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RÉSUMÉ.

ABSTRACT. When confronted with a family of different domain-specific programming languages,
each with their own particular syntax but providing essentially the same semantic constructs,
often the need arises to transform programs between any of these languages. This is for example
the case for the domain of satellite operation languages, where every vendor or mission control
centre uses its own proprietary language. In previous work, we proposed a generic technique
to automatically generate program transformers between given source and target languages.
Our transformer generator tool takes as input a specification of the grammar of both source
and target language, tagged with specific annotations that specify the corresponding language
constructs in both languages. In this paper we further validate that approach by generating
program transformers between two industrial satellite operations languages. We observe that
the approach falls short for more complex mappings, where a single construct in one language
does not correspond directly to a single construct in the other language. To address that prob-
lem, we propose using a dedicated pre- and post-processing library and language, in which a
language engineer can define how to handle such more complex mappings.
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1. Introduction

In the domain of spacecraft mission planning and execution [QUI 04], spacecrafts
need to receive specific commands from so-called operators. These commands are des-
cribed in specialised programming languages called operations languages [CHA 06].
Operations languages have been designed with the purpose of regrouping the com-
mands sent to a spacecraft into operations, which are specialized programs that des-
cribe an organised procedure to be executed by a spacecraft. A large variety of ope-
rations languages exists and nearly every existing mission control centre uses its own
preferred operations language to design their mission procedures. Although these ope-
rations languages can be very different from a syntactic point of view, they all provide
largely the same semantic constructs and share a common foundation and program-
ming paradigm : they are all imperative and control flow-driven languages. Figure 1
shows an example of a mission procedure expressed in the Spacecraft Test and Ope-
rations Language Stol.

Figure 1 – An operation in the operations language Stol.
T1 = IS_WARN("SOL_TP1")
T2 = IS_WARN("SOL_TP2")
IF (T1 || T2) THEN

START sol_monitor()
ENDIF

In an attempt to facilitate the design and testing of spacecraft procedures, many
operators use specialised software development tools 1. Builders of such tools are
confronted with the need of making them generic, so that they can be employed by as
many operators as possible, regardless of the actual operations language they use. In
addition, these tools should be easily extendable to support new operations languages
or newer versions of existing operations languages.

In a previous paper [Ord 06] we proposed a generic technique and proof-of-concept
meta tool to semi-automatically derive translators of programs from one operations
language to another, based on the grammars of those languages annotated with extra
information specifying the corresponding language constructs in both languages. We
performed an initial validation of the proposed approach by automatically building a
translator to go from programs written in a subset of the Pluto [ECS 04] operations
language to an intermediate operations language which we specially designed for the
occasion. The results of that small and controlled experiment were promising and did
not reveal many exceptional cases, leading us to conclude that a high-level of automa-
tion could be achieved.

An important goal of the current paper is to perform a larger-scale industrial vali-
dation of the above approach, and to further extend it to be able to deal with such in-
dustrial cases. We selected a case that was relevant to our industrial partner Rhea Sys-
tem [Rhe ] and tried to semi-automatically build a program transformer for translating
commercial procedures from the Stol [Int 00] operations language to MOIS [QUI 06].

1. MOIS 5 [QUI 06], built by Rhea System [Rhe ] is an example of such a tool.
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Rather than restricting to a subset of these languages, our translator considers the
full extent of both languages and was tested on real-life procedures. The transforma-
tions the translator had to perform were generated automatically for most language
constructs present in the Stol language. For some language constructs in the source
language, however, there did not exist a direct one-to-one mapping [WIJ ] to a corres-
ponding construct in the target language. These were harder to handle automatically.
Nevertheless, we managed to program by hand the necessary transformation rules for
those cases to be integrated in the generated translator.

Aware of the fact that the main cause of existence of those special cases was a
restriction of our technique of being applicable only to cases where there exists a one-
to-one mapping between language constructs, we tried to find a solution to overcome
this restriction. Following Terekhov and Verhoef’s advice [TER 00], the solution we
opted for was to restructure the input program passed to the translator and the output
program generated by it, to enable the simpler one-to-one mappings supported by
our annotated grammars technique. During our validation experiment we kept track
of the different kinds of restructuring transformations we had to include manually
into the translator, and eventually came up with a library of primitive restructuring
transformations that could be used to facilitate the definition of appropriate mappings
between many different language constructs.

