wuyts. Using reective programming to describe domain
knowledge as an aspect. In Proceedings of GCSE 1999, 1999.

[18] M. D'Hondt and T. D'Hondt. Is domain knowledge an aspect? In Proceedings of the ECOOP
1999 Aspect-Oriented Programming Workshop, 1999.

[19] T. D'Hondt, K. De Volder, K. Mens, and R. Wuyts. Co-evolution of object-oriented software
design and implementation. In Proceedings of SACT 2000. Kluwer Academic Publishers, Jan-
uary 2000. International symposium on Software Architectures and Component Technology.

[20] M. Dorfman and R. H. Thayer. Software Engineering. IEEE Computer Society Press, 1997.

[21] R. Fairley. Software Engineering Concepts. McGraw-Hill, 1985.

[22] S. Fraser, A. Cockburn, L. Brajkovich, J. Coplien, L. Constantine, and D. West. OO anthro-
pology: Crossing the chasm (panel 3). In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, volume 31(10) of ACM SIGPLAN No-
tices, pages 286{291, New York, October 1996. SIGPLAN, ACM Press. Proceedings of OOP-
SLA '96.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Languages and Systems. Addisson-Wesley, 1994.

[24] P. K. Garg and W. Scacchi. A hypertext system to manage software life-cycle documents.
IEEE Software, 7(3):90{98, May 1990. Reprinted in [6].

[25] D. Garlan. First international workshop on architectures of software systems | workshop
summary. ACM SIGSOFT, Software Engineering Notes, 20(3):84{89, 1995.

[26] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so hard.
IEEE Software, November 1995.

[27] D. Garlan, R. T. Monroe, and D. Wile. Acme: An architecture description interchange
language. In Proceedings of CASCON 1997, pages 169{183, Toronto, Ontario, November
1997.

[28] D. Garlan and D. E. Perry. Introduction to the special issue on software architecture. IEEE
Transactions on Software Engineering, 21, April 1995.

[29] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering, volume I.
River Edge, NJ: World Scienti�c Publishing Company, 1993.

[30] W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure objects). In
Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and
Applications, OOPSLA 1993, pages 411{428. ACM Press, 1993.

[31] F. Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):921{932, September
1985.

[32] W. L. H�ursch and C. V. Lopes. Separation of concerns. Technical report, College of Computer
Science, Northeastern University, Boston, MA, February 1995.

BIBLIOGRAPHY 217

[33] P. Inverardi, A. L. Wolf, and D. Yankelevich. Checking assumptions in component dynamics at
the architectural level. In Coordination Languages and Models, volume 1282 of Lecture Notes
in Computer Science, pages 46{63. Springer-Verlag, September 1997. Second International
Conference, COORDINATION 1997, Berlin, Germany.

[34] C. B. Jaktman. A maintenance check for evolving a product-line architecture by determining
the indicators of erosion, 1998. Workshop on Empirical Studies of Software Maintenance
(WESS98), Bethesda, Maryland, November 16.

[35] C. B. Jaktman, J. Leaney, and M. Liu. Structural analysis of the software architecture | a
maintenance assessment case study. In Proceedings of the First Working IFIP Conference on
Software Architecture (WICSA1). Kluwer Academic, 1999. 22-24 February 1999, San Antonio,
Texas, USA.

[36] G. Kiczales. Aspect-oriented programming. In European Conference on Object-Oriented
Programming, ECOOP 1997. Springer, 1997. Invited presentation.

[37] J. Kramer and J. Magee. Exposing the skeleton in the coordination closet. In Coordination
Languages and Models, volume 1282 of Lecture Notes in Computer Science, pages 18{31.
Springer-Verlag, September 1997. Second International Conference, COORDINATION 1997,
Berlin, Germany.

[38] P. B. Kruchten. The 4+1 view model of architecture. IEEE Software, November 1995.

[39] K. J. Lieberherr. Adaptive Object-Oriented Software. The Demeter Method with propagation
patterns. PWS Publishing Company, 1996.

[40] C. Lucas. Documenting Reuse and Evolution with Reuse Contracts. PhD thesis, Department
of Computer Science, Vrije Universiteit Brussel, Belgium, September 1997.

