
A Unified Mechanism for Improving Advanced
Transaction Management in Web Services

Sergio Castro
Université catholique

de Louvain (UCL)
Département d’Ingénierie

Informatique (INGI)
Louvain-la-Neuve, Belgium
Email: scastro@uclouvain.be

Johan Fabry
INRIA FUTURS

ADAM team
Laboratoire d’Informatique

Fondamentale De Lille
Lille, France

Email: johan.fabry@lifl.fr

Kim Mens
Université catholique

de Louvain (UCL)
Département d’Ingénierie

Informatique (INGI)
Louvain-la-Neuve, Belgium

Email: Kim.Mens@uclouvain.be

Theo D’Hondt
Vrije Universiteit Brussel (VUB)

Programming Technology Lab
Pleinlaan 2,

1050 Brussels, Belgium
Email: tjdhondt@vub.ac.be

Abstract—Current web-service composition languages, such as
BPEL, provide inferior support for transaction management.
Consequently, specifications written in these languages are need-
lessly complex and hard to reuse. Furthermore, the languages
themselves are not extensible, making them hard to adapt to
support new forms of web service composition. Using a unified
mechanism for dealing with transaction management we are able
to simplify BPEL specifications, making them more reusable,
and also allowing easy evolution of the language, addressing
new forms of composition. In this paper we present DBCF, a
framework that implements this unified mechanism. Moreover,
we show how DBCF can be used as a basis for defining a BPEL
extension that successfully addresses the above problems.

I. INTRODUCTION

The idea of Web Services is to propose mechanisms for
standardizing the interfaces of components in loosely-coupled
distributed systems. As a result, they provide a solution to the
interoperability problems that have been always present in ap-
plication integration efforts. Web Services are also envisioned
to be the basis for a seamless and almost completely automated
infrastructure for cross-enterprise application integration [1].
Web Service composition techniques have an important role
in the pursuit of this goal. They provide a mechanism for com-
bining, according to business rules, the functionality provided
by a group of services in a single service. Such compositions
are usually defined in a Web Service composition language. In
this context, the BPEL language [2] (Version 1.1, also known
as BPEL4WS or WS-BPEL) has become the de facto standard
in industry for Web Services composition, superseding other
similar specifications (e.g. BPML [3] and WSFL [4]).

BPEL follows a hierarchical composition of activities. In
BPEL it is possible to define basic activities that perform
simple tasks (e.g. web service invocations), and also to define
structural activities that contain or compose more than one
activity. This allows for hierarchies of activities to be created.
Structural activities define the order (control flow) in which
nested activities are executed, or the conditional execution of
such nested activities. Examples of structural activities in this
language are sequence or flow activities, for sequential and
parallel execution of nested activities.

One of the main concerns that BPEL needs to express is
related to transaction management. This is because a com-
position defined in this language must coordinate different
distributed services. As a result of this, the well known transac-
tional ACID [5] properties traditionally used in tightly-coupled
systems are insufficient. The underlying reason for this is
that their enforcement could create performance penalties or
even worse problems. To address this, more advanced forms
of transaction management [6] [7] need to be used. In other
words, additional transactional concepts developed in research
on advanced transaction models should be taken into account,
e.g., the notion of compensation, functional replication, syn-
chronization of activities and timing management [8].

The BPEL strategy for expressing these transactional prop-
erties is however limited, non-extensible, and relies on dif-
ferent unrelated constructs. We believe that these concerns
should be managed using a more straightforward, extensible
and unified set of constructs, relying on proven existing formal
models for advanced transaction management. In this paper
we introduce our solution to these problems, in the form of
DBCF (Dependency-Based Composition Framework). DBCF
proposes an alternative simplified transaction management
mechanism for Web Services Composition to the one used
in BPEL. Furthermore, we show how we can employ DBCF
as a basis for defining a BPEL extension that includes its
main strategies for transaction management. This significantly
improves the transaction handling facilities of the industry’s
state-of-the-art language for Web Services composition. These
improvements are: first, a unified and straightforward mech-
anism for dealing with transaction management concerns;
second, the production of less tangled code; third, reduction
in the amount of transactional related constructs; fourth, the
use of an extensible mechanism for transaction management.

This paper starts with a summary of how transactional
concerns are currently managed in BPEL. After, we expose the
ACTA formalism for advanced transaction models [6][7] and
the KALA language [9] for the implementation of advanced
transactions. They serve as a main source of inspiration for
defining the main features of DBCF. Later, we illustrate the
advantages of the DBCF transaction management mechanisms



to the ones used by BPEL. Finally, we describe our BPEL
extension that reifies the main ideas for advanced transaction
management developed in DBCF.

II. ADVANCED TRANSACTION MANAGEMENT IN BPEL

A. Implementation of Transaction Management Concerns

We briefly discuss here the six transactionally-related con-
cerns that are supported by BPEL. These are synchronization
of activities, compensation of activities, functional replication
of activities, management of timing, exception handling and
serializable scopes. We give a brief overview of each of these
next, summarized from the BPEL specification [2].

Synchronization of activities: This concern is about the ne-
cessity of synchronizing, at a fine-grained level, the activities
that are part of the business process. Some of these synchro-
nization issues can be solved using control flow structures for
specifying the order in which activities should be executed.
However in other cases, particularly where high concurrency
is present, more sophisticated synchronization mechanisms
are needed. BPEL solves this with the notion of logical
links and their different transactional outcomes associated
with activities. Links are declared at the beginning of a flow
activity representing parallel execution. Later, activities can
associate these links with transactional outcomes using the
source construct. Finally, activities that have synchronization
dependencies with activities nesting source constructs, can
evaluate such outcomes in boolean logic expressions, using the
target construct, in order to determine if they can be executed
or not.