After having analysed the primitive restructuring transformations in our library, we
observed a potential of further simplifying the definition of these transformations by
offering a dedicated high-level transformation language, backed up by the library we
developed, in which a tool builder could specify the necessary program restructurings
to be performed. In addition to reporting on an industrial case study of building a full
program translator using our technique and tool, a second important contribution of
this paper was therefore to propose using this high-level language to help defining the
more complex mappings that our technique is incapable of handling automatically.

The remainder of this paper is structured as follows. Section 2 presents a brief over-
view of the annotated grammars technique for building program translators. Section 3
presents the industrial case study of producing a program transformer from the Stol
to the MOIS language, reports on the results of this validation experiment and high-
lights some discovered limitations of the proposed technique. Section 4 then discusses
how we managed to overcome the limitations encountered by building a library of
transformations that can be used to enable the definition of more complex mappings.
Section 5 sketches our proposal to further simplify the approach by providing a de-
dicated high-level transformation language. We conclude the paper in Section 7, after
having discussed some related work in Section 6.

2. The annotated grammars technique

Our annotated grammars technique for the automated generation of program trans-
formers has two main goals. First of all, we want to produce program transformers that
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can automatically translate procedures from one operations language to another (e.g.
Stol to MOIS ). In other words, the produced transformers should be fully automatic
and not ask for any user intervention when translating a program (as opposed to some
other approaches like [LEI 03]). Secondly, the program transformer itself should be
generated in an automated way from a specification of the source and target language.
Here we deliberately use the word ‘automated’, rather than ‘automatic’, since the ge-
neration of a program transformer is not necessarily fully automatic. Indeed, although
our technique can handle automatically the majority of language constructs that need
to be translated, there typically remain a limited amount of less trivial cases for which
some manual intervention by the user of the technique is needed.

Our technique presupposes that the languages between which we want to translate
are largely similar from a semantic point of view. Furthermore, the more similar the
syntax of source and target language (i.e., (the language grammars), the more auto-
matically the program transformer can be built, and the less human intervention is
required when producing the program transformer. As it requires high technical skills
to declare the sometimes complex mappings between language concepts, it is our goal
to make the automation as complete as possible and to make the manual effort as little
as possible. Before explaining how we support the manual work, however, we first
explain the basic approach that was already published in an earlier paper [Ord 06].

Figure 2 – Automated generation of program transformers : schematic overview.
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Figure 2 provides a schematic overview of our approach, indicating the three dif-
ferent kinds of actors involved. The bottom or base level represents the end users,
who only care about having a program transformer, to which they can feed programs
written in their source programming language and which automatically produces an
equivalent program in the target language. At the intermediate or meta level, we have
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the tool builders who provide the end users with a transformation tool for the source
and target programming language of their choice. To build such a program transfor-
mation tool, they make use of our APPAREIL meta tool which is situated at the top
(or meta meta) level. The technique used by this meta tool to automate the process of
building program transformer tools is based on syntax-directed translation and trans-
duction techniques [P.M 68, AHO 69]. The tool builders provide this meta tool with
a specification of the grammar of both source and target language, tagged with anno-
tations that specify the corresponding language constructs in both languages. Using
this input, the meta tool then semi-automatically builds a dedicated transformer for
translating programs from the source to the target language, and the tool builder has to
intervene only to specify how to translate those cases for which no direct equivalence
could be stated between productions in the source and target grammars.2

Now let us explain the annotated grammars technique in some more detail by wor-
king out a small example3. Figures 3 and 4 show the production rules for a correspon-
ding language concept, a while loop, in the Stol and MOIS operations languages, res-
pectively. The production rules are expressed in the SDF formalism [HEE 89], and are
adorned with extra annotations. These annotations appear at two different levels. An-
notations that appear at the level of the entire production are intended to specify equi-
valent language productions in the source and target language grammar. For example,
by tagging both the production in Figure 3 and Figure 4 with the same “While” tag
(inside the curly braces and ‘cons()’ label), we tell the APPAREIL meta tool that these
language concepts are considered to be equivalent and that it should try to transform
statements matching the production in Figure 3 to program statements matching the
production in Figure 4.