[41] C. Lucas, P. Steyaert, and K. Mens. Managing software evolution through reuse contracts. In
Proceedings of the First Euromicro Conference on Software Maintenance and reengineering;
Berlin, Germany. IEEE Computer Society Press, 1997.

[42] R. Lucas. LPA WIN-PROLOG 4.0 Prodata Interface. Keylink Computers Ltd., 1997.

[43] D. C. Luckham and J. V. Vera. An event-based architecture de�nition language. IEEE
Transactions on Software Engineering, pages 717{734, September 1995.

[44] B. J. MacLennan. Principles of Programming Language. Saunders College Publishing, second
edition edition, 1987.

[45] N. Medvidovic and R. Taylor. A framework for classifying and comparing architecture de-
scription languages. In Proceedings of ESEC/FSE 1997, volume 22(6) of ACM SIGSOFT
Software Engineering Notes. ACM Press, November 1997.

[46] N. Medvidovic, R. N. Taylor, and D. S. Rosenblum. An architecture-based approach to
software evolution, 1998.

[47] R. Melton and D. Garlan. Architectural uni�cation. Technical report, School of Computer
Science, Carnegie Mellon University, January 1997.

[48] K. Mens. Multiple cross-cutting architectural views. Position paper, Programming Technology
Lab, Vrije Universiteit Brussel, February 2000. Second Workshop on Multi-Dimensional
Separation of Concerns in Software Engineering (ICSE 2000).

[49] K. Mens and T. Mens. Codifying high-level software abstractions as virtual classi�cations. Po-
sition paper, Programming Technology Lab, Vrije Universiteit Brussel, March 2000. ECOOP
2000 Workshop on Objects and Classi�cation: a Natural Convergence.

218 BIBLIOGRAPHY

[50] K. Mens and M. Wermelinger. On the use of knowledge representation techniques for modeling
software architectures. Submitted to the 4th International Software Architecture Workshop
(ISAW-4), 4 and 5 June 2000, Limerick Ireland, in conjunction with ICSE 2000, February
2000.

[51] K. Mens, B. Wouters, C. Lucas, A. Grijseels, R. Harmegnies, P. Ravijts, and F. Sylvestre.
Compliance checking in object-oriented systems - bi-annual report. Research project report,
Programming Technology Lab, Vrije Universiteit Brussel and Wang Global Belgium, Septem-
ber 1999. Progress report submitted to the Brussel's Capital Region.

[52] K. Mens, R. Wuyts, and T. D'Hondt. Declaratively codifying software architectures using
virtual software classi�cations. In Proceedings of TOOLS Europe 1999, pages 33{45. IEEE
Computer Society Press, 1999. TOOLS 29 | Technology of Object-Oriented Languages and
Systems, Nancy, France, June 7-10.

[53] T. Mens. A Formal Foundation for Object-Oriented Software Evolution. PhD thesis, Depart-
ment of Computer Science, Vrije Universiteit Brussel, Belgium, September 1999.

[54] I. Michiels. Using logic meta programming for building sophisticated development tools.
Computer science graduation report, Vrije Universiteit Brussel, Belgium, 1997.

[55] N. H. Minsky. Law-governed regularities in object systems; part 1: An abstract model. Theory
and Practice of Object Systems (TAPOS), 2(1), 1996.

[56] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct architecture re�nement. IEEE
Transactions on Software Engineering, pages 356{372, April 1995.

[57] G. Murphy, D. Notkin, and K. Sullivan. Software reexion models: Bridging the gap between
source and high-level models. In Proceedings of SIGSOFT 1995, Third ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 18{28. ACM Press, 1995.

[58] G. C. Murphy. Lightweight Structural Summarization as an Aid to Software Evolution. PhD
thesis, University of Washington, 1996.

[59] H. R. Nielson and F. Nielson. Semantics with Applications | A Formal Introduction. Wiley
Professional Computing, 1993.

[60] OMG ad/99-06-08. UML Notation Guide version 1.3, 1999.

[61] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois
at Urbana-Champaign, 1992.

[62] P. Oreizy. Issues in modeling and analyzing dynamic software architectures. In Proceedings
of the International Workshop on the Role of Software Architecture in Testing and Analysis,
1998. Marsala, Sicily, Italy, June 30.