Although this strategy permits the expression of sophisti-
cated synchronization dependencies, it is complex and implies
the use of at least three different constructs for each synchro-
nization concern: the link, source and target constructs, which
are scattered among the main business composition code.

Compensation of activities: Compensating activities allow
to make early commits on subtransactions that belong to a
long-lived transaction. This allows resources to be released
early, improving performance. In case that the main transaction
fails, this work has to be undone, which is performed by
compensating transactions. To undo committed work, the com-
pensating transactions of all already invoked subtransactions
are executed. BPEL provides the dedicated construct compen-
sationHandler for expressing the idea of compensation.

Functional replication of activities: When the request for
a service fails, frequently an alternative service provider can
be selected. From the point of view of the service invocator,
both alternatives are functionally equivalent. This has been
called Functional Replication in other work ([10]). In BPEL,
this concern can be implemented as a special case of fault
management. When a fault occurs in the execution of a
Web Service invocation, an alternative service with the same
functionality, can be invoked from a fault handler.

Management of timing: In distributed systems the manage-
ment of timing is a fundamental issue. A component has to
react appropriately if a request is not answered in a deter-
mined amount of time (timeout configuration). Alternatively

we would like to be able to schedule an activity to begin at
a particular date or after a specific amount of time. BPEL
provides dedicated constructs, such as pick, onAlarm and wait
for timing management.

Exception handling: BPEL provides constructs for dealing
with exceptional cases or irrecoverable problems, i.e., a fault
handling mechanism. Also, mechanisms for capturing special
events that can occur asynchronously with respect to the
control flow of the process are provided.

Serializable Scopes: BPEL uses the notion of scope for nest-
ing an activity with its own associated variables, fault handlers
and compensation handlers. When the activities present in two
or more nested scopes need to concurrently access shared vari-
ables, a mechanism for concurrency control for such accesses
is required. To implement this, BPEL provides special attribute
variableAccessSerializable for the scope construct. Using this
attribute ensures that accesses to all the shared variables will
be serializable. (The semantics of serializable scopes are very
similar to the standard isolation level “serializable” [11] used
in database transactions.) Suppose two concurrent serializable
scopes, S1 and S2, access a common set of variables. Se-
rializability ensures that the results of their behavior would
be no different if all accesses of shared variables were first
performed by S1 before S2 starts accessing these variables.

B. General observations about the BPEL constructs for trans-
action management

Our investigation of BPEL has yielded the following general
observations of its constructs for transaction management:

- Each synchronization management concern produces
tangled code, since each case needs to be managed with
at least three constructs (link, source and target) which
are scattered into the main business concern.

- The model is complex, and involves a lot of unrelated
different constructs. (e.g., three constructs for synchro-
nization management, one construct for compensation,
more constructs for timing management, and the func-
tional replication concern is managed as a special case
of fault handling).

- It is not extensible. This makes it hard to deal with new
transactional problems of a particular business if it is
not covered by the language.

After analyzing an alternative for managing transactional
concerns in Web Services composition, we come back to these
problems later, in order to propose a BPEL extension that
overcomes these limitations.

III. THE ACTA FORMAL MODEL AND THE KALA
LANGUAGE

This section briefly describe two proposals that have been
the main source of inspiration for defining an alternative
transactional model to the one used in BPEL. The information
presented here is a summary of [7] and [9].



A. ACTA

The objective of ACTA [6][7] is to provide a formal
model that allows us to specify a large number of Advanced
Transaction Mechanisms (ATMS). In ACTA, databases are
considered as repositories of objects and transactions are
considered as invocations of operations on these objects (also
called object events) or on transaction management primitives,
e.g., begin, commit or abort (also called significant events). In
the model, all these events can be executed concurrently and
such executions are logged in the sequence in which they are
occurred, creating a history. ACTA can define the properties of
an ATMS by reasoning about the properties of event histories
[6].

ACTA allows for three kinds of constraints on the transac-
tion history to be declared, they are:

- An event X can be constrained to occur only after an
event Y.

- A particular event can only occur in a history if a certain
condition is satisfied.

- A particular event has to occur in a history if a certain
condition is satisfied.

Transaction models specified only in terms of axioms that
declare these constraints, although powerful for specifying
a great amount of ATMS, have an important drawback: the
related specifications are very large and complex. To address
these problems, a number of abstraction mechanisms have
been defined in ACTA: dependencies, views and delegation.
For a complete explanation of these mechanisms, we refer to
[6] [7]. Here we solely discuss the concept of dependencies,
as they are a key element of our current work. An analysis of
the employment of views and delegation in our domain will
be done as part of our future research.

Dependencies are constraints on the histories produced by
the concurrent execution of interdependent transactions [12].
These constraints can be expressed precisely in terms of the
significant events associated with such transactions [6]. Twelve
kind of dependencies have been defined in [6] and [7]. We
describe three of them as an example, since they are sufficient
for expressing the BPEL transactional concerns that will be of
our interest in this work. They are:

Begin-on-Commit Dependency.- If a transaction Tj has a
Begin on Commit Dependency with a transaction Ti (or: “Tj
BCD Ti”) then Tj cannot begin executing until Ti commits.

Begin-on-Abort Dependency.- If a transaction Tj has a Begin
on Abort Dependency with a transaction Ti (or: “Tj BAD Ti”)
then Tj cannot begin executing until Ti aborts.

Compensation Dependency.- If a transaction Tj has a Com-
pensation Dependency with a transaction Ti (or: “Tj CMD Ti”)
then if Ti aborts, Tj must commit.