Figure 3 – An annotated SDF production for the Stol language.
DO WHILE "(" cond : Expression ")" EOL

block : Statement-List ?
comm : CommStmt ?

ENDDO -> DoWhile {cons("While")}

Figure 4 – An annotated SDF production for the MOIS language.
"<DecisionStep>"

"<BooleanResult>"
cond : MoisExpression

"</BooleanResult>"
"<WHILE>"

"<REPEAT>"
block : StepList ?
comm : MoisComment ?

"</REPEAT>"
"</WHILE>"

"</DecisionStep>" -> WHILE {cons("While")}

Since the left hand-side of these productions may contain several non-terminal
symbols, shown in italics in Figures 3 and 4, extra annotations are needed to tell

2. A programming language is most often defined by a formal grammar, which consist of a set of
production rules (or productions, for short) that define how strings representing valid programs
in that language can be generated.
3. See [Ord 06] for a more technical elaboration of the approach.
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the meta tool what non-terminals in the source production correspond to what non-
terminals in the target production. (Especially when the non-terminals appear in a dif-
ferent order in the left-hand sides of the source and target productions.) In the example,
the cond :, block : and comm : annotations serve this purpose. Non-terminal symbols
that can be neglected are not annotated, neither are the terminal symbols.

Figure 5 illustrates how the annotations define a mapping between corresponding
language constructs, used by a program transformer from source to target language.
Based on the mapping defined by these annotations, our APPAREIL transformer ge-

Figure 5 – Using annotations to map corresponding language constructs.
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nerator tool will produce a specific translator in ASF+SDF [BRA 01, KLI 93], that
will act over a parsed program in the source language and produce an equivalent pro-
gram in the target language. A proof-of-concept of this transformer generator was
tested in a previous laboratory experiment to translate procedures written in the Pluto
operations language, to a generic intermediate operations language designed for that
experiment. That experiment, even though small and controlled, showed that a high
level of automation could be achieved. Nevertheless some exceptional cases had to be
treated manually by introducing additional transformation rules into the translator.

3. Industrial case study : transforming procedures from STOL to MOIS

Having performed a successful initial experiment [Ord 06], for this paper we de-
cided to perform a more complete experiment to further validate and improve our
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technique. We report on an industrial case study of building a program translator that
can transform existing mission procedures written in the Stol operations language into
the MOIS operations language4. The main difference between this experiment and our
initial one is the size of the languages dealt with. We no longer restrict ourselves to a
subset of an operations language, but deal with a complete source and target language.
In addition, since the produced translator will be used in real life by our industrial
partner, we need to test the generated program transformer on real-life procedures that
cannot be freely adapted or manipulated.

Because of the larger case study we dealt with (in terms of number of productions
in source and target grammar), the number of exceptional cases that could not be hand-
led directly by our annotated grammars approach was much higher as well. On a total
of 150 productions in Stol, which needed to be mapped to 62 productions in MOIS,
for 109 of the Stol productions a ‘simple’ mapping to the corresponding MOIS pro-
duction sufficed.5 For the 41 remaining cases in Stol, however, such a simple mapping
proved insufficient and some manual intervention by the tool builder was required to
build the program transformer. Since some of those exceptional cases actually requi-
red more than one primitive transformation, as the example that follows will illustrate,
in fact the total number of additional primitive transformations (see Section 4) that the
tool builder needed to define amounted to 59.

To illustrate the kinds of manual transformations that a tool builder needs to de-
fine, let us consider an example of a more complex translation from Stol to MOIS. The
language construct we are trying to transform is a variable declaration. There are two
main reasons why a simple one-to-one mapping does not suffice. First of all, whereas
Stol supports the declaration of multiple variables by means of a single declaration
instruction, MOIS requires a separate declaration instruction per variable. Secondly,
whereas in Stol variables can be declared anywhere in the program, in MOIS they
must all be declared together before a procedure body, in some sort of a header. Fi-
gure 6 shows a legal example of a Stol program fragment that declares four variables,
and its corresponding translation in the MOIS operations language.