[63] H. Ossher and P. Tarr. Concern spaces: Structuring systems with hypermodules. Technical
report, IBM Thomas J. Whatson Research Center, P.O. Box 704, Yorktown Heights, NY
10598, 1999.

[64] M-C. Pellegrini. Dynamic recon�guration of CORBA-based applications. In Proceedings of
TOOLS Europe 1999, pages 329{340. IEEE Computer Society Press, 1999. TOOLS 29 |
Technology of Object-Oriented Languages and Systems, Nancy, France, June 7-10.

[65] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40{52, 1992.

[66] J. S. Poulin. Evolution of a software architecture for management information systems.
In Proceedings of the Second International Software Architecture Workshop (ISAW2), pages
134{137, 1996. San Francisco, California, USA, 14-15 October.

BIBLIOGRAPHY 219

[67] M. J. Presso. Generic component architecture using meta-level protocol descriptions. Mas-
ter's thesis, Vrije Universiteit Brussel, 1999. European Masters in Object Oriented Software
Engineering.

[68] R. Prieto-Diaz and J. M. Neighbors. Module interconnection languages. Journal of Systems
and Software, 6(4):307{334, November 1987.

[69] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for smalltalk. Theory and Practice
of Object systems, 3(4), 1997.

[70] D. Roberts, J. Brant, R. Johnson, and B. Opdyke. An automated refactoring tool. In
Proceedings of ICAST 1996, Chicago, IL, April 1996.

[71] N. Romero. Managing evolution of software architectures with reuse contracts. Master's
thesis, Vrije Universiteit Brussel, 1999. European Masters in Object Oriented Software En-
gineering.

[72] R. W. Schwanke, V. A. Strack, and T. Werthmann-Auzinger. Industrial software architecture
with Gestalt. In Proceedings of IWSSD-8, pages 176{180. IEEEComputer Society Press, 1996.

[73] M. Shaw. Software architecture: A roadmap. Presentation at ICSE 2000, Limerick, Ireland,
2000.

[74] M. Shaw and D. Garlan. Software Architecture | Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[75] J. F. Sowa. Conceptual Structures | Information processing in mind and machine. The
Systems Programming Series. Addison-Wesley, 1984.

[76] L. Steels. Kennissystemen. Addison-Wesley Nederland, 1992.

[77] P. Stevens and R. Pooley. Using UML | Software Engineering with Objects and Components.
Addison Wesley, 1999. Updated edition.

[78] P. Steyaert, C. Lucas, K. Mens, and T. D'Hondt. Reuse contracts: Managing the evolution
of reusable assets. In Proceedings of the OOPSLA 1996 Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications, number 31(10) in ACM SIGPLAN Notices,
pages 268{285. ACM Press, 1996.

[79] C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM Press /
Addisson-Wesley, 1998.

[80] P. Tarr, H. Ossher, W. Harrison, and Jr. S. M. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In International Conference on Software Engineering
(ICSE 1999), 1999.

[81] T. Tourw�e and W. De Meuter. Optimizing object-oriented languages through architectural
transformations. In 8th International Conference on Compiler Construction, pages 244{258.
Springer-Verlag, 1999.

[82] T. Tourw�e and K. De Volder. Using software classi�cations to drive code generation. Position
paper, Programming Technology Lab, Vrije Universiteit Brussel, March 2000. ECOOP 2000
Workshop on Objects and Classi�cation: a Natural Convergence.

[83] M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. Knowledge
Engineering Review, 11(2), June 1996.

[84] A. von Mayrhauser and A. M. Vans. Program comprehension during software maintenance
and evolution. IEEE Computer, 28(8):44{55, August 1995.

220 BIBLIOGRAPHY

[85] D. Westwood. LPA WIN-PROLOG 4.0 Programming Guide. Logic Programming Associates
Ltd., 1999.

[86] R. Wuyts. Declarative reasoning about the structure of object-oriented systems. In Proceed-
ings of TOOLS USA 1998, pages 112{124. IEEE Computer Society Press, 1998.

[87] R. Wuyts. Logic Meta Programming as a General Approach to Support Co-evolution. PhD
thesis, Department of Computer Science, Vrije Universiteit Brussel, Belgium, 2000. In prepa-
ration (tentative title).