B. The KALA language

KALA [9] is an aspect language [13] based on the ACTA
formal model. It stands for Kernel Aspect Language for ATMS
and, since it is based on ACTA, it assures that a wide variety
of ATMS can be implemented using this language.

KALA was created as a tool for specifying the transactional
properties of Java methods in a separate description. A KALA
aspect declaratively specifies the transactional properties of a
Java method, using constructs that directly reflect concepts
from ACTA. Therefore, the ACTA concepts of dependencies,
views and delegation can be easily associated with a method
(considered as a transaction) using KALA. The declarations
of the transactional properties of methods, can also be set to
coincide with any of the begin, commit and abort significant
events of a transaction.

In addition, this language adds some complementary notions
that have to be taken into account when expressing the ACTA
formalism in a real life programming language, such as the
idea of secondary transactions. The concept of secondary
transactions is useful for abstracting the fact that multiple
ATMS require to run some transactions, that conceptually are
separated from the main control flow of the application, when
certain constraints are satisfied. We describe as an example
the notion of compensating transactions. In some transactional
models (e.g., Sagas [14]), the results of a subtransaction
belonging to a long-lived transaction are partially commit-
ted (also referred as externalized in [15]). In case that the
main transaction aborts, the work done by its subtransactions
must be compensated. This compensation is accomplished
by compensating transactions that perform a semantic undo.
Compensating transactions are not part of the main business
control flow, but must be executed only when a certain event
occurs (the abort of the main transaction). Therefore, we refer
to them as secondary transactions. KALA eases the use of
secondary transactions using a special construct provided for
indicating that a particular method should be invoked as a
secondary transaction.

Finally, at the implementation level, this language is com-
plemented by ATPMos, a sophisticated transactional pro-
cessing monitor. ATPMos, in addition to support traditional
transactions, implements support for ACTA primitives. The
capability of ATPMos for supporting ACTA abstractions,
specially dependencies, makes this TP monitor a fundamental
keystone of the design of our solution.

IV. DBCF

Web Services composition using BPEL raises a number of
issues related to transaction management, as we have discussed
above: production of tangled code in each synchronization
management concern, the use of a complex mechanism that
involves a lot of unrelated different constructs and the lack of
extensibility of the transactional mechanism.

In our research, in order to improve the management of
transactions in this domain, we have combined notions from
ACTA and KALA. The product of this synthesis is DBCF,
which stands for Dependency-Based Composition Framework.
Service composition applications implemented with it have, in
addition to the capability of expressing transactional properties
of BPEL-like languages in a more straightforward way, added
power and extensibility. As a result, these applications can
be implemented quickly, with an improved separation of



concerns and are more adaptable to deal with new transactional
scenarios.

DBCF follows an architecture based on a hierarchical
composition of activities, where each activity can be de-
fined independently of the others. It borrows from ACTA
the notion of transactional dependencies and the dependency
types already defined in [6] [7]. From KALA it reuses the
notion of secondary transactions and ATPMos, the transac-
tional processing monitor that is embedded in the core of our
proposal. In addition, it extends these ideas with the notion of
implicit dependencies, as a mechanism for expressing complex
concepts that involve more than a pair of activities.

DBCF has been implemented as a proof-of-concept that
these separate ideas can be successfully combined. It defines a
powerful, straightforward and unified mechanism for advanced
transaction management that is adequate and correct in the
context of Web Services composition.

A. Extending the concept of ACTA dependencies

ACTA is a general framework for expressing transactional
models. Since its objective is being able to define a great
amount of models, its concepts are not related to a specific
one. However, our domain is the composition of Web Services,
where a hierarchical composition of activities is the model
to be used. The knowledge of the model constraints is an
advantage to us, since it allows us to make assumptions that
cannot be done in ACTA. For example, we always know that
every activity in the process has a parent activity, and that
possibly more than one activity ancestor is present (since a
parent activity could also has a parent). We also know that
certain dependencies are frequently used together, in order to
express common transactional constraints. As described later
in this section, one example of this occurs when expressing
the notion of compensation.

Therefore, we can modify in our domain the concept of
dependencies used in ACTA. We define that:

- Dependencies are established among pairs of transac-
tions, as in the ACTA framework.

- A dependency can implicitly abstract more than one
ACTA dependency. This is because it eases the use of
dependencies that are frequently used together in our
domain.

- The constraints enforced by a dependency, are however
not restricted to the significant events of the pair of
transactions declared in the dependency. This is because
significant events of additional transactions not men-
tioned explicitly in the dependency can be considered.
Such other transactions can be inferred implicitly in our
scenario of services composition, since we know that the
relationships among transactions follow a hierarchical
composition model.

B. Overview of the design of DBCF

DBCF has been implemented in Java. The main reason
for choosing this language is that we already had a proven
transaction monitor with support for dependencies among

1 ...
2 @WebService(
3 serviceName="ReservationService",
4 name="Reservation")
5 public class ReservationImpl {
6 @WebMethod()
7 public void reserve(...) {}
8 ...
9 }

Listing 1. Definition of a Web Service interface

1 ...
2 public class AReserveHotelAndCar
3 extends OnMethodCallActivity{
4 ...
5 @WorkflowState
6 ClientInfo clientInfo;
7 ...
8 public boolean correlation(...) {
9 ...

10 }
11 @MethodHandler(methodHandled="reserve")
12 public void onReserve(...) {
13 ...
14 }
15 }

Listing 2. Definition of an activity in DBCF

transactions written in this language (ATPMos, mentioned in
III).