Figure 7 shows the productions involved for both Stol and MOIS. Although the
semantics of the corresponding language constructs is basically the same (variables
are the same concept in both languages), the productions vary because variable decla-
rations appear in different locations in the syntax tree. It is not possible to declare a
one-to-one mapping between the corresponding language concepts because there is a
mismatch in the shape of the abstract syntax tree (there is not an obvious isomorphic

4. In the remainder of this paper, unless explicitly stated otherwise, when we refer to MOIS we
mean the operations language that is used internally by the MOIS tool suite, not the tool suite
itself.
5. Note that different Stol productions are often mapped to the same production in MOIS. For
example, Stol provides a different language construct for a whole range of different ‘directives’
(one production per directive), whereas in MOIS a single ‘Directive’ language construct exists
for expressing all possible kinds of directives.



8 1re soumission à IDM2007.

mapping, but there is a homomorphic mapping). And this example is only a simple
problem : the mismatch can be more significant than for the example shown here.

Figure 6 – An example of variable declaration in Stol and MOIS.
--- Stol program fragment ---
LOCAL var1, var2, var3
some instruction
LOCAL var4
another instruction

--- MOIS program fragment ---
<Proc>
<Variable><name>var1</name></Variable>
<Variable><name>var2</name></Variable>
<Variable><name>var3</name></Variable>
<Variable><name>var4</name></Variable>
<ProcBody>
<instruction>some instruction</instruction>
<instruction>another instruction</instruction>
</ProcBody>
</Proc>

Figure 7 – Stol and MOIS productions for variable declaration.
--- Stol grammar production ---
(Instruction | Declaration)+ -> StolProc
"LOCAL" Identifier DeclIdItem* -> Declaration
"," Identifier -> DeclIdItem
[a-z0-9]+ -> Identifier
... -> Instruction

--- MOIS grammar production ---
"<Proc>"
Declaration*
"<ProcBody>"
Instruction+
"</ProcBody>"
"</Proc>" -> MOISProc
"<Variable><name>" Identifier "</name></Variable>" -> Declaration
[a-z0-9]+ -> Identifier
"<instruction>" ... "</instruction>" -> Instruction

To be able to map these corresponding language constructs, the tool builder nee-
ded to perform several manual interventions when building the program translator.
The first one corresponded to pre-transforming the input program to turn every multi-
variable declaration into a sequence of single-variable declarations. For example, this
would transform the Stol declaration LOCAL var1, var2, var3 into three separate
Stol variable declarations :

LOCAL var1

LOCAL var2

LOCAL var3

which each can be mapped without any problem to their corresponding MOIS variable
declaration. The parse-tree transformation on the input Stol program that was executed
to perform this pre-transformation is illustrated in Figure 8.

After having performed this pre-transformation, the problem still remained that
variable declarations could be spread throughout a Stol program, whereas in the cor-
responding MOIS program they were expected to be put together in a ‘header’ at the
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Figure 8 – A pre-transformation inside Stol

Proce
dure

Decla
ration

Iden
tifier

Decl
Id
Item

Instru
ction

Decla
ration

Instru
ction

Iden
tifier

Iden
tifier

Proce
dure

Decla
ration

Iden
tifier

Instru
ction

Decla
ration

Instru
ction

Iden
tifier

Decla
ration

Iden
tifier

Stol

Iden
tifier

Decla
ration

Iden
tifier

Stol

Decl
Id
Item

start of each MOIS procedure, before the ‘body’. A second intervention required by
the tool builder, therefore consisted in collecting all variable declarations, so that they
could be grouped together in a single place inside the MOIS program. We decided to
perform this transformation after having translated the Stol program to a correspon-
ding MOIS program using our annotated grammar technique. More specifically, on
the parse-tree of the resulting MOIS program, we performed the post-transformation
illustrated in Figure 9, to obtain a valid MOIS program. (It was difficult to perform
this transformation before the translation to MOIS : since Stol has no notion of a
procedure header we could not declare where the variables need to be moved too.)

Figure 9 – A post-transformation inside MOIS
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In summary, with this case study of building an industrial program transforma-
tion tool, we learned that, although our annotated grammars technique could automate
an important part of building such a program transformer, quite some special cases
remained where some manual intervention by the tool builder was required. This in-
tervention typically amounted to performing some pre-transformations of the input
program or post-transformations of the produced program, to enable using the one-to-
one mappings supported by our annotated grammars technique. Since many of these
pre- and post-transformations were similar in nature, during the case study we built a
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library of typical parse-tree transformation procedures to be used by the tool builder.
The next section discusses this library in more detail, before we propose how it could
be turned into an actual transformation language in Section 5.

4. A library of parse-tree transformation functions

The kinds of manual interventions required by the tool builder ranged from simple
replacements of incompatible characters inside text comments6, to complex subtree
modifications creating additional parse-tree nodes. As mentioned before, for dealing
with the 41 ‘exceptional’ cases in Stol where simple mappings between corresponding
productions did not suffice, the tool builder defined 59 pre- or post-transformations of
the program being translated. As summarized by Figure 10, we classified each of those
59 transformations into 5 categories of ‘primitive’ parse-tree transformations : moving,
replacing, mapping, creating and removing parse tree nodes.

Figure 10 – Kinds of primitive transformations used by the tool builder.
Category Occurrences
Moving nodes to different place in parse tree 7
Replacing partially/completely a node's contents 28
Mapping the type of a node to another one 8
Creating additional nodes 13
Removing nodes from the parse tree 3

For example, the transformation shown in Figure 8 was defined in terms of two
primitive operations : move and map. First, we move up all DeclIdItem nodes one
level, as siblings after their parent node ; then we map the type of those DeclIdItem
nodes to the type Declaration. The transformation of Figure 9 was defined by col-
lecting7 all nodes of type Variable and moving them up one level, as siblings before
their parent node.

For practical reasons8, to perform the manual interventions in our case study, we
transformed our parse trees into an XML DOM [W3C a], and directly manipulated
them in Java. However, because DOM manipulation in Java can be pretty verbose,
this made the tool builder’s job of manually writing transformations quite boring and
error-prone. To facilitate his job, once we realised that most complex transformations
could be defined in terms of a small set of primitive operations, we decided to organise
these operations into a consistent and reusable library of parse-tree transformation
functions. Figure 11 shows part of the Java API for this library. By using this library
instead of having to manually redefine the same low-level parse-tree manipulations

6. Keeping the comments when translating programs is a hard requirement imposed by the
client. The comments tend to provide detailed information on the procedures’ purpose and in
this field, some mission control centers have operators that execute the procedures by hand,
rather than having them executed by a machine, to have more control over the mission.
7. We do not consider the collect step as a separate operation but as an implicit part of the move
operation to define the set of nodes we want to move.
8. Mainly because our industrial partner’s programming team preferred this approach, because
of their prior experience with XML and Java technology.
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every time, the tool builder could focus on the essence of the transformations and thus
became much more efficient.

Figure 11 – An API of parse-tree transformation functions.
void moveAfter(String nodePath, String destPath)
void moveBefore(String nodePath, String destPath)
void moveInside(String nodePath, String destPath)

move a node described by nodePath after, before
or inside a reference node described by destPath

Node createAfter(Node ref, String tag, Object content)
Node createBefore(Node ref, String tag, Object content)
Node createInside(Node ref, String tag, Object content)

create a node with name tag and containing
content, after, before or inside a node ref

Node mapTo(Node node, Document gramm, String production)

transforms the type of a node by the type of a
production with annotation production (as defined
inside the annotated grammar definition gramm )

void replace(String nodePath, Object content)

replace every node in nodePath by content

...

When performing his manual interventions, the tool builder needs to decide whe-
ther to perform a pre-transformation, a post-transformation, or both. Pre-transformations
are performed on the input program, before it is translated by a program transfor-
mer generated by our annotated grammars technique. Post-transformations are per-
formed on the program that is produced by that transformer. Whether to use a pre-
transformation or post-transformation depends from case to case. For example, the
variable declaration example of the previous section made use of a pre- and a post-
transformation. The primitive transformation functions in our library however, are in-
dependent of whether they are used in the pre- or post-transformation phase.