A programmer in DBCF must do the following tasks in
order to define a Web Service composition:

- Define the Web Service composition business interface
using JAX-WS [16]. Listing 1 is an example of a
Web Service interface defined in DBCF. The framework
transparently links the Web Service methods defined in
this class and the DBCF event listener.

- Define each activity as an individual module. Listing 2
shows an example of an activity definition which repre-
sents the reception of a remote Web Service invocation.

- Define the composition of the activities. Listings 3, 4, 5
and 6 are examples of composition of activities.

- Deploy the application as a normal Web Service appli-
cation in a JAX-WS compatible engine. For our tests,
we used Tomcat [17], version 5.0.

Fig. 1 describes the architecture of DBCF. At the lowest
level, ATPMos is in charge of dependency management,
which constitutes the core of our model. DBCF basically
is comprised of a Workflow Manager, an Event Manager, a
collection of classes that define the different base-cases of
activities of the application, and an aspect library. This aspect
library is in charge of abstracting the complexities of two
things: first is linking the Web Service composition business
interface with our framework; second is the variable lookup
that each activity must do every time that it needs to reference
state that is declared and initialized in an upper activity.

As we mentioned before, to instantiate the framework,
specific activities are implemented by the developer, extending



the provided activities. Next to this, a workflow composition
model is defined. This model states how the business activ-
ities should be combined. On top of the layer of activities
and composition definition, the objects related to JAX-WS
are placed. These provide the Web Service interface of our
workflow system and a collection of remote and local stubs.

Fig. 1. The DBCF architecture

DBCF implements the basic infrastructural requirements
that a BPEL-like composition engine must provide in order to
be functional and testable: management of workflow instances,
life cycle management, management of external events, man-
agement of correlation issues and management of instance
state. A detailed discussion on the implementation of the main
infrastructural services is however outside of the scope of this
paper, for more detail we refer to [8].

DBCF also implements the transactional concerns of syn-
chronization of activities, compensation, functional replica-
tion, timing management and exception handling present in
BPEL. However, currently only the concerns of synchroniza-
tion of activities, compensation and functional replication have
been implemented using ACTA dependencies as proposed
by DBCF. In the current version, timing management has
also been implemented, but using alternative mechanisms that
mainly simulate the equivalent constructs present in BPEL,
and exception handling has been simplified to the common
exception handling mechanisms of the Java language. Seri-
alizable scopes have not yet been implemented. As part of
our future work, we will propose to extend the notion of
transactional dependencies, in order to include relevant ideas
related to timing management and exception handling. In
addition, we would like to explore the possibility of employing
the ACTA notions of views and delegation for implementing
the BPEL concept of serializable scopes.

We finish this overview with a short description of how the
extensibility of the ACTA framework is carried over to DBCF.
Two kind of extensions are possible:

- The definition of a new dependency that must be regis-
tered in ATPMos. If a new dependency must be recog-

1 ...
2 ScopeActivity sa = new ScopeActivity(...);
3 ...
4 AReserveHotel rh = new AReserveHotel(sa, ...);
5 ...
6 AReserveCar rc = new AReserveCar(sa, ...);
7 ...
8 rc.setDependency(rc, "BCD", rh);
9 ...

Listing 3. Synchronization handling in DBCF

nized by the framework, this is straightforwardly regis-
tered in ATPMos, with the specification of a description
file. That file declares the name and the constraints of
the new dependency.

- The definition of a new dependency that is a composition
of already existing dependencies. This is done at a layer
on top of ATPMos. When the use of a dependency is
declared by the framework, the name is checked before
delegating the message to ATPMos. If the name corre-
sponds to a composed dependency, multiple messages
for creating a dependency are sent to ATPMos (one for
each single dependency present in the composition).

C. Implementing transaction management concerns in DBCF

To demonstrate the advantages of the use of DBCF, we
now discuss how the BPEL transaction management concerns
of synchronization of activities, compensation and functional
replication can be implemented in our framework, using a
more straightforward, unified, and extensible mechanism.

Synchronization of activities: Listing 3 shows an example
of a synchronization concern using DBCF. Two invocation
activities, rh (line 4) and rc (line 6) are defined, and a Begin
on Commit Dependency among them is declared in line 8.

The method setDependency can be invoked by any activity,
and receives three parameters: the source of the dependency,
the identifier of the kind of dependency, and the destination
of the dependency. The dependency invoked by this method is
applied when the declaring activity starts its life cycle (in this
case: rc). It is possible also to apply dependencies at begin,
commit or abort times.

In our example, the result of applying the aforementioned
dependency, is that the activity rc will not begin until activity
rh has begun. This shows how this dependency is useful for
specifying a sequential execution order among a collection of
activities.

Note that we needed only one construct for expressing a
simple synchronization concern (a call to the setDependency
method in line 8), instead of three BPEL constructs (link,
source and target) that would be scattered across the code,
for expressing the same idea.

Compensation of activities: Compensation of activities in-
volves the employment of one additional concept: the notion of
secondary transactions. Listing 4 shows an activity that plays
the role of nesting transaction (sa in line 2) and two activities
that plays the role of nested transaction (rh in line 4 and ch



1 ...
2 ScopeActivity sa = new ScopeActivity(...);
3 ...
4 AReserveHotel rh = new AReserveHotel(sa, ...);
5 ...
6 ACancelHotel ch = new ACancelHotel(sa, ...);
7 ch.setExecutionMode(
8 ExecutionMode.SECONDARY_ACTIVITY);
9 ch.setDependency(ch, "BCD", rh);

10 ch.setDependency(ch, "BAD", sa);
11 ch.setDependency(ch, "CMD", sa);
12 ...