To conclude this section, we show an example of what it would take to define the
MOVE operation used in the post-transformation of our variable declaration example
(Figure 9). Without using the library, the Java code to move the Variable nodes one
level up would look as shown in Figure 12, whereas when using the library a simple
call to the right API function suffices : see Figure 13.

5. Towards a high-level program transformation language

After having conducted our entire industrial case study and having built a reusable
library of primitive parse-tree transformation functions along the way, we realized that
we could take things yet a step further by offering the tool builder with a high-level
dedicated program transformation language. For example, Figure 14 suggests what
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Figure 12 – A verbose parse-tree transformation.
Node context =

(Node) xPath.evaluate( "/Proc", document,
XPathConstants.NODE );

NodeList list =
(NodeList) xPath.evaluate( "//Variable", context,

XPathConstants.NODESET );
for (int i = 0; i < list.getLength(); i++) {

Node node = list.item(i);
context.insertBefore(node, context.getFirstChild());
}

Figure 13 – Transforming a parse-tree by calling the appropriate library function.
moveBefore("//Variable", "/Proc/ProcBody");

the transformations worked out in Section 3 and depicted in Figures 8 and 9 would
look like in such a language. Note that we haven’t constructed this language yet, but
since we already have developed a full library of primitive transformation functions,
developing such a language would mainly correspond to defining an appropriate parser
and interpreter for the language which calls the appropriate library functions.

Figure 14 – Pre/post-transformations defined in a dedicated transformation language.
PRE: MOVE "//Declaration/DeclIdItem" AFTER ".." MAPTO "Declaration"
POST: MOVE "//Variable" BEFORE "/Proc/ProcBody"

To be able to express this example we need the following language constructs :
MOVE path1 (AFTER | BEFORE | INSIDE) path2 moves the collection of nodes

described by path1 before, after or inside the node at the location described by
path2. Both path1 and path2 are XPath expressions [W3C b] in the XML DOM
representation of the parse tree over which we work. Note that path2 is always
calculated relative to the current path1 node being moved. The path1 node will
be moved immediately after or before the path2 node, as a sibling of it, or
inside the path2 node as its last child. The order in which the nodes appear in
the source program is preserved when moving nodes with this operation.
For example : MOVE "//Variable" BEFORE "/Proc/ProcBody" moves all
nodes of type Variable —regardless of its position in the tree— as siblings to
the left of the subnode ProcBody of node Proc, while preserving the order of
all collected Variable nodes in the source parse tree.

path MAPTO production maps the type of each of the collection of nodes described
by path to the type of a new production. In fact, production refers to a produc-
tion via the annotation that was assigned to that production. For example, if
we revisit Figures 3 or 4, the production label "While" is used to refer to those
productions.
Note that the MOVE instructions can be extended with the MAPTO command
like this : MOVE path1 (AFTER | BEFORE | INSIDE) path2 MAPTO pro-
duction
which, after moving, transforms the nodes collected by path1 to the type indi-
cated by production.
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Other language constructs that would be needed, in our dedicated transformation
language, to express the entire range of program transformations encountered in our
industrial case study are :

COPY path1 (AFTER | BEFORE | INSIDE) path2 is similar to the MOVE ins-
truction but creates new copies the nodes collected by path1 rather than just
moving them.
As for the MOVE instruction, the COPY instruction can be extended with the
MAPTO command to map the newly created nodes to another type.

REPLACE path WITH nodeexpression replaces each of the nodes described by
path with the result of nodeexpression (which is always calculated relative to
the current path node being replaced) and where nodeexpression defines a new
node to be created in an XPath-like syntax. For example,
/Declaration/Identifier(�temp�) will create the literal “temp” inside a
node Identifier which is nested inside a node Declaration.

CREATE nodeexpression (AFTER | BEFORE | INSIDE) path creates a new node,
described by nodeexpression, before, after or inside each of the nodes described
by path. As before, nodeexpression is calculated relative to the current path
node being visited.

REMOVE path removes all nodes described by path from the parse-tree.

We are currently in the process of implementing this high-level dedicated program
transformation language. To validate the language, we intend to define all pre- and
post-transformations that were defined manually by the tool builder in our industrial
case study, in terms of the primitive constructs offered by this language. This will
allow us to verify if the proposed language is sufficiently expressive, easy to use,
leads to simpler transformations, and so on.

Also, the language proposed above is still quite operational in nature : the tool
builder uses it to describe how parse trees need to be transformed. As future work we
will study whether we can come up with a more declarative kind of language, where
the tool builder would only specify what parse tree expressions need to be mapped.
For example : when declaring that a declaration of a sequence of variables needs to
be mapped to a sequence of variable declarations, the language interpreter itself could
infer the appropriate parse-tree transformations and mappings to do so.

6. Related work

Program translation, and the many problems it raises, has been the subject of seve-
ral studies like those of Verhoef, Lämmel and Terekhov [TER 00, LÄM 01, TER 01b,
TER 01a], many of which were used as inspiration for our approach. The core of our
work is based on defining appropriate mappings between language grammars. It bor-
rows ideas and applies principles from Lewis’s syntax-directed transduction [P.M 68],
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Klint’s grammarware [KLI 05] and Yellin’s grammar inversion techniques [YEL 88],
among others.

As main medium to implement our techniques we chose the ASF+SDF meta-
environment [BRA 01, KLI 93]. Nevertheless, many other alternative approaches for
implementing program transformations exist, as discussed by Visser et al. in their
surveys [VIS 01, WIJ ]. In particular we could have chosen XSLT as an alternative
implementation medium, especially when we are translating to a language like MOIS
which has an XML-like syntax. However, the point of this paper is not about what
underlying implementation technique to use, but about how to raise the abstraction
level to make it easier to build automated program translators.

Some related techniques exist that address problems similar to ours. Wyk studies
an expansion mechanism for modularly adding new features to a language, using at-
tribute grammars [WYK 02]. Shurr studies graph translators, where relationships are
described through additional correspondence rules [SCH 94]. Wile provides an alter-
native way to generate translators based on syntax-directed rules sets [WIL 91]. Mo-
reau’s framework TOM [MOR 03] is an example of how to extend a programming
language like Java or C, with the necessary support to generate tree implementations
and to perform tree pattern matching, in order to facilitate the manipulation of parse
trees. Finally, a closely related approach, dealing with non one-to-one mappings, are
Cleenewerck’s linglets [CLE 05]. Similar to our approach, the linglets technique is
highly grammar-driven and divides each translation problem in its constituent com-
ponents that are each specified by means of a high-level description, and executed in
separate logic steps.

7. Conclusion

In previous work we presented our annotated grammars technique to generate,
from an annotated grammar specification of a source and target programming lan-
gage, an automatic transformer to translate programs from source to target language.
This technique provides only a partial automation of the generation process, as it is
restricted to translating between language concepts for which there exists a one-to-
one mapping of the corresponding grammar productions. Nevertheless, the technique
allows us to achieve a high-level of automation. However, when conducting a larger
industrial case study, to build a program translator between two satellite operations
languages, we observed that for translating about one third of the productions, some
manual intervention was still required (i.e., a restructuring of the programs involved)
in order to be able to handle them with our technique. Hence, the amount of work
to be performed manually by the tool builder remains significant. In addition, when
conducting our case study we experienced that this manual work was often somewhat
repetitive and could therefore benefit from further automation. More specifically, we
observed that the kinds of program restructurings performed by the tool builder could
be defined largely in terms of a small set of primitive parse-tree transformations. The-
refore, during the case study, we built a high-level reusable library of such functions,
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to facilitate the tool builder’s job of writing the appropriate mapping transformations.
Given the positive experience gained with using this library to build a full industrial
program translator, we conjecture that the tool builder’s job would benefit even more
from having a high-level dedicated program transformation language, backed up by
our library, in which he could express the appropriate program transformations. We
made an initial proposal for such a language but further research is needed to study
the validity and usefulness of using the proposed language for that purpose.
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