Listing 4. Compensation handling in DBCF with ACTA dependencies

in line 6). This nesting is specified at the moment the two last
activities are instantiated (i.e., in lines 4 and 6 respectively).

Once the nesting issues are addressed, the next step is to
establish the compensation dependency. Since ch compensates
rh, the former should be defined as a secondary activity. To
do this lines 7 and 8 invoke the method setExecutionMode
and pass the constant value SECONDARY ACTIVITY. Now
we need to establish adequate dependencies among the com-
pensated and compensating activity. How these dependencies
interact is illustrated in Fig. 2. Line 9 declares that the com-
pensating activity has a Begin On Commit Dependency with
the compensated activity. As a result the former will not be
invoked if the latter has not committed. In addition, a Begin On
Abort Dependency (line 10) and a Compensation Dependency
(line 11) are established among the compensating activity and
the nesting activity. This ensures that the compensating activity
will begin only if the nesting activity aborts and, if the nesting
activity aborts, the compensating activity will commit. Note
that in this combination of dependencies, the last dependency
states that the compensating activity must commit if the parent
transaction has aborted. If the parent transaction commits, the
compensating activity can commit or abort. However, since
a Begin on Abort dependency is also present, this second
alternative will never be chosen. This is because the condition
for starting the compensating activity is precisely that the
parent activity aborts.

As an example of the extensibility of our framework, we
define a new kind of dependency for compensation that is
equivalent to the three dependencies mentioned before, since
they are frequently used together. We call it CPD in order to
distinguish it from the ACTA compensation dependency CMD.
This simplified dependency can be defined thanks to the fact
that we know the structural relationships between activities in
our process (recall that we use a hierarchical composition of
activities). Therefore, it is possible to infer all the transactions
that are not mentioned in the dependency, but that have implicit
relationships with the activities defined on it (in our example,
the sa activity can be inferred as the parent of rh).

Listing 5 shows an example of this dependency, where
the dependency declaration in line 9 substitutes the three
dependencies in lines 9,10 and 11 of listing 4.

Functional replication of activities: The implementation of a
functional replication concern requires, as in the previous case,

1 ...
2 ScopeActivity sa = new ScopeActivity(...);
3 ...
4 AReserveHotel rh = new AReserveHotel(sa, ...);
5 ...
6 ACancelHotel ch = new ACancelHotel(sa, ...);
7 ch.setExecutionMode(
8 ExecutionMode.SECONDARY_ACTIVITY);
9 ch.setDependency(ch, "CPD", rh);

10 ...

Listing 5. Compensation handling in DBCF with a customized dependency

BCD 
Dependency: rh 

committed?

Startup of ch

No

BAD 
Dependency: sa 

aborted?

YesNo

Really run ch

Yes

End of ch

CMD 
Dependency: sa 

aborted?

ch is forced 
to commit

ch can 
commit or 

abort

Yes

Fig. 2. Flow chart of the ACTA Dependencies of a compensating activity.
Note that in the CMD dependency the ’Yes’ choice will always be taken, as
the flow of execution can only enter this dependency if sa has aborted, due
to the BAD dependency.

the definition of a secondary transaction. We show in listing 6
an example of this concern, where the activity a is replicated
by the activity b. Because b is an activity that implements a
functional replication concern, it is declared as secondary in
lines 5 and 6 . Line 7 establishes a Begin On Abort Dependency
with the primary activity, in such a way that the secondary
activity b will be executed only if the primary activity a fails.

D. Comparing DBCF with BPEL

To conclude this section, we compare DBCF and BPEL,
discussing the advantages of each over the other.

Advantages of DBCF over BPEL:
- DBCF is based on an accepted formal model within the

advanced transactions community (ACTA). BPEL is not.

1 ...
2 ScopeActivity a = new ScopeActivity(sa, ...);
3 ...
4 ScopeActivity b = new ScopeActivity(sa, ...);
5 b.setExecutionMode(
6 ExecutionMode.SECONDARY_ACTIVITY);
7 b.setDependency(b, "BAD", a);
8 ...

Listing 6. Functional Replication handling in DBCF



- DBCF inherits the extensible properties of the ACTA
framework. Transactional concerns can be expressed
with dependencies already defined in previous work [6]
[7], or new kind of dependencies can be defined if
needed, which eases the use of new transactional models.

- The model proposed in DBCF does not require the
tangled code that is produced in BPEL when applying
synchronization concerns. In BPEL, a simple synchro-
nization concern needs the scattering of different con-
structs over the main business concern of the application.
In DBCF, only one ACTA dependency has to be defined
for expressing the same concern.

- DBCF reduces the number of constructs that are needed
for expressing transaction management concerns. The
basic concepts of ACTA dependencies with implicit
constraints and secondary transactions are well suited for
straightforwardly expressing the concerns of synchro-
nization of activities, functional replication and compen-
sation management, as we have shown above.

- BPEL on the other hand, needs three different constructs
for expressing synchronization of activities, another con-
struct for compensation management, and the functional
replication concerns are tangled with other concerns
related with exception handling.

Advantages of BPEL over DBCF. BPEL does possess some
transaction-related features that could be used to significantly
improve DBCF. These are:

- Exception management is more powerful than what is
currently implemented in DBCF. Exceptions in BPEL
are propagated following the hierarchical composition of
activities, and can be handled by any of the activities that
receive the exception. In DBCF, exception management
is limited to the Java exception handling mechanism,
and if an exception is not caught for an activity, it stops
the life cycle of the process instead of being thrown to
an upper activity.

- Although most of the timing management features of
BPEL have been implemented in DBCF, in BPEL it
is possible to express certain sophisticated ideas that
in DBCF cannot be expressed. An example is that an
activity can be scheduled to be executed on a particular
time, but only if the associated scope where the activity
is defined still has not finished its execution.

- In addition, BPEL has already defined a mechanism for
expressing temporal predicates, while in DBCF this has
not yet been implemented.

- The synchronization model of BPEL can use boolean
logic expressions in terms of the outcomes of trans-
actions, for expressing conditions in which a specific
activity can begin its execution. Though the only con-
straints that can be expressed are sophisticated begin
on commit or begin on abort dependencies (instead of
the broader kind of dependencies that can be specified
with DBCF), the possibility of including logic predicates
in the expression of dependencies should be taken into

account as a future direction of research for DBCF.

V. EXTENDING BPEL TO SIMPLIFY THE SPECIFICATION OF
ADVANCED TRANSACTION MANAGEMENT

We have discussed a number of important problems and lim-
itations of the BPEL constructs for transaction management,
and shown how these are addressed by DBCF. In this section
we sketch how our solution can be used to improve BPEL.
We recommend alternatives to BPEL constructs, based on the
main ideas of DBCF. We provide here semantic explanations
of the constructs, using the same notation used in the BPEL
specification [2], instead of providing lengthy XSD [18] or
DTD [19] formal descriptions.

With our extension, BPEL will have the following advan-
tages:

- It will use a common model with a simple unified set
of constructs for transactional management, bringing
simplicity to the language, reducing its code size, and
accelerating the language learning process.

- Well-defined extension points in the language for trans-
action management will be provided. In this way, BPEL
could evolve more easily in order to deal with new
transactional problems.

- The scattering of code related to synchronization of
activities will be reduced. Therefore, the final code
will be more clear and raise less issues with regard to
evolution.

To accomplish this, our proposed extension provides support
for the following concepts:

- The notion of associating state with activities, where
possible states can be: non-initiated, began, committed
or aborted (this is an open list of possible states,
since more sophisticated transactional models can have
additional states).

- The possibility of establishing transactional dependen-
cies between different activities, using the known and
extensible dependency model of the ACTA framework.

- The notion of activities that are not part of the business
case that the application is trying to solve, but that are
related to other non-functional concerns like transaction
management.

- The inclusion of the concept of implicit dependencies, in
such a way that a single statement can declare complex
dependency relationships among more than the two
activities explicitly declared, as in DBCF.

We discuss in the rest of this section the constructs that
should be added to BPEL in order to implement these ideas.

A. Simple dependencies between activities

Once we have adopted the notion of activities with state
in BPEL, the next step proposed in our model is establishing
relationships between activities present in a particular BPEL
scope using ACTA dependencies. This is a two-part process
that consists in first solving identification issues and second
setting ACTA dependencies.



Identification issues: The ACTA framework proposes a
way of declaring dependencies between pairs of activities
(transactions). Therefore, to define ACTA dependencies in a
programing language like BPEL, we need an identification
mechanism for representing the activities that are declared in
the dependencies. We take advantage of the fact that the name
attribute is part of the collection of attributes defined as stan-
dard attributes in the BPEL specification. Standard attributes
are defined as all such attributes that can be present in any
BPEL activity. We have preferred to use this identifier for
defining ACTA dependencies between two activities, instead
of defining a new dedicated attribute.

Setting ACTA dependencies: We propose to create a con-
struct for defining dependencies between activities, using
activity names for source and destination of the dependency,
and a string representing the type of the ACTA dependency
that is being established between the source and destination
activities. The following code shows how the structure of a
dependency is written:

<dependency type="ncname" source="ncname"?
destination="ncname" />

The source attribute represents the source activity, and the
destination attribute represents the destination activity. The
question mark near the source attribute, denotes that it is
optional, since when omitted, it represents by default the
activity that declares the dependency.

The possible values of the type attribute can be the tradi-
tional ACTA dependencies that have been discussed in other
work [6] [7], or extended to any new sort of dependency
that could be defined between BPEL activities. For example,
synchronization concerns in BPEL could be expressed with a
single dependency construct, instead of the link constructs that
are currently used.

B. Secondary Activities

Secondary activities, as defined in section III, are activities
that are not part of the business concern of the application,
but related to other concerns like transaction management.
They are associated with a BPEL scope, and they express
transactional relationships with the primary activity of a scope
(or activities nested in it) using ACTA dependencies.

Secondary activities can be represented inside a scope, using
the following construct:

<scope>
...
<secondaryActivities>
...

</secondaryActivities>
</scope>

BPEL scopes nest only one activity, called the primary
activity. However this activity can be a complex structured
activity, which allows for the nesting of more than one activity
in a single scope. Normally, a scope is considered as finished
when its primary activity has finished.

1 <scope name="parent">
2 <invoke name="requestShipping" ... />
3 <secondaryActivities>
4 <invoke name="cancelShipping" ... >
5 <dependency type="BCD"
6 destination="requestShipping"/>
7 <dependency type="BAD"
8 destination="parent"/>
9 <dependency type="CMD"

10 destination="parent"/>
11 </invoke>
12 </secondaryActivities>
13 </scope>

Listing 7. Compensation handling using ACTA dependencies

1 <scope>
2 <invoke name="requestShipping" ... />
3 <secondaryActivities>
4 <invoke name="cancelShipping" ... >
5 <dependency type="CPD"
6 destination="requestShipping"/>
7 </invoke>
8 </secondaryActivities>
9 </scope>

Listing 8. Compensation handling with implicit dependencies

In our extension, we consider that a scope cannot be
considered as finished, if secondary activities are running at
the moment of the completion of its primary activity. If that
is the case, the scope has to wait for the completion of these
activities before it is considered as finished. If no secondary
activities are running at the moment of the completion of the
primary activity, the scope is considered as finished.

A scope should not wait for secondary activities that have
not begun after completion of the primary activity. This is
firstly because some of these activities may never be executed
at all as a result of their dependencies. Secondly these could
begin in an undetermined moment in the future, when their
begin dependencies with activities not belonging to the current
scope are satisfied. Therefore, if the scope waits for such non-
crucial activities in order to be considered as completed, it
would indefinitely block the execution of other activities that
are waiting for this activity to finish.

C. Implicit dependencies between activities

The implicit dependencies concept we developed for DBCF
can be also added to BPEL. This accomplishes a significant
simplification to the way transactional dependencies can be
declared. We demonstrate this next, through an example.

Listing 7 shows the basic implementation of a compensation
management concern. We can see here that only two simple
activities are declared: the primary activity requestShipping
declared in line 2, and the secondary activity cancelShipping
declared in lines 4 to 11. This secondary activity declares three
ACTA dependencies (lines 5 to 10) that configure cancelShip-
ping to be executed only as a compensation transaction of
requestShipping.

Listing 8 proposes a simpler implementation, using an



implicit dependency (lines 5 and 6). This dependency replaces
the three dependencies showed in listing 7.

D. Suppressing failures

To be fully compatible with the idea of associating state
with BPEL activities, the only additional concept that should
be added to the language is the notion of “failed activi-
ties”. We have defined a failed or aborted activity as an
atomic or structural activity in BPEL that has already been
unsuccessfully executed. This lack of success can be due to
various circumstances. In the case of an invocation activity
for example, it can be the presence of a fault in the output
message of a web service invocation. In other more complex
cases, such as structural activities (activities that enclose other
activities), a failure can be due to the throwing of a fault in
one of the internal activities.

The standard behavior in BPEL when this kind of problems
arise, is to manage the fault if a fault handler exists in the scope
where such a fault happened. If no appropriate fault handler
is available, the fault is thrown to the enclosing scope. This
behavior is not compatible with our model, where sometimes
a fault occurrence only means assigning the aborted state to
the activity where this fault occurred, without implying the
throwing of the fault notifying a problem to the enclosing
scope.

We propose a simple syntactic construct that expresses this
idea, and that could be added to the set of BPEL standard-
elements. The BPEL specification defines the standard ele-
ments as a set of constructs that can be potentially included in
any activity. This set of elements is currently limited to source
and target links. The additional element we propose is:

<suppressFailure>
boolean

<suppressFailure/>

The inclusion of a suppressFailure element with a true
value inside a BPEL activity would be semantically equivalent
to the inclusion of an implicit scope immediately containing
the activity, with a dummy fault handler. The following code
illustrates this:

<scope>
<activity ... />
<faultHandlers>
<catchAll />

</faultHandlers>
<scope/>

An example of the use of suppressFailure is functional
replication. In this setting, more than one service can be
invoked in order to supply an equivalent behavior (from the
client point of view). Listing 9 defines a requestShipping
service as a first invocation alternative (lines 2 to 4), but
in case of problems, there is the alternative of invoking the
requestShippingAlt service (lines 6 to 9). We can express
this transactional relationship with the ACTA begin on abort
dependency previously discussed (lines 7 and 8).

1 <scope>
2 <invoke name="requestShipping" ... >
3 <suppressFailure>true</suppressFailure>
4 <invoke>
5 <secondaryActivities>
6 <invoke name="requestShippingAlt" ... >
7 <dependency type="BAD"
8 destination="requestShipping"/>
9 </invoke>

10 </secondaryActivities>
11 </scope>

Listing 9. Functional replication with a suppressFailure element

Here, the requestShipping service plays the role of pri-
mary activity, and requestShippingAlt is the only secondary
activity declared in the scope. In this example we consider
that requestShipping throws a fault when invoked. Since the
activity declares a suppressFailure element (line 3), the fault
is not propagated to an outer scope, but the state of this
activity is changed to aborted. After the scope has finished
the execution of its primary activity, it checks the state of
its secondary activities before being able to change its state
to committed. Since one of its secondary activities, namely
requestShippingAlt has already started (because its begin on
abort dependency has been satisfied), the scope should wait
for the finalization of this activity before completing. If
requestShippingAlt succeeds, the scope changes its state to
committed. Conversely, if this activity fails, the scope changes
its state to aborted and the fault is thrown to the outer scope.

VI. SUMMARY

The objective of this work is to advance the current mecha-
nisms for transaction management in Web Service composition
languages. Using a unified mechanism of ACTA dependencies
we were able to achieve significant improvements with regard
to avoiding tangling of concerns of BPEL code, conciseness
of BPEL code and the extensibility of the BPEL transaction
mechanism. We discussed these improvements in this paper.

First, we demonstrated the flexibility of the ACTA frame-
work, as a base for developing a mechanism based on transac-
tional dependencies. This system unifies the different existing
BPEL mechanisms for dealing with advanced transaction
management concerns into one element.

Second, we adapted and extended the dependency model of
ACTA in such a way that it better fits our domain. We used the
notion of secondary transactions [9] and we added the concept
of implicit dependencies between activities.

Third, we demonstrated the validity of these ideas for imple-
menting transaction management in Web Service composition,
through the implementation of the DBCF framework. DBCF
is a prototype that makes use of the main directions of the
above model.

Fourth, we proposed an extension to BPEL, the current state
of the art for Web Services composition. Our extension uses
the main ideas developed in DBCF and significantly improves
on the BPEL mechanisms for managing the transactional



concerns of activity synchronization, functional replication and
activity compensation.

DBCF solves three BPEL problems: First, the tangling of
code in synchronization management concerns. Second, the
complexity of the model, created by the use of an unrelated
group of constructs for each transaction management concern.
Third, the lack of extensibility of the transactional mechanism
used by BPEL.

These problems are solved as follows:
- The proposal that transaction management concerns in

Web Service composition can be managed using the core
ideas of dependencies and secondary transactions. As
a consequence there is a reduction in the number of
constructs and the amount of concepts that need to be
memorized by a programmer.

- DBCF also proposes an extensible mechanism for trans-
action management inherited from ACTA. This results
in a mechanism that is adaptable, it will be able to deal
with new transactional issues in the future.

- DBCF introduces the notion of implicit dependencies, as
a mechanism for accomplishing further simplification.

VII. CONCLUSIONS

Transaction management in loosely coupled environments
is not a trivial task. Web Services are the current state of
the art for interoperability for such kind of systems, and
the BPEL language is the current de-facto standard for web
services composition. BPEL support for expressing transac-
tional properties is however limited, non extensible, and relies
on different unrelated constructs for managing transaction
management concerns. In this paper we have demonstrated that
these concerns can be managed using a simpler, extensible and
unified set of constructs, relying on a proven existing formal
model for advanced transaction management. Furthermore, we
have shown how BPEL can be extended to incorporate our
solution. As a result of this the BPEL programmer reaps the
benefits of more concise code that is less tangled, and the
BPEL language is more extensible towards new transactional
models in the future.

VIII. FUTURE WORK

Possible avenues for future work are mainly oriented to
improve DBCF, so that transaction management concerns that
are currently managed by BPEL are better handled. As we
mentioned before, these are mainly related to timing manage-
ment, exception handling and the use of multiple activities to
express synchronization management.

In order to solve these problems, additional extensions to
the concept of ACTA dependencies can be defined in such a
way that a dependency statement can also be expressed with:

- Temporal logic elements.
- Inclusion of elements related to exception handling.
- The use of more than two activities in dependencies,

relating their transactional outcomes with boolean logic
expressions.

Also, we would like to explore the possibility of employing
the ACTA notions of views and delegation for implementing
the BPEL concept of serializable scopes. These improvements
involve the modification of ATPMos, the transactional monitor
taken from the KALA implementation and used by DBCF.

Another interesting research direction in DBCF, is the
definition of a method for formally establishing implicit rela-
tionships between transactions. This should allow the concept
of implicit dependencies to be used in different scenarios, and
not only in the context of Web Services composition.

Finally, a transformation engine could be developed that can
transform BPEL processes written in XML, to modules written
in DBCF, such that these processes can be executed with the
services of our framework. To achieve this, the XML document
that defines a BPEL process should be parsed, and each BPEL
activity should be mapped to a corresponding DBCF activity.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Concepts, Architectures and Applications. Springer, 2004.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, and J. Klein, “Busi-
ness Process Execution Language for Web Services (version 1.1),”
http://www.ibm.com/developerworks/library/specification/ws-bpel/, May
2003.

[3] A. Arkin, “Business Process Modeling Language- BPML 1.0,” BPMI
Consortium, Tech. Rep., June 2002.

[4] F. Leymann, “Web Services Flow Language (version 1.0),”
http://www.ebpml.org/wsfl.htm, May 2001.

[5] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1992.

[6] P. K. Chrysanthis and K. Ramamritham, “A formalism for extended
transaction model,” in VLDB ’91: Proceedings of the 17th International
Conference on Very Large Data Bases. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1991, pp. 103–112.

[7] ——, “ACTA: The SAGA continues,” in Database Transaction Models
for Advanced Applications, 1992, pp. 349–397.

[8] S. Castro, “Acta Dependencies as a Unified Mechanism for Com-
pensation, Activities Synchronization and Functional Replication in
BPEL4WS,” Master’s thesis, Vrije Universiteit Brussel, 2006.

[9] J. Fabry and T. D’Hondt, “KALA: Kernel aspect language for advanced
transactions,” in Proceedings of the 2006 ACM Symposium on Applied
Computing Conference, vol. 2. ACM Press, 2006, pp. 1615 – 1620.

[10] A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz, “A multi-
database transaction model for interbase,” in Proceedings of the sixteenth
international conference on Very large databases. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1990, pp. 507–518.

[11] K. Ramamritham and P. K. Chrysanthis, “A taxonomy of correctness
criteria in database applications (*),” VLDB Journal: Very Large Data
Bases, vol. 5, no. 1, pp. 85–97, 1996.

[12] P. K. Chrysanthis and K. Ramamritham, “Synthesis of extended trans-
action models using ACTA,” ACM Trans. Database Syst., vol. 19, no. 3,
pp. 450–491, 1994.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect oriented programming,” in Proceedings of
the European Conference on Object-Oriented Programming (ECOOP),
June 1997.

[14] H. Garcia-Molina and K. Salem, “Sagas,” in ACM Conference on
Management of Data, pages 249-259, May 1987.

[15] H. Wachter and A. Reuter, “The ConTract model,” Database transaction
models for advanced applications, pp. 219–263, 1992.

[16] “The JAX-WS Project,” https://jax-ws.dev.java.net/, Sun.
[17] “Apache Tomcat,” http://tomcat.apache.org/, The Apache Software

Foundation.
[18] E. van der Vlist, XML Schema. O’Reilly Media, Inc., 2002.
[19] P. Flynn, Understanding SGML and XML Tools, 1st ed., ser. Electronic

Publishing Series. Kluwer Academic Publishers, August 1998, no.
0-7923-8169-6.